JP2005018606A - Linear prediction analysis method and device of floating-point type signal sequence, program, and its storage medium - Google Patents

Linear prediction analysis method and device of floating-point type signal sequence, program, and its storage medium Download PDF

Info

Publication number
JP2005018606A
JP2005018606A JP2003185191A JP2003185191A JP2005018606A JP 2005018606 A JP2005018606 A JP 2005018606A JP 2003185191 A JP2003185191 A JP 2003185191A JP 2003185191 A JP2003185191 A JP 2003185191A JP 2005018606 A JP2005018606 A JP 2005018606A
Authority
JP
Japan
Prior art keywords
value
floating
point
prediction
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003185191A
Other languages
Japanese (ja)
Other versions
JP4098679B2 (en
Inventor
Takehiro Moriya
健弘 守谷
Dai Yan
ダイ ヤン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003185191A priority Critical patent/JP4098679B2/en
Publication of JP2005018606A publication Critical patent/JP2005018606A/en
Application granted granted Critical
Publication of JP4098679B2 publication Critical patent/JP4098679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the probability of matching a floating-point input value x<SB>i</SB>with the exponent part E of its predicted value x^<SB>i</SB>. <P>SOLUTION: Only the mantissa M of a sequence of input values x<SB>i</SB>is transformed to an intermediate value of values which can be taken by the mantissa, e.g., "100 0000 0000 0000 0000 0000", and predicted coefficients α<SB>1</SB>-α<SB>p</SB>are determined by linear prediction analysis so that the error with the predicted value x^<SB>i</SB>d=Σ<SB>i=p</SB><SP>N-1</SP>(y<SB>i</SB>-x^<SB>i</SB>)<SP>2</SP>is minimized with this transformed floating-point input value y<SB>i</SB>as a target value. When the mantissa is transformed, figures on and after 8 digits of the mantissa may be set to "xxx xxxx 1000 0000 0000 0000" while matching the figures up to an upper digit, e.g., 7 digits to those of the input value x<SB>i</SB>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は例えば音声、音楽、画像などの浮動小数点形式のディジタル信号をより低い情報量に可逆圧縮された符号に変換する符号化方法に利用することができ、浮動小数点形式のディジタル信号サンプル値系列からそのサンプル値を線形予測分析する方法、その装置、プログラムおよびその記録媒体に関する。
【0002】
【従来の技術】
音声、画像などの情報を圧縮する方法として、歪を許さない可逆な符号化方法がある。圧縮率の高い非可逆の符号化を行い、その再生信号と原信号の誤差を可逆に圧縮することを組み合わせることで高い圧縮率で可逆な圧縮が可能となる。この組み合わせ圧縮方法が特許文献1に提案されている。また音声、画像などの情報を歪を許さない可逆な符号化方法としてはその他にも各種のものが知られている。音楽情報については、予測符号化方法を用いて可逆な圧縮符号化をすることが例えば非特許文献1に示されている。従来の方法は何れも波形をそのままPCM信号としたものについての圧縮符号化方法であった。
【0003】
しかし音楽の収録スタジオでは浮動小数点形式で波形が記録されて保存されることがある。浮動小数点形式の値は極性、指数部、仮数部に分離されている。例えば図3に示すIEEE−754として標準化されている浮動小数点形式は32ビットであり、上位ビットから極性1ビット、指数部8ビット、仮数部23ビットで構成されている。極性をS、指数部の8ビットで表す値を10進数でE、仮数部の2進数をMとすると、この浮動小数点形式の数値は絶対値表現2進数で表わすと
(−1)×2E−E0×1.M、 E0=2−1=127となる。
【0004】
【特許文献1】
特開2001−44847号公報
【非特許文献1】
Mat Hans及びRonald W.Schafer著「Lossless Compression of Digital Audio」IEEE SIGNAL PROCESSING MAGAZINE, JULY 2001, P21〜32
【0005】
【発明が解決しようとする課題】
音声、音楽、画像の情報が浮動小数点形式のディジタル信号系列として記録され保存されていることがあり、この場合は、極性、指数部、仮数部に分離されているのでそのままではほとんど圧縮できない。非特許文献1に示す可逆予測符号化方法に示すように再帰型の線形予測を行い、予測係数を補助情報として量子化し、予測誤差を圧縮する。整数形式ディジタル信号サンプル系列の圧縮であれば、2乗誤差最小化基準でエネルギーを小さくする予測を行えば、誤差系列の圧縮率の最適化を近似できる。
【0006】
浮動小数点形式のディジタル信号サンプル系列における誤差の生成や、誤差から原信号の生成では通常の数値として引き算や足し算を行うと指数部をあわせるので、仮数部の精度が保証されなくなる。そこで、指数部、仮数部、極性は別々に引き算足し算を行う。これにより可逆性は保存されるが、指数部が異なると仮数部は大きさとかの数値としての意味が失われる。このため予測しても結果の誤差の値は圧縮できる保証がない。
【0007】
この発明の目的はこのような点に鑑み、予測された浮動小数点数値x^と入力の浮動小数点数値xの指数部が一致する可能性が大きい、線形予測分析方法、その装置、プログラム、記録媒体を提供することにある。
【0008】
【課題を解決するための手段】
この発明の1面によれば、浮動小数点形式のディジタル信号サンプル値系列の各サンプル値について、その仮数部を、仮数部がとり得る範囲の中央値又はこれに近い値に置き換えた浮動小数点目標値を生成し、その浮動小数点目標値と浮動小数点予測値との予測誤差又は重みつき予測誤差を最小化するように線形予測分析で予測係数を求める。
【0009】
この発明の他面によれば、浮動少数点形式のディジタル信号サンプル値系列の各サンプル値について、その仮数部の下位一乃至複数桁を、その仮数部の残りの上位桁の値により決まる仮数部のとり得る値の範囲の中央値又はこれに近い値に置き換えた浮動小数点目標値を生成し、その浮動少数点目標値と浮動少数点予測値との予測誤差又は重みつき予測誤差を最小化するように線形予測分析で予測係数を求める。
【0010】
【発明の実施の形態】
この発明を、32ビットIEEE−754浮動小数点形式のディジタル信号サンプル値系列とされた音声、音楽、画像などの情報を、予測圧縮符号化する場合に適用した実施形態を説明する。
図1にこの発明の実施形態の機能構成を示す。信号源11から浮動小数点形式ディジタル信号サンプル値系列Xが数値変形部12に入力される。数値変形部12ではサンプル値系列Xの各サンプル値xの仮数部Mが、仮数部の取り得る範囲の中央値又はこれに近い値に変形され、浮動小数点目標値yが生成される。浮動小数点目標値yは、浮動小数点サンプル値xの仮数部の23ビットだけを例えば仮数部の取り得る値の中央値
“100 0000 0000 0000 0000 0000” (1)
に変形し、つまり0.5としたものであり、指数部Eはxと同一値とされる。
【0011】
あるいは浮動小数点目標値yは、浮動小数点サンプル値xの仮数部の23ビット中の上位の所定桁τ(τは1以上22以下の整数)をそのままyの仮数部の上位桁に用い、この上位桁の値により決まる仮数部が取り得る範囲の中央値又はこれに近い値に仮数部の残りの桁を置き換えて目標値yの仮数部とする。例えばτ=7の場合、xの仮数部の上位7桁をそのまま用い、その値により決まる仮数部のとり得る値の範囲の、例えば下記に示すように中央値に、残りの下位8桁目以降を置き換えたものをyの仮数部とする。
【0012】
“xxx xxxx 1000 0000 0000” (2)
このようにして生成された浮動小数点目標値yと入力浮動小数点ディジタル信号サンプル値系列Xとが予測係数算出部13に入力されて、目標値yと入力サンプル値xの浮動小数点予測値x^との予測誤差が最小となるように線形予測分析により予測係数α(j=1,…,p)が求められる。
つまり通常のp次の線形予測では下記の予測誤差eを最小化する。
【0013】
x^=Σj=1 αi−j
e=Σi=p N−1(x−x^
Nは入力系列Xが分割されたフレーム内のサンプル数、例えば1024である。
しかし、この発明では予測誤差d
d=Σi=p N−1(y−x^ (3)
を最小化する。この予測誤差dを最小化する解(予測係数)を求める正規方程式は次のようになる。j=pからj=N−1までの誤差dの総和をDとする。
【0014】
D=(UAUA) (4)
ただし、
D=(d,dp+1 ,…,dN−1
=(α,…,α (5)
=(y,yp+1 ,…,yN−1
であり、( )は( )の転置を表わし、は(N−p)行p列の下記の行列である。
【0015】
【数1】

Figure 2005018606
【0016】
誤差Dを最小化する予測係数は下記の最小二乗解である。
(7)
=( −1 (8)
式(5)の連立方程式をそのまま解くことも可能であるが、近似高速解法を用いることが処理量削減の観点から望ましい。式(8)の場合は( )をテプリッツ型の行列、つまり対称かつ対角線に平行な線上の要素は同じ値である行列に近似できるが右辺のベクトル の要素は( )の要素と異なる。従って最も高速なダービン法は使えず、次に高速なレビンソン法(例えば守谷健弘著「音声符号化」平成10年10月電子情報通信学会発行(以下参考文献1と書く)15〜16頁参照)で解を求めることになる。
【0017】
上述では予測係数を求めるために用いる相関係数の演算は入力サンプル値xの行列を用いたが、このかわりに下記の目標値yの行列を使うこともできる。
【0018】
【数2】
Figure 2005018606
【0019】
この場合には下記の正規方程式(10)の左辺の はテプリッツ型の行列で右辺のベクトル も同じ相関係数に近似でき、つまり左辺のベクトル の要素を行列 の第1列目の対応する要素と近似できるので式(11)の解がダービン法(例えば参考文献1の16〜17頁参照)で高速に求まる。これは音声符号化で頻繁に使われる方法である。
(10)
=( −1 (11)
この行列を用いる場合には予測係数算出部13に入力ディジタル信号サンプル値系列Xを入力させなくてもよい。
【0020】
上述では予測誤差dを最小化するように線形予測分析で予測係数を求めたが、重みつき予測誤差dを最小化するようにして求めてもよい。重みつき予測誤差を最小化するように線形予測分析で予測係数を求める手法は例えば前記参考文献1の12〜13頁「ロバストな分析」の項に示す手法を用いることができる。ただし重みのつけ方は異なる。
また浮動小数点形式の線形予測分析に適すように、次式(12)または式(13)に示す目標値yと予測値x^との予測誤差に入力値xの大きさの逆の重みをつけて、距離尺度に対角重みをつけるようにしてもよい。これによっても予測値x^と入力値xの指数部が一致する可能性は高まる。
【0021】
=Σi=p N−1(y−x^ (12)
=Σi=p N−1(x−x^ (13)
式(12)の場合の正規方程式は(N−p)×(N−p)の対角行列を使って式(15)のようになる。
【0022】
【数3】
Figure 2005018606
【0023】
=(VA VA) (15)
この最小二乗解は下記となる。
WV WY (16)
=( WV−1 WY (17)
重みとしては入力値xの増加とともに減少する関数f(x)とする。例えば
f(x)=x −2 (18)
を使う。これにより予測値と目標値の誤差の指数部を0とする可能性が高まり、情報圧縮効率を改善できる。
【0024】
また、予測誤差の指数部が0とならないサンプルについて重みを増加させて再びあるいは何回も繰り返して予測係数を求め、予測誤差の指数部が0となった時、あるいはその入力信号系列に対する圧縮効率が最も高いものを求めることも可能である。
WV)はテプリッツ型ではないが、対称行列には近似できるので
、コレスキー法(例えば参考文献1の13〜14頁参照)を使うことができる。なお、この対角行列を使う場合に、行列のかわりに行列を用いてもよい。
【0025】
以上のようにしてこの発明によれば、予測係数=(α,…,αを求めることができ、その場合、目標値として入力値xではなく、xの仮数部を仮数部が取り得る値の中間値、例えば式(1)又は式(2)を用いて、この目標値yと予測値x^との誤差が最小になるように線形予測分析を行っている。従来における予測値x^が入力値xからの距離(誤差)eを最小化する場合では、入力値xの仮数部が小さいときや、1に近いときは、浮動小数点予測値x^そのものが浮動小数点入力値xに近くてもこれら間で指数部Eが異なる可能性が大きいが、この発明では前記目標値yと予測値x^との誤差dを最小化しているため、予測値x^と入力値xの指数部が一致する可能性が高まる。それだけ指数部が同一であって、仮数部は大きさとしての数値の意味をもっており、指数部、仮数部を別々に引き算足し算を行うことができ、予測していた結果の誤差の値を圧縮できる。なお入力値xと予測値x^の指数部を比較し、両者が不一致であれば、その入力値xはそのまま出力するなどの別扱いをする。
【0026】
次に、以上のようにして求めた予測係数=(α,…,αを用いて入力浮動小数点ディジタル信号サンプル値系列Xを予測符号化する場合を述べる。予測係数算出部13で求めた予測係数は量子化部14で量子化、例えばベクトル量子化され、補助符号bとして出力される。この補助符号bは逆量子化部15で逆量子化され、その逆量子化された浮動小数点予測係数(便宜的に量子化前と同一の記号=(α,…,αで表わす)が予測部16に入力される。予測部16には入力サンプル値系列Xも入力され、p個の浮動小数点入力ディジタル信号サンプル値(入力値)xi−p ,…,xi−1 とp個の浮動小数点予測係数α,…,αとから浮動小数点予測値x^=Σj=1 αi−j が計算される。
【0027】
この浮動小数点予測値x^と浮動小数点入力値xとの浮動小数点予測誤差eが減算部17で求められる。このようにして得られた浮動小数点予測誤差系列eは指数仮数分解部18で指数部Eと仮数部Mとに分解され、それぞれ圧縮部19,19でそれぞれ可逆圧縮符号化され、符号列a,aとして出力される。指数部Eに対する可逆圧縮符号化としては例えば予測符号化を行い、仮数部Mに対する可逆圧縮符号化としては例えばエントロピィ符号化をすればよい。これら符号化は所定サンプル数のフレームごとに行ってもよい。極性Sはこれのみ又は例えば仮数部Mの最上位に付加して可逆圧縮符号化すればよい。
【0028】
上述では目標値yの仮数部を仮数部が取り得る範囲の中央値としたが、この中央値が最適とは限らず、この中央値およびこれに近い複数の変形値を使って予測誤差を算出し、最も圧縮効果のある予測係数を選択することも可能である。例えば図1中に破線で示すように、選択部10を設け、選択部10により数値変形部12において前記中央値又はこれに近い値の仮数部をもつ複数の目標値yを生成し、それらについて予測係数を生成し、予測符号化を行い、各目標値yについての符号化データ量を求め、その符号化データ量が最小のものを正規の目標値yとする。この選択部10は予測係数算出部13における重みつき予測誤差の重みの変更にも利用することができる。
【0029】
図1に示した符号化装置と対応する復号化装置は図2に示すようにその機能構成は従来の予測符号の復号化装置と同様である。つまり符号列aとaはそれぞれ伸張部21と21で、図1中の圧縮部19,19の圧縮符号化と対応した可逆伸張復号化が行われ、指数部Eと仮数部M、また極性Sが求められ、これらは指数仮数統合部22で浮動小数点誤差系列eとされる。また符号列bは逆量子化部23で逆量子化され、浮動小数点予測係数が求められる。この浮動小数点予測係数Aと既に再生された浮動小数点ディジタル信号サンプル値列Xが予測部24に入力され、図1中の予測部16と同様の処理により浮動小数点予測値x^が計算される。この浮動小数点予測値x^と指数仮数統合部22よりの浮動小数点誤差eとが加算部25で加算されて、浮動小数点ディジタル信号サンプル値xが再生される。
【0030】
図1において浮動小数点ディジタル信号サンプル値系列Xは必ずしも可逆圧縮符号化しなくてもよい。その場合は逆量子化部15は省略できる。更に仮数部を無視して指数部のみの予測符号化や指数部の数値をそのまま整数とみなして予測符号化を適用することも可能である。
上記の予測係数決定において、いったん予測値x^と誤差eを求めてから、その誤差eの系列において圧縮に適さないサンプルを探し、そのサンプルの圧縮を改善するように予測係数を再調整するようにしてもよい。また複数の予測係数の候補を生成し、その候補から望ましいもの、つまり最も圧縮効率が高くなるものを選択するようにしてもよい。
【0031】
この発明は前述したように予測符号化に限らず、一般の浮動小数点ディジタル信号サンプル値系列の線形予測分析に適用することができる。図1に示した線形予測分析の構成部分(図1の構成全体でもよい)をコンピュータに機能させてもよい。この場合はその部分としてコンピュータに機能させるためのプログラムをCD−ROM、磁気ディスクなどの記録媒体からインストールし、又は通信回線を介してダウンロードしてそのプログラムをコンピュータに実行させればよい。
【0032】
【発明の効果】
以上述べたようにこの発明によれば、浮動小数点形式のディジタル信号サンプル値系列を変形した目標値を使ったり、必要に応じて重みをつけた誤差評価を行うことで、その予測値と入力値との指数部が異なり難いようになり、それだけ指数部と仮数部とを別々に引き算足し算をしてもよい場合が多くなり頗る効率的である。
【図面の簡単な説明】
【図1】この発明を適用した符号化装置の機能構成例を示す図。
【図2】図1の符号化装置と対応する復号化装置の機能構成を示す図。
【図3】IEEE−754の32ビット浮動小数点のフォーマットを示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention can be used, for example, in an encoding method for converting a digital signal in a floating-point format such as voice, music, or image into a code that is reversibly compressed to a lower amount of information. To a method for linear predictive analysis of the sample value from the above, an apparatus, a program, and a recording medium.
[0002]
[Prior art]
As a method for compressing information such as sound and image, there is a reversible encoding method that does not allow distortion. By combining lossy encoding with a high compression rate and reversibly compressing the error between the reproduced signal and the original signal, reversible compression at a high compression rate is possible. This combination compression method is proposed in Patent Document 1. Various other reversible encoding methods that do not allow distortion of information such as audio and images are known. For music information, for example, Non-Patent Document 1 discloses that lossless compression encoding is performed using a predictive encoding method. Any of the conventional methods is a compression encoding method for a waveform whose waveform is directly used as a PCM signal.
[0003]
However, music recording studios sometimes record and store waveforms in floating-point format. Floating point values are separated into polarity, exponent, and mantissa. For example, the floating-point format standardized as IEEE-754 shown in FIG. 3 is 32 bits, and is composed of a high-order bit, a polarity of 1 bit, an exponent part of 8 bits, and a mantissa part of 23 bits. Assuming that the polarity is S, the value represented by 8 bits of the exponent part is E in decimal number, and the binary number of mantissa part is M, the numerical value in this floating-point format is (-1) S × 2 E-E0 x1. M, E0 = 2 7 −1 = 127.
[0004]
[Patent Document 1]
JP 2001-44847 A [Non-Patent Document 1]
Mat Hans and Ronald W. Schaffer “Lossless Compression of Digital Audio” IEEE SIGNAL PROCESSING MAGAZINE, JULY 2001, P21-32.
[0005]
[Problems to be solved by the invention]
Voice, music, and image information may be recorded and stored as a digital signal sequence in a floating-point format. In this case, since it is separated into a polarity, an exponent part, and a mantissa part, it cannot be compressed as it is. As shown in the lossless predictive coding method shown in Non-Patent Document 1, recursive linear prediction is performed, the prediction coefficient is quantized as auxiliary information, and the prediction error is compressed. In the case of compression of an integer format digital signal sample sequence, optimization of the compression rate of the error sequence can be approximated by performing a prediction for reducing the energy on the basis of the square error minimization criterion.
[0006]
When generating an error in a digital signal sample sequence in a floating-point format or generating an original signal from an error, subtraction or addition is performed as a normal numerical value, and the exponent part is added, so the precision of the mantissa part cannot be guaranteed. Therefore, the exponent part, mantissa part, and polarity are separately subtracted. This preserves reversibility, but if the exponent part is different, the mantissa part loses its meaning as a numerical value. For this reason, there is no guarantee that the error value of the result can be compressed even if predicted.
[0007]
In view of the above, the object of the present invention is to provide a linear predictive analysis method, apparatus, program, and the like, in which there is a high possibility that the predicted floating-point value x ^ i matches the exponent part of the input floating-point value x i . It is to provide a recording medium.
[0008]
[Means for Solving the Problems]
According to one aspect of the present invention, for each sample value of a digital signal sample value series in a floating-point format, a floating-point target value obtained by replacing the mantissa part with a median value in the range that the mantissa part can take or a value close thereto. , And a prediction coefficient is obtained by linear prediction analysis so as to minimize a prediction error or a weighted prediction error between the floating point target value and the floating point prediction value.
[0009]
According to another aspect of the present invention, for each sample value of a digital signal sample value series in a floating-point format, the mantissa part determined by the lower one or more digits of the mantissa part according to the value of the remaining upper digits of the mantissa part Generates a floating-point target value that is replaced by the median value of the range of possible values or a value close thereto, and minimizes the prediction error or the weighted prediction error between the floating-point target value and the floating-point prediction value Thus, the prediction coefficient is obtained by linear prediction analysis.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment will be described in which the present invention is applied to predictive compression encoding of information such as speech, music, and images, which is a digital signal sample value sequence in 32-bit IEEE-754 floating point format.
FIG. 1 shows a functional configuration of an embodiment of the present invention. A floating-point format digital signal sample value series X is input from the signal source 11 to the numerical transformation unit 12. In the numerical transformation unit 12, the mantissa part M of each sample value x i of the sample value series X is transformed into a median value in a range that the mantissa part can take or a value close thereto, and a floating point target value y i is generated. The floating point target value y i is, for example, the median “100 0000 0000 0000 0000 0000” of the values that the mantissa part can take, for example, only the 23 bits of the mantissa part of the floating point sample value x i (1)
In other words, the exponent part E is set to the same value as x i .
[0011]
Alternatively, the floating point target value y i uses the upper predetermined digit τ (τ is an integer from 1 to 22) in the mantissa part of the floating point sample value x i as it is as the upper digit of the mantissa part of y i. The remaining digit of the mantissa part is replaced with the median value of the range that can be taken by the mantissa part determined by the value of the upper digit or a value close to this to obtain the mantissa part of the target value y i . For example, when τ = 7, the upper 7 digits of the mantissa part of xi are used as they are, and the range of possible values of the mantissa part determined by the value is, for example, the median as shown below, and the remaining lower 8 digits. The following is replaced by the mantissa part of y i .
[0012]
“Xxx xxx 1000 0000 0000” (2)
The floating-point target value y i and the input floating-point digital signal sample value series X generated in this way are input to the prediction coefficient calculation unit 13, and the floating-point predicted value of the target value y i and the input sample value x i Prediction coefficients α j (j = 1,..., p) are obtained by linear prediction analysis so that the prediction error with x ^ i is minimized.
That is, in the normal p-th order linear prediction, the following prediction error e is minimized.
[0013]
x ^ i = Σ j = 1 p α j x i−j
e = Σ i = p N-1 (x i -x ^ i ) 2
N is the number of samples in the frame into which the input sequence X is divided, for example, 1024.
However, in the present invention, the prediction error d
d = Σ i = p N-1 (y i -x ^ i ) 2 (3)
Minimize. A normal equation for obtaining a solution (prediction coefficient) that minimizes the prediction error d is as follows. The sum of the error d j from j = p to j = N-1 and D.
[0014]
D = ( UAY ) T ( UAY ) (4)
However,
D = (d p , d p + 1 ,..., D N−1 ) T
A = (α 1 ,..., Α p ) T (5)
Y = (y p , y p + 1 ,..., Y N−1 ) T
() T represents the transpose of (), and U is the following matrix of (Np) rows and p columns.
[0015]
[Expression 1]
Figure 2005018606
[0016]
The prediction coefficient A that minimizes the error D is the following least-square solution.
(U T U) A = U T Y (7)
A = (U T U) -1 U T Y (8)
Although it is possible to solve the simultaneous equations of Equation (5) as they are, it is desirable to use an approximate fast solution method from the viewpoint of reducing the processing amount. In the case of Expression (8), ( U T U ) can be approximated to a Toeplitz-type matrix, that is, a matrix in which the elements on the line that is symmetrical and parallel to the diagonal are the same value, but the element of the vector U T Y on the right side is ( U T U ) is different from the element. Therefore, the fastest Durbin method cannot be used, and the next fastest Levinson method (for example, Takehiro Moriya "Speech coding" published by the Institute of Electronics, Information and Communication Engineers in October 1998 (hereinafter referred to as Reference 1), pages 15-16. ) To find a solution.
[0017]
In the above description, the calculation of the correlation coefficient used for obtaining the prediction coefficient uses the matrix U of the input sample values x. Instead, the following matrix V of the target values y can also be used.
[0018]
[Expression 2]
Figure 2005018606
[0019]
In this case, V T V on the left side of the following normal equation (10) is a Toeplitz-type matrix, and the vector V T Y on the right side can be approximated to the same correlation coefficient, that is, the elements of the vector V T Y on the left side can be approximated to the matrix V since can be approximated as the first column of the corresponding element of T V obtained at high speed by equation solutions Durbin method (11) (see, e.g., pages 16 to 17 of reference 1). This is a method frequently used in speech coding.
( V T V ) A = V T Y (10)
A = ( V T V ) −1 V T Y (11)
When this matrix V is used, the input digital signal sample value series X may not be input to the prediction coefficient calculation unit 13.
[0020]
In the above description, the prediction coefficient is obtained by linear prediction analysis so as to minimize the prediction error d, but it may be obtained by minimizing the weighted prediction error d. As a method for obtaining a prediction coefficient by linear prediction analysis so as to minimize the weighted prediction error, for example, the method shown in the section of “Robust analysis” on pages 12 to 13 of the reference document 1 can be used. However, the weighting method is different.
Further, in order to be suitable for the linear prediction analysis in the floating-point format, the prediction error between the target value y i and the predicted value x ^ i shown in the following formula (12) or formula (13) is the reverse of the magnitude of the input value x i . You may make it attach a weight and apply the diagonal weight W to a distance scale. This also is more likely to exponent of the input value x i and the predicted value x ^ i matches.
[0021]
d W = Σ i = p N−1 w i (y i −x ^ i ) 2 (12)
e W = Σ i = p N−1 w i (x i −x ^ i ) 2 (13)
The normal equation in the case of Expression (12) is as shown in Expression (15) using the diagonal matrix W of (N−p) × (N−p).
[0022]
[Equation 3]
Figure 2005018606
[0023]
D W = ( VAY ) T W ( VAY ) (15)
This least squares solution is
( V T WV ) A = V T WY (16)
A = ( V T WV ) -1 V T WY (17)
The weight is a function f (x i ) that decreases as the input value x i increases. For example, f (x i ) = x j −2 (18)
use. This increases the possibility of setting the exponent part of the error between the predicted value and the target value to 0, thereby improving the information compression efficiency.
[0024]
In addition, the prediction coefficient is obtained by increasing the weight for a sample in which the exponent part of the prediction error is not 0 and repeating again or again, and when the exponent part of the prediction error becomes 0, or the compression efficiency for the input signal sequence It is also possible to find the one with the highest.
( V T WV ) is not a Toeplitz type, but can be approximated to a symmetric matrix, so the Cholesky method (see, for example, pages 13 to 14 of Reference 1) can be used. When this diagonal matrix W is used, the matrix U may be used instead of the matrix V.
[0025]
According to the present invention as described above, prediction coefficients A = (α 1, ..., α p) can be obtained T, in which case, rather than the input value x i as a target value, the mantissa of x i Using an intermediate value that can be taken by the mantissa part, for example, Expression (1) or Expression (2), linear prediction analysis is performed so that an error between the target value y i and the predicted value x ^ i is minimized. Yes. In the case where the predicted value x ^ i in the conventional minimizes the distance (error) e from the input value x i, and when the mantissa part of the input value x i is small, when close to 1, the floating point predicted value x ^ Even if i itself is close to the floating-point input value x i , there is a high possibility that the exponent part E is different between them, but in the present invention, the error d between the target value y i and the predicted value x ^ i is minimized. Therefore, it increases the likelihood that the exponent of the input value x i and the predicted value x ^ i matches. The exponent part is the same, and the mantissa part has the meaning of a numerical value as a size. The exponent part and the mantissa part can be subtracted separately, and the error value of the predicted result can be compressed. . Note that the exponent values of the input value x i and the predicted value x ^ i are compared, and if the two do not match, the input value x i is treated as it is.
[0026]
Next, a case where the input floating-point digital signal sample value series X is predictively encoded using the prediction coefficient A = (α 1 ,..., Α p ) T obtained as described above will be described. The prediction coefficient A obtained by the prediction coefficient calculation unit 13 is quantized by the quantization unit 14, for example, vector quantization, and is output as an auxiliary code b. This auxiliary code b is dequantized by the dequantization unit 15 and the dequantized floating-point prediction coefficient (for convenience, the same symbol A = (α 1 ,..., Α p ) T as before quantization) Is input to the prediction unit 16. An input sample value series X is also input to the prediction unit 16, and p floating point input digital signal sample values (input values) x i−p ,..., X i−1 and p floating point prediction coefficients α 1 , .., Α p and the floating-point predicted value x ^ i = Σ j = 1 p α j x i−j are calculated.
[0027]
A subtracting unit 17 obtains a floating-point prediction error e i between the floating-point predicted value x ^ i and the floating-point input value x i . The floating-point prediction error sequence e i obtained in this way is decomposed into an exponent part E and a mantissa part M by the exponent mantissa decomposition unit 18 and is losslessly encoded by the compression units 19 E and 19 M , respectively. Output as columns a E and a M. For example, predictive coding is performed as the lossless compression coding for the exponent part E, and entropy coding is performed as the lossless compression coding for the mantissa part M, for example. These encodings may be performed every predetermined number of frames. The polarity S may be added to this alone or, for example, the most significant part of the mantissa part M and losslessly encoded.
[0028]
In the above description, the mantissa part of the target value y i is the median of the range that the mantissa can take. However, this median is not necessarily optimal, and the prediction error is calculated using this median and a plurality of deformation values close thereto. It is also possible to calculate and select the prediction coefficient having the most compression effect. For example, as shown by a broken line in FIG. 1, a selection unit 10 is provided, and the selection unit 10 generates a plurality of target values y i having the mantissa part of the median value or a value close to the median value in the numerical deformation unit 12. A prediction coefficient is generated for, prediction encoding is performed, and the amount of encoded data for each target value y i is obtained, and the one with the minimum amount of encoded data is defined as a normal target value y i . The selection unit 10 can also be used to change the weight of the weighted prediction error in the prediction coefficient calculation unit 13.
[0029]
The decoding apparatus corresponding to the encoding apparatus shown in FIG. 1 has the same functional configuration as that of the conventional predictive code decoding apparatus as shown in FIG. That is, in the code sequence a E and a M each expansion section 21 E is a 21 M, compression section 19 E in Figure 1, of 19 M compression coding and the corresponding lossless expansion decoding is performed, exponent E and the mantissa part M, also sign S is determined, which are floating point error series e i in mantissa integration unit 22. The code string b is inversely quantized by the inverse quantization unit 23 to obtain the floating-point prediction coefficient A. The floating-point prediction coefficient A and the already reproduced floating-point digital signal sample value sequence X are input to the prediction unit 24, and the floating-point prediction value x ^ i is calculated by the same processing as the prediction unit 16 in FIG. . The floating point predicted value x ^ i and the floating point error e i from the exponent mantissa integration unit 22 are added by the adding unit 25 to reproduce the floating point digital signal sample value x i .
[0030]
In FIG. 1, the floating-point digital signal sample value series X does not necessarily have to be losslessly encoded. In that case, the inverse quantization unit 15 can be omitted. Furthermore, it is also possible to apply predictive encoding by ignoring the mantissa part and predicting only the exponent part, or regarding the numerical value of the exponent part as an integer as it is.
In the above prediction coefficient determination, once the prediction value x ^ i and the error e i are obtained, a sample that is not suitable for compression is searched for in the series of the error e i , and the prediction coefficient is re-applied to improve the compression of the sample. You may make it adjust. Alternatively, a plurality of prediction coefficient candidates may be generated, and a desired one, that is, the one having the highest compression efficiency may be selected from the candidates.
[0031]
As described above, the present invention is not limited to predictive coding but can be applied to linear predictive analysis of general floating-point digital signal sample value sequences. The components of the linear prediction analysis shown in FIG. 1 (or the whole configuration of FIG. 1) may be caused to function in a computer. In this case, a program for causing the computer to function as the part may be installed from a recording medium such as a CD-ROM or a magnetic disk, or downloaded via a communication line and executed by the computer.
[0032]
【The invention's effect】
As described above, according to the present invention, a predicted value and an input value can be obtained by using a target value obtained by modifying a digital signal sample value sequence in a floating-point format, or by performing error evaluation with a weight as necessary. Therefore, the exponent part and the mantissa part may be added and subtracted separately.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a functional configuration example of an encoding apparatus to which the present invention is applied.
FIG. 2 is a diagram showing a functional configuration of a decoding apparatus corresponding to the encoding apparatus in FIG. 1;
FIG. 3 is a diagram showing a 32-bit floating point format of IEEE-754.

Claims (7)

浮動小数点形式のディジタル信号サンプル値系列からそのサンプル値を線形予測分析する方法であって、
浮動小数点形式の入力値の仮数部を、その仮数部がとり得る範囲の中央値又はこれに近い値に置き換えることで浮動小数点形式の目標値を作り、この目標値と予測値との予測誤差または重みつき予測誤差を最小化するように線形予測分析で予測係数を求めることを特徴とする浮動小数点形式信号系列の線形予測分析方法。
A method for linear predictive analysis of a sample value from a digital signal sample value sequence in a floating-point format,
By replacing the mantissa part of the input value in the floating-point format with the median value of the range that the mantissa part can take or a value close to it, a target value in the floating-point format is created, and the prediction error between this target value and the predicted value or A linear prediction analysis method for a floating-point format signal sequence, wherein a prediction coefficient is obtained by linear prediction analysis so as to minimize a weighted prediction error.
浮動小数点形式のディジタル信号サンプル値系列からそのサンプル値を線形予測分析する方法であって、
浮動少数点形式の入力値の仮数部の下位一乃至複数桁を、その仮数部の残りの上位桁の値により決まるその仮数部のとり得る値の範囲の中央値又はこれに近い値に置き換えることで浮動小数点形式の目標値を作り、この目標値と予測値との予測誤差または重みつき予測誤差を最小化するように線形予測分析で予測係数を求めることを特徴とする浮動小数点形式信号系列の線形予測分析方法。
A method for linear predictive analysis of a sample value from a digital signal sample value sequence in a floating-point format,
Replacing the lower one or more digits of the mantissa part of the input value in floating-point format with the median value of the range of values that can be taken by the mantissa part determined by the value of the remaining upper digits of the mantissa part or a value close thereto A floating-point target value and a prediction coefficient is obtained by linear prediction analysis so as to minimize the prediction error or weighted prediction error between the target value and the predicted value. Linear predictive analysis method.
上記予測値と目標値との上記重みつき予測誤差の重みとしてその入力値の大きさの逆の重みを用いることを特徴とする請求項1又は2記載の浮動小数点形式信号系列の線形予測分析方法。3. The method of linear prediction analysis of a floating-point format signal sequence according to claim 1, wherein a weight opposite to the magnitude of the input value is used as a weight of the weighted prediction error between the predicted value and the target value. . 浮動小数点形式のディジタル信号サンプル値系列からそのサンプル値を線形予測分析する装置であって、
上記浮動小数点形式のディジタル信号サンプル値系列が入力され、その各サンプル値についてその仮数部を、仮数部のとり得る範囲の中央値又はこれに近い値に置き換えた浮動小数点目標値を生成する数値変形部と、
上記浮動小数点目標値が入力され、または上記浮動小数点目標値と上記浮動小数点形式のディジタル信号サンプル値系列が入力され、上記入力サンプル値の予測値と上記浮動小数点目標値との予測誤差又は重みつき予測誤差を最小化するように線形予測分析で予測係数を求める予測係数算出部とを具備することを特徴とする浮動小数点形式信号系列の線形予測分析装置。
An apparatus for linear predictive analysis of a sample value from a digital signal sample value series in a floating-point format,
Numerical value transformation for generating a floating-point target value by inputting the digital signal sample value series in the floating-point format and replacing the mantissa part of each sample value with the median value of the range that the mantissa part can take or a value close thereto. And
The floating-point target value is input, or the floating-point target value and the digital signal sample value series in the floating-point format are input, and a prediction error or weighting between the predicted value of the input sample value and the floating-point target value A linear prediction analysis apparatus for a floating-point format signal sequence, comprising: a prediction coefficient calculation unit that obtains a prediction coefficient by linear prediction analysis so as to minimize a prediction error.
浮動小数点形式のディジタル信号サンプル値系列からそのサンプル値を線形予測分析する装置であって、
上記浮動小数点形式のディジタル信号サンプル値系列が入力され、その各サンプル値についてその仮数部の下位一乃至複数桁を、その仮数部の残りの上位桁の値により決まる仮数部のとり得る範囲の中央値又はこれに近い値に置き換えた浮動小数点目標値を生成する数値変形部と、
上記浮動小数点目標値が入力され、または上記浮動小数点目標値と上記浮動小数点形式のディジタル信号サンプル値系列が入力され、上記入力サンプル値の予測値と上記浮動小数点目標値との予測誤差又は重みつき予測誤差を最小化するように線形予測分析で予測係数を求める予測係数算出部と
を具備することを特徴とする浮動小数点形式信号系列の線形予測分析装置。
An apparatus for linear predictive analysis of a sample value from a digital signal sample value series in a floating-point format,
A digital signal sample value series in the above floating-point format is input, and for each sample value, the lower one or more digits of the mantissa part is the center of the range that can be taken by the mantissa part determined by the value of the remaining upper digits of the mantissa part. A numerical transformation unit for generating a floating point target value replaced with a value or a value close thereto,
The floating-point target value is input, or the floating-point target value and the digital signal sample value series in the floating-point format are input, and a prediction error or weighting between the predicted value of the input sample value and the floating-point target value A linear prediction analysis apparatus for a floating-point format signal sequence, comprising: a prediction coefficient calculation unit that obtains a prediction coefficient by linear prediction analysis so as to minimize a prediction error.
請求項1〜3のいずれかに記載した浮動小数点形式信号系列の線形予測分析方法の各過程をコンピュータに実行させるためのプログラム。The program for making a computer perform each process of the linear prediction analysis method of the floating-point format signal sequence in any one of Claims 1-3. 請求項6に記載したプログラムを記録したコンピュータ読み取り可能な記録媒体。A computer-readable recording medium on which the program according to claim 6 is recorded.
JP2003185191A 2003-06-27 2003-06-27 Floating-point format signal sequence linear prediction analysis method, apparatus, program, and recording medium Expired - Fee Related JP4098679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003185191A JP4098679B2 (en) 2003-06-27 2003-06-27 Floating-point format signal sequence linear prediction analysis method, apparatus, program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185191A JP4098679B2 (en) 2003-06-27 2003-06-27 Floating-point format signal sequence linear prediction analysis method, apparatus, program, and recording medium

Publications (2)

Publication Number Publication Date
JP2005018606A true JP2005018606A (en) 2005-01-20
JP4098679B2 JP4098679B2 (en) 2008-06-11

Family

ID=34184735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185191A Expired - Fee Related JP4098679B2 (en) 2003-06-27 2003-06-27 Floating-point format signal sequence linear prediction analysis method, apparatus, program, and recording medium

Country Status (1)

Country Link
JP (1) JP4098679B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007672A1 (en) * 2005-07-07 2007-01-18 Nippon Telegraph And Telephone Corporation Signal encoder, signal decoder, signal encoding method, signal decoding method, program, recording medium and signal codec method
JP2007013642A (en) * 2005-06-30 2007-01-18 Nippon Telegr & Teleph Corp <Ntt> Apparatus, method, and program for coding signal, record medium, and cordic method for signal
JP2008523712A (en) * 2004-12-06 2008-07-03 オートリブ ディベロップメント エービー Data compression method
US8293346B2 (en) 2005-03-23 2012-10-23 Zeon Corporation Oxygen absorbent and oxygen-absorbing multi-layer body
JP2012253696A (en) * 2011-06-06 2012-12-20 Tokyo Metropolitan Industrial Technology Research Institute System and method for compressing numerical data
WO2013190690A1 (en) * 2012-06-21 2013-12-27 三菱電機株式会社 Encoding device, decoding device, encoding method, encoding program, decoding method, and decoding program

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738417B2 (en) * 2004-12-06 2011-08-03 オートリブ ディベロップメント エービー Data compression method
JP2008523712A (en) * 2004-12-06 2008-07-03 オートリブ ディベロップメント エービー Data compression method
US8293346B2 (en) 2005-03-23 2012-10-23 Zeon Corporation Oxygen absorbent and oxygen-absorbing multi-layer body
JP2007013642A (en) * 2005-06-30 2007-01-18 Nippon Telegr & Teleph Corp <Ntt> Apparatus, method, and program for coding signal, record medium, and cordic method for signal
JP4523885B2 (en) * 2005-06-30 2010-08-11 日本電信電話株式会社 Signal encoding apparatus, method, program, and recording medium
EP1901432A1 (en) * 2005-07-07 2008-03-19 Nippon Telegraph and Telephone Corporation Signal encoder, signal decoder, signal encoding method, signal decoding method, program, recording medium and signal codec method
EP1901432A4 (en) * 2005-07-07 2010-04-07 Nippon Telegraph & Telephone Signal encoder, signal decoder, signal encoding method, signal decoding method, program, recording medium and signal codec method
WO2007007672A1 (en) * 2005-07-07 2007-01-18 Nippon Telegraph And Telephone Corporation Signal encoder, signal decoder, signal encoding method, signal decoding method, program, recording medium and signal codec method
US8050334B2 (en) 2005-07-07 2011-11-01 Nippon Telegraph And Telephone Corporation Signal encoder, signal decoder, signal encoding method, signal decoding method, program, recording medium and signal codec method
JP2012253696A (en) * 2011-06-06 2012-12-20 Tokyo Metropolitan Industrial Technology Research Institute System and method for compressing numerical data
WO2013190690A1 (en) * 2012-06-21 2013-12-27 三菱電機株式会社 Encoding device, decoding device, encoding method, encoding program, decoding method, and decoding program
JP5619326B2 (en) * 2012-06-21 2014-11-05 三菱電機株式会社 Encoding device, decoding device, encoding method, encoding program, decoding method, and decoding program
US8947274B2 (en) 2012-06-21 2015-02-03 Mitsubishi Electric Corporation Encoding apparatus, decoding apparatus, encoding method, encoding program, decoding method, and decoding program

Also Published As

Publication number Publication date
JP4098679B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
ES2388942T3 (en) Entropic coding by adapting the encoding between level and serial length / level modes
KR101152707B1 (en) Multi-stage quantizing method and device
JP4049791B2 (en) Floating-point format digital signal lossless encoding method, decoding method, each apparatus, and each program
JP4374448B2 (en) Multi-channel signal encoding method, decoding method thereof, apparatus, program and recording medium thereof
JP5337235B2 (en) Encoding method, decoding method, encoding device, decoding device, program, and recording medium
JP3143956B2 (en) Voice parameter coding method
KR100984234B1 (en) Vector coding/decoding method and apparatus and stream media player
JP2004258603A (en) Entropy encoding adapting encoding between level mode and run length/level mode
JP4098679B2 (en) Floating-point format signal sequence linear prediction analysis method, apparatus, program, and recording medium
JP3886482B2 (en) Multi-channel encoding method, decoding method, apparatus, program and recording medium thereof
JP5057334B2 (en) Linear prediction coefficient calculation device, linear prediction coefficient calculation method, linear prediction coefficient calculation program, and storage medium
JP4918103B2 (en) Encoding method, decoding method, apparatus thereof, program, and recording medium
JP5013293B2 (en) Encoding device, decoding device, encoding method, decoding method, program, recording medium
JP3194930B2 (en) Audio coding device
KR101883823B1 (en) Coding device, decoding device, method, program and recording medium thereof
JP3256215B2 (en) Audio coding device
JP3889738B2 (en) Inverse quantization apparatus, audio decoding apparatus, image decoding apparatus, inverse quantization method, and inverse quantization program
JP6780108B2 (en) Encoding device, decoding device, smoothing device, de-smoothing device, their methods, and programs
JP3428595B2 (en) Audio coding method
JP3335650B2 (en) Audio coding method
JPH05158500A (en) Voice transmitting system
KR100322702B1 (en) Method of quantizing and decoding voice signal using spectrum peak pattern
JP5714172B2 (en) Encoding apparatus, method, program, and recording medium
JP2603631B2 (en) Voice analysis and synthesis device
JP3028885B2 (en) Vector quantizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees