JP2006038293A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2006038293A
JP2006038293A JP2004216266A JP2004216266A JP2006038293A JP 2006038293 A JP2006038293 A JP 2006038293A JP 2004216266 A JP2004216266 A JP 2004216266A JP 2004216266 A JP2004216266 A JP 2004216266A JP 2006038293 A JP2006038293 A JP 2006038293A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
air
heat
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004216266A
Other languages
Japanese (ja)
Other versions
JP4317498B2 (en
Inventor
Junichiro Kasuya
潤一郎 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2004216266A priority Critical patent/JP4317498B2/en
Publication of JP2006038293A publication Critical patent/JP2006038293A/en
Application granted granted Critical
Publication of JP4317498B2 publication Critical patent/JP4317498B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of dispensing with a heater for regenerating a humidity absorbing member such as a desicant rotor or the like, and saving energy. <P>SOLUTION: As the heat is exchanged between a refrigerant of a first refrigerant circuit 40 and a refrigerant of a second refrigerant circuit 50 by a cascade condenser 33 of a refrigeration machine unit 30, and a second heat exchanger 16 is made to act as an evaporator by the second heating operation, the heat absorbed by the cooling operation of each refrigeration showcase 20 can be utilized in dehumidifying/cooling operation and heating operation, and further the heat absorbed by the second heat exchanger 16 can be utilized in the heating operation, when the heating load in a shop A is larger than the heat quantity of exhaust heat of the refrigeration showcase 20, thus the exhaust heat of the refrigeration showcase 20 conventionally discharged to the outside of the shop A, can be effectively utilized throughout the year, and the shortage of the heat quantity in the heating operation can be compensated by the second heat exchanger 16. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばスーパーマーケットやコンビニエンスストア等の冷凍・冷蔵ショーケースが設置された店舗内の空調を行う空気調和装置に関するものである。   The present invention relates to an air conditioner that performs air conditioning in a store in which a refrigeration / refrigeration showcase such as a supermarket or a convenience store is installed.

従来、この種の空気調和装置としては、第1の通風路内を流通する空気と熱交換する第1の熱交換器と、第2の通風路内を流通する空気と熱交換する第2の熱交換器と、第1の通風路内を流通する空気中の水分を吸着して第2の通風路内に放出する吸湿部材としてのデシカントロータと、圧縮機によって第1の熱交換器及び第2の熱交換器に冷媒を循環する冷媒回路とを備え、第1の熱交換器を流通する冷媒によって第1の通風路内を流通する空気を冷却して所定の空調空間に供給し、第2の熱交換器を流通する冷媒によって第2の通風路内を流通する空気を加熱してデシカントロータの水分を第2の通風路内に放出するようにしたものが知られている(例えば、特許文献1参照)。   Conventionally, this type of air conditioner includes a first heat exchanger that exchanges heat with air flowing in the first ventilation path, and a second heat exchanger that exchanges heat with air flowing in the second ventilation path. A heat exchanger, a desiccant rotor as a hygroscopic member that adsorbs moisture in the air flowing through the first ventilation path and discharges it into the second ventilation path, and the compressor and the first heat exchanger and the first A refrigerant circuit that circulates the refrigerant in the second heat exchanger, cools the air that circulates in the first ventilation path by the refrigerant that circulates through the first heat exchanger, and supplies the air to a predetermined air-conditioned space. It is known that the air flowing through the second ventilation path is heated by the refrigerant flowing through the heat exchanger 2 to release the moisture of the desiccant rotor into the second ventilation path (for example, Patent Document 1).

また、スーパーマーケットやコンビニエンスストア等の店舗内には、冷凍・冷蔵ショーケースが設置されており、冷凍・冷蔵ショーケースの蒸発器で蒸発した冷媒を店舗外に設置された冷凍機内の熱交換器において外気と熱交換することにより冷媒を凝縮させるようになっている。
特開2003−227677号公報
In addition, freezer / refrigerated showcases are installed in stores such as supermarkets and convenience stores, and the refrigerant evaporated in the freezer / refrigerator showcase evaporator is installed in heat exchangers in refrigerators installed outside the store. The refrigerant is condensed by exchanging heat with the outside air.
JP 2003-227777 A

