JP2005019089A - Resin bushing - Google Patents

Resin bushing Download PDF

Info

Publication number
JP2005019089A
JP2005019089A JP2003179868A JP2003179868A JP2005019089A JP 2005019089 A JP2005019089 A JP 2005019089A JP 2003179868 A JP2003179868 A JP 2003179868A JP 2003179868 A JP2003179868 A JP 2003179868A JP 2005019089 A JP2005019089 A JP 2005019089A
Authority
JP
Japan
Prior art keywords
bushing
resin
bushing half
stress
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003179868A
Other languages
Japanese (ja)
Other versions
JP4252376B2 (en
Inventor
Takushi Yoshikura
卓志 吉倉
Hiroshi Takai
博史 高井
Setsuo Fujii
設夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2003179868A priority Critical patent/JP4252376B2/en
Publication of JP2005019089A publication Critical patent/JP2005019089A/en
Application granted granted Critical
Publication of JP4252376B2 publication Critical patent/JP4252376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)
  • Insulators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin bushing capable of preventing a stress concentration spot from occurring. <P>SOLUTION: A recessed part 4 provided in an end part in an axial direction of an outer bushing half part 3 made of resin and a protruded part 6 provided in an end part in an axial direction of an inner bushing half part 5 made of resin are fitted together by abutting a tip end plane 6c of the protruded part 6 on a flat bottom surface 4a of the recessed part 4 at a position of a hole 2 of a case 1. A bushing conductor 9 is inserted in holes 7, 8 of axial central parts of the bushing half parts 3, 5.The bushing half parts 3, 5 are fastened with a nut 10 screwed in a screw part 9a of the bushing conductor 9. In this case, the outer bushing half part 3 is formed in an I-shape in which an outer expanded diametral part 3a and an inner expanded diametral part 3b at both ends in an axial direction are connected with a middle columnar part 3c. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気機器でそのケースを電気導体が貫通するところで使用する樹脂ブッシングに関するものである。
【0002】
【従来の技術】
従来、電気機器でそのケースを電気導体が貫通するところでは、磁器ブッシングを使用して、ケースに対して電気導体を電気絶縁していた。
【0003】
しかしながら、磁器ブッシングは、非常に硬い材料であるが、脆性的であるため衝撃等に弱く、欠けや割れが生じ易く、このため取付け作業時に落下させないようにしたり、出荷や入荷時等に衝撃が加わらないように梱包に注意したりして、取り扱いに注意が必要であって、作業性が悪い問題点があった。
【0004】
そこで、ブッシングを構成する材料を、磁器に比べて衝撃に強く、延性的な材料であるポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)等の熱可塑性樹脂に素材変更することで、作業性の改善を図り、材料費の低減やリサイクル性も良くする樹脂ブッシングにすることが望まれている。
【0005】
このようなニーズのもと、樹脂ブッシングを開発していくにあたって、現状の磁器ブッシングの構造をそのまま転用したのでは、樹脂は磁器に比べて素材強度が低く、静的荷重に弱いため、出願人は次のような検討を行った。
【0006】
図7は、従来の磁器ブッシングの構造をそのまま樹脂ブッシングに変更した場合の縦断面図である。
【0007】
この樹脂ブッシングでは、変圧器等のケース1の孔2の位置で、樹脂製の外側ブッシング半部3の軸線方向の端部に設けられた凹部4と樹脂製の内側ブッシング半部5の軸線方向の端部に設けられた凸部6とが嵌め合わされ、外側ブッシング半部3と内側ブッシング半部5の各軸心部の貫通孔7,8にブッシング導体9が貫通され、該ブッシング導体9のネジ部9aに螺合されたナット10により外側ブッシング半部3と内側ブッシング半部5とが締結されている。この場合、外側ブッシング半部3は、凹部4の深さが深いため縦断面形状がU字状をなしている。この外側ブッシング半部3の外面の形状もU字状となっている。外側ブッシング半部3は、パッキン11を介してケース1に当接されている。ブッシング導体9は、その基部が端子部9bとなっていて、外部配線の端子を接続するための接続孔9cが設けられている。端子部9bは、パッキン12を介して外側ブッシング半部3に当接されている。凹部4の深さは、凸部6の高さより深くなっていて、相互に接触しない構造になっている。
【0008】
しかしながら、このような構造の樹脂ブッシングでは、前述したように樹脂は磁器に比べて素材強度が低く、静的荷重に弱いため、図7で破線の丸印a,bで示す箇所が応力の集中箇所となり、これら凹部4の底面4aとその外周の立上がり面4bとがなすコーナ部や、凸部6の立上がり部6aとそれを支持する部分6bとがなすコーナ部において、取り付け後に残る残留応力によって外側ブッシング半部3と内側ブッシング半部5とが割れる危険性があった。
【0009】
そこで出願人は、図8に示すような樹脂ブッシングに変更した。この樹脂ブッシングでは、内側ブッシング半部5の凸部6の突出高さを高くし、凸部6の先端平面6cを凹部4の平らな底面4aに当接させた(例えば、特許文献1参照。)。
【0010】
このようにすると、外側ブッシング半部3と内側ブッシング半部5との残留応力が緩和され、長期使用時における破線丸印a,bの応力集中箇所の割れを低減することができる。
【0011】
【特許文献1】
特開2003−151388号公報(図1)
【0012】
【発明が解決しようとする課題】
しかしながら、図8に示すような樹脂ブッシングでは、取り付け時に、図9に示すように、凸部6の先端平面6cが凹部4の平らな底面4aに当接される前に、締め付け荷重によって、破線丸印a,bの応力集中箇所に強く応力が集中して割れが生じる危険性があった。
【0013】
これは、図10(A)(B)に示すように、外側ブッシング半部3と内側ブッシング半部5とを、その下向き面を支えておいて、上から荷重をかけると、破線丸印a,bの応力集中箇所に強く応力が集中して割れが発生することからも確認できる。
【0014】
外側ブッシング半部3や内側ブッシング半部5の破線丸印a,bの応力集中箇所に割れが発生するのは、図10(A)(B)に示すように、これら外側ブッシング半部3や内側ブッシング半部5の外側部分がU字状をなしていて、軸線方向から締め付け応力を受けると曲げ応力がかかるからである。
【0015】
本発明の目的は、取り付け時に応力集中箇所が発生し難い樹脂ブッシングを得ることにある。
【0016】
本発明の他の目的は、コーナ部に応力が集中するのを分散できる樹脂ブッシングを得ることにある。
【0017】
【課題を解決するための手段】
本発明は、ケースの孔の位置で、樹脂製の外側ブッシング半部の軸線方向の端部に設けられた凹部と樹脂製の内側ブッシング半部の軸線方向の端部に設けられた凸部とが、該凸部の先端平面を凹部の平らな底面に当接させて嵌め合わされ、外側ブッシング半部と内側ブッシング半部の各軸心部の貫通孔にブッシング導体が貫通され、該ブッシング導体のネジ部に螺合されたナットにより外側ブッシング半部と内側ブッシング半部とが締結されている樹脂ブッシングを対象とする。
【0018】
本発明に係る樹脂ブッシングでは、外側ブッシング半部は軸線方向の両端の外側拡径部と内側拡径部とを中間の柱状部でつないだI形に形成されていることを特徴とする。
【0019】
このように外側ブッシング半部がI形になっていると、締め付け時に従来のU形のもののような曲げ応力が加わらなくなって、代りに締め付け時に剪断応力が加わるようになり、従来問題となったコーナ部に集中した応力を低減することができ、割れの発生を防止することができる。
【0020】
この場合、柱状部が、外側拡径部側が小径で内側拡径部側が大径の円錐台形部として形成されていると、内側拡径部側の荷重を支える面積が増えて、応力が比較的集中する箇所が外側拡径部側に移動し、最大応力を低減することができる。また、柱状部の外側拡径部と内側拡径部との接合部の外面が円弧状曲面で形成され、内側拡径部の凹部の底面とその外周の立上がり面とがなすコーナ部の外面も円弧状曲面で形成されていると、コーナ部に作用する応力を分散させることができる。
【0021】
また、内側ブッシング半部のナットで加圧される側を突出部として形成すると、凸部の基部にかかる最大応力を低減することができる。
【0022】
また、内側ブッシング半部の突出部の表面に、周方向に間欠的に複数のリブを放射状に突設すると、内側ブッシング半部の機械的強度を向上させることができ、凸部の基部にかかる最大応力をさらに低減することができる。
【0023】
さらに、内側ブッシング半部の凸部の立上がり部とそれを支持する部分とがなすコーナ部の外面が円弧状曲面で形成されていると、コーナ部に作用する応力を分散させることができる。
【0024】
【発明の実施の形態】
図1(A)(B)は本発明に係る樹脂ブッシングの外側ブッシング半部と内側ブッシング半部の実施の形態の第1例を示したもので、図1(A)は本例で用いる外側ブッシング半部に締め付け応力を作用させている状態の縦断面図、図1 (B)は本例で用いる内側ブッシング半部に締め付け応力を作用させている状態の一部縦断側面図である。
【0025】
本例の樹脂ブッシングで用いる外側ブッシング半部3は、図1(A)に示すように、軸線方向の両端の外側拡径部3aと内側拡径部3bとを中間の柱状部3cでつないだI形に形成されている。柱状部3cは、外径が一定のストレートな円柱状になっている。
【0026】
また、本例の樹脂ブッシングで用いる内側ブッシング半部5は、ナット10で加圧される側が円柱状の突出部13として一体成形で突設されている。突出部13の表面には、周方向に間欠的に複数のリブ14が放射状に突設されている。
【0027】
その他の構成は、図8と同様になっている。
【0028】
このように外側ブッシング半部3がI形になっていると、締め付け時に従来のU形のもののような曲げ応力が加わらなくなって、代りに締め付け時に剪断応力が加わるようになり、従来問題となったコーナ部に集中した応力を低減することができ、割れの発生を防止することができる。
【0029】
また、内側ブッシング半部5のナットで加圧される側が突出部13として形成されていると、凸部6の基部にかかる最大応力を低減することができる。さらに、内側ブッシング半部5の突出部13の表面に、周方向に間欠的に複数のリブ14を放射状に突設すると、内側ブッシング半部5の機械的強度を向上させることができ、凸部6の基部にかかる最大応力をさらに低減することができる。
【0030】
なお、図1(A)(B)において、破線丸印a,bは応力の集中箇所を示す。
【0031】
図2は本発明に係る樹脂ブッシングの実施の形態の第2例で用いる外側ブッシング半部に締め付け応力を作用させている状態の縦断面図である。
【0032】
本例の樹脂ブッシングの外側ブッシング半部3と内側ブッシング半部5は、基本的には実施の形態の第1例と同様な構成となっている。
【0033】
本例の樹脂ブッシングで用いる外側ブッシング半部3では、特に柱状部3cが、外側拡径部3a側が小径で内側拡径部3b側が大径の円錐台形部として形成されている。
【0034】
内側ブッシング半部5は、実施の形態の第1例として示した図1(B)と同じ形状になっている。
【0035】
このように外側ブッシング半部3の柱状部3cが、外側拡径部3a側が小径で内側拡径部3b側が大径の円錐台形部として形成されていると、内側拡径部3b側の荷重を支える面積が増えて、応力が比較的集中する箇所が外側拡径部3a側に移動し、最大応力を低減することができる。
【0036】
特に、図2で示すように外側ブッシング半部3が形成されていると、次のような利点がある。即ち、図1(A)の構造で締め付け応力を作用させた場合、応力が一番集中し易い箇所は柱状部3cと内側拡径部3bとがなすコーナ部であり、この箇所の凹部4の底面4aからの距離はL1 であって、比較的短かった。しかるに、図2で示す構造の場合は、柱状部3cは内側拡径部3b側が外側拡径部3a側より拡径された円錐台形部として形成されているので、応力が一番集中し易い箇所は柱状部3cと外側拡径部3aとがなすコーナ部となり、この箇所の凹部4の底面4aからの距離はL2 となり、L1 より長くなる。
【0037】
図3及び図4(A)(B)は本発明に係る樹脂ブッシングの実施の形態の第3例を示したもので、図3は本例の樹脂ブッシングの要部縦断側面図、図4(A)は本例で用いる外側ブッシング半部に締め付け応力を作用させている状態の縦断面図、図4(B)は本例で用いる内側ブッシング半部に締め付け応力を作用させている状態の一部縦断側面図である。
【0038】
本例の樹脂ブッシングの外側ブッシング半部3と内側ブッシング半部5は、基本的には実施の形態の第2例と同様な構成となっている。
【0039】
本例で用いる外側ブッシング半部3は、柱状部3cの外側拡径部3aと内側拡径部3bとの接合部の外面が円弧状曲面(R面)で形成されている。また、外側拡径部3の凹部4の底面4aとその外周の立上がり面4bとがなすコーナ部の外面が円弧状曲面で形成されている。
【0040】
本例の内側ブッシング半部5は、凸部6の立上がり部6aとそれを支持する部分6bとがなすコーナ部の外面が円弧状曲面で形成されている。
【0041】
このように外側ブッシング半部3の柱状部3cの外側拡径部3aと内側拡径部3bとの接合部の外面が円弧状曲面で形成され、内側拡径部3bの凹部4の底面4aとその外周の立上がり面4bとがなすコーナ部の外面も円弧状曲面で形成されていると、コーナ部に作用する応力を分散させることができる。
【0042】
同様に、内側ブッシング半部5の凸部6の立上がり部6aとそれを支持する部分6bとがなすコーナ部の外面も円弧状曲面で形成されていると、コーナ部に作用する応力を分散させることができる。
【0043】
その他の効果は、実施の形態1と、実施の形態2と同様である。
【0044】
図5は本発明に係る樹脂ブッシングの実施の形態の第4例を示した外側ブッシング半部の軸線方向の端部からの上面図である。
【0045】
本例の樹脂ブッシングでは、ブッシング導体9の端子部9bの下の首部9dの外周に凸部15を設け、外側ブッシング半部4の内周に凸部15を嵌める凹部16を設けて、外側ブッシング半部4に対するブッシング導体9の位置決めが行われている。その他の構成は、実施の形態1、実施の形態2または実施の形態3と同様になっている。
【0046】
図6は本発明に係る樹脂ブッシングの実施の形態の第5例を示した外側ブッシング半部とケースとの嵌め合わせ部の横断面図である。
【0047】
本例の樹脂ブッシングでは、ケース1の孔2の内周に凸部17を設け、外側ブッシング半部4の孔2に対する嵌め合わせ部18の外周に凸部17を嵌める凹部19を設け、ケース1に対する外側ブッシング半部4の位置決めが行われている。その他の構成は、実施の形態1、実施の形態2、実施の形態3または実施の形態4と同様になっている。
【0048】
【発明の効果】
本発明に係る樹脂ブッシングでは、外側ブッシング半部がI形になっているので、締め付け時に従来のU形のもののような曲げ応力が加わらなくなって、代りに締め付け時に剪断応力が加わるようになり、従来問題となったコーナ部に集中した応力を低減することができ、割れの発生を防止することができる。
【0049】
この場合、柱状部が、外側拡径部側が小径で内側拡径部側が大径の円錐台形部として形成されていると、内側拡径部側の荷重を支える面積が増えて、応力が比較的集中する箇所が外側拡径部側に移動し、最大応力を低減することができる。また、柱状部の外側拡径部と内側拡径部との接合部の外面が円弧状曲面で形成され、内側拡径部の凹部の底面とその外周の立上がり面とがなすコーナ部の外面も円弧状曲面で形成されていると、コーナ部に作用する応力を分散させることができる。
【0050】
また、内側ブッシング半部のナットで加圧される側を突出部として形成すると、凸部の基部にかかる最大応力を低減することができる。
【0051】
また、内側ブッシング半部の突出部の表面に、周方向に間欠的に複数のリブを放射状に突設すると、内側ブッシング半部の機械的強度を向上させることができ、凸部の基部にかかる最大応力をさらに低減することができる。
【0052】
さらに、内側ブッシング半部の凸部の立上がり部とそれを支持する部分とがなすコーナ部の外面が円弧状曲面で形成されていると、コーナ部に作用する応力を分散させることができる。
【図面の簡単な説明】
【図1】(A)(B)は本発明に係る樹脂ブッシングの実施の形態の第1例を示したもので、(A)は本例で用いる外側ブッシング半部に締め付け応力を作用させている状態の縦断面図、(B)は本例で用いる内側ブッシング半部に締め付け応力を作用させている状態の一部縦断側面図である。
【図2】本発明に係る樹脂ブッシングの実施の形態の第2例で用いる外側ブッシング半部に締め付け応力を作用させている状態の縦断面図である。
【図3】本発明に係る樹脂ブッシングの実施の形態の第3例を示した要部縦断側面図である。
【図4】(A)(B)は本発明に係る樹脂ブッシングの実施の形態の第3例を示したもので、(A)は本例で用いる外側ブッシング半部に締め付け応力を作用させている状態の縦断面図、(B)は本例で用いる内側ブッシング半部に締め付け応力を作用させている状態の一部縦断側面図である。
【図5】本発明に係る樹脂ブッシングの実施の形態の第4例を示した外側ブッシング半部の軸線方向の端部からの上面図である。
【図6】本発明に係る樹脂ブッシングの実施の形態の第5例を示した外側ブッシング半部とケースとの嵌め合わせ部の横断面図である。
【図7】従来の樹脂ブッシングの縦断面図である。
【図8】図7の樹脂ブッシングを改良した樹脂ブッシングの縦断面図である。
【図9】図8の樹脂ブッシングを組み立てる過程の縦断面図である。
【図10】(A)(B)は従来の樹脂ブッシングを示したもので、(A)は従来の樹脂ブッシングで用いる外側ブッシング半部に締め付け応力を作用させている状態の縦断面図、(B)は従来の樹脂ブッシングで用いる内側ブッシング半部に締め付け応力を作用させている状態の縦断面図である。
【符号の説明】
1 ケース
2 孔
3 外側ブッシング半部
4 凹部
4a 底面
4b 立上がり面
5 内側ブッシング半部
6 凸部
6a 立上がり部
6b 支持する部分
6c 先端平面
7,8 貫通孔
9 ブッシング導体
9a ネジ部
9b 端子部
9c 接続孔
10 ナット
11,12 パッキン
13 突出部
14 リブ
15,17 凸部
16,19 凹部
18 嵌め合わせ部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin bushing used in an electric device where an electric conductor passes through the case.
[0002]
[Prior art]
Conventionally, when an electrical conductor penetrates the case in an electrical device, a ceramic bushing is used to electrically insulate the electrical conductor from the case.
[0003]
However, porcelain bushings are very hard materials, but they are brittle, so they are vulnerable to impacts, etc., and are easily chipped and cracked. There was a problem that workability was not good because the handling was necessary by paying attention to the packaging so that it was not added.
[0004]
Therefore, by changing the material constituting the bushing to a thermoplastic resin such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), which is a ductile material that is more resistant to impact than porcelain, workability is improved. It is desired to improve the resin bushing so as to reduce the material cost and improve the recyclability.
[0005]
Based on these needs, when developing resin bushings, the existing porcelain bushing structure is used as it is. Resin is lower in material strength than porcelain and weak against static loads. Conducted the following study.
[0006]
FIG. 7 is a longitudinal sectional view in the case where the structure of a conventional porcelain bushing is changed to a resin bushing as it is.
[0007]
In this resin bushing, in the position of the hole 2 of the case 1 such as a transformer, the axial direction of the concave portion 4 provided at the axial end of the resin outer bushing half 3 and the resin inner bushing half 5 The bushing conductor 9 is inserted into the through-holes 7 and 8 in the axial center portions of the outer bushing half 3 and the inner bushing half 5. The outer bushing half 3 and the inner bushing half 5 are fastened by a nut 10 screwed into the screw portion 9a. In this case, the outer bushing half 3 has a U-shaped longitudinal section because the recess 4 is deep. The shape of the outer surface of the outer bushing half 3 is also U-shaped. The outer bushing half 3 is in contact with the case 1 via the packing 11. The base of the bushing conductor 9 is a terminal portion 9b, and a connection hole 9c for connecting a terminal of an external wiring is provided. The terminal portion 9 b is in contact with the outer bushing half 3 via the packing 12. The depth of the concave portion 4 is deeper than the height of the convex portion 6 and has a structure that does not contact each other.
[0008]
However, in the resin bushing having such a structure, as described above, since the resin has a lower material strength than a porcelain and is weak to a static load, the portions indicated by broken circles a and b in FIG. In the corner portion formed by the bottom surface 4a of the concave portion 4 and the rising surface 4b on the outer periphery thereof, or the corner portion formed by the rising portion 6a of the convex portion 6 and the portion 6b supporting the convex portion 6, There was a risk that the outer bushing half 3 and the inner bushing half 5 would break.
[0009]
Therefore, the applicant changed the resin bushing as shown in FIG. In this resin bushing, the protruding height of the convex portion 6 of the inner bushing half 5 is increased, and the tip flat surface 6c of the convex portion 6 is brought into contact with the flat bottom surface 4a of the concave portion 4 (see, for example, Patent Document 1). ).
[0010]
If it does in this way, the residual stress of the outer side bushing half part 3 and the inner side bushing half part 5 will be relieve | moderated, and the crack of the stress concentration location of the broken-line circle marks a and b at the time of long-term use can be reduced.
[0011]
[Patent Document 1]
JP 2003-151388 A (FIG. 1)
[0012]
[Problems to be solved by the invention]
However, in the resin bushing as shown in FIG. 8, the broken line is broken by the tightening load before the front end flat surface 6c of the convex portion 6 is brought into contact with the flat bottom surface 4a of the concave portion 4 as shown in FIG. There is a risk that stress concentrates strongly at the stress concentration locations of the circles a and b and cracks occur.
[0013]
As shown in FIGS. 10 (A) and 10 (B), when the outer bushing half 3 and the inner bushing half 5 are supported on their downward surfaces and a load is applied from above, a dotted circle a , B can be confirmed from the fact that stress is strongly concentrated at the stress concentration location and cracking occurs.
[0014]
As shown in FIGS. 10 (A) and 10 (B), the outer bushing half 3 and the inner bushing half 5 are cracked at the stress-concentrated portions indicated by broken-line circles a and b. This is because the outer portion of the inner bushing half 5 is U-shaped, and bending stress is applied when receiving tightening stress from the axial direction.
[0015]
An object of the present invention is to obtain a resin bushing in which stress-concentrated portions are unlikely to occur during attachment.
[0016]
Another object of the present invention is to obtain a resin bushing that can disperse stress concentration at the corner.
[0017]
[Means for Solving the Problems]
The present invention provides a recess provided at the axial end of the resin outer bushing half at the position of the hole in the case and a convex provided at the axial end of the resin inner bushing half. Is fitted with the tip flat surface of the convex portion abutting against the flat bottom surface of the concave portion, and the bushing conductor is passed through the through-holes of the axial center portions of the outer bushing half portion and the inner bushing half portion. The object is a resin bushing in which an outer bushing half and an inner bushing half are fastened by a nut screwed into a screw part.
