JP2005016917A - Integrated refrigerating/air-conditioning device - Google Patents

Integrated refrigerating/air-conditioning device Download PDF

Info

Publication number
JP2005016917A
JP2005016917A JP2003186431A JP2003186431A JP2005016917A JP 2005016917 A JP2005016917 A JP 2005016917A JP 2003186431 A JP2003186431 A JP 2003186431A JP 2003186431 A JP2003186431 A JP 2003186431A JP 2005016917 A JP2005016917 A JP 2005016917A
Authority
JP
Japan
Prior art keywords
refrigeration
air
evaporator
condenser
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003186431A
Other languages
Japanese (ja)
Inventor
Osamu Ishiyama
修 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2003186431A priority Critical patent/JP2005016917A/en
Publication of JP2005016917A publication Critical patent/JP2005016917A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recover cool air leaking out of a refrigerating showcase and enhance energy efficiency in an integrated refrigerating/air-conditioning device with a compressor provided for an air conditioner and the refrigerating showcase in common. <P>SOLUTION: A reheating condenser 17 is provided in parallel with a condenser 10 common to the air conditioner 2 and the refrigerating showcase 5, and a dehumidifying evaporator 16 is provided to the latter part of an evaporator 7 of the refrigerating showcase 5 in series. The cool air 15 having leaked out of the refrigerating showcase 5 is dehumidified by the dehumidifying evaporator 16, and the leaked cool air 15 is heated by the reheating condenser 17 and blown out into a room. The dehumidified leaked cool air 15 is heated up to room temperature and blown out into the room to eliminate an uncomfortable feeling due to the leaked cool air 15 and reduce a load on the air conditioner. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、空調された室内に食品の冷蔵・冷凍(以下、まとめて「冷蔵」という。)保存を行うショーケースが設置される店舗等において用いられる冷蔵・空調統合装置に関する。
【0002】
【従来の技術】
上記した店舗等に用いられる冷蔵・空調装置の冷媒回路は、空調機と冷蔵ショーケースとでそれぞれ独立に構成され、圧縮機や凝縮器、蒸発器等は各々に個別に設けられるのが一般的である。ところが、そのような冷蔵・空調装置は、例えば冬期などで室内の暖房負荷とショーケース内での冷蔵負荷とが同一室内で同時に発生しているにもかかわらず、冷蔵負荷の排熱を室外に放出する一方で、暖房負荷の温熱を室外空気から得るなど無駄が多い。そこで、空調機と冷蔵ショーケースの冷媒回路を統合して圧縮機を共通化した冷蔵・空調統合装置が開発され、特許文献1あるいは特許文献2に示されている。この冷蔵・空調統合装置によれば、冷蔵ショーケースの排熱を空調機の温熱源として利用し、室内空気を冷蔵ショーケースの冷熱源として利用できるなど、従来排熱として室外に廃棄されていた熱を相互に利用することができるので熱効率が高くなる。
【0003】
一方、冷蔵ショーケースが設置された店舗内では、オープンショーケースから漏れ出した冷気が床面付近に滞留し、利用客の足元を冷やすという問題があり、この冷気の適切な処理も重要である。
【0004】
【特許文献1】
特開2000−240980号公報
【特許文献2】
特開2002−357374号公報
【0005】
【発明が解決しようとする課題】
そこで、この発明の課題は、空調機と冷蔵ショーケースの冷媒回路を統合して熱効率を向上させつつ、冷蔵ショーケースから漏れ出る冷気の回収を図り、併せて冷媒回路の簡素化を図ることにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、この発明は、室内の冷暖房を行う空調機と前記室内に設置された冷蔵ショーケースとに対して圧縮機が共通に設けられた冷蔵・空調統合装置において、前記空調機と前記冷蔵ショーケースとに共通の凝縮器に並列に再熱用凝縮器を設け、この再熱用凝縮器により前記冷蔵ショーケースから漏れ出した漏れ冷気を加熱して前記室内に吹き出すようにするものである(請求項1)。この請求項1の発明によれば、漏れ冷気を再熱用凝縮器で室温まで加熱して室内に吹き出し、漏れ冷気による不快感を解消するとともに、空調負荷の低減を図ることができる。
【0007】
請求項1の発明において、前記ショーケースの冷蔵用蒸発器の後段に直列に除湿用蒸発器を設け、この除湿用蒸発器により前記漏れ冷気を除湿するようにするとよい(請求項2)。これにより、冷蔵用蒸発器の排熱(冷熱)を有効利用して、漏れ冷気の除湿を行うことができる。
【0008】
請求項1又は請求項2の発明において、前記再熱用凝縮器を通過させる前記漏れ冷気には外気を混合するようにするのがよい(請求項3)。これにより、漏れ冷気を昇温させ、この漏れ冷気を加熱するための再熱用凝縮器の負荷を軽減することができる。
【0009】
請求項1又は請求項2の発明において、前記再熱用凝縮器で凝縮させた前記冷媒は前記冷蔵用蒸発器に供給するようにするのがよい(請求項4)。これにより、室内空気を冷蔵ショーケースの冷熱源として利用し、同時に冷蔵ショーケースの排熱を空調の温熱源として利用することができる。
【0010】
請求項4の発明において、前記再熱用凝縮器で凝縮させた前記冷媒の余剰分は、前記空調機と前記ショーケースとに共通の凝縮器を蒸発器として蒸発させることができる(請求項5)。
【0011】
請求項1又は請求項2の発明において、前記再熱用凝縮器を前記空調機の暖房用凝縮器として兼用するようにし(請求項6)、また請求項2の発明において、前記除湿用蒸発器を前記空調機の冷房用蒸発器として兼用するようにすれば(請求項7)、冷媒回路が簡素化される。
【0012】
請求項1又は請求項2の発明において、前記冷蔵用蒸発器又は空調用蒸発器の入口側の冷媒を出口側の冷媒と熱交換させ、前記入口側の冷媒を過冷却するようにすれば、低温の蒸発ガスの排熱(冷熱)の有効利用により熱効率が一層高くなる(請求項8)。
【0013】
【発明の実施の形態】
以下、図1〜図15に基づいて、この発明の実施の形態を説明する。まず、図1は冷蔵・空調統合装置の概念を示す店舗内の機器配置図である。図1において、スーパーマーケットなどの店舗1の室内は、空調機(室内機)2により空調されており、空調機2は蒸発器(空調用蒸発器)3、通風ファン4を備えている。この室内には冷蔵ショーケース(オープンショーケース)5が設置され、商品陳列室6内の図示しない商品は蒸発器(冷蔵用蒸発器)7を通して循環する冷気により冷却されている。一方、室外に設置された室外機8には、空調機2と冷蔵ショーケース5とに対して共通の圧縮機9、凝縮器(共通用凝縮器)10、送風ファン11が設けられている。店舗1の室内の一隅には換気ファン12が設置され、また天井裏には外気を通流させる吸気ファン13と排気ファン14とが設置されている。なお、図1では空調機2や冷蔵ショーケース5は1台のみを示しているが、複数台をグループ化して1基の室外機8に並列に接続することが可能である。
【0014】
ここで、冷蔵ショーケース5の上方には、冷蔵ショーケース5から漏れ出て、その前方の床面付近に滞留する冷気(漏れ冷気)15を除湿する蒸発器(除湿用蒸発器)16及び除湿後の漏れ冷気15を室温まで加熱する凝縮器(再熱用凝縮器)17が重なるように設けられている。除湿用蒸発器16の背部近傍には、漏れ冷気15を吸引する送風ファン18が設けられている。この送風ファン18は同時に、ダンパ19を介して外気を室内に導入し、室内を外気よりやや高い圧力に陽圧化している。送風ファン18により吸引された漏れ冷気15は、室内に導入された外気と混合されて昇温し、次いで除湿用蒸発器16及び再熱用凝縮器17を通して室内に吹き出される。
【0015】
図2は、図1の冷蔵・空調統合装置の冷媒回路図である。図2において、冷媒回路は、圧縮機9、共通用凝縮器10、レシーバ20、膨張弁21、空調用蒸発器3、膨張弁22、冷蔵用蒸発器7、アキュムレータ23等により構成されている。共通用凝縮器10とレシーバ20とは逆止弁24を介して接続され、逆止弁24と並列に膨張弁25が設けられている。
【0016】
ここで、圧縮機9には共通用凝縮器10と並列に再熱用凝縮器17が設けられ、その冷媒出口側はレシーバ20に接続されている。また、冷蔵用蒸発器7の後段には直列に除湿用蒸発器16が設けられ、その冷媒出口側は空調用蒸発器3及び冷蔵用蒸発器7の冷媒出口側と共通にアキュムレータ23に接続されている。熱交換器26は、空調用蒸発器3及び冷蔵用蒸発器7の入口側の液冷媒と出口側のガス冷媒との間で熱交換させる気液熱交換器である。このような冷媒回路の要所には、電磁弁V1〜V7がそれぞれ挿入されている。なお、レシーバ20に蓄えられた液冷媒の一部は電磁弁V8を開くことにより、インジェクション用の膨張弁27を介して圧縮機9に送られ、ここで蒸発して圧縮機9を冷却するようになっている。それでは、この空調・冷蔵統合装置の運転動作について、以下に運転モード別に説明する。なお、冷媒回路図中の太線矢印は冷媒の循環経路を示している。
【0017】
図3は、冷房運転モードを示すものである。図3において、電磁弁はV2,V7が開、他は閉で、圧縮機9から吐出された高温高圧のガス冷媒は凝縮器10で室外空気と熱交換して液化され、レシーバ20に一時貯留される。この液冷媒は熱交換器26を通過し、空調用蒸発器3の出口側のガス冷媒と熱交換して過冷却された後、膨張弁21で減圧されて空調用蒸発器3に入り、ここで蒸発して室内空気を冷却する。蒸発後の低温低圧のガス冷媒は、熱交換器26を通過して空調用蒸発器3の入口側の液冷媒を過冷却した後、アキュムレータ23で液分が分離されてから圧縮機9に戻り再圧縮される。
【0018】
図4は、冷蔵運転モードを示すもので、電磁弁はV2,V5が開、他は閉である。図3の冷房運転との相違は、レシーバ20からの液冷媒が膨張弁22で減圧されて冷蔵用蒸発器7に入り、冷房運転よりも低温低圧で蒸発する点で、他の動作は冷房運転と同じである。
【0019】
図5は、冷蔵運転において漏れ冷気を除湿・再熱して室内に吹き出す運転モードを示すもので、電磁弁はV1,V2,V4,V6が開、他は閉である。図5において、冷蔵用蒸発器7で蒸発した後の低温、例えば−10℃のガス冷媒は電磁弁V6を介して除湿用蒸発器16に入る。ここで、図1に示したように、冷蔵ショーケース5から漏れ出した漏れ冷気15は送風ファン18で吸引され、外気と混合された後、除湿用蒸発器16及び再熱用凝縮器17を通して室内に吹き出されている。室内への外気の導入により室内は陽圧化され、屋外から室内への塵埃等の浸入が防止される。同時に導入外気は漏れ冷気15との混合により冷却され、高温の外気による室温の上昇が抑えられる。また、除湿用蒸発器16を通過した漏れ冷気15は、低温のガス冷媒と熱交換して冷却・除湿される。
【0020】
一方、圧縮機9から吐出された高温高圧のガス冷媒の一部は、電磁弁V1を介して再熱用凝縮器17に送られる。このガス冷媒は再熱用凝縮器17で除湿後の漏れ冷気15により冷却されて凝縮し、レシーバ20に送られて、共通用凝縮器10からの液冷媒と一緒に冷蔵用蒸発器7で蒸発する。また、再熱用凝縮器17で室温まで加熱された漏れ冷気15は、乾燥した調和空気として室内に吹き出される。その際、漏れ冷気15は外気との混合で昇温されるため、再熱用凝縮器17の加熱負荷が軽減される。
【0021】
図5の運転モードによれば、床面に滞留する漏れ冷気15が回収されるため、店舗利用客の足元が冷える不快感が解消されるとともに、この漏れ冷気を除湿・再熱して室内に吹き出すことにより、店舗内の空調負荷が軽減される。また、除湿用蒸発器16では冷蔵用蒸発器7からの排出ガスが有する冷媒顕熱(冷熱)を利用して除湿を行い、また再熱用凝縮器17では高温高圧ガスの凝縮排熱(温熱)を利用して再熱を行うためエネルギの無駄がない。
【0022】
図6は、冷房・冷蔵運転モードを示すものである。この運転モードは図3の冷房運転と図4の冷蔵運転とを同時に行うもので、各々の運転モードと特に変りはないので説明を省略する。
【0023】
図7は、冷房・冷蔵運転において漏れ冷気を除湿・再熱して室内に吹き出す運転モードを示すものである。この運転モードは図5の冷蔵・除湿・再熱運転において図3の冷房運転を同時に行うもので、各々の運転モードと特に変りはないので説明を省略する。
【0024】
図8は、暖房運転モードを示すもので、電磁弁V1,V3,V4は開、他は閉である。図8において、再熱用凝縮器17は空調機2の暖房用凝縮器として兼用されている。すなわち、圧縮機9から吐出された高温高圧のガス冷媒は電磁弁V1を介して再熱(兼暖房)用凝縮器17に送られ、送風ファン18(図1)で循環送風される室内空気と熱交換し、この室内空気を加熱するとともに凝縮する。この液冷媒は電磁弁V4を介してレシーバ20に送られ、次いで膨張弁25で減圧されて共通用凝縮器10に入り、共通用凝縮器10を蒸発器として室外空気との熱交換により蒸発した後、アキュムレータ23を経て圧縮機9に戻る。図8の運転モードによれば、空調用の凝縮器が省けるため配管構成が簡素化される。
【0025】
図9は、暖房・冷蔵運転において、暖房負荷と冷蔵負荷とが均衡している場合(暖房負荷=冷蔵負荷)の運転モードを示すものである。図9において、電磁弁V1,V4,V5は開、他は閉である。圧縮機9から吐出されたガス冷媒は電磁弁V1を介して再熱(兼暖房)用凝縮器17に送られて液化し、電磁弁V4を介してレシーバ20に送られる。この液冷媒はすべて冷蔵用蒸発器7に送られて蒸発し、電磁弁V5,アキュムレータ23介して圧縮機9に戻る。図9の運転モードは、室内空気を冷蔵ショーケース5の冷熱源として利用し、冷蔵ショーケース5の排熱を空調機2の温熱源として利用することにより高い熱効率が得られる。
【0026】
図10は、図9と同様の暖房・冷蔵運転において、暖房負荷が冷蔵負荷を上回る場合(暖房負荷>冷蔵負荷)の運転モードを示すものである。この場合は、図9に比して電磁弁V3が開かれ、レシーバ20に貯留した液冷媒の一部(余剰分)は膨張弁25で減圧された後、共通用凝縮器10を蒸発器として室外空気との熱交換により蒸発し、電磁弁V3、アキュムレータ23を介して圧縮機9に回収される。
【0027】
図11は、図9と同様の暖房・冷蔵運転において、暖房負荷が冷蔵負荷を下回る場合(暖房負荷<冷蔵負荷)の運転モードを示すものである。この場合は、図9に比して電磁弁V2が開かれ、圧縮機9から吐出された共通用凝縮器10と再熱用凝縮器17とに同時に送られ、各々で凝縮した液冷媒はレシーバ20で合流して冷蔵用蒸発器7に送られる。上記の通り、図10及び図11の運転モードによれば、電磁弁V2,V3の開閉制御により、暖房負荷と冷蔵負荷のアンバランスに柔軟に対応することができる。
【0028】
図12は、この発明の異なる実施の形態を示す店舗内の機器配置図である。この実施の形態の図1との主な相違は、空調用蒸発器3が除湿用蒸発器として兼用されている点である。すなわち、図12において、空調機2内には、再熱(兼暖房)用凝縮器17と空調(兼除湿)用蒸発器3とが重なるように設けられている。漏れ冷気15は送風ファン18により天井部まで吸引され、更に空調機2の通風ファン4で再熱用凝縮器17及び空調用蒸発器3を通して吸引されて室内に吹き出される。その際、ダンパ19を介して外気が同時に導入され、この外気は漏れ冷気15と混合されて空調機2に送られる。
【0029】
図13は、図12の冷蔵・空調統合装置の冷媒回路図である。図13において図2との相違は、空調用蒸発器3が除湿用蒸発器として兼用され、空調用蒸発器3は冷蔵用蒸発器7の後段にも、電磁弁V6を介して直列に接続されている点である。冷蔵用蒸発器7内において、共通用凝縮器10から膨張弁21を介して液冷媒が供給される管路と、冷蔵用蒸発器7から蒸発後の低温ガスが供給される管路とは別配管として平行的に設けられ、それらは空調用蒸発器3の出口側で合流している。図13のその他の回路構成は図2と同じである。図13の回路構成によれば、図2に比して冷媒回路がより簡素化される。
【0030】
図14は、図13の冷媒回路による冷房・冷蔵運転モードを示すものである。図14においては、共通用凝縮器10からの液冷媒を空調用蒸発器3で蒸発させると同時に、冷蔵用蒸発器7で蒸発した後のガス冷媒を電磁弁V6を開いて空調用蒸発器3に供給している。冷蔵用蒸発器7の蒸発温度(例えば−10℃)は空調用蒸発器3の蒸発温度(例えば+5℃)より低い。従って、冷蔵用蒸発器7の出口側のガス冷媒を空調用蒸発器3に導くことにより、冷蔵顕熱を空調(冷房)に有効利用して全体としての熱効率を高めることができる。
【0031】
図15は、図14の冷房・冷蔵運転において、漏れ冷気を除湿・再熱して室内に吹き出すようにした運転モードを示すものである。図15において、冷房・冷蔵運転に加えて、圧縮機9から吐出された高温高圧のガス冷媒の一部は、電磁弁V1を介して再熱用凝縮器17に送られている。一方、図12に示したように、冷蔵ショーケース5から漏れ出した漏れ冷気15は送風ファン18で吸引され、外気と混合された後、再熱用凝縮器17及び空調(兼除湿)用蒸発器3を通して室内に吹き出されている。従って、再熱用凝縮器17を通過した漏れ冷気15は加熱され、次いで空調用蒸発器3で除湿されて室内に吹き出される。その他の運転モードは図2の実施の形態と同じであり、その説明は省略する。
【0032】
【発明の効果】
以上の通り、この発明によれば、冷蔵ショーケースからの漏れ冷気を凝縮排熱で加熱し、更には冷蔵ショーケースの冷蔵顕熱で除湿して室内に吹き出すことにより、漏れ冷気による利用客の不快感を解消しながら空調負荷を軽減し、空調・冷蔵統合装置としてのエネルギ効率を高めることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す冷蔵・空調統合装置の店舗内機器配置図である。
【図2】図1の冷蔵・空調統合装置の冷媒回路図である。
【図3】図1の冷蔵・空調統合装置の冷房運転モードを示す冷媒回路図である。
【図4】図1の冷蔵・空調統合装置の冷蔵運転モードを示す冷媒回路図である。
【図5】図1の冷蔵・空調統合装置の冷蔵・除湿・再熱運転モードを示す冷媒回路図である。
【図6】図1の冷蔵・空調統合装置の冷房・冷蔵運転モードを示す冷媒回路図である。
【図7】図1の冷蔵・空調統合装置の冷房・冷蔵・除湿・再熱運転モードを示す冷媒回路図である。
【図8】図1の冷蔵・空調統合装置の暖房運転モードを示す冷媒回路図である。
【図9】図1の冷蔵・空調統合装置の暖房負荷と冷蔵負荷とが同じ場合の暖房・冷蔵運転モードを示す冷媒回路図である。
【図10】図1の冷蔵・空調統合装置の暖房負荷が冷蔵負荷を上回る場合の暖房・冷蔵運転モードを示す冷媒回路図である。
【図11】図1の冷蔵・空調統合装置の暖房負荷が冷蔵負荷を下回る場合の暖房・冷蔵運転モードを示す冷媒回路図である。
【図12】この発明の異なる実施の形態を示す冷蔵・空調統合装置の店舗内機器配置図である。
【図13】図12の冷蔵・空調統合装置の冷媒回路図である。
【図14】図12の冷蔵・空調統合装置の冷房・冷蔵運転モードを示す冷媒回路図である。
【図15】図12の冷蔵・空調統合装置の冷房・冷蔵・除湿・再熱運転モードを示す冷媒回路図である。
【符号の説明】
1 店舗
2 空調機
3 空調用蒸発器
4 送風ファン
5 冷蔵ショーケース
7 冷蔵用蒸発器
8 室外機
9 圧縮機
10 共通用凝縮器
11 送風ファン
15 漏れ冷気
16 除湿用蒸発器
17 再熱用凝縮器
18 送風ファン
19 ダンパ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an integrated refrigeration / air-conditioning apparatus used in a store or the like where a showcase for refrigeration / freezing (hereinafter collectively referred to as “refrigeration”) preservation of food in an air-conditioned room is installed.
[0002]
[Prior art]
The refrigerant circuit of the refrigeration / air-conditioning apparatus used in the above-mentioned stores and the like is generally composed of an air-conditioner and a refrigerated showcase, and a compressor, a condenser, an evaporator, etc. are generally provided individually. It is. However, such a refrigeration / air-conditioning apparatus, for example, in the winter season, although the indoor heating load and the refrigeration load in the showcase are generated simultaneously in the same room, the exhaust heat of the refrigeration load is taken outside the room. On the other hand, it is wasteful to obtain the heat of the heating load from the outdoor air. Therefore, a refrigeration / air conditioning integrated device has been developed in which the refrigerant circuit of the air conditioner and the refrigerated showcase is integrated to share a compressor, and is disclosed in Patent Document 1 or Patent Document 2. According to this refrigeration / air conditioning integrated device, waste heat from the refrigerated showcase can be used as a heat source for the air conditioner, and indoor air can be used as a cold heat source for the refrigerated showcase. Since heat can be used mutually, thermal efficiency is increased.
[0003]
On the other hand, in a store where a refrigerated showcase is installed, there is a problem that the cold air leaking from the open showcase stays near the floor and cools the feet of the customers, and proper treatment of this cold air is also important .
[0004]
[Patent Document 1]
JP 2000-240980 A [Patent Document 2]
JP-A-2002-357374
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to improve the heat efficiency by integrating the refrigerant circuit of the air conditioner and the refrigerated showcase, collect cold air leaking from the refrigerated showcase, and simplify the refrigerant circuit at the same time. is there.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides an air conditioning / cooling / air conditioning integrated apparatus in which a compressor is commonly provided for an air conditioner that cools and heats a room and a refrigerated showcase installed in the room. A reheat condenser is provided in parallel with the condenser common to the refrigerator and the refrigerated showcase, and the recooled condenser heats the leaked cold air leaking from the refrigerated showcase and blows it into the room. (Claim 1). According to the first aspect of the present invention, it is possible to heat the leaked cold air to the room temperature by the reheating condenser and blow it out into the room, thereby eliminating the discomfort caused by the leaked cold air and reducing the air conditioning load.
[0007]
In the first aspect of the present invention, a dehumidifying evaporator may be provided in series after the refrigerated evaporator of the showcase, and the leaked cold air may be dehumidified by the dehumidifying evaporator (invention 2). Thereby, the exhaust heat (cold heat) of the refrigeration evaporator can be effectively used to dehumidify the leaked cold air.
[0008]
In the invention of claim 1 or claim 2, it is preferable that outside air is mixed with the leaked cold air passing through the condenser for reheating (invention 3). Thereby, it is possible to reduce the load on the reheating condenser for heating the leaked cold air and heating the leaked cold air.
[0009]
In the invention of claim 1 or claim 2, the refrigerant condensed by the reheating condenser may be supplied to the refrigeration evaporator (invention 4). Thereby, indoor air can be used as a cold heat source for a refrigerated showcase, and at the same time, exhaust heat from the refrigerated showcase can be used as a heat source for air conditioning.
[0010]
In the invention of claim 4, the surplus of the refrigerant condensed by the reheat condenser can be evaporated by using a condenser common to the air conditioner and the showcase as an evaporator. ).
[0011]
In the invention of claim 1 or 2, the reheating condenser is also used as a heating condenser of the air conditioner (invention 6). In the invention of claim 2, the dehumidifying evaporator. Is also used as the cooling evaporator of the air conditioner (Claim 7), the refrigerant circuit is simplified.
[0012]
In the invention of claim 1 or claim 2, if the refrigerant on the inlet side of the refrigeration evaporator or the evaporator for air conditioning is heat-exchanged with the refrigerant on the outlet side, and the refrigerant on the inlet side is supercooled, The thermal efficiency is further increased by effectively using the exhaust heat (cold heat) of the low-temperature evaporative gas (claim 8).
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. First, FIG. 1 is a device layout diagram in a store showing the concept of a refrigeration / air conditioning integrated device. In FIG. 1, the interior of a store 1 such as a supermarket is air-conditioned by an air conditioner (indoor unit) 2, and the air conditioner 2 includes an evaporator (air conditioner evaporator) 3 and a ventilation fan 4. In this room, a refrigerated showcase (open showcase) 5 is installed, and merchandise (not shown) in the merchandise display chamber 6 is cooled by cold air circulating through an evaporator (refrigerator evaporator) 7. On the other hand, the outdoor unit 8 installed outside is provided with a common compressor 9, a condenser (common condenser) 10, and a blower fan 11 for the air conditioner 2 and the refrigerated showcase 5. A ventilation fan 12 is installed in one corner of the store 1, and an intake fan 13 and an exhaust fan 14 that allow outside air to flow are installed in the back of the ceiling. In FIG. 1, only one air conditioner 2 and refrigerated showcase 5 are shown, but a plurality of units can be grouped and connected in parallel to one outdoor unit 8.
[0014]
Here, above the refrigerated showcase 5, an evaporator (dehumidifying evaporator) 16 and a dehumidifier leaking from the refrigerated showcase 5 and dehumidifying the cool air (leaked cold air) 15 staying in the vicinity of the floor surface in front of it. A condenser (reheat condenser) 17 for heating the later leaked cold air 15 to room temperature is provided so as to overlap. In the vicinity of the back of the dehumidifying evaporator 16, a blower fan 18 that sucks the leaked cold air 15 is provided. At the same time, the blower fan 18 introduces outside air into the room through the damper 19 to positively pressure the room to a slightly higher pressure than the outside air. The leaked cool air 15 sucked by the blower fan 18 is mixed with the outside air introduced into the room and heated up, and then blown out into the room through the dehumidifying evaporator 16 and the reheating condenser 17.
[0015]
FIG. 2 is a refrigerant circuit diagram of the refrigeration / air conditioning integrated device of FIG. In FIG. 2, the refrigerant circuit includes a compressor 9, a common condenser 10, a receiver 20, an expansion valve 21, an air conditioning evaporator 3, an expansion valve 22, a refrigeration evaporator 7, an accumulator 23, and the like. The common condenser 10 and the receiver 20 are connected via a check valve 24, and an expansion valve 25 is provided in parallel with the check valve 24.
[0016]
Here, the compressor 9 is provided with a reheating condenser 17 in parallel with the common condenser 10, and the refrigerant outlet side is connected to the receiver 20. Further, a dehumidifying evaporator 16 is provided in series downstream of the refrigeration evaporator 7, and the refrigerant outlet side thereof is connected to the accumulator 23 in common with the air conditioning evaporator 3 and the refrigerant outlet side of the refrigeration evaporator 7. ing. The heat exchanger 26 is a gas-liquid heat exchanger that exchanges heat between the liquid refrigerant on the inlet side and the gas refrigerant on the outlet side of the air conditioning evaporator 3 and the refrigeration evaporator 7. Solenoid valves V1 to V7 are respectively inserted in the main points of such a refrigerant circuit. A part of the liquid refrigerant stored in the receiver 20 is sent to the compressor 9 via the injection expansion valve 27 by opening the electromagnetic valve V8, where it evaporates to cool the compressor 9. It has become. Then, the operation of this air conditioning / refrigeration integrated device will be described below for each operation mode. In addition, the thick line arrow in a refrigerant circuit diagram has shown the circulation path of the refrigerant | coolant.
[0017]
FIG. 3 shows the cooling operation mode. In FIG. 3, the solenoid valves V2 and V7 are open and the others are closed. The high-temperature and high-pressure gas refrigerant discharged from the compressor 9 is liquefied by exchanging heat with outdoor air in the condenser 10 and temporarily stored in the receiver 20. Is done. This liquid refrigerant passes through the heat exchanger 26, exchanges heat with the gas refrigerant on the outlet side of the air conditioning evaporator 3 and is supercooled, and then is decompressed by the expansion valve 21 and enters the air conditioning evaporator 3. Evaporates to cool the room air. The vaporized low-temperature and low-pressure gas refrigerant passes through the heat exchanger 26 and supercools the liquid refrigerant on the inlet side of the air-conditioning evaporator 3, and then returns to the compressor 9 after the liquid component is separated by the accumulator 23. Recompressed.
[0018]
FIG. 4 shows the refrigeration operation mode, in which the solenoid valves V2 and V5 are open, and the others are closed. The difference from the cooling operation of FIG. 3 is that the liquid refrigerant from the receiver 20 is depressurized by the expansion valve 22 and enters the refrigeration evaporator 7 and evaporates at a lower temperature and lower pressure than the cooling operation. Is the same.
[0019]
FIG. 5 shows an operation mode in which leaked cold air is dehumidified and reheated in the refrigeration operation and blown out into the room. The solenoid valves V1, V2, V4 and V6 are open, and the others are closed. In FIG. 5, the gas refrigerant at a low temperature, for example, −10 ° C. after being evaporated in the refrigeration evaporator 7 enters the dehumidifying evaporator 16 through the electromagnetic valve V <b> 6. Here, as shown in FIG. 1, the leaked cold air 15 leaked from the refrigerated showcase 5 is sucked by the blower fan 18 and mixed with the outside air, and then passed through the dehumidifying evaporator 16 and the reheating condenser 17. It is blown out indoors. By introducing the outside air into the room, the room is positively pressurized and dust and the like are prevented from entering the room from the outside. At the same time, the introduced outside air is cooled by mixing with the leaked cold air 15, and an increase in room temperature due to the high temperature outside air is suppressed. The leaked cold air 15 that has passed through the dehumidifying evaporator 16 is cooled and dehumidified by exchanging heat with a low-temperature gas refrigerant.
[0020]
On the other hand, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 9 is sent to the reheating condenser 17 through the electromagnetic valve V1. The gas refrigerant is cooled and condensed by the leaked cold air 15 after being dehumidified by the reheating condenser 17, sent to the receiver 20, and evaporated together with the liquid refrigerant from the common condenser 10 by the refrigeration evaporator 7. To do. The leaked cold air 15 heated to room temperature by the reheating condenser 17 is blown out into the room as dry conditioned air. At that time, since the temperature of the leaked cold air 15 is increased by mixing with the outside air, the heating load of the reheating condenser 17 is reduced.
[0021]
According to the operation mode of FIG. 5, since the leaked cold air 15 staying on the floor surface is collected, the unpleasant feeling that the store customer's feet cool down is eliminated, and the leaked cold air is dehumidified and reheated and blown into the room. As a result, the air conditioning load in the store is reduced. Further, the dehumidifying evaporator 16 performs dehumidification using refrigerant sensible heat (cold heat) contained in the exhaust gas from the refrigeration evaporator 7, and the reheating condenser 17 condenses exhaust heat (hot heat) of the high-temperature high-pressure gas. ) To reheat, there is no waste of energy.
[0022]
FIG. 6 shows a cooling / refrigeration operation mode. In this operation mode, the cooling operation shown in FIG. 3 and the refrigeration operation shown in FIG. 4 are performed simultaneously.
[0023]
FIG. 7 shows an operation mode in which the leaked cold air is dehumidified and reheated and blown out indoors in the cooling / refrigeration operation. In this operation mode, the cooling operation of FIG. 3 is simultaneously performed in the refrigeration, dehumidification, and reheat operation of FIG. 5, and there is no particular difference from each operation mode, so the description is omitted.
[0024]
FIG. 8 shows the heating operation mode, in which the solenoid valves V1, V3, V4 are open and the others are closed. In FIG. 8, the reheating condenser 17 is also used as a heating condenser of the air conditioner 2. That is, the high-temperature and high-pressure gas refrigerant discharged from the compressor 9 is sent to the reheat (heating) condenser 17 via the electromagnetic valve V1, and the indoor air circulated and blown by the blower fan 18 (FIG. 1). Heat exchange is performed, and the indoor air is heated and condensed. This liquid refrigerant is sent to the receiver 20 via the electromagnetic valve V4, then decompressed by the expansion valve 25 and enters the common condenser 10, and is evaporated by heat exchange with outdoor air using the common condenser 10 as an evaporator. Then, it returns to the compressor 9 through the accumulator 23. According to the operation mode of FIG. 8, since the condenser for an air conditioning can be omitted, the piping configuration is simplified.
[0025]
FIG. 9 shows an operation mode when the heating load and the refrigeration load are balanced in the heating / refrigeration operation (heating load = refrigeration load). In FIG. 9, the solenoid valves V1, V4, V5 are open and the others are closed. The gas refrigerant discharged from the compressor 9 is sent to the reheat (also heating) condenser 17 via the electromagnetic valve V1 and liquefied, and sent to the receiver 20 via the electromagnetic valve V4. All of this liquid refrigerant is sent to the refrigeration evaporator 7 to evaporate, and returns to the compressor 9 via the electromagnetic valve V5 and the accumulator 23. In the operation mode of FIG. 9, high thermal efficiency can be obtained by using room air as a cold heat source for the refrigerated showcase 5 and using exhaust heat from the refrigerated showcase 5 as a heat source for the air conditioner 2.
[0026]
FIG. 10 shows an operation mode when the heating load exceeds the refrigeration load (heating load> refrigeration load) in the heating / refrigeration operation similar to FIG. In this case, the electromagnetic valve V3 is opened as compared with FIG. 9, and a part of the liquid refrigerant (surplus) stored in the receiver 20 is decompressed by the expansion valve 25, and then the common condenser 10 is used as an evaporator. It evaporates by heat exchange with the outdoor air and is collected by the compressor 9 via the electromagnetic valve V3 and the accumulator 23.
[0027]
FIG. 11 shows an operation mode when the heating load is lower than the refrigeration load in the same heating / refrigeration operation as in FIG. 9 (heating load <refrigeration load). In this case, the electromagnetic valve V2 is opened compared to FIG. 9, and the liquid refrigerant condensed in each is sent to the common condenser 10 and the reheating condenser 17 discharged from the compressor 9 at the receiver. 20 are combined and sent to the refrigeration evaporator 7. As described above, according to the operation modes of FIGS. 10 and 11, it is possible to flexibly cope with the imbalance between the heating load and the refrigeration load by the opening / closing control of the electromagnetic valves V2 and V3.
[0028]
FIG. 12 is a device layout diagram in a store showing a different embodiment of the present invention. The main difference from FIG. 1 of this embodiment is that the air-conditioning evaporator 3 is also used as a dehumidifying evaporator. That is, in FIG. 12, a reheat (also heating) condenser 17 and an air conditioning (and dehumidification) evaporator 3 are provided in the air conditioner 2 so as to overlap each other. Leaked cold air 15 is sucked up to the ceiling by the blower fan 18 and further sucked through the reheating condenser 17 and the air conditioning evaporator 3 by the ventilation fan 4 of the air conditioner 2 and blown out into the room. At that time, outside air is simultaneously introduced through the damper 19, and this outside air is mixed with the leaked cold air 15 and sent to the air conditioner 2.
[0029]
FIG. 13 is a refrigerant circuit diagram of the refrigeration / air conditioning integrated device of FIG. In FIG. 13, the difference from FIG. 2 is that the air conditioning evaporator 3 is also used as a dehumidifying evaporator, and the air conditioning evaporator 3 is also connected in series via the solenoid valve V6 to the rear stage of the refrigeration evaporator 7. It is a point. In the refrigeration evaporator 7, a pipe line through which liquid refrigerant is supplied from the common condenser 10 via the expansion valve 21 and a pipe line through which low-temperature gas after evaporation is supplied from the refrigeration evaporator 7 are separated. They are provided in parallel as pipes, and they merge at the outlet side of the air conditioning evaporator 3. The other circuit configuration of FIG. 13 is the same as that of FIG. According to the circuit configuration of FIG. 13, the refrigerant circuit is further simplified as compared with FIG.
[0030]
FIG. 14 shows the cooling / refrigeration operation mode by the refrigerant circuit of FIG. In FIG. 14, the liquid refrigerant from the common condenser 10 is evaporated by the air conditioning evaporator 3, and at the same time, the gas refrigerant evaporated by the refrigeration evaporator 7 is opened by opening the electromagnetic valve V <b> 6. To supply. The evaporation temperature (for example, −10 ° C.) of the refrigeration evaporator 7 is lower than the evaporation temperature (for example, + 5 ° C.) of the air conditioning evaporator 3. Therefore, by guiding the gas refrigerant on the outlet side of the refrigeration evaporator 7 to the air conditioning evaporator 3, it is possible to effectively utilize the refrigerated sensible heat for air conditioning (cooling) and to improve the overall thermal efficiency.
[0031]
FIG. 15 shows an operation mode in which the leaked cold air is dehumidified and reheated and blown into the room in the cooling / refrigeration operation of FIG. In FIG. 15, in addition to the cooling / refrigerating operation, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 9 is sent to the reheating condenser 17 via the electromagnetic valve V1. On the other hand, as shown in FIG. 12, the leaked cold air 15 leaked from the refrigerated showcase 5 is sucked by the blower fan 18 and mixed with the outside air, and then the reheat condenser 17 and air conditioning (also dehumidifying) evaporation. It is blown into the room through the vessel 3. Therefore, the leaked cold air 15 that has passed through the reheating condenser 17 is heated, then dehumidified by the air conditioning evaporator 3 and blown into the room. The other operation modes are the same as those in the embodiment of FIG.
[0032]
【The invention's effect】
As described above, according to the present invention, the cold air leaked from the refrigerated showcase is heated with condensation exhaust heat, and further dehumidified with the refrigerated sensible heat of the refrigerated showcase and blown out into the room, so The air conditioning load can be reduced while eliminating discomfort, and the energy efficiency of the air conditioning / refrigeration integrated device can be increased.
[Brief description of the drawings]
FIG. 1 is a device arrangement diagram in a store of a refrigeration / air conditioning integrated device showing an embodiment of the present invention;
FIG. 2 is a refrigerant circuit diagram of the refrigeration / air conditioning integrated device of FIG. 1;
FIG. 3 is a refrigerant circuit diagram illustrating a cooling operation mode of the refrigeration / air conditioning integrated device of FIG. 1;
4 is a refrigerant circuit diagram illustrating a refrigeration operation mode of the refrigeration / air conditioning integrated device of FIG. 1. FIG.
FIG. 5 is a refrigerant circuit diagram illustrating a refrigeration / dehumidification / reheat operation mode of the refrigeration / air conditioning integrated device of FIG. 1;
6 is a refrigerant circuit diagram illustrating a cooling / refrigeration operation mode of the refrigeration / air conditioning integrated device of FIG. 1; FIG.
7 is a refrigerant circuit diagram illustrating a cooling / refrigeration / dehumidification / reheat operation mode of the refrigeration / air conditioning integrated device of FIG. 1; FIG.
FIG. 8 is a refrigerant circuit diagram illustrating a heating operation mode of the refrigeration / air conditioning integrated device of FIG. 1;
FIG. 9 is a refrigerant circuit diagram illustrating a heating / refrigeration operation mode when the heating load and the refrigeration load of the refrigeration / air conditioning integrated device of FIG. 1 are the same.
10 is a refrigerant circuit diagram illustrating a heating / refrigeration operation mode in a case where the heating load of the refrigeration / air conditioning integrated device of FIG. 1 exceeds the refrigeration load. FIG.
FIG. 11 is a refrigerant circuit diagram showing a heating / refrigeration operation mode when the heating load of the refrigeration / air conditioning integrated device of FIG. 1 is lower than the refrigeration load.
FIG. 12 is a device arrangement diagram in the store of the refrigeration / air conditioning integrated device showing a different embodiment of the present invention.
13 is a refrigerant circuit diagram of the refrigeration / air conditioning integrated device of FIG. 12. FIG.
14 is a refrigerant circuit diagram showing a cooling / refrigeration operation mode of the refrigeration / air conditioning integrated device of FIG. 12. FIG.
15 is a refrigerant circuit diagram illustrating a cooling / refrigeration / dehumidification / reheat operation mode of the refrigeration / air conditioning integrated device of FIG. 12. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Store 2 Air conditioner 3 Air conditioner evaporator 4 Blower fan 5 Refrigerated showcase 7 Refrigerator evaporator 8 Outdoor unit 9 Compressor 10 Common condenser 11 Blower fan 15 Leaked cold 16 Dehumidifier evaporator 17 Reheat condenser 18 Blower 19 Damper

Claims (8)

室内の冷暖房を行う空調機と前記室内に設置された冷蔵ショーケースとに対して圧縮機が共通に設けられた冷蔵・空調統合装置において、
前記空調機と前記冷蔵ショーケースとに共通の凝縮器と並列に再熱用凝縮器を設け、この再熱用凝縮器により前記冷蔵ショーケースから漏れ出した漏れ冷気を加熱して前記室内に吹き出すようにしたことを特徴とする冷蔵・空調統合装置。
In the refrigeration / air conditioning integrated device in which a compressor is provided in common for an air conditioner that cools and heats the room and a refrigerated showcase installed in the room,
A reheat condenser is provided in parallel with the condenser common to the air conditioner and the refrigerated showcase, and the recooled condenser heats the leaked cold air leaking from the refrigerated showcase and blows it into the room. An integrated refrigeration / air conditioning system characterized by the above.
前記ショーケースの冷蔵用蒸発器の後段に直列に除湿用蒸発器を設け、この除湿用蒸発器により前記漏れ冷気を除湿するようにしたことを特徴とする請求項1記載の冷蔵・空調統合装置。The refrigeration / air-conditioning integrated apparatus according to claim 1, wherein a dehumidification evaporator is provided in series in a subsequent stage of the refrigeration evaporator of the showcase, and the leaked cold air is dehumidified by the dehumidification evaporator. . 前記再熱用凝縮器を通過させる前記漏れ冷気に外気を混合するようにしたことを特徴とする請求項1又は請求項2記載の冷蔵・空調統合装置。3. The refrigeration / air conditioning integrated device according to claim 1, wherein outside air is mixed with the leaked cold air passing through the reheat condenser. 前記再熱用凝縮器で凝縮させた前記冷媒を前記冷蔵用蒸発器に供給するようにしたことを特徴とする請求項1又は請求項2記載の冷蔵・空調統合装置。The refrigeration / air conditioning integrated apparatus according to claim 1 or 2, wherein the refrigerant condensed by the reheating condenser is supplied to the refrigeration evaporator. 前記再熱用凝縮器で凝縮させた前記冷媒の余剰分を前記空調機と前記ショーケースとに共通の凝縮器を蒸発器として蒸発させるようにしたことを特徴とする請求項4記載の冷蔵・空調統合装置。The refrigerator / refrigerator according to claim 4, wherein a surplus of the refrigerant condensed by the reheat condenser is evaporated by using a condenser common to the air conditioner and the showcase as an evaporator. Air conditioning integrated device. 前記再熱用凝縮器を前記空調機の暖房用凝縮器として兼用するようにしたことを特徴とする請求項1又は請求項2記載の冷蔵・空調統合装置。The refrigeration / air conditioning integrated apparatus according to claim 1 or 2, wherein the reheat condenser is also used as a heating condenser of the air conditioner. 前記除湿用蒸発器を前記空調機の冷房用蒸発器として兼用するようにしたことを特徴とする請求項2記載の冷蔵・空調統合装置。The refrigeration / air conditioning integrated device according to claim 2, wherein the dehumidifying evaporator is also used as a cooling evaporator of the air conditioner. 前記冷蔵用蒸発器又は空調用蒸発器の入口側の冷媒を出口側の冷媒との熱交換により過冷却するようにしたことを特徴とする請求項1又は請求項2記載の冷蔵・空調統合装置。The refrigeration / air conditioning integrated device according to claim 1 or 2, wherein the refrigerant on the inlet side of the evaporator for refrigeration or the evaporator for air conditioning is supercooled by heat exchange with the refrigerant on the outlet side. .
JP2003186431A 2003-06-30 2003-06-30 Integrated refrigerating/air-conditioning device Pending JP2005016917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186431A JP2005016917A (en) 2003-06-30 2003-06-30 Integrated refrigerating/air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186431A JP2005016917A (en) 2003-06-30 2003-06-30 Integrated refrigerating/air-conditioning device

Publications (1)

Publication Number Publication Date
JP2005016917A true JP2005016917A (en) 2005-01-20

Family

ID=34185558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186431A Pending JP2005016917A (en) 2003-06-30 2003-06-30 Integrated refrigerating/air-conditioning device

Country Status (1)

Country Link
JP (1) JP2005016917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343019A (en) * 2005-06-08 2006-12-21 Sanden Corp Refrigeration air conditioning system
JP2016517503A (en) * 2014-04-18 2016-06-16 プソン エンジニアリング コーポレーション Heat pump system with waste heat recovery structure by secondary evaporator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343019A (en) * 2005-06-08 2006-12-21 Sanden Corp Refrigeration air conditioning system
JP4654073B2 (en) * 2005-06-08 2011-03-16 サンデン株式会社 Refrigeration air conditioning system
JP2016517503A (en) * 2014-04-18 2016-06-16 プソン エンジニアリング コーポレーション Heat pump system with waste heat recovery structure by secondary evaporator

Similar Documents

Publication Publication Date Title
JP2002081688A (en) Ventilator
JP2020106265A (en) Split dehumidification system with secondary evaporator coil and condenser coil
US20070157660A1 (en) Air conditioner capable of selectively dehumidifying separate areas
US11965682B2 (en) Air conditioner
JP6699254B2 (en) Cooling system
JP2021042863A (en) Dehumidifying device
JP2006343019A (en) Refrigeration air conditioning system
JPH10339513A (en) Air conditioning system
JP5537832B2 (en) External air conditioner and external air conditioning system
KR200474579Y1 (en) Air handling unit
JP2005133976A (en) Air-conditioner
JP5049500B2 (en) Dehumidifying air conditioning system and dehumidifying air conditioner
JP2006336971A (en) Ventilating and air conditioning device
KR100728590B1 (en) Power saving and high performance heat pump vantilation system
WO2019155614A1 (en) Air-conditioning device, air-conditioning system, and heat exchange unit
JP2005016917A (en) Integrated refrigerating/air-conditioning device
JP6238935B2 (en) Refrigeration cycle equipment
KR102260447B1 (en) Air conditioning system for refrigerating and freezing
JP2005326121A (en) Air conditioner
KR100539744B1 (en) Multi-air conditioner capable of heating and cooling simultaneously for building
JP2006038293A (en) Air conditioner
KR20100128961A (en) Air conditioner
JP3046044B2 (en) Air conditioning system
JP2002286309A (en) Refrigerator
JPH11248290A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070419

A02 Decision of refusal

Effective date: 20070816

Free format text: JAPANESE INTERMEDIATE CODE: A02