しかしながら、従来の空気調和装置では、第1の熱交換器と熱交換される第1の通風路を流通する空気はデシカントロータによって除湿されているため、第1の熱交換器は顕熱のみの熱交換となり、デシカントロータを再生するために必要な第2の通風路内の空気を加熱するための熱量が不足する。このため、別途加熱ヒータを設ける必要があり、消費電力量が多くなるという問題点があった。   However, in the conventional air conditioner, since the air flowing through the first ventilation path that exchanges heat with the first heat exchanger is dehumidified by the desiccant rotor, the first heat exchanger has only sensible heat. Heat exchange is performed, and the amount of heat for heating the air in the second ventilation path necessary for regenerating the desiccant rotor is insufficient. For this reason, it is necessary to provide a separate heater, and there is a problem that the amount of power consumption increases.

また、ショーケース用の熱交換器において冷媒が放出する熱は外部に排出されており、排熱が有効に利用されていないという問題点があった。   Further, the heat released from the refrigerant in the heat exchanger for showcase is discharged to the outside, and there is a problem that the exhaust heat is not effectively used.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、デシカントロータ等の吸湿部材を再生する加熱ヒータを必要とすることなく、省エネルギー化を図ることのできる空気調和装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an air conditioner that can save energy without requiring a heater for regenerating a moisture absorbing member such as a desiccant rotor. Is to provide.

本発明は前記目的を達成するために、第1の通風路内を流通する空気と熱交換する第1の熱交換器と、第2の通風路内を流通する空気と熱交換する第2の熱交換器と、第1の通風路内を流通する空気中の水分を吸着して第2の通風路内に放出する吸湿部材と、第1の圧縮機によって第1の熱交換器及び第2の熱交換器に冷媒を循環する第1の冷媒回路とを備えた空気調和装置において、他の冷凍機器の蒸発器に第2の圧縮機から吐出した冷媒を膨張手段を介して流通させて第2の圧縮機に吸入する第2の冷媒回路と、第1の冷媒回路の第1の圧縮機に吸入される低温側冷媒と第2の冷媒回路の第2の圧縮機から吐出される高温側冷媒とを熱交換する第3の熱交換器と、第1の圧縮機から吐出する冷媒を膨張手段を介さずに第2の熱交換器に流通させ、第2の熱交換器から吐出する冷媒の一部を膨張手段を介して第1の熱交換器に流通させるとともに、他の冷媒を第1の熱交換器に流通させずに膨張手段を介して第3の熱交換器に流通させることにより第1の熱交換器によって第1の通風路を流通する空気を冷却する除湿冷房運転用冷媒流通経路と、第1の圧縮機から吐出する冷媒を膨張手段を介さずに第2の熱交換器に流通させ、第2の熱交換器から吐出する冷媒を膨張手段を介さずに第1の熱交換器に流通させ、第1の熱交換器から吐出する冷媒を膨張手段を介して第3の熱交換器に流通させることにより第1の熱交換器によって第1の通風路を流通する空気を加熱する第1の暖房運転用冷媒流通経路と、第1の圧縮機から吐出する冷媒を膨張手段を介さずに第1の熱交換器に流通させ、第1の熱交換器から吐出する冷媒の一部を膨張手段を介して第2の熱交換器に流通させるとともに、他の冷媒を第2の熱交換器に流通させずに膨張手段を介して第3の熱交換器に流通させることにより第1の熱交換器によって第1の通風路を流通する空気を加熱する第2の暖房運転用冷媒流通経路と、各冷媒流通経路を切換える切換手段とを備えている。   In order to achieve the above object, the present invention provides a first heat exchanger for exchanging heat with air flowing in the first ventilation path, and a second for exchanging heat with air flowing in the second ventilation path. A heat exchanger, a moisture absorbing member that adsorbs moisture in the air flowing through the first ventilation path and releases it into the second ventilation path, and the first compressor and the second by the first compressor. In the air conditioner including the first refrigerant circuit for circulating the refrigerant to the heat exchanger, the refrigerant discharged from the second compressor is circulated through the expansion means to the evaporator of the other refrigeration equipment. The second refrigerant circuit sucked into the second compressor, the low-temperature side refrigerant sucked into the first compressor of the first refrigerant circuit, and the high-temperature side discharged from the second compressor of the second refrigerant circuit The third heat exchanger that exchanges heat with the refrigerant and the refrigerant discharged from the first compressor flow to the second heat exchanger without passing through the expansion means. And a part of the refrigerant discharged from the second heat exchanger is circulated to the first heat exchanger via the expansion means, and the expansion means is not circulated to the first heat exchanger. A refrigerant flow path for dehumidifying and cooling operation for cooling the air flowing through the first ventilation path by the first heat exchanger and the refrigerant discharged from the first compressor Is passed through the second heat exchanger without passing through the expansion means, and the refrigerant discharged from the second heat exchanger is passed through the first heat exchanger without going through the expansion means. A first refrigerant flow path for heating operation that heats the air flowing through the first ventilation path by the first heat exchanger by causing the refrigerant discharged from the refrigerant to flow to the third heat exchanger via the expansion means; The refrigerant discharged from the first compressor flows to the first heat exchanger without going through the expansion means. And a part of the refrigerant discharged from the first heat exchanger is circulated to the second heat exchanger via the expansion means, and the expansion means is not circulated to the second heat exchanger. The second heat-generating operation refrigerant flow path for heating the air flowing through the first ventilation path by the first heat exchanger by switching to the third heat exchanger, and switching for switching each refrigerant flow path Means.

これにより、第3の熱交換器において第1の冷媒回路の低温側冷媒と第2の冷媒回路の高温側冷媒が熱交換されるとともに、切換手段によって第2の暖房運転用冷媒流通経路に切換えることにより、第2の熱交換器において第1の冷媒回路の低温側冷媒が第2の通風路を流通する空気と熱交換されることから、第2の通風路内の吸湿部材の水分を第2の通風路内に放出するための熱量及び第1の通風路を流通する空気を加熱するための熱量が第3の熱交換器を介して他の冷凍機器から供給されるとともに、空調空間の暖房負荷が他の冷凍機器から供給された熱量よりも大きい場合には第2の熱交換器が蒸発器として作用し、第2及び第3の熱交換器によって吸収された熱が第1の熱交換器において第1の冷媒回路の高温側冷媒と第1の通風路を流通する空気との熱交換に利用される。   Thereby, in the 3rd heat exchanger, while the low temperature side refrigerant | coolant of a 1st refrigerant circuit and the high temperature side refrigerant | coolant of a 2nd refrigerant circuit are heat-exchanged, it switches to the 2nd refrigerant | coolant flow path for heating operation by a switching means. As a result, in the second heat exchanger, the low-temperature side refrigerant in the first refrigerant circuit is heat-exchanged with the air flowing through the second ventilation path, so that moisture in the moisture absorption member in the second ventilation path is removed from the second heat exchanger. The amount of heat for releasing into the second ventilation path and the amount of heat for heating the air flowing through the first ventilation path are supplied from other refrigeration equipment via the third heat exchanger, When the heating load is larger than the amount of heat supplied from other refrigeration equipment, the second heat exchanger acts as an evaporator, and the heat absorbed by the second and third heat exchangers is the first heat. High temperature side refrigerant and first ventilation path of first refrigerant circuit in exchanger It is used for heat exchange with the air flowing through.

また、第1の通風路内を流通する空気と熱交換する第1の熱交換器と、第2の通風路内を流通する空気と熱交換する第2の熱交換器と、第1の通風路内を流通する空気中の水分を吸着して第2の通風路内に放出する吸湿部材と、第1の圧縮機によって第1の熱交換器及び第2の熱交換器に冷媒を循環する冷媒回路とを備えた空気調和装置において、前記冷媒回路に他の冷凍機器の蒸発器及び第2の圧縮機を接続するとともに、第1及び第2の圧縮機から吐出される冷媒を第1の熱交換器、第2の熱交換器及び蒸発器を流通するように構成し、第1及び第2の圧縮機から吐出する冷媒を膨張手段を介さずに第2の熱交換器に流通させ、第2の熱交換器から吐出する冷媒の一部を膨張手段を介して第1の熱交換器に流通させるとともに、他の冷媒を第1の熱交換器に流通させずに膨張手段を介して蒸発器に流通させることにより第1の熱交換器によって第1の通風路を流通する空気を冷却する除湿冷房運転用冷媒流通経路と、第1の圧縮機によって冷媒を循環させることなく、第2の圧縮機から吐出する冷媒を膨張手段を介さずに第2の熱交換器に流通させ、第2の熱交換器から吐出する冷媒を膨張手段を介さずに第1の熱交換器に流通させ、第1の熱交換器から吐出する冷媒を膨張手段を介して蒸発器に流通させることにより第1の熱交換器によって第1の通風路を流通する空気を加熱する第1の暖房運転用冷媒流通経路と、第1及び第2の圧縮機から吐出する冷媒を膨張手段を介さずに第1の熱交換器に流通させ、第1の熱交換器から吐出する冷媒の一部を膨張手段を介して第2の熱交換器に流通させるとともに、他の冷媒を第2の熱交換器に流通させずに膨張手段を介して蒸発器に流通させることにより第1の熱交換器によって第1の通風路を流通する空気を加熱する第2の暖房運転用冷媒流通経路と、各冷媒流通経路を切換える切換手段とを備えている。   In addition, a first heat exchanger that exchanges heat with air flowing in the first ventilation path, a second heat exchanger that exchanges heat with the air flowing in the second ventilation path, and the first ventilation Refrigerant is circulated to the first heat exchanger and the second heat exchanger by a first compressor and a moisture absorbing member that adsorbs moisture in the air flowing through the passage and releases it into the second ventilation passage. In an air conditioner including a refrigerant circuit, an evaporator and a second compressor of another refrigeration device are connected to the refrigerant circuit, and a refrigerant discharged from the first and second compressors is supplied to the first refrigerant circuit. The heat exchanger, the second heat exchanger, and the evaporator are configured to circulate, and the refrigerant discharged from the first and second compressors is circulated to the second heat exchanger without the expansion means, While circulating a part of the refrigerant discharged from the second heat exchanger to the first heat exchanger via the expansion means, other refrigerants A refrigerant flow path for dehumidifying and cooling operation that cools the air flowing through the first ventilation path by the first heat exchanger by flowing through the expansion means without passing through the first heat exchanger; The refrigerant discharged from the second compressor is circulated to the second heat exchanger without passing through the expansion means without circulating the refrigerant by the first compressor and discharged from the second heat exchanger. Is passed through the first heat exchanger without passing through the expansion means, and the refrigerant discharged from the first heat exchanger is passed through the evaporator through the expansion means, so that the first heat exchanger causes the first heat exchanger to pass through the first heat exchanger. A first heating operation refrigerant circulation path for heating the air flowing through the ventilation path, and a refrigerant discharged from the first and second compressors to the first heat exchanger without passing through the expansion means; A part of the refrigerant discharged from the heat exchanger of the second is passed through the expansion means to the second Air flowing through the first ventilation path by the first heat exchanger by allowing the refrigerant to flow through the exchanger, and not through the second heat exchanger but through the expansion means via the expansion means. The second heating operation refrigerant circulation path for heating the refrigerant and switching means for switching each refrigerant circulation path.

これにより、他の冷凍機器の蒸発器において冷媒回路の低温側冷媒が熱交換されるとともに、切換手段によって第2の暖房運転用冷媒流通経路に切換えることにより、第2の熱交換器において冷媒回路の低温側冷媒が第2の通風路を流通する空気と熱交換されることから、第2の通風路内の吸湿部材の水分を第2の通風路内に放出するための熱量及び第1の通風路を流通する空気を加熱するための熱量が他の冷凍機器の蒸発器から供給されるとともに、空調空間の暖房負荷が他の冷凍機器から供給された熱量よりも大きい場合には第2の熱交換器が蒸発器として作用し、第2の熱交換器及び他の冷凍機器の蒸発器によって吸収された熱が第1の熱交換器において冷媒回路の高温側冷媒と第1の通風路を流通する空気との熱交換に利用される。   Thereby, the low-temperature side refrigerant of the refrigerant circuit is heat-exchanged in the evaporator of the other refrigeration equipment, and