[0018]
In the resin bushing according to the present invention, the outer bushing half is formed in an I shape in which an outer diameter-increasing portion and an inner diameter-increasing portion at both ends in the axial direction are connected by an intermediate columnar portion.
[0019]
In this way, when the outer bushing half is in the I shape, bending stress like the conventional U shape is not applied at the time of tightening, and instead shear stress is applied at the time of tightening, which is a conventional problem. The stress concentrated on the corner portion can be reduced, and the occurrence of cracks can be prevented.
[0020]
In this case, if the columnar part is formed as a truncated cone part having a small diameter on the outer diameter side and a larger diameter on the inner diameter side, the area for supporting the load on the inner diameter part increases and the stress is relatively low. The concentrated location moves to the outer diameter-enlarged portion side, and the maximum stress can be reduced. Further, the outer surface of the joint portion between the outer diameter-enlarged portion and the inner diameter-enlarged portion of the columnar portion is formed in an arcuate curved surface, and the outer surface of the corner portion formed by the bottom surface of the concave portion of the inner diameter-magnified portion and the rising surface of the outer periphery thereof If it is formed with an arcuate curved surface, the stress acting on the corner can be dispersed.
[0021]
Moreover, if the side pressurized by the nut of the inner bushing half is formed as a protrusion, the maximum stress applied to the base of the protrusion can be reduced.
[0022]
In addition, when a plurality of ribs are radially projected intermittently in the circumferential direction on the surface of the protruding portion of the inner bushing half, the mechanical strength of the inner bushing half can be improved and the base of the convex portion is applied. The maximum stress can be further reduced.
[0023]
Furthermore, when the outer surface of the corner portion formed by the rising portion of the convex portion of the inner bushing half portion and the portion supporting it is formed with an arcuate curved surface, the stress acting on the corner portion can be dispersed.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B show a first example of an embodiment of an outer bushing half and an inner bushing half of a resin bushing according to the present invention, and FIG. 1A shows an outer side used in this example. FIG. 1B is a partially longitudinal side view of a state in which the tightening stress is applied to the inner bushing half used in this example. FIG.
[0025]
As shown in FIG. 1 (A), the outer bushing half 3 used in the resin bushing of this example is formed by connecting the outer enlarged portion 3a and the inner enlarged portion 3b at both ends in the axial direction by an intermediate columnar portion 3c. It is formed in I shape. The columnar portion 3c has a straight columnar shape with a constant outer diameter.
[0026]
Further, the inner bushing half portion 5 used in the resin bushing of the present example has a side that is pressed by the nut 10 and protrudes integrally as a columnar protruding portion 13. A plurality of ribs 14 project radially from the surface of the protrusion 13 intermittently in the circumferential direction.
[0027]
Other configurations are the same as those in FIG.
[0028]
In this way, when the outer bushing half 3 is I-shaped, bending stress like that of the conventional U-shape is not applied at the time of tightening, and instead shear stress is applied at the time of tightening, which is a conventional problem. The stress concentrated on the corner portion can be reduced, and the occurrence of cracks can be prevented.
[0029]
Moreover, when the side pressurized with the nut of the inner side bushing half part 5 is formed as the protrusion part 13, the maximum stress concerning the base part of the convex part 6 can be reduced. Furthermore, when a plurality of ribs 14 project radially from the surface of the protruding portion 13 of the inner bushing half 5 in the circumferential direction, the mechanical strength of the inner bushing half 5 can be improved. The maximum stress applied to the base of 6 can be further reduced.
[0030]
In FIGS. 1A and 1B, broken-line circles a and b indicate stress concentration points.
[0031]
FIG. 2 is a longitudinal sectional view showing a state in which a tightening stress is applied to the outer bushing half part used in the second example of the embodiment of the resin bushing according to the present invention.
[0032]
The outer bushing half 3 and the inner bushing half 5 of the resin bushing of this example basically have the same configuration as the first example of the embodiment.
[0033]
