JP2005019057A - Sealing structure of solid polymer fuel cell - Google Patents

Sealing structure of solid polymer fuel cell Download PDF

Info

Publication number
JP2005019057A
JP2005019057A JP2003179185A JP2003179185A JP2005019057A JP 2005019057 A JP2005019057 A JP 2005019057A JP 2003179185 A JP2003179185 A JP 2003179185A JP 2003179185 A JP2003179185 A JP 2003179185A JP 2005019057 A JP2005019057 A JP 2005019057A
Authority
JP
Japan
Prior art keywords
mea
gasket
separator
fuel cell
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003179185A
Other languages
Japanese (ja)
Other versions
JP4403448B2 (en
Inventor
Fumihiro Horikawa
史博 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThreeBond Co Ltd
Original Assignee
ThreeBond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThreeBond Co Ltd filed Critical ThreeBond Co Ltd
Priority to JP2003179185A priority Critical patent/JP4403448B2/en
Publication of JP2005019057A publication Critical patent/JP2005019057A/en
Application granted granted Critical
Publication of JP4403448B2 publication Critical patent/JP4403448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealing structure of a solid polymer fuel cell capable of preventing breakage during the packing, storage and transportation of a formed gasket, and having high reliability and easily obtaining a flat sealing surface particularly in the use of a liquid sealing agent in the sealing structure between separators of the fuel cell. <P>SOLUTION: In the fuel cell formed by layering a separator and an MEA formed of an electrode and a solid polymer membrane, the sealing structure of the fuel cell is so structured that projected parts are disposed at the peripheral edge of the MEA, recessed parts are disposed at the peripheral part edge of the separator, the projected parts are disposed so as to be engaged with the recessed parts at layering the separator and the MEA, the gasket is filled in the recessed part of the separator, the gasket does not protrude from the recessed part, and the projected parts compress the gasket. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は固体高分子型燃料電池におけるセパレータとMEA間のシール構造に関するものである。
【0002】
【従来の技術】
燃料電池は燃料の有するエネルギーを直接的に電気エネルギーに変換する装置として知られている。燃料電池では水素を含む燃料ガスをアノードに供給し、酸素を含む酸化ガスをカソードに供給して、両極で起こる電気反応で化学反応によって起電力を得る。
【0003】
燃料電池の典型的な構造としては図9に示すことができる。燃料電池のMEA(Membrane Electrode Assembly)2は固体電解質膜Mと電極Eo、Ehからなり、これを挟み込む一対のセパレータ(集電極とも称する)1o、1hとの間にそれぞれガスケットGo、Ghが配置されており、これらを積層したものを1セルとして複数のセルを積層することにより成り立っている。MEAは発電素子や電極膜構造体とよばれることもある。
【0004】
1セルの断面図によりさらに詳しく説明すると、図10で説明される。燃料電池はセパレータ1o、1hとMEA2から構成された単セルCからなり、このような単セルCを、複数積層して構成されている。セパレータ1o、1hは、燃料ガス、酸化ガスおよび冷媒を分断するとともに、燃料ガスおよび酸化ガスの気体をMEA内部へ導く流路Ph、Po並びに冷却水をMEAへ導いてこれを冷却するための流路(図示せず)を有している。一方、MEAは、固体電解質膜Mを挟んで酸素極Eo(カソード極)と水素極Eh(アノード極)が設けられる。
【0005】
セパレータ1o、1hは、カーボンなどの材料から形成されており、そして燃料ガス、酸化ガスおよび冷媒を分断する機能を有するとともに、前記流路Ph、Poを持ち、そして電子伝達機能を有している。この燃料電池は酸素極側ガス流路Poに供給空気が通流され、水素極側ガス流路Phに供給水素が供給されると、水素極Ehで水素が触媒作用でイオン化してプロトンが生成し、生成したプロトンは、電解質膜M中を移動して酸素極Eoに到達する。そして、酸素極Eoに到達したプロトンは、触媒の存在下、供給空気の酸素から生成した酸素イオンと直ちに反応して水を生成する。生成した水および未使用の酸素を含む供給空気は、排出空気として燃料電池の酸素極側の出口から排出される(排出空気は多量の水分を含む)。また、水素極Ehでは水素がイオン化する際に電子e−が生成するが、この生成した電子e−は、モータなどの外部負荷を経由して酸素極Eoに達する構成となっている。
【0006】
このような構成の燃料電池は、燃料ガス、酸化ガス、冷媒を各々独立した流路Ph、Po通じて各単セルCに供給するが、これらの各系を気密に仕切るためにシールを施すシールが必要となってくる。特にMEAの外周部は漏洩すると水素と酸素が反応してしまい、発電効率が著しく低下してしまう。よって、該部位には図9、図10で示されるようにゴムシートなどのパッキンやオーリング等の固形ガスケットを挟み込んでシールされていた。しかし、固形ガスケットを挟み込むという方法は、組み付け行程において自動化が困難であったり、薄く且つ大型になる場合、ハンドリングが悪く、破損しやすい問題点がある。また、コスト的に不利であるばかりでなく、シール性能が良くないため、最適な方法ではなかった。
【0007】
上記不都合を解消するため、シール材をあらかじめセパレータに一体化したり、MEAに一体化するという方法が考えられた。その方法を具体的に挙げると、ゴムパッキンなどの固形パッキンをあらかじめMEAやセパレータに接着する方法、液状ガスケットによるFIPG(Formed−In−Place−Gasket))、CIPG(Cured−In−Place−Gasket)、MIPG(Molded−In−Place−Gasket )などが考案されている。
【0008】
ゴムパッキンなどをあらかじめ接着する方法は特開平8−148169号公報に記載されている。しかし、接着する工程がスタック組み立て工程と別になったというだけで、工程数自体が減るわけではなく、また、被シール部の形状に合わせてパッキンを用意しなければならず好ましくない。
【0009】
FIPGは特開2003−31239号公報に記載されているものであり、湿気硬化型のシリコーン樹脂や加熱硬化型のフッ素樹脂などの硬化性液状樹脂を被シール部にその形状にそって塗布し、液状のまま組み立てた後、液状樹脂を硬化させる方法である。この方法はその場でシール材を形成することができるため、被シール部が複雑な形状であったり部品が多種にわたる場合であっても、適応することができ、また、被シール部の表面に未硬化状態で接触してその後硬化するので被シール部の表面状態がなめらかでなくてもシール性が確保できるという長所がある。
【0010】
CIPGはFIPGと同様な樹脂、装置を使用してシール剤を現場成型するのであるが、FIPGとの差異はFIPGは未硬化時に部品を組み立てるのに対しCIPGは塗布後硬化させてから部品を組み立てるものである。さらに、MIPGは特開2002−86482号等に記載されており、被シール部を金型に入れ、または被シール部品に金型をかぶせ部材と金型の間にキャビティを形成し、該キャビティにシール材料を注入することによりシール材を成型するものである。
【0011】
【発明が解決しようとする課題】
しかしながらFIPGは塗布して組み合わせという繰り返しをセルの数だけ繰り返さなければならず、スタック組み立て工程に時間がかかるという欠点、シール剤の塗布量を正確に制御しないと組み合わせたときにシール材がはみ出すという問題点がある。CIPGは塗布した形状のまま硬化させる性格上、ディスペンス塗布の場合、ビードの継ぎ目が生じ、ビード高さが均一になりにくいため、極めて高い塗布精度が要求され、管理が非常に困難となる。MIPGは金型を用いるため イニシャルコストが高く、設計変更には不利な問題点を有する。
【0012】
また、FIPGを除くシール方法では被シール部材との間にシール材が介在し、十分な面圧を維持することでシール性能が発揮されるため、ガスケット材質のクリーピングや圧縮永久歪みのためにシール性が低下したり、高温・高圧下での面圧維持、寸法安定化が困難である。
【0013】
また、上記のようなセパレータやMEAにシール材を形成する方法は、平面形状であるセパレータやMEAにシール材が突出している形状となる。シール材は軟質物質であるため、これらの部品を梱包、輸送、保存する際にシール部が他の部材と接触したり自重により破損する可能性があり、シール性に問題が生じる危険性がある。また、シール材がタッキングを有する場合にはブロッキングの問題が発生する。
【0014】
そればかりではなく、近年では燃料電池の軽薄化を達成するためシール部材は通常、MEAの電極および集電層または拡散層の厚さでまかなわれる必要があり、この厚さでは充分なシール確保するのが困難であるという問題も生じている。
【0015】
そこで、本発明は上記問題を解決すべく鋭意検討した結果、固体高分子型燃料電池の組み立て工程が簡素で、かつ部材の梱包、輸送、保存中にシール材が破損することにないシール構造を提供するものである。
【課題を解決するための手段】
本発明はセパレータと、電極と固体高分子膜よりなるMEAとを積層してなる固体高分子型燃料電池において、MEAの周縁部に凸部を設け、セパレータの周縁部に凹部を設け、セパレータとMEAを積層したときに前記凸部は前記凹部内に係合する様に設けられ、前記セパレータ凹部にガスケットを充填し、かつガスケットは凹部からはみ出さないものとし、前記凸部がガスケットを圧縮する固体高分子型燃料電池のシール構造である。
【0016】
本発明でいうMEAとは従来技術で前述したとおり、固体高分子膜の両面にそれぞれ、カソード電極、アノード電極が形成されたものである。MEAは2枚のセパレータで挟まれる。セパレータとMEAの間からカソード側、アノード側にそれぞれ空気または酸素、水素が供給される。
【0017】
本発明はMEAの周縁部に凸部が形成される。周縁部に形成される凸部はMEAの外周にそって1周つながっていることが好ましい。また、周縁部の凸部はMEAの両面に形成される。凸部はMEAの周縁部に形成されるが、固体高分子膜が両電極よりも外周方向に向かってはみ出して設けられているものである場合、凸部は固体高分子膜上に形成されることが好ましい。しかし、必ずしも固体高分子膜上に形成される必要はなく、MEAの形状に合わせ、電極上に凸部が形成されてもかまわない。
【0018】
形成される凸部の材質は外圧によって容易に変形しないものが好ましい。従来の燃料電池のシール構造はこの部分に弾性シール材を設けていたが、本発明では弾性でなく容易に変形しないものが好ましい。
【0019】
一方、MEAは一般に200μm以下の薄膜であることが多く、柔軟なフィルムがベースになるため、面圧をかけた際の局所荷重などにより、フィルムの破損などのおそれがある。これを解決する目的でMEAの周縁部にプラスチックなどの硬質な部材で枠を設けることが知られている。本発明ではこの枠の断面形状を突起状にすることで凸部を設けることが好ましい。枠の材質は圧縮強度、耐クリープ性、耐熱性、耐酸性、耐加水分解性、電気絶縁性、MEA上触媒に有害な溶出成分の無いことなどを考慮して選択される。枠の材質は本発明において制限されるものではないが、PEEK(ポリエーテルエーテルケトン)、PBT(ポリブチレンテレフタレート)、PPS(ポリフェニレンスルフィド)、POM(ポリアセタール)、PES(ポリエーテルサルホン)、LCP(液晶ポリエステル)などのスーパーエンプラと呼ばれるプラスチックが望ましい。
【0020】
また、本発明では凸部枠の形成方法はMEAに対して金型を用いて行うアウトサート成型や成型した枠部品をMEAに接着する方法などが挙げられる。また、MEAに対し、液状の硬化性樹脂を突起状に塗布し硬化させるこよにより形成しても良い。この場合、エポキシ樹脂などの硬質な樹脂が望ましい。また、凸部を形成する材質は外圧により容易に変形しないものが好ましいと述べたが、面圧が低くても良い場合は従来のガスケット材と同様な軟質な材質であっても構わない。この場合、MEAを保管、輸送の際に凸部が変形する可能性があるが、本発明では後述する凹部の内部に存在するシール材との組み合わせでシールするため、MEAに形成されたシール部が多少変形してもシール性を発揮することができる。よって、本発明において凸部として軟質なシール材を使用しても従来の問題点を解消することができる。
【0021】
本発明の凸部の形状はガスケット材の破損防止や液状ガスケットを注入した場合に生ずる液面の湾曲(メニスカス)に合わせて、凸部先端はゆるやかな曲線で構成されるものが望ましい。
【0022】
本発明はセパレータの周縁部に凹部が形成される。凹部は溝であり、セパレータの外周にそって1周つながっていることが好ましい。凹部はセパレータの厚みと剛性が十分な場合は、切削や成型などで形成でき、セパレータの製造工程によって選択される。また、薄型のセパレータの場合、プレス成型によってガスや冷却水の流路などを形成する際に当該凹部となる溝(窪み)を設けることができる。 溝の幅寸法、深さおよび断面形状は特に制限されず、MEAに設けた凸部の形状および寸法との兼ね合いや、使用するガスケット材(後述)の硬度や圧縮力によって決定することが望ましい。ただし、液状ガスケットの注入を行う場合は溝部は水平面に形成され、且つ注入した液状ガスケットが流出するような孔や切り掻きなどが無い方がよい。またセパレータに形成される凹部の最高面はガス流路の合わせ面に対し水平であっても良いが、MEAの破損防止のため、段差ないしはテーパー状に面取りしてあっても良い。
【0023】
セパレータ凹部内にはガスケットが形成される。ガスケットは圧縮により容易に変形し、圧縮力を除去すると変形が元に戻る様なものが好ましい。ガスケット材は固形ガスケット、液状ガスケット共に使用できる。固形ガスケットは凹部の溝形状とほぼ同形の固形パッキンを準備して凹部にはめ込むことにより得ることができる。液状ガスケットは凹部溝内に硬化性液状樹脂を流し込み、硬化させることにより得ることができる。ガスケットの材質は本発明において特に制限されるものではないが、燃料電池の要求特性を考慮すると固形ガスケットではEPDM、IIR、フッ素系のゴムなどが望ましく、液状ガスケットの場合はポリオレフィン系、フッ素系が特に望ましい。
【0024】
また、本発明においてはシール部を平滑面にすることを考慮し、液状ガスケットは流動性に優れたものが望ましい。流動性が低い場合、十分なセルフレベリングが得られず、注入後の液面が平滑にならない。また、粘度が高いものはセルフレベリングに時間を要し、作業性が低下するため低粘度のものが望ましい。注入量は所定の面圧と設計上の寸法、凸部と凹部の容積およびガスケット材の変形特性などを考慮して決定される。
【0025】
本発明のような構成であるとセパレータを大量生産により製造した場合でも、セパレータ同士を重ねて、輸送、保管することができ、軟質であるガスケット材が突出していない構造であるので、ガスケットが他の部位と衝突することがなく、そのまま重ねてもビードの破損やブロッキングの発生がない。
【0026】
MEAの周縁部に形成された凸部とセパレータの周縁部に形成された凹部は凸部が凹部内に係合するような位置関係、形状、寸法であることが必要である。凸部は凹部内のガスケットを圧縮しガスケットは弾性変形して凹部内のガスケットと凸部の面圧によりシール性が発現し、燃料電池内の水素ガス、酸素ガス(空気)が内部で混合することなく、外部に漏れることもない。ここで、周縁部とはMEAやセパレータの最外周末端を指すわけではなく、燃料が供給されてMEAで発電が起こるMEAの発電部より外周という意味である。よって、燃料電池の構成によってはMEAの最外周よりも2〜3cmほど内側に凹部や凸部が構成されてもかまわない。
【0027】
また、凸部の全体がテーパー状で底部の最大幅がセパレータに形成された凹部の溝幅よりも大きい場合、凸部の底部と凹部の頂部が接触して、ガスケット材の変形スペースが制限されるため過剰な変形やガスケット材の破損を防止することができる。
【0028】
【作用】
従来のシール構造では平滑なセパレータ面と同様に平滑なMEAあるいはMEA枠の間にガスケット、シール材を介在させる構造であり、ガスケットが平面に対し突起となっているため、圧縮により平面方向に対して変形が自由である。このため、長期間の圧縮応力によってクリーピングが発生しやすく、面圧低下が顕著となる。同様の理由でCIPGの場合においては塗布した液状ガスケットの断面形状は液状ガスケットの流動特性や塗布機の精度に依存することになり、流動性が高いと十分なビード高さが得られず、流動性を抑制すると、レベリング性が低下してビード頂点の高さが不安定になりやすい欠点を有する。またディスペンスにおいてはビード継ぎ目が残存してしまうことがある。また、位置精度が悪いと均一に当接しないためシール性が悪くなる。一方、本発明ではガスケットを突出しない平滑面とし、この面に対しシール部に合わせた枠の断面を突起形状としてガスケットに押しつける構造により前記の問題を回避もしくは緩和することができる。また、MEAに形成された凸部がセパレータに形成された凹部に入っていれば、高さ、位置精度が多少悪くても安定したシール性能が得られる。
【0029】
【発明の実施の形態】
【実施例】
以下に本発明のシール構造の実施例を説明する。
実施例1
MEA2として図1aの断面図で示されるMEAを作成した。MEA周縁部に半楕円状断面の凸部3を形成した。凸部3はアウトサート成型により形成した。また、セパレータ1として図1bの断面図で示されるセパレータを作成した。凹部4の溝断面はコ字型であり、凹部に液状シール剤を注入し硬化させ、ガスケット5を形成した。凹部への注入は容易であり、セルフレベリングにて平滑なガスケット材表面を形成することができた。該セパレータとMEAを組み合わせた。MEAに形成された凸部3はセパレータの凹部4に係合し内部のガスケット5を圧縮し、凸部3が均一にガスケットに密着することができるので密着不良によるシール不良を回避することができた。この様子は図1cで表される。
【0030】
実施例2
MEA2は実施例1と同じものを使用した。(図2a)また、セパレータ1として図2bの断面図で示されるセパレータを作成した。凹部4の溝断面はU字型であり、凹部4に液状シール剤を注入し硬化させ、ガスケット5を形成した。凹部4への注入は容易であり、セルフレベリングにて平滑なガスケット材表面を形成することができた。さらに実施例1の場合と比べ、液状シール剤の注入時に気泡が混入しにくかった。MEA2に形成された凸部3はセパレータの凹部4に係合し内部のガスケット5を圧縮し、凸部3が均一にガスケットに密着することができるので密着不良によるシール不良を回避することができた。この様子は図2cで表される。さらに、実施例1と比べガスケット5が圧縮された際に発生する歪みが局在化しにくいのでガスケットの破損やクリーピングを緩和しやすかった。この様子は図2cで表される。
【0031】
実施例3
MEA2として図3aの断面図で示されるMEAを作成した。あらかじめ半楕円状断面の凸部成型体を作成しておき、エポキシ樹脂接着剤6でMEA2の周縁部に両面凸部成型体3を接着した。セパレータ1として実施例1と同じものを用いた。(図3b)該セパレータ1とMEA2を組み合わせた。MEA2に形成された凸部3はセパレータの凹部4に係合し内部のガスケット5を圧縮し、凸部3が均一にガスケットに密着することができるので密着不良によるシール不良を回避することができた。この様子は図3cで表される。
【0032】
実施例4
MEA2として図4aの断面図で示されるように、MEA2の周縁部に硬化性液状シール材をビード状に塗布し、硬化させ凸部3を形成した。シール材のビード(凸部)はおおよそ均一な高さではあったがきわめて正確な高さではなかった。セパレータ1として実施例1と同じものを用いた。(図4b)該セパレータ1とMEA2を組み合わせた。MEA2に形成された凸部3であるビードはその高さに応じてガスケット5を圧縮し、凸部3が均一にガスケット5に密着することができるのでビード(凸部)が均一な高さでなくても密着不良によるシール不良を回避することができた。この様子は図4cで表される。
【0033】
実施例5、実施例6
実施例1の場合と同じだが、セパレータの凹部に実施例5では段差7、実施例6ではテーパー状の面取り8を施した。(図5,図6)これらはガスケット材のクリーピングなどによりMEAが過剰に圧縮されてもセパレータ溝の角がMEAに食い込むことを緩和できた。
【0034】
実施例7,実施例8
実施例1の場合と同じだが、MEAの凸部3がテーパー状であり、かつテーパーの最底部3aの幅がセパレータの凹部の開口幅より大きい場合の例を示す。(図7)該セパレータとMEA2を組み合わせた。MEA2に形成された凸部2の先端部はセパレータの凹部内部のガスケットを圧縮し、凸部の底部3aはセパレータ凹部と接触し、スペーサーの役割になるためガスケットの圧縮量を制限することになるので、面圧の維持がしやすい。さらに実施例8ではセパレータの凹部をテーパー状の面取り8を施した。(図8)この場合、実施例7よりも凸部と凹部の接触面積が大きいため、接触の圧力を緩和しセパレータやMEAの破損を防止することができた。
【0035】
【発明の効果】
本発明のシール構造によれば形成するシール部分の成型精度があまり高くなくても優れたシール性を発揮することができる。例えば、液状ガスケットを用いたCIPGにおいて、塗布管理を容易にし、且つ信頼性の高いシール性を発揮させることが可能である。また、面圧低下によるシール性の低下およびMEAの破損を抑制することが可能である。さらに、燃料電池部品の梱包・輸送時の破損・ブロッキングを防止することができ、信頼性の高いシール性を得ることができる。
【0036】
【図面の簡単な説明】
【図1】本発明の実施例1の構成を表す断面図
【図2】本発明の実施例2の構成を表す断面図
【図3】本発明の実施例3の構成を表す断面図
【図4】本発明の実施例4の構成を表す断面図
【図5】本発明の実施例5の構成を表す断面図
【図6】本発明の実施例6の構成を表す断面図
【図7】本発明の実施例7の構成を表す断面図
【図8】本発明の実施例8の構成を表す断面図
【図9】従来の燃料電池のスタック構造を表す斜視図
【図10】従来の燃料電池の1セルを表す断面図
【符号の説明】
1 セパレータ
2 MEA
3 凸部
4 凹溝
5 ガスケット
6 接着剤
7 段差
8 面取り部
M 固体高分子膜
E 電極
P 流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seal structure between a separator and an MEA in a polymer electrolyte fuel cell.
[0002]
[Prior art]
A fuel cell is known as a device that directly converts energy of fuel into electric energy. In a fuel cell, a fuel gas containing hydrogen is supplied to an anode, and an oxidizing gas containing oxygen is supplied to a cathode, and an electromotive force is obtained by a chemical reaction by an electric reaction occurring at both electrodes.
[0003]
A typical structure of a fuel cell can be shown in FIG. A fuel cell MEA (Mebrane Electrode Assembly) 2 is composed of a solid electrolyte membrane M and electrodes Eo and Eh, and gaskets Go and Gh are disposed between a pair of separators (also referred to as collector electrodes) 1o and 1h sandwiching the membrane, respectively. This is achieved by laminating a plurality of cells, each of which is a laminated cell. The MEA is sometimes called a power generation element or an electrode film structure.
[0004]
This will be described in more detail with reference to a cross-sectional view of one cell. The fuel cell is composed of a single cell C composed of separators 1o, 1h and MEA 2, and a plurality of such single cells C are laminated. The separators 1o and 1h divide the fuel gas, the oxidizing gas, and the refrigerant, and the flow paths for guiding the fuel gas and the oxidizing gas to the inside of the MEA and the cooling water to the MEA and cooling it. It has a path (not shown). On the other hand, the MEA is provided with an oxygen electrode Eo (cathode electrode) and a hydrogen electrode Eh (anode electrode) with the solid electrolyte membrane M interposed therebetween.
[0005]
The separators 1o and 1h are made of a material such as carbon, and have a function of separating fuel gas, oxidizing gas, and refrigerant, have the flow paths Ph and Po, and have an electron transfer function. . In this fuel cell, when supply air is passed through the oxygen electrode side gas flow path Po and supply hydrogen is supplied to the hydrogen electrode side gas flow path Ph, hydrogen is ionized by the catalytic action to generate protons at the hydrogen electrode Eh. The generated protons move through the electrolyte membrane M and reach the oxygen electrode Eo. And the proton which reached | attained the oxygen electrode Eo reacts with the oxygen ion produced | generated from the oxygen of supply air in presence of a catalyst, and produces | generates water. The generated water and supply air containing unused oxygen are exhausted from the outlet on the oxygen electrode side of the fuel cell as exhaust air (exhaust air contains a large amount of water). In addition, when hydrogen is ionized at the hydrogen electrode Eh, electrons e− are generated. The generated electrons e− reach the oxygen electrode Eo via an external load such as a motor.
[0006]
The fuel cell having such a configuration supplies fuel gas, oxidant gas, and refrigerant to each single cell C through independent flow paths Ph and Po, but seals are provided to seal these systems in an airtight manner. Will be needed. In particular, when the outer periphery of the MEA leaks, hydrogen and oxygen react with each other, resulting in a significant decrease in power generation efficiency. Therefore, as shown in FIG. 9 and FIG. 10, the portion was sealed by sandwiching a gasket such as a rubber sheet or a solid gasket such as an O-ring. However, the method of sandwiching the solid gasket is problematic in that it is difficult to automate in the assembling process or is thin and large in size, so that the handling is bad and it is easily damaged. In addition to being disadvantageous in terms of cost, the sealing performance is not good, so it is not an optimal method.
[0007]
In order to eliminate the above inconvenience, a method of integrating the sealing material into the separator in advance or integrating it into the MEA has been considered. Specific examples of the method include a method in which a solid packing such as a rubber packing is bonded to an MEA or a separator in advance, a FIPG (Formed-In-Place-Gasket) using a liquid gasket, and a CIPG (Cured-In-Place-Gasket). MIPG (Molded-In-Place-Gasket) has been devised.
[0008]
A method for pre-bonding rubber packing or the like is described in JP-A-8-148169. However, just because the bonding process is separate from the stack assembly process, the number of processes itself is not reduced, and packing is prepared according to the shape of the sealed portion, which is not preferable.
[0009]
FIPG is described in Japanese Patent Application Laid-Open No. 2003-3239. A curable liquid resin such as a moisture curable silicone resin or a heat curable fluororesin is applied to a portion to be sealed along its shape, In this method, the liquid resin is cured after being assembled in a liquid state. Since this method can form a sealing material on the spot, it can be applied even when the sealed portion has a complicated shape or a wide variety of parts, and can be applied to the surface of the sealed portion. Since the contact is made in an uncured state and then cured, the sealing property can be secured even if the surface state of the sealed portion is not smooth.
[0010]
CIPG uses the same resin and equipment as FIPG to form a sealant in-situ, but the difference from FIPG is that FIPG assembles parts when uncured, while CIPG assembles parts after curing after application. Is. Further, MIPG is described in Japanese Patent Application Laid-Open No. 2002-86482, etc., and a sealed part is put in a mold, or a mold is placed on a part to be sealed to form a cavity between the member and the mold. The sealing material is molded by injecting the sealing material.
[0011]
[Problems to be solved by the invention]
However, FIPG has to be applied and repeated as many times as the number of cells, and the stack assembly process takes time, and the sealing material will protrude when combined unless the coating amount of the sealing agent is controlled accurately. There is a problem. Since CIPG is cured in the form of the applied shape, in the case of dispense application, a seam of beads is generated, and the bead height is difficult to be uniform, so that extremely high application accuracy is required and management becomes very difficult. Since MIPG uses a mold, the initial cost is high, and there is a disadvantage in designing changes.
[0012]
Also, in the sealing method except FIPG, a sealing material is interposed between the member to be sealed and the sealing performance is exhibited by maintaining a sufficient surface pressure. It is difficult to reduce the sealing performance, maintain the surface pressure under high temperature and high pressure, and stabilize the dimensions.
[0013]
Moreover, the method of forming the sealing material on the separator or MEA as described above results in a shape in which the sealing material protrudes from the separator or MEA having a planar shape. Since the sealing material is a soft material, when these parts are packed, transported, or stored, the sealing part may come into contact with other members or be damaged by its own weight, which may cause a problem in sealing performance. . Further, when the sealing material has tacking, a blocking problem occurs.
[0014]
In addition, in recent years, in order to achieve a reduction in the thickness of the fuel cell, the sealing member usually needs to be covered with the thickness of the electrode of the MEA and the current collecting layer or the diffusion layer, and this thickness ensures a sufficient seal. There is also a problem that it is difficult.
[0015]
Therefore, as a result of intensive studies to solve the above problems, the present invention has a sealing structure in which the assembly process of the polymer electrolyte fuel cell is simple and the sealing material is not damaged during packaging, transportation and storage of the member. It is to provide.
[Means for Solving the Problems]
The present invention provides a polymer electrolyte fuel cell in which a separator, an electrode, and an MEA made of a solid polymer membrane are laminated. In the polymer electrolyte fuel cell, a protrusion is provided at the peripheral edge of the MEA, and a recess is provided at the peripheral edge of the separator. When the MEA is laminated, the convex portion is provided so as to engage with the concave portion, the separator concave portion is filled with a gasket, and the gasket does not protrude from the concave portion, and the convex portion compresses the gasket. It is a sealing structure of a polymer electrolyte fuel cell.
[0016]
The MEA as used in the present invention is one in which a cathode electrode and an anode electrode are formed on both surfaces of a solid polymer film, respectively, as described in the prior art. The MEA is sandwiched between two separators. Air, oxygen, or hydrogen is supplied from between the separator and the MEA to the cathode side and the anode side, respectively.
[0017]
In the present invention, convex portions are formed on the peripheral edge of the MEA. It is preferable that the convex part formed in a peripheral part is connected 1 round along the outer periphery of MEA. Moreover, the convex part of a peripheral part is formed in both surfaces of MEA. The convex part is formed on the peripheral edge of the MEA. However, when the solid polymer film is provided so as to protrude from the two electrodes toward the outer peripheral direction, the convex part is formed on the solid polymer film. It is preferable. However, it does not necessarily have to be formed on the solid polymer film, and a convex portion may be formed on the electrode in accordance with the shape of the MEA.
[0018]
The material of the formed convex part is preferably one that does not easily deform due to external pressure. In the conventional fuel cell sealing structure, an elastic sealing material is provided in this portion. However, in the present invention, it is preferable that the sealing structure is not elastic and does not easily deform.
[0019]
On the other hand, the MEA is generally a thin film of 200 μm or less, and since a flexible film is used as a base, the film may be damaged due to a local load when a surface pressure is applied. In order to solve this problem, it is known to provide a frame with a rigid member such as plastic on the peripheral edge of the MEA. In this invention, it is preferable to provide a convex part by making the cross-sectional shape of this frame into a protrusion shape. The material of the frame is selected in consideration of compressive strength, creep resistance, heat resistance, acid resistance, hydrolysis resistance, electrical insulation, absence of eluting components harmful to the catalyst on MEA, and the like. The material of the frame is not limited in the present invention, but PEEK (polyetheretherketone), PBT (polybutylene terephthalate), PPS (polyphenylene sulfide), POM (polyacetal), PES (polyethersulfone), LCP A plastic called super engineering plastic such as (liquid crystal polyester) is desirable.
[0020]
In the present invention, examples of the method for forming the convex frame include outsert molding performed using a mold on the MEA, and a method of bonding the molded frame component to the MEA. Alternatively, the MEA may be formed by applying and curing a liquid curable resin in a protruding shape. In this case, a hard resin such as an epoxy resin is desirable. In addition, it has been described that the material forming the convex portion is preferably one that does not easily deform due to external pressure, but if the surface pressure may be low, it may be a soft material similar to a conventional gasket material. In this case, the convex portion may be deformed during storage and transportation of the MEA. However, in the present invention, the sealing portion formed in the MEA is sealed in combination with a sealing material existing inside the concave portion described later. Even if it is deformed to some extent, sealing properties can be exhibited. Therefore, even if a soft sealing material is used as the convex portion in the present invention, the conventional problems can be solved.
[0021]
The shape of the convex portion of the present invention is preferably such that the tip of the convex portion is configured with a gentle curve in accordance with the curvature of the liquid surface (meniscus) that occurs when a gasket material is prevented from being damaged or a liquid gasket is injected.
[0022]
In the present invention, a recess is formed in the peripheral edge of the separator. The recess is a groove and is preferably connected one turn along the outer periphery of the separator. If the thickness and rigidity of the separator are sufficient, the recess can be formed by cutting or molding, and is selected according to the manufacturing process of the separator. In the case of a thin separator, a groove (depression) that becomes the concave portion can be provided when a gas or cooling water flow path is formed by press molding. The width dimension, depth, and cross-sectional shape of the groove are not particularly limited, and are desirably determined by the balance with the shape and dimensions of the protrusions provided on the MEA, and the hardness and compression force of the gasket material (described later) to be used. However, when the liquid gasket is injected, it is preferable that the groove is formed in a horizontal plane and that there is no hole or scraping or the like from which the injected liquid gasket flows out. In addition, the highest surface of the recess formed in the separator may be horizontal with respect to the mating surface of the gas flow path, but may be chamfered in a step or taper shape to prevent MEA damage.
[0023]
A gasket is formed in the separator recess. It is preferable that the gasket be easily deformed by compression and return to its original shape when the compressive force is removed. The gasket material can be used for both solid gaskets and liquid gaskets. The solid gasket can be obtained by preparing a solid packing substantially the same shape as the groove shape of the recess and fitting it into the recess. The liquid gasket can be obtained by pouring a curable liquid resin into the concave groove and curing it. The material of the gasket is not particularly limited in the present invention, but considering the required characteristics of the fuel cell, EPDM, IIR, fluorine-based rubber, etc. are desirable for solid gaskets, and polyolefin-based and fluorine-based materials are desirable for liquid gaskets. Particularly desirable.
[0024]
In the present invention, it is desirable that the liquid gasket has excellent fluidity in consideration of making the seal portion smooth. When the fluidity is low, sufficient self-leveling cannot be obtained, and the liquid level after injection does not become smooth. Moreover, the thing with a high viscosity needs time for self-leveling, and since workability | operativity falls, a thing with a low viscosity is desirable. The injection amount is determined in consideration of a predetermined surface pressure and design dimensions, the volume of the convex and concave portions, the deformation characteristics of the gasket material, and the like.
[0025]
Even when the separators are manufactured by mass production, the separators can be stacked and transported and stored even when the separators are manufactured by mass production. There is no collision with this part, and even if they are stacked as they are, there is no occurrence of bead breakage or blocking.
[0026]
The convex portion formed on the peripheral edge portion of the MEA and the concave portion formed on the peripheral edge portion of the separator are required to have a positional relationship, shape, and size such that the convex portion engages in the concave portion. The convex portion compresses the gasket in the concave portion, the gasket is elastically deformed, and a sealing property is developed by the surface pressure of the gasket in the concave portion and the convex portion, and hydrogen gas and oxygen gas (air) in the fuel cell are mixed inside. Without leaking outside. Here, the peripheral portion does not mean the outermost peripheral end of the MEA or the separator, but means the outer periphery from the power generation portion of the MEA where fuel is supplied and power is generated in the MEA. Therefore, depending on the configuration of the fuel cell, a concave portion or a convex portion may be formed on the inner side about 2 to 3 cm from the outermost periphery of the MEA.
[0027]
Further, when the entire convex portion is tapered and the maximum width of the bottom portion is larger than the groove width of the concave portion formed in the separator, the bottom portion of the convex portion and the top portion of the concave portion are in contact with each other, and the deformation space of the gasket material is limited. Therefore, excessive deformation and damage to the gasket material can be prevented.
[0028]
[Action]
The conventional seal structure has a structure in which a gasket and seal material are interposed between a smooth MEA or MEA frame in the same manner as a smooth separator surface. And deformation is free. For this reason, creeping is likely to occur due to a long-term compressive stress, and the reduction in surface pressure becomes significant. For the same reason, in the case of CIPG, the cross-sectional shape of the applied liquid gasket depends on the flow characteristics of the liquid gasket and the accuracy of the coating machine. If the fluidity is high, a sufficient bead height cannot be obtained. If the property is suppressed, the leveling property is lowered and the height of the bead apex tends to become unstable. Also, bead seams may remain in dispensing. Further, when the positional accuracy is poor, the sealing performance is deteriorated because the contact is not made uniformly. On the other hand, in the present invention, the above-described problem can be avoided or alleviated by a structure in which the gasket is formed as a smooth surface that does not protrude and the cross section of the frame that matches the seal portion is pressed against the gasket. Moreover, if the convex part formed in MEA enters the concave part formed in the separator, stable sealing performance can be obtained even if the height and positional accuracy are somewhat poor.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
【Example】
Examples of the seal structure of the present invention will be described below.
Example 1
The MEA shown in the cross-sectional view of FIG. A convex portion 3 having a semi-elliptical cross section was formed on the peripheral edge of the MEA. The convex part 3 was formed by outsert molding. Moreover, the separator shown by sectional drawing of FIG. The groove cross section of the recess 4 was U-shaped, and a liquid sealant was injected into the recess and cured to form a gasket 5. Injection into the recess was easy, and a smooth gasket material surface could be formed by self-leveling. The separator and MEA were combined. The convex portion 3 formed on the MEA engages with the concave portion 4 of the separator and compresses the gasket 5 inside, so that the convex portion 3 can be in close contact with the gasket uniformly, so that poor sealing due to poor adhesion can be avoided. It was. This situation is represented in FIG.
[0030]
Example 2
The same MEA 2 as in Example 1 was used. (FIG. 2a) Moreover, the separator shown by sectional drawing of FIG. The groove section of the recess 4 is U-shaped, and a liquid sealant is injected into the recess 4 and cured to form a gasket 5. Injection into the recess 4 was easy, and a smooth gasket material surface could be formed by self-leveling. Furthermore, compared with the case of Example 1, bubbles were less likely to be mixed when the liquid sealing agent was injected. The convex portion 3 formed on the MEA 2 engages with the concave portion 4 of the separator and compresses the gasket 5 inside, so that the convex portion 3 can be in close contact with the gasket uniformly, so that poor sealing due to poor adhesion can be avoided. It was. This situation is represented in FIG. Furthermore, since the distortion generated when the gasket 5 is compressed is less likely to be localized than in the first embodiment, it is easy to alleviate the damage and creeping of the gasket. This situation is represented in FIG.
[0031]
Example 3
The MEA shown in the cross-sectional view of FIG. A convex molded body having a semi-elliptical cross section was prepared in advance, and the double-sided convex molded body 3 was bonded to the peripheral edge of the MEA 2 with an epoxy resin adhesive 6. The same separator 1 as in Example 1 was used. (FIG. 3b) The separator 1 and MEA 2 were combined. The convex portion 3 formed on the MEA 2 engages with the concave portion 4 of the separator and compresses the gasket 5 inside, so that the convex portion 3 can be in close contact with the gasket uniformly, so that poor sealing due to poor adhesion can be avoided. It was. This situation is represented in FIG.
[0032]
Example 4
As shown in the cross-sectional view of FIG. 4 a as MEA 2, a curable liquid sealing material was applied in a bead shape to the peripheral edge of MEA 2 and cured to form convex portions 3. The bead (convex portion) of the sealing material was approximately uniform in height, but not very accurate. The same separator 1 as in Example 1 was used. (FIG. 4b) The separator 1 and MEA 2 were combined. The bead which is the convex portion 3 formed on the MEA 2 compresses the gasket 5 according to the height thereof, and the convex portion 3 can be adhered to the gasket 5 uniformly, so that the bead (convex portion) has a uniform height. Even without this, it was possible to avoid a sealing failure due to poor adhesion. This situation is represented in FIG. 4c.
[0033]
Example 5 and Example 6
As in the case of Example 1, the recess of the separator was provided with a step 7 in Example 5 and a tapered chamfer 8 in Example 6. (FIGS. 5 and 6) Even if the MEA was excessively compressed by creeping the gasket material or the like, the corners of the separator groove could be mitigated from biting into the MEA.
[0034]
Example 7 and Example 8
Although it is the same as the case of Example 1, the example in case the convex part 3 of MEA is a taper shape, and the width | variety of the bottom-most part 3a of a taper is larger than the opening width of the recessed part of a separator is shown. (FIG. 7) The separator and MEA2 were combined. The tip of the convex part 2 formed on the MEA 2 compresses the gasket inside the concave part of the separator, and the bottom part 3a of the convex part contacts the separator concave part and acts as a spacer, thereby limiting the amount of compression of the gasket. Therefore, it is easy to maintain the surface pressure. Furthermore, in Example 8, the concave portion of the separator was tapered chamfered 8. (FIG. 8) In this case, since the contact area between the convex part and the concave part was larger than that in Example 7, the contact pressure was alleviated and the separator and MEA could be prevented from being damaged.
[0035]
【The invention's effect】
According to the seal structure of the present invention, excellent sealing performance can be exhibited even when the molding accuracy of the seal portion to be formed is not so high. For example, in CIPG using a liquid gasket, application management can be facilitated and highly reliable sealing performance can be exhibited. In addition, it is possible to suppress a decrease in sealing performance and a MEA damage due to a decrease in surface pressure. Further, it is possible to prevent damage and blocking during packing and transportation of the fuel cell parts, and to obtain a highly reliable sealing property.
[0036]
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the configuration of Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view showing the configuration of Embodiment 2 of the present invention. 4 is a cross-sectional view showing the configuration of Example 4 of the present invention. FIG. 5 is a cross-sectional view showing the configuration of Example 5 of the present invention. FIG. 6 is a cross-sectional view showing the configuration of Example 6 of the present invention. FIG. 8 is a cross-sectional view illustrating the configuration of Example 8 of the present invention. FIG. 8 is a cross-sectional view illustrating the configuration of Example 8 of the present invention. FIG. 9 is a perspective view illustrating the stack structure of a conventional fuel cell. Sectional view showing one cell of battery [Explanation of symbols]
1 Separator 2 MEA
3 Convex 4 Concave 5 Gasket 6 Adhesive 7 Step 8 Chamfer M Solid Polymer Film E Electrode P Channel

Claims (4)

セパレータと、電極と固体高分子膜よりなるMEAとを積層してなる固体高分子型燃料電池において、MEAの周縁部に凸部を設け、セパレータの周縁部に凹部を設け、セパレータとMEAを積層したときに前記凸部は前記凹部内に係合する様に設けられ、前記セパレータ凹部にガスケットを充填し、かつガスケットは凹部からはみ出さないものとし、前記凸部がガスケットを圧縮することを特徴とする固体高分子型燃料電池のシール構造。In a polymer electrolyte fuel cell formed by laminating a separator, an electrode, and an MEA made of a solid polymer membrane, a convex portion is provided at the peripheral portion of the MEA, a concave portion is provided at the peripheral portion of the separator, and the separator and the MEA are laminated. The convex portion is provided so as to be engaged with the concave portion, the separator concave portion is filled with a gasket, and the gasket does not protrude from the concave portion, and the convex portion compresses the gasket. A solid polymer fuel cell seal structure. 前記凹部内のガスケットは硬化性液状シール剤を凹部に流し込み硬化させたものである請求項1に記載の固体高分子型燃料電池のシール構造。2. The polymer electrolyte fuel cell sealing structure according to claim 1, wherein the gasket in the recess is formed by pouring a curable liquid sealant into the recess and curing. 前記MEAの凸部がMEAに対して一体成型されたもの、または凸部状成型体をMEAに接着してなる請求項1に記載の固体高分子型燃料電池のシール構造。2. The polymer electrolyte fuel cell sealing structure according to claim 1, wherein the convex portion of the MEA is integrally molded with the MEA, or a convex molded body is bonded to the MEA. 前記凸部の断面がテーパー状の突起形状であってその最大幅がセパレータに形成された凹部の溝幅より大きく、且つ、突起高さが溝の最大深さより小さい固体高分子型燃料電池のシール構造。Solid polymer fuel cell seal having a convex shape with a cross-section of the convex portion, the maximum width of which is larger than the groove width of the concave portion formed in the separator, and the height of the protrusion is smaller than the maximum depth of the groove. Construction.
JP2003179185A 2003-06-24 2003-06-24 Seal structure of polymer electrolyte fuel cell Expired - Fee Related JP4403448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179185A JP4403448B2 (en) 2003-06-24 2003-06-24 Seal structure of polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179185A JP4403448B2 (en) 2003-06-24 2003-06-24 Seal structure of polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2005019057A true JP2005019057A (en) 2005-01-20
JP4403448B2 JP4403448B2 (en) 2010-01-27

Family

ID=34180578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179185A Expired - Fee Related JP4403448B2 (en) 2003-06-24 2003-06-24 Seal structure of polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4403448B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071711A (en) * 2006-09-15 2008-03-27 Toto Ltd Fuel cell structure part, and fuel battery containing it
JP2009009803A (en) * 2007-06-27 2009-01-15 Nissan Motor Co Ltd Fuel cell and its manufacturing method
JP2010186721A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Method of manufacturing fuel cell-constituting material
WO2011158286A1 (en) 2010-06-15 2011-12-22 トヨタ自動車株式会社 Fuel cell and method for manufacturing fuel cell
JP2012099489A (en) * 2005-10-14 2012-05-24 Gm Global Technology Operations Inc Fuel cell with hydrophobic diffusion medium
CN113113626A (en) * 2021-03-25 2021-07-13 国家电投集团氢能科技发展有限公司 Single cell and fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099489A (en) * 2005-10-14 2012-05-24 Gm Global Technology Operations Inc Fuel cell with hydrophobic diffusion medium
US8835075B2 (en) 2005-10-14 2014-09-16 GM Global Technology Operations LLC Fuel cells with hydrophobic diffusion medium
JP2008071711A (en) * 2006-09-15 2008-03-27 Toto Ltd Fuel cell structure part, and fuel battery containing it
JP2009009803A (en) * 2007-06-27 2009-01-15 Nissan Motor Co Ltd Fuel cell and its manufacturing method
JP2010186721A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Method of manufacturing fuel cell-constituting material
WO2011158286A1 (en) 2010-06-15 2011-12-22 トヨタ自動車株式会社 Fuel cell and method for manufacturing fuel cell
CN102939677A (en) * 2010-06-15 2013-02-20 丰田自动车株式会社 Fuel cell and method for manufacturing fuel cell
US20130089808A1 (en) * 2010-06-15 2013-04-11 Toyota Jidosha Kabushiki Kaisha Fuel cell, and method of manufacturing a fuel cell
US8877406B2 (en) 2010-06-15 2014-11-04 Toyota Jidosha Kabushiki Kaisha Fuel cell, and method of manufacturing a fuel cell
CN113113626A (en) * 2021-03-25 2021-07-13 国家电投集团氢能科技发展有限公司 Single cell and fuel cell
CN113113626B (en) * 2021-03-25 2022-08-12 国家电投集团氢能科技发展有限公司 Single cell and fuel cell

Also Published As

Publication number Publication date
JP4403448B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
EP1341249B1 (en) Constituent part for fuel cell
JP5186754B2 (en) Fuel cell
US6667124B2 (en) Seal for fuel cell and forming method therefor
US6872485B2 (en) Sealing structure for fuel cell
KR100876262B1 (en) Solid Polymer Electrolyte Fuel Cell
US20020051902A1 (en) Method for mounting seals for fuel cell and fuel cell
JP5683433B2 (en) Fuel cell stack
JP2006529049A (en) Membrane electrode assembly with integral seal
JP2015532516A (en) Membrane electrode assembly and fuel cell having such a membrane electrode assembly
CN104756297A (en) Membrane electrode assembly, fuel cell comprising assembly of this type and motor vehicle comprising said fuel cell
KR101210638B1 (en) Separator for fuel cell with gasket and method for manufacturing the separator
EP3257097B1 (en) Seal for solid polymer electrolyte fuel cell
JP2008171613A (en) Fuel cells
JP5945481B2 (en) Manufacturing method of fuel cell
JP2008226722A (en) Gasket integration type membrane-electrode assembly, fuel cell including it, membrane protecting structure, and manufacturing method of gasket integration type membrane-electrode assembly
US8313680B2 (en) Method of producing fuel cell
JP4403448B2 (en) Seal structure of polymer electrolyte fuel cell
JP2008130432A (en) Polymer electrolyte fuel cell
CN111740128A (en) Separator assembly for fuel cell and method of manufacturing the same
JP3724797B2 (en) Fuel cell separator with seal and membrane electrode assembly with seal
KR20200132294A (en) Elastomer cell frame for fuel cell and Manufacturing method thereof and Fuel cell stack comprising thereof
JP2008123885A (en) Fuel cell, manufacturing method of fuel cell, and assembly
KR102264147B1 (en) Gas diffusion layer embedded gasket for fuel cell, and gasket embedded membrane-electrode assembly with the same
JP2009211977A (en) Fuel cell and cell unit
KR101822246B1 (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees