JP2005019207A - Method for manufacturing charged particle beam apparatus and micro device, and micro device - Google Patents

Method for manufacturing charged particle beam apparatus and micro device, and micro device Download PDF

Info

Publication number
JP2005019207A
JP2005019207A JP2003182451A JP2003182451A JP2005019207A JP 2005019207 A JP2005019207 A JP 2005019207A JP 2003182451 A JP2003182451 A JP 2003182451A JP 2003182451 A JP2003182451 A JP 2003182451A JP 2005019207 A JP2005019207 A JP 2005019207A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
optical system
irradiation
path switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003182451A
Other languages
Japanese (ja)
Inventor
Erika Kanematsu
えりか 兼松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Nikon Corp
Original Assignee
Ebara Corp
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Nikon Corp filed Critical Ebara Corp
Priority to JP2003182451A priority Critical patent/JP2005019207A/en
Publication of JP2005019207A publication Critical patent/JP2005019207A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charged particle beam apparatus which compensates for irradiation nonuniformity of a charged particle beam for irradiation. <P>SOLUTION: Generated electrons 8 from a sample 6 are passed through an objective lens 7, an electromagnetic prism 3 as an optical path switching means, and an image-forming electron-optical system 9 projected on an MCP detector 10 and photoelectrically converted. The light generated by photoelectrical conversion is passed through a photo mapping optical system 12, and an image is projected on a time delay integrating type imaging device camera 13. For observing the sample image, the sample is made to move synchronized to the scanning direction of the imaging device camera 13, thereby accumulating on each corresponding imaging device of the imaging device camera 13 the light intensity produced by secondary electrons, back scattering electrons and reflected electrons 8 from a point of the sample. Hence, even if there is an irradiation distribution, the values integrated by the imaging device camera 13 are equivalent to that in the case of any point of the sample being irradiated with the same light amount. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子ビームやイオンビーム等の荷電粒子線を試料面に面照射させて観察、検査を行う荷電粒子線装置、及びそれを利用したマイクロデバイスの製造方法、さらには、この荷電粒子線装置により観察が行われたマイクロデバイスに関するものである。
【0002】
【従来の技術】
照射線源から発した照射用荷電粒子線を、照射光学系を介して光路切換手段に入射させ、光路切換手段を通過した照射用荷電粒子線を、対物光学系を介して試料面に入射させ、試料面から放出された観察用荷電粒子線を、対物光学系を介して光路切換手段に入射させ、光路切換手段によって照射線源に至る方向とは異なる方向に観察用荷電粒子線を導き、光路切換手段を通過した後の観察用荷電粒子線を、結像光学系を介して時間遅延積分型の撮像素子を用いた検出手段に入射させる荷電粒子線装置は、現在開発段階であり、半導体デバイスのパターンの検査や、その他の微細構造を有するマイクロデバイスの検査に使用される予定である。
【0003】
このような荷電粒子線装置においては、撮像面に2次元光電変換装置等を配置し、結像した荷電粒子線を一旦光に変換し、リレー光学系を介して、TDI−CCD等の時間遅延積分型の撮像素子上に前記撮像面の像を結像させている。そして、時間遅延積分型撮像素子の走査に合わせて試料を移動させ、同じ試料面から放出され、光に変換された荷電粒子線を積分することにより大きな電荷として取り出し、微量な観察用荷電粒子線による試料の観察を可能にしている。
【0004】
このように、TDI−CCD等の時間遅延積分型の撮像素子を用いると、その走査方向についての観察用荷電粒子線光学系や光学系のいろいろな位置での結像の結果が積分された結果が得られるので、この方向について、観察用荷電粒子線光学系の収差や照度のむら等があっても、それらが平滑されたような観察結果を得ることができる。
【0005】
一方、このような荷電粒子線装置においては、照明光学系は、単に試料面を均一照明すればよいのに対し、観察用荷電粒子線光学系は、試料面の像を正確に結像させる必要があるため、収差等の条件が厳しく、従って、照明光学系と観察用荷電粒子線光学系に共通に使用される部品において、照明光学系として要求される条件と観察用荷電粒子線光学系として要求される条件が相反する場合、照明光学系の条件を犠牲にして、観察用荷電粒子線光学系として要求される条件を満足させるのが一般的であった。
【0006】
このような条件から、荷電粒子線装置においては、観察用荷電粒子線光学系の光軸は直線とし、照明光学系の光源を横方向に設け、E×B等の光路切換手段により、照射用荷電粒子線光路を曲げて、観察用荷電粒子線光学系の光軸に一致させた状態で、試料面を照明するように構成されている。一般に光路切換手段には、E×Bのように電界と磁界を利用したものが使用されるが、この場合、荷電粒子線は、電場に平行で、磁場に垂直な平面内でその進行方向を変えることになる観察用荷電粒子線光学系を単独で考えた場合、その収差等のばらつきは磁場に平行な方向で大きく現れる。よって、従来の荷電粒子線装置では、時間遅延積分型の撮像素子の走査方向(従って試料の移動方向)を、光路切換手段の磁場の方向と一致させ、これにより、磁場方向の場所間でむらのある収差等を平均化する方法が採用されていた。
【0007】
【特許文献1】特開2000−340162号公報
【0008】
【発明が解決しようとする課題】
上記のような構成によると、E×Bの電場に平行で磁場に垂直な方向、すなわち、照明荷電粒子線が曲げられる面内におけるむらの補正は、時間遅延積分型の撮像素子によっては行うことができなかった。この面内では、照明用荷電粒子線の光路が曲げられるため、照度むらの発生が避けられないが、これは、やむを得ないものとされていた。
【0009】
本発明は、このような事情に鑑みてなされたもので、最近の観察用荷電粒子線光学系の進歩を考慮し、照明用荷電粒子線の照度むらを補償可能な、荷電粒子線装置、およびそれを使用したマイクロデバイスの製造方法、さらには、この荷電粒子線装置により観察が行われたマイクロデバイスを提供することを課題とする。
【0010】
【課題を解決するための手段】
前記課題を解決するための第1の手段は、照射線源から発した照射用荷電粒子線を、照射光学系を介して光路切換手段に入射させ、この光路切換手段を通過した前記照射用荷電粒子線を、対物光学系を介して試料面に入射させ、この試料面から放出された観察用荷電粒子線を、前記対物光学系を介して前記光路切換手段に入射させ、前記光路切換手段によって前記照射線源に至る方向とは異なる方向に前記観察用荷電粒子線を導き、前記光路切換手段を通過した後の前記観察用荷電粒子線を、結像光学系を介して時間遅延積分型の撮像素子を用いた検出手段に入射させる荷電粒子線装置であって、前記光路切換手段によって進行方向が曲げられる前記照射用荷電粒子線の軌跡が含まれる面に平行な方向と、前記時間遅延積分型の撮像素子において積算が行われる方向が一致していることを特徴とする荷電粒子線装置。(請求項1)である。
【0011】
前述のように、観察用荷電粒子線光学系においては、収差等の発生が問題となっていたが、例えば、特開2000−340162号公報(特許文献1)に記載されるように、光路切換手段のパワー中心が観察面と共役になるように観察用荷電粒子線光学系を調整する等の手段により、観察用荷電粒子線光学系に対する収差の影響を低減することが可能となった。このような、収差の小さい観察用荷電粒子線光学系を使用すれば、収差補正条件の厳しい観察用荷電粒子線光学系への影響を気にせずに、進行方向が曲げられる照射用荷電粒子線の軌跡が含まれる面の方向と、前記時間遅延積分型の撮像素子において積算する方向の関係を決定することが可能となった。
【0012】
そこで、本手段においては照射用荷電粒子線の軌跡が含まれる面の方向と、時間遅延積分型の撮像素子において画像を積算する方向(すなわち試料を移動させる方向)を一致させるようにした。これにより、照射用荷電粒子線の照度むらがあっても、時間遅延積分型の撮像素子において積分されて出力される値は、試料が観察視野中を移動している間の平均的な荷電粒子線反射量、又は二次電子発生量の値となる。よって、照明むらがキャンセルされ、良好な撮像結果を得ることができる。
【0013】
前記課題を解決するための第2の手段は、前記第1の手段であって、前記光路切換手段が電磁プリズムであり、前記試料面と前記電磁プリズムのパワー中心が、荷電粒子線光学系において共役な位置関係にあることを特徴とするもの(請求項2)である。
【0014】
特開2000−340162号公報(特許文献1)に記載されるように、光路切換手段である電磁プリズムのパワー中心が観察面と共役になるように観察用荷電粒子線光学系を調整すれば、観察用荷電粒子線光学系に対する収差の影響を低減することが可能であり、収差補正条件の厳しい観察用荷電粒子線光学系への影響を気にせずに、前記第1の手段のような構成を採用し、照明むらをキャンセルして、良好な撮像結果を得ることができるようになる。
【0015】
前記課題を解決するための第3の手段は、前記第1の手段又は第2の手段である荷電粒子線装置を用いてマイクロデバイスの表面を観察する工程を含むことを特徴とするマイクロデバイスの製造方法(請求項3)である。
【0016】
本手段においては、荷電粒子線装置の照度むらが低減された状態でマイクロデバイスの検査を行うことができるので、表面観察による検査精度を上げることができる。なお、マイクロデバイスとは、半導体デバイスやマイクロマシニングデバイスを始め、微細構造を有する物体を言い、このことは本明細書全体において共通である。
【0017】
前記課題を解決するための第3の手段は、前記第1の手段又は第2の手段である荷電粒子線装置を用いて表面観察がされたマイクロデバイス(請求項4)である。
【0018】
本手段においては、照度むらが低減された状態で表面観察が行われているので、欠陥のないマイクロデバイスとすることができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態の1例である電子線装置の概要を示す図である。カソード1から射出した照射ビーム4は、ウェネルト電極14、アノード15、照明電子光学系2を通過して、電磁プリズム(E×B)3に入射する。照射ビーム4は、光路切換手段である電磁プリズム3によって、その光路が変更された後、対物レンズ7を通過して、試料6を面照射する。試料6に照射ビーム4が入射すると試料6からは、その表面形状、材質分布、電位の変化などに応じた分布の2次電子、後方散乱電子及び反射電子8が発生する。
【0020】
この発生電子8は、対物レンズ7、光路切換手段である電磁プリズム3、結像電子光学系9を通して、MCP(Micro Channel Plate)検出器10上に投影され、光電変換される。光電変換により発生した光は、光写像光学系12を通過して、時間遅延積分型の撮像素子(TDI−CCD)カメラ13に画像が投影される。ここで、対物レンズ7は、2次電子、後方散乱電子及び反射電子8による中間像が光路切換手段である電磁プリズム3の中心付近に解像度良く結像するように設計されている。すなわち、電磁プリズム3の中心位置と、試料6の表面位置は共役になっている。また電磁プリズム3、結像電子光学系9は、2次電子、後方散乱電子及び反射電子8による像が解像度良く結像されるよう精密に設計されている。
【0021】
電磁プリズム3の中心位置と、試料6の表面位置が共役になっているので、特許文献1に記載されるように、対物レンズ7、光路切換手段である電磁プリズム3、結像電子光学系9を中心とする観察用荷電粒子線光学系の収差を小さく抑えることができる。
【0022】
ここで、照射ビーム4の光路が光路切換手段である電磁プリズム3によって曲げられた場合の様子を図2に示す。対物レンズ7を通過して、試料6を面照明したとき、図2(a)のように光路が曲げられた方向にディストーションが生じ、結果として、図2(b)に示すように、試料面の、図2の左右方向における照度ムラが大きくなる。これに対し、図2の紙面に垂直な方向では、照射ビーム4は曲げられていないので、比較的均一な照度が得られる。
【0023】
しかし、本実施の形態においては、時間遅延積分型の撮像素子カメラ13の走査方向を、図2における左右方向(電場方向)にとっている(従来は時間遅延積分型の撮像素子カメラ13の走査方向は、図2における紙面と垂直方向(磁場方向)にとられていた。)。
【0024】
従って、試料の像を観察する場合には、時間遅延積分型の撮像素子カメラ13の走査方向に合わせて、試料を図2における左右方向に移動させ、それにより、同じ点からの2次電子、後方散乱電子及び反射電子8によって発生する光の強度が、時間遅延積分型の撮像素子カメラ13の各撮像素子に蓄積されながら移動していくようにする。
【0025】
よって、試料のある点が撮像視野に入ってから出ていくまでに、図2における左右の各点で照射を受けることになり、時間遅延積分型の撮像素子カメラ13で積分された受光量の値は、図2(b)に示した照度分布を積分した値と関係を有するものとなる。従って、試料が移動しながら撮像されることから、試料のどの点においても図2(b)に示した照度分布を積分した値は同じになるので、図2(b)に示すような照度分布があるにもかかわらず、時間遅延積分型の撮像素子カメラ13で積分された値は、試料のどの点においても、同じ光量の光で照明されたのと等価な値となる。
【0026】
よって、本実施の形態によれば、実際の照射用電子線において試料の照度むらがある場合でも、均一照明がされているのと同じ効果が得られる。よって、このような電子線装置を用いて試料、例えばマイクロデバイスである半導体デバイスを観察すれば、事実上照度むらの無い電子線装置を用いて観察したのと同じ状態となり、観察精度を上げることができる。
【0027】
以下、本発明に係る半導体デバイスの製造方法の実施の形態の例を説明する。図3は、本発明の半導体デバイス製造方法の一例を示すフローチャートである。この例の製造工程は以下の各主工程を含む。
▲1▼ウェハを製造するウェハ製造工程(又はウェハを準備するウェハ準備工程)
▲2▼露光に使用するマスクを製作するマスク製造工程(又はマスクを準備するマスク準備工程)
▲3▼ウェハに必要な加工処理を行うウェハプロセッシング工程
▲4▼ウェハ上に形成されたチップを1個ずつ切り出し、動作可能にならしめるチップ組立工程
▲5▼できたチップを検査するチップ検査工程
なお、それぞれの工程はさらにいくつかのサブ工程からなっている。
【0028】
これらの主工程の中で、半導体のデバイスの性能に決定的な影響を及ぼす主工程がウェハプロセッシング工程である。この工程では、設計された回路パターンをウェハ上に順次積層し、メモリやMPUとして動作するチップを多数形成する。このウェハプロセッシング工程は以下の各工程を含む。
▲1▼絶縁層となる誘電体薄膜や配線部、あるいは電極部を形成する金属薄膜等を形成する薄膜形成工程(CVDやスパッタリング等を用いる)
▲2▼この薄膜層やウェハ基板を酸化する酸化工程
▲3▼薄膜層やウェハ基板等を選択的に加工するためにマスク(レチクル)を用いてレジストのパターンを形成するリソグラフィー工程
▲4▼レジストパターンに従って薄膜層や基板を加工するエッチング工程(例えばドライエッチング技術を用いる)
▲5▼イオン・不純物注入拡散工程
▲6▼レジスト剥離工程
▲7▼さらに加工されたウェハを検査する検査工程
なお、ウェハプロセッシング工程は必要な層数だけ繰り返し行い、設計通り動作する半導体デバイスを製造する。
【0029】
図4は、図3のウェハプロセッシング工程の中核をなすリソグラフィー工程を示すフローチャートである。このリソグラフィー工程は以下の各工程を含む。
▲1▼前段の工程で回路パターンが形成されたウェハ上にレジストをコートするレジスト塗布工程
▲2▼レジストを露光する露光工程
▲3▼露光されたレジストを現像してレジストのパターンを得る現像工程
▲4▼現像されたレジストパターンを安定化させるためのアニール工程
以上の半導体デバイス製造工程、ウェハプロセッシング工程、リソグラフィー工程については、周知のものであり、これ以上の説明を要しないであろう。
【0030】
本実施の形態においては、上記▲7▼の工程において、上記のような電子線装置を用いて検査を行っているので、精密な検査を行うことができ、半導体デバイスの歩留を向上させ、かつ、不良品の出荷を防止することができる。
【0031】
【発明の効果】
上記説明したように、本発明によれば、照明用荷電粒子線の照度むらを補償可能な、荷電粒子線装置、およびそれを使用したマイクロデバイスの製造方法、さらには、この荷電粒子線装置により観察が行われたマイクロデバイスを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の1例である電子線装置の概要を示す図である。
【図2】照射ビームの光路が光路切換手段である電磁プリズムによって曲げられた場合の様子を示す図である。
【図3】本発明の半導体デバイス製造方法の一例を示すフローチャートである。
【図4】リソグラフィー工程を示すフローチャートである。
【符号の説明】
1…電子銃、2…照明電子光学系、3…電磁プリズム、4…照射ビーム、5…ステージ、6…試料、7…対物レンズ、8…2次電子、後方散乱電子及び反射電子、9…結像電子光学系、10…MCP検出器、12…光写像光学系、13…撮像素子カメラ、14…ウェネルト電極、15…アノード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charged particle beam apparatus for observing and inspecting a sample surface by irradiating a charged particle beam such as an electron beam or an ion beam onto a sample surface, a method of manufacturing a microdevice using the charged particle beam device, and the charged particle beam. The present invention relates to a micro device observed by the apparatus.
[0002]
[Prior art]
The irradiation charged particle beam emitted from the irradiation source is made incident on the optical path switching means through the irradiation optical system, and the irradiation charged particle beam passed through the optical path switching means is made incident on the sample surface through the objective optical system. The observation charged particle beam emitted from the sample surface is incident on the optical path switching means via the objective optical system, and the observation charged particle beam is guided in a direction different from the direction reaching the irradiation source by the optical path switching means, The charged particle beam device that makes the charged particle beam for observation after passing through the optical path switching unit enter the detection unit using the time delay integration type imaging device via the imaging optical system is currently in the development stage. It will be used for inspection of device patterns and other micro devices having fine structures.
[0003]
In such a charged particle beam device, a two-dimensional photoelectric conversion device or the like is disposed on the imaging surface, the formed charged particle beam is temporarily converted into light, and time delay such as TDI-CCD via a relay optical system. An image of the imaging surface is formed on an integral type imaging device. Then, the sample is moved in accordance with the scanning of the time delay integration type image pickup device, and the charged particle beam emitted from the same sample surface and converted into light is integrated to be taken out as a large charge. Enables observation of the sample.
[0004]
As described above, when a time delay integration type imaging device such as a TDI-CCD is used, the result of image formation at various positions of the observation charged particle beam optical system and the optical system in the scanning direction is integrated. Therefore, in this direction, even if there are aberrations in the observation charged particle beam optical system, uneven illuminance, etc., it is possible to obtain an observation result in which they are smoothed.
[0005]
On the other hand, in such a charged particle beam apparatus, the illumination optical system simply needs to uniformly illuminate the sample surface, whereas the observation charged particle beam optical system needs to accurately form an image of the sample surface. Therefore, the conditions such as aberrations are severe. Therefore, in parts commonly used for the illumination optical system and the observation charged particle beam optical system, the conditions required for the illumination optical system and the observation charged particle beam optical system When the required conditions contradict each other, it is general to satisfy the conditions required for the observation charged particle beam optical system at the expense of the conditions of the illumination optical system.
[0006]
Under such conditions, in the charged particle beam apparatus, the optical axis of the charged particle beam optical system for observation is a straight line, the light source of the illumination optical system is provided in the lateral direction, and the light path switching means such as E × B is used for irradiation. It is configured to illuminate the sample surface in a state where the charged particle beam optical path is bent and coincides with the optical axis of the observation charged particle beam optical system. Generally, an optical path switching means using an electric field and a magnetic field, such as E × B, is used. In this case, the charged particle beam has a traveling direction in a plane parallel to the electric field and perpendicular to the magnetic field. When the observation charged particle beam optical system to be changed is considered alone, variations in aberrations and the like appear greatly in a direction parallel to the magnetic field. Therefore, in the conventional charged particle beam apparatus, the scanning direction of the time delay integration type imaging device (and hence the moving direction of the sample) is made to coincide with the direction of the magnetic field of the optical path switching means, thereby causing unevenness between the locations in the magnetic field direction. A method of averaging aberrations and the like having been used has been adopted.
[0007]
[Patent Document 1] JP 2000-340162 A
[Problems to be solved by the invention]
According to the above configuration, correction of unevenness in the direction parallel to the E × B electric field and perpendicular to the magnetic field, that is, in the plane in which the illumination charged particle beam is bent, may be performed by a time delay integration type imaging device. I could not. In this plane, since the optical path of the charged particle beam for illumination is bent, the generation of uneven illuminance is inevitable, but this is unavoidable.
[0009]
The present invention has been made in view of such circumstances, and in consideration of recent advances in observational charged particle beam optical systems, a charged particle beam device capable of compensating for illuminance unevenness of a charged particle beam for illumination, and It is an object of the present invention to provide a method of manufacturing a microdevice using the same, and further to provide a microdevice observed by this charged particle beam apparatus.
[0010]
[Means for Solving the Problems]
The first means for solving the above-mentioned problem is that the charged particle beam for irradiation emitted from the irradiation source is made incident on the optical path switching means via the irradiation optical system, and the irradiation charge passed through this optical path switching means. A particle beam is incident on the sample surface via the objective optical system, and the observation charged particle beam emitted from the sample surface is incident on the optical path switching means via the objective optical system. The charged particle beam for observation is guided in a direction different from the direction reaching the irradiation source, and the charged particle beam for observation after passing through the optical path switching unit is converted into a time delay integration type via an imaging optical system. A charged particle beam apparatus that is incident on a detection unit using an imaging device, the direction being parallel to a plane including a trajectory of the irradiation charged particle beam whose traveling direction is bent by the optical path switching unit, and the time delay integration Type image sensor The direction in which the integrated Te is performed matches charged particle beam apparatus according to claim. (Claim 1).
[0011]
As described above, in the observation charged particle beam optical system, the occurrence of aberration or the like has been a problem. For example, as described in Japanese Patent Application Laid-Open No. 2000-340162 (Patent Document 1), optical path switching is performed. By means of adjusting the observation charged particle beam optical system so that the power center of the means is conjugate with the observation surface, it becomes possible to reduce the influence of aberration on the observation charged particle beam optical system. If such a charged particle beam optical system for observation with small aberration is used, the charged particle beam for irradiation whose traveling direction is bent without worrying about the influence on the charged particle beam optical system for observation with severe aberration correction conditions. It is possible to determine the relationship between the direction of the surface including the locus and the direction of integration in the time delay integration type image sensor.
[0012]
Therefore, in this means, the direction of the surface including the locus of the charged particle beam for irradiation coincides with the direction in which the images are integrated in the time delay integration type imaging device (that is, the direction in which the sample is moved). As a result, even if there is uneven illuminance of the charged particle beam for irradiation, the value that is integrated and output by the time delay integration type image sensor is the average charged particle while the sample is moving in the observation field. It becomes the value of the amount of line reflection or the amount of secondary electrons generated. Therefore, illumination unevenness is canceled and a favorable imaging result can be obtained.
[0013]
The second means for solving the problem is the first means, wherein the optical path switching means is an electromagnetic prism, and the power center of the sample surface and the electromagnetic prism is in a charged particle beam optical system. The present invention is characterized by being in a conjugate positional relationship (claim 2).
[0014]
As described in Japanese Patent Laid-Open No. 2000-340162 (Patent Document 1), if the charged particle beam optical system for observation is adjusted so that the power center of the electromagnetic prism as the optical path switching means is conjugate with the observation surface, It is possible to reduce the influence of aberration on the observation charged particle beam optical system, and the configuration as in the first means without worrying about the influence on the observation charged particle beam optical system having severe aberration correction conditions. To cancel the illumination unevenness and obtain a good imaging result.
[0015]
A third means for solving the problem includes a step of observing the surface of the microdevice using a charged particle beam apparatus which is the first means or the second means. It is a manufacturing method (Claim 3).
[0016]
In this means, since the micro device can be inspected in a state where the illuminance unevenness of the charged particle beam apparatus is reduced, the inspection accuracy by surface observation can be increased. Note that a micro device refers to an object having a fine structure including a semiconductor device and a micro machining device, and this is common throughout the present specification.
[0017]
A third means for solving the above problem is a micro device (surface 4) in which surface observation is performed using a charged particle beam apparatus which is the first means or the second means.
[0018]
In this means, since the surface observation is performed in a state where the illuminance unevenness is reduced, it is possible to obtain a micro device having no defect.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of an electron beam apparatus as an example of an embodiment of the present invention. The irradiation beam 4 emitted from the cathode 1 passes through the Wehnelt electrode 14, the anode 15, and the illumination electron optical system 2 and enters the electromagnetic prism (E × B) 3. After the optical path of the irradiation beam 4 is changed by the electromagnetic prism 3 which is an optical path switching unit, the irradiation beam 4 passes through the objective lens 7 and irradiates the surface of the sample 6. When the irradiation beam 4 enters the sample 6, secondary electrons, backscattered electrons, and reflected electrons 8 are generated from the sample 6 according to the surface shape, material distribution, potential change, and the like.
[0020]
The generated electrons 8 are projected onto a MCP (Micro Channel Plate) detector 10 through an objective lens 7, an electromagnetic prism 3 as an optical path switching means, and an imaging electron optical system 9, and are photoelectrically converted. The light generated by the photoelectric conversion passes through the optical mapping optical system 12 and an image is projected onto a time delay integration type imaging device (TDI-CCD) camera 13. Here, the objective lens 7 is designed so that an intermediate image by secondary electrons, backscattered electrons and reflected electrons 8 is imaged with good resolution near the center of the electromagnetic prism 3 which is an optical path switching means. That is, the center position of the electromagnetic prism 3 and the surface position of the sample 6 are conjugate. Further, the electromagnetic prism 3 and the imaging electron optical system 9 are precisely designed so that an image formed by secondary electrons, backscattered electrons, and reflected electrons 8 is formed with high resolution.
[0021]
Since the center position of the electromagnetic prism 3 and the surface position of the sample 6 are conjugate, as described in Patent Document 1, the objective lens 7, the electromagnetic prism 3 that is an optical path switching means, and the imaging electron optical system 9 As a result, the aberration of the observation charged particle beam optical system centering on can be reduced.
[0022]
Here, FIG. 2 shows a state where the optical path of the irradiation beam 4 is bent by the electromagnetic prism 3 which is an optical path switching means. When the surface of the sample 6 is illuminated by passing through the objective lens 7, distortion occurs in the direction in which the optical path is bent as shown in FIG. 2A, and as a result, as shown in FIG. The illuminance unevenness in the left-right direction in FIG. On the other hand, since the irradiation beam 4 is not bent in the direction perpendicular to the paper surface of FIG. 2, relatively uniform illuminance can be obtained.
[0023]
However, in the present embodiment, the scanning direction of the time delay integration type imaging device camera 13 is set to the horizontal direction (electric field direction) in FIG. , Taken in the direction perpendicular to the paper surface in FIG. 2 (magnetic field direction).
[0024]
Therefore, when observing the image of the sample, the sample is moved in the left-right direction in FIG. 2 in accordance with the scanning direction of the time delay integration type image pickup device camera 13, thereby secondary electrons from the same point, The intensity of light generated by the backscattered electrons and the reflected electrons 8 is moved while being accumulated in each image sensor of the time delay integration type image sensor camera 13.
[0025]
Therefore, before a certain point of the sample enters the imaging field of view and exits, the left and right points in FIG. 2 are irradiated, and the received light amount integrated by the time delay integration type imaging device camera 13 The value has a relationship with the value obtained by integrating the illuminance distribution shown in FIG. Therefore, since the sample is imaged while moving, the value obtained by integrating the illuminance distribution shown in FIG. 2B is the same at any point of the sample. Therefore, the illuminance distribution as shown in FIG. Despite this, the value integrated by the time delay integration type imaging device camera 13 is equivalent to that illuminated at the same amount of light at any point of the sample.
[0026]
Therefore, according to the present embodiment, even when there is uneven illuminance of the sample in the actual electron beam for irradiation, the same effect as that in which uniform illumination is performed can be obtained. Therefore, observing a sample, for example, a semiconductor device, which is a micro device, using such an electron beam apparatus is substantially the same as that observed using an electron beam apparatus having no unevenness in illuminance, and increases the observation accuracy. Can do.
[0027]
Hereinafter, an example of an embodiment of a method for manufacturing a semiconductor device according to the present invention will be described. FIG. 3 is a flowchart showing an example of the semiconductor device manufacturing method of the present invention. The manufacturing process of this example includes the following main processes.
(1) Wafer manufacturing process for manufacturing a wafer (or wafer preparation process for preparing a wafer)
(2) Mask manufacturing process for manufacturing a mask used for exposure (or mask preparation process for preparing a mask)
(3) Wafer processing process for performing necessary processing on the wafer (4) Chip assembly process for cutting out chips formed on the wafer one by one and making them operable (5) Chip inspection process for inspecting the completed chips Each process further includes several sub-processes.
[0028]
Among these main processes, the main process that has a decisive influence on the performance of semiconductor devices is the wafer processing process. In this step, designed circuit patterns are sequentially stacked on a wafer to form a large number of chips that operate as memories and MPUs. This wafer processing step includes the following steps.
(1) A thin film forming process for forming a dielectric thin film to be an insulating layer, a wiring portion, or a metal thin film for forming an electrode portion (using CVD, sputtering, etc.)
(2) Oxidation process for oxidizing the thin film layer and the wafer substrate (3) Lithography process for forming a resist pattern using a mask (reticle) to selectively process the thin film layer and the wafer substrate (4) Resist Etching process that processes thin film layers and substrates according to patterns (eg, using dry etching technology)
(5) Ion / impurity implantation / diffusion process (6) Resist stripping process (7) Inspection process for inspecting further processed wafers The wafer processing process is repeated as many times as necessary to produce semiconductor devices that operate as designed. To do.
[0029]
FIG. 4 is a flowchart showing a lithography process that forms the core of the wafer processing process of FIG. This lithography process includes the following steps.
(1) Resist coating process for coating a resist on a wafer on which a circuit pattern has been formed in the preceding process (2) Exposure process for exposing the resist (3) Development process for developing the exposed resist to obtain a resist pattern {Circle around (4)} The semiconductor device manufacturing process, wafer processing process, and lithography process beyond the annealing process for stabilizing the developed resist pattern are well known and need no further explanation.
[0030]
In the present embodiment, in the step (7), since the inspection is performed using the electron beam apparatus as described above, a precise inspection can be performed, and the yield of the semiconductor device is improved. In addition, shipment of defective products can be prevented.
[0031]
【The invention's effect】
As described above, according to the present invention, the charged particle beam apparatus capable of compensating for the illuminance unevenness of the charged particle beam for illumination, the method of manufacturing the microdevice using the charged particle beam apparatus, and the charged particle beam apparatus It is possible to provide a microdevice that has been observed.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of an electron beam apparatus as an example of an embodiment of the present invention.
FIG. 2 is a diagram showing a state in which the optical path of an irradiation beam is bent by an electromagnetic prism which is an optical path switching unit.
FIG. 3 is a flowchart showing an example of a semiconductor device manufacturing method of the present invention.
FIG. 4 is a flowchart showing a lithography process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electron gun, 2 ... Illumination electron optical system, 3 ... Electromagnetic prism, 4 ... Irradiation beam, 5 ... Stage, 6 ... Sample, 7 ... Objective lens, 8 ... Secondary electron, backscattered electron and reflected electron, 9 ... Imaging electron optical system, 10 ... MCP detector, 12 ... Photomapping optical system, 13 ... Imaging device camera, 14 ... Wehnelt electrode, 15 ... Anode

Claims (4)

照射線源から発した照射用荷電粒子線を、照射光学系を介して光路切換手段に入射させ、この光路切換手段を通過した前記照射用荷電粒子線を、対物光学系を介して試料面に入射させ、この試料面から放出された観察用荷電粒子線を、前記対物光学系を介して前記光路切換手段に入射させ、前記光路切換手段によって、前記照射線源に至る方向とは異なる方向に前記観察用荷電粒子線を導き、前記光路切換手段を通過した後の前記観察用荷電粒子線を、結像光学系を介して時間遅延積分型の撮像素子を用いた検出手段に入射させる荷電粒子線装置であって、前記光路切換手段によって進行方向が曲げられる前記照射用荷電粒子線の軌跡が含まれる面に平行な方向と、前記時間遅延積分型の撮像素子において積算が行われる方向が一致していることを特徴とする荷電粒子線装置。The irradiation charged particle beam emitted from the irradiation source is made incident on the optical path switching means via the irradiation optical system, and the irradiation charged particle beam passing through the optical path switching means is incident on the sample surface via the objective optical system. The charged particle beam for observation emitted from the sample surface is incident on the optical path switching means via the objective optical system, and is moved in a direction different from the direction reaching the irradiation source by the optical path switching means. Charged particles for guiding the observation charged particle beam and causing the observation charged particle beam after passing through the optical path switching unit to enter a detection unit using a time delay integration type imaging device via an imaging optical system A line device that has a direction parallel to a plane including the locus of the charged particle beam for irradiation whose traveling direction is bent by the optical path switching unit and a direction in which integration is performed in the time delay integration type imaging device. Doing The charged particle beam apparatus according to claim and. 請求項1に記載の荷電粒子線装置であって、前記光路切換手段が電磁プリズムであり、前記試料面と前記電磁プリズムのパワー中心が、荷電粒子線光学系において共役な位置関係にあることを特徴とする荷電粒子線装置。The charged particle beam apparatus according to claim 1, wherein the optical path switching unit is an electromagnetic prism, and the power center of the sample surface and the electromagnetic prism is in a conjugate positional relationship in the charged particle beam optical system. Characterized charged particle beam device. 請求項1又は請求項2に記載の荷電粒子線装置を用いてマイクロデバイスの表面を観察する工程を含むことを特徴とするマイクロデバイスの製造方法。A method for manufacturing a microdevice, comprising the step of observing the surface of the microdevice using the charged particle beam apparatus according to claim 1. 請求項1又は請求項2に記載の荷電粒子線装置を用いて表面観察がされたマイクロデバイス。A microdevice whose surface has been observed using the charged particle beam apparatus according to claim 1.
JP2003182451A 2003-06-26 2003-06-26 Method for manufacturing charged particle beam apparatus and micro device, and micro device Pending JP2005019207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182451A JP2005019207A (en) 2003-06-26 2003-06-26 Method for manufacturing charged particle beam apparatus and micro device, and micro device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182451A JP2005019207A (en) 2003-06-26 2003-06-26 Method for manufacturing charged particle beam apparatus and micro device, and micro device

Publications (1)

Publication Number Publication Date
JP2005019207A true JP2005019207A (en) 2005-01-20

Family

ID=34182838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182451A Pending JP2005019207A (en) 2003-06-26 2003-06-26 Method for manufacturing charged particle beam apparatus and micro device, and micro device

Country Status (1)

Country Link
JP (1) JP2005019207A (en)

Similar Documents

Publication Publication Date Title
US7098457B2 (en) Electron beam apparatus and device manufacturing method using same
TWI397096B (en) Sample surface inspecting method and inspecting apparatus
JP2003331774A5 (en)
US7361600B2 (en) Semiconductor manufacturing apparatus having a built-in inspection apparatus and a device manufacturing method using said manufacturing apparatus
JP2005208120A (en) Sample correcting apparatus, sample correction method, and device manufacturing method using the method
JP3782692B2 (en) Electron beam apparatus and semiconductor device manufacturing method using the apparatus
JP2005019207A (en) Method for manufacturing charged particle beam apparatus and micro device, and micro device
JPWO2005069346A1 (en) Mapping electron microscope, electron microscope, sample surface observation method, and microdevice manufacturing method
US20200266023A1 (en) Sample pre-charging methods and apparatuses for charged particle beam inspection
JP4219823B2 (en) Mapping electron microscope and method for manufacturing microdevice
JP4387262B2 (en) Charged particle beam apparatus and microdevice manufacturing method
JP2003297278A (en) Inspection apparatus and inspection method
JP3907943B2 (en) Defect inspection method and device manufacturing method using the method
JP2004335193A (en) Sample evaluation method using electron beam and electron beam device
JP3723106B2 (en) Electron beam apparatus and device manufacturing method using the apparatus
JP3981245B2 (en) Defect inspection apparatus and device manufacturing method using the same
JP2006032278A (en) Electron beam device, and device manufacturing method using the same
JP4027610B2 (en) Defect inspection apparatus using FOP apparatus and semiconductor manufacturing method using the inspection apparatus
JP4012429B2 (en) Electron beam apparatus and device manufacturing method using the same
JP2006066181A (en) Electron beam device and manufacturing method of device using the same
JP2004177644A (en) Electron beam device, and manufacturing method of device using it
JP4463249B2 (en) Defect inspection method
JPH1140631A (en) Method and apparatus for inspecting pattern
JP2002139465A (en) Defect-inspecting device and device-manufacturing method using the defect-inspecting device
JP2020020710A (en) Inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111