In the outer bushing half part 3 used in the resin bushing of this example, the columnar part 3c is formed as a truncated cone part having a small diameter on the outer widened part 3a side and a large diameter on the inner widened part 3b side.
[0034]
The inner bushing half portion 5 has the same shape as FIG. 1B shown as the first example of the embodiment.
[0035]
As described above, when the columnar portion 3c of the outer bushing half 3 is formed as a truncated cone portion having a small diameter on the outer enlarged portion 3a side and a larger diameter on the inner enlarged portion 3b side, the load on the inner enlarged portion 3b side is loaded. The area to be supported is increased, and the portion where stress is relatively concentrated moves to the outer diameter-enlarged portion 3a side, so that the maximum stress can be reduced.
[0036]
In particular, when the outer bushing half 3 is formed as shown in FIG. 2, the following advantages are obtained. That is, when tightening stress is applied in the structure of FIG. 1A, the portion where the stress is most easily concentrated is the corner portion formed by the columnar portion 3c and the inner diameter enlarged portion 3b. The distance from the bottom surface 4a was L1, and was relatively short. However, in the case of the structure shown in FIG. 2, the columnar portion 3c is formed as a frustoconical portion having an inner diameter enlarged portion 3b side larger than the outer diameter enlarged portion 3a side. Is a corner portion formed by the columnar portion 3c and the outer diameter enlarged portion 3a, and the distance from the bottom surface 4a of the concave portion 4 at this location is L2, which is longer than L1.
[0037]
3 and 4 (A) and 4 (B) show a third example of the embodiment of the resin bushing according to the present invention. FIG. 3 is a longitudinal sectional side view of the main part of the resin bushing of the present example. FIG. 4A is a longitudinal sectional view of a state in which a tightening stress is applied to the outer bushing half used in this example, and FIG. 4B is a diagram of a state in which a tightening stress is applied to the inner bushing half used in this example. FIG.
[0038]
The outer bushing half 3 and the inner bushing half 5 of the resin bushing of this example basically have the same configuration as the second example of the embodiment.
[0039]
In the outer bushing half 3 used in this example, the outer surface of the joint portion between the outer diameter-increasing portion 3a and the inner diameter-increasing portion 3b of the columnar portion 3c is formed as an arcuate curved surface (R surface). Moreover, the outer surface of the corner part which the bottom face 4a of the recessed part 4 of the outer side enlarged diameter part 3 and the rising surface 4b of the outer periphery make is formed in the circular arc-shaped curved surface.
[0040]
In the inner bushing half portion 5 of this example, the outer surface of the corner portion formed by the rising portion 6a of the convex portion 6 and the portion 6b that supports it is formed in an arcuate curved surface.
[0041]
As described above, the outer surface of the joint portion between the outer diameter-increasing portion 3a and the inner diameter-increasing portion 3b of the columnar portion 3c of the outer bushing half 3 is formed as an arcuate curved surface, and the bottom surface 4a of the concave portion 4 of the inner diameter-expanding portion 3b When the outer surface of the corner portion formed by the outer peripheral rising surface 4b is also formed with an arcuate curved surface, the stress acting on the corner portion can be dispersed.
[0042]
Similarly, if the outer surface of the corner portion formed by the rising portion 6a of the convex portion 6 of the inner bushing half portion 5 and the portion 6b that supports it is also formed with an arcuate curved surface, the stress acting on the corner portion is dispersed. be able to.
[0043]
Other effects are the same as those in the first embodiment and the second embodiment.
[0044]
FIG. 5 is a top view from the axial end of the outer bushing half showing a fourth example of the embodiment of the resin bushing according to the present invention.
[0045]
In the resin bushing of this example, a convex portion 15 is provided on the outer periphery of the neck portion 9d below the terminal portion 9b of the bushing conductor 9, and a concave portion 16 is provided on the inner periphery of the outer bushing half portion 4 so as to fit the convex portion 15. The bushing conductor 9 is positioned with respect to the half 4. Other configurations are the same as those in the first embodiment, the second embodiment, or the third embodiment.
[0046]
FIG. 6 is a cross-sectional view of the fitting portion between the outer bushing half and the case, showing a fifth example of the embodiment of the resin bushing according to the present invention.
[0047]
In the resin bushing of this example, a convex portion 17 is provided on the inner periphery of the hole 2 of the case 1, and a concave portion 19 for fitting the convex portion 17 is provided on the outer periphery of the fitting portion 18 with respect to the hole 2 of the outer bushing half portion 4. Positioning of the outer bushing half 4 with respect to is performed. Other configurations are the same as those in the first embodiment, the second embodiment, the third embodiment, or the fourth embodiment.
[0048]
【The invention's effect】
In the resin bushing according to the present invention, since the outer bushing half is I-shaped, bending stress as in the conventional U shape is no longer applied when tightening, and instead shear stress is applied when tightening, It is possible to reduce the stress concentrated on the corner portion, which has been a problem in the past, and to prevent the occurrence of cracks.
[0049]
In this case, if the columnar part is formed as a truncated cone part having a small diameter on the outer diameter side and a larger diameter on the inner diameter side, the area for supporting the load on the inner diameter part increases and the stress is relatively low. The concentrated location moves to the outer diameter-enlarged portion side, and the maximum stress can be reduced. Further, the outer surface of the joint portion between the outer diameter-enlarged portion and the inner diameter-enlarged portion of the columnar portion is formed in an arcuate curved surface, and the outer surface of the corner portion formed by the bottom surface of the concave portion of the inner diameter-magnified portion and the rising surface of the outer periphery thereof If it is formed with an arcuate curved surface, the stress acting on the corner can be dispersed.
[0050]
Moreover, if the side pressurized by the nut of the inner bushing half is formed as a protrusion, the maximum stress applied to the base of the protrusion can be reduced.
[0051]
In addition, when a plurality of ribs are radially projected intermittently in the circumferential direction on the surface of the protruding portion of the inner bushing half, the mechanical strength of the inner bushing half can be improved and the base of the convex portion is applied. The maximum stress can be further reduced.
[0052]
Furthermore, when the outer surface of the corner portion formed by the rising portion of the convex portion of the inner bushing half portion and the portion supporting it is formed with an arcuate curved surface, the stress acting on the corner portion can be dispersed.
[Brief description of the drawings]
FIGS. 1A and 1B show a first example of an embodiment of a resin bushing according to the present invention, and FIG. 1A shows a tightening stress applied to an outer bushing half part used in this example. (B) is a partially longitudinal side view of a state in which tightening stress is applied to the inner bushing half used in this example.
FIG. 2 is a longitudinal sectional view showing a state in which a tightening stress is applied to an outer bushing half portion used in a second example of the embodiment of the resin bushing according to the present invention.
FIG. 3 is a longitudinal sectional side view of an essential part showing a third example of an embodiment of a resin bushing according to the present invention.
FIGS. 4A and 4B show a third example of the embodiment of the resin bushing according to the present invention, and FIG. 4A shows that a tightening stress is applied to the outer bushing half part used in this example. (B) is a partially longitudinal side view of a state in which tightening stress is applied to the inner bushing half used in this example.
FIG. 5 is a top view from the axial end of the outer bushing half showing a fourth example of the embodiment of the resin bushing according to the present invention.
FIG. 6 is a cross-sectional view of the fitting portion between the outer bushing half and the case, showing a fifth example of the embodiment of the resin bushing according to the present invention.
FIG. 7 is a longitudinal sectional view of a conventional resin bushing.
8 is a longitudinal sectional view of a resin bushing obtained by improving the resin bushing of FIG.
9 is a longitudinal sectional view of a process of assembling the resin bushing of FIG.
FIGS. 10A and 10B show a conventional resin bushing, and FIG. 10A is a longitudinal sectional view showing a state in which a tightening stress is applied to an outer bushing half part used in a conventional resin bushing; B) is a longitudinal sectional view showing a state in which a tightening stress is applied to an inner bushing half used in a conventional resin bushing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Case 2 Hole 3 Outer bushing half part 4 Recessed part 4a Bottom face 4b Standing surface 5 Inner bushing half part 6 Convex part 6a Standing part 6b Supporting part 6c Tip plane 7, 8 Through-hole 9 Bushing conductor 9a Screw part 9b Terminal part 9c Connection Hole 10 Nut 11, 12 Packing 13 Projection 14 Rib 15, 17 Protrusion 16, 19 Concave 18 Fitting

Claims (5)

ケースの孔の位置で、樹脂製の外側ブッシング半部の軸線方向の端部に設けられた凹部と樹脂製の内側ブッシング半部の軸線方向の端部に設けられた凸部とが、前記凸部の先端平面を前記凹部の平らな底面に当接させて嵌め合わされ、前記外側ブッシング半部と前記内側ブッシング半部の各軸心部の貫通孔にブッシング導体が貫通され、該ブッシング導体のネジ部に螺合されたナットにより前記外側ブッシング半部と前記内側ブッシング半部とが締結されている樹脂ブッシングにおいて、
前記外側ブッシング半部は軸線方向の両端の外側拡径部と内側拡径部とを中間の柱状部でつないだI形に形成されていることを特徴とする樹脂ブッシング。
At the position of the hole in the case, the concave portion provided at the axial end of the resin outer bushing half and the convex portion provided at the axial end of the resin inner bushing half are the convex portions. And the bushing conductor is passed through the through-holes of the respective axial centers of the outer bushing half and the inner bushing half, and the screw of the bushing conductor is fitted. In the resin bushing in which the outer bushing half part and the inner bushing half part are fastened by a nut screwed into a part,
The outer bushing half is formed in an I shape in which an outer diameter-increasing portion and an inner diameter-expanding portion at both ends in the axial direction are connected by an intermediate columnar portion.
前記柱状部は、前記外側拡径部側が小径で前記内側拡径部側が大径の円錐台形状に形成され、前記柱状部の前記外側拡径部と前記内側拡径部との接合部の外面は円弧状曲面で形成され、前記内側拡径部の前記凹部の底面とその外周の立上がり面とがなすコーナ部の外面は円弧状曲面で形成されていることを特徴とする請求項1に記載の樹脂ブッシング。The columnar portion is formed in a truncated cone shape having a small diameter on the outer widened portion side and a large diameter on the inner widened portion side, and an outer surface of a joint portion between the outer large diameter portion and the inner large diameter portion of the columnar portion. 2 is formed with an arcuate curved surface, and an outer surface of a corner portion formed by a bottom surface of the concave portion of the inner enlarged diameter portion and a rising surface of the outer periphery thereof is formed by an arcuate curved surface. Resin bushing. 前記内側ブッシング半部の前記ナットで加圧される側が突出部として形成されていることを特徴とする請求項1または2に記載の樹脂ブッシング。The resin bushing according to claim 1 or 2, wherein a side pressed by the nut of the inner bushing half is formed as a protrusion. 前記内側ブッシング半部の前記突出部の表面には周方向に間欠的に複数のリブが放射状に突設されていることを特徴とする請求項3に記載の樹脂ブッシング。4. The resin bushing according to claim 3, wherein a plurality of ribs project radially and intermittently on the surface of the protruding portion of the inner bushing half. 5. 前記内側ブッシング半部の前記凸部の立上がり部とそれを支持する部分とがなすコーナ部の外面は円弧状曲面で形成されていることを特徴とする請求項3または4に記載の樹脂ブッシング。5. The resin bushing according to claim 3, wherein an outer surface of a corner portion formed by a rising portion of the convex portion of the inner bushing half and a portion supporting the convex portion is formed as an arcuate curved surface.
JP2003179868A 2003-06-24 2003-06-24 Resin bushing Expired - Fee Related JP4252376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179868A JP4252376B2 (en) 2003-06-24 2003-06-24 Resin bushing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179868A JP4252376B2 (en) 2003-06-24 2003-06-24 Resin bushing

Publications (2)

Publication Number Publication Date
JP2005019089A true JP2005019089A (en) 2005-01-20
JP4252376B2 JP4252376B2 (en) 2009-04-08

Family

ID=34181080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179868A Expired - Fee Related JP4252376B2 (en) 2003-06-24 2003-06-24 Resin bushing

Country Status (1)

Country Link
JP (1) JP4252376B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300168A (en) * 2007-05-31 2008-12-11 Daihen Corp Resin bushing
KR200459737Y1 (en) 2007-09-13 2012-04-13 현대중공업 주식회사 Post type insulator for explosion proof motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300168A (en) * 2007-05-31 2008-12-11 Daihen Corp Resin bushing
KR200459737Y1 (en) 2007-09-13 2012-04-13 현대중공업 주식회사 Post type insulator for explosion proof motor

Also Published As

Publication number Publication date
JP4252376B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
WO2012050173A1 (en) Electrically conductive connecting member, process for manufacturing electrically conductive connecting member, and battery equipped with electrically conductive connecting member as electrode
US6755601B2 (en) Weld nut
JP4252376B2 (en) Resin bushing
US20220140588A1 (en) Insulation supporting assembly and gas-insulated transmission line
JP2008249035A (en) Vibration control device and resin outer cylinder member to be used for the same
JP5720175B2 (en) Inverter device
JP4736852B2 (en) Reinforcement structure for plate joints
TWI736313B (en) Grounding structure, power substrate, electrical device and grounding method
JP5290710B2 (en) Cylindrical resistor mounting and cylindrical resistor mounting method
JP6383816B2 (en) Pipe holding band fitting
JP2001325940A (en) Battery connection structure of vehicle
CN214674641U (en) Front end cover of generator
KR200471820Y1 (en) Bolt for improving assembly in constructing inverter
JP2018105337A (en) Weld nut and method for attaching weld nut
JP2011028894A (en) Battery terminal
RU75409U1 (en) SET OF ELEMENTS FOR DOUBLE FLOOR FLOORING AND VARIABLE BY HEIGHT OF SUPPORT (OPTIONS)
JP3061297U (en) High pressure lamp socket
JP2004154287A (en) Leg for furniture
JPS61193407A (en) Tank for oil-immersed electric machinery and apparatus
TWM631345U (en) An electrical connector, a mating electrical connector and an electrical connector assembly
JPH11130190A (en) Weld joint of panel assembly type storage tank
KR200179706Y1 (en) Jointer for cylindrical suport
JP2020143431A (en) Beam reinforcing structure and beam reinforcing method using beam reinforcing fitting, and manufacturing method for beam reinforcing fitting
JPH0439295Y2 (en)
JP3128137U (en) Base receiver and base receiver structure using the base receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

R150 Certificate of patent or registration of utility model

Ref document number: 4252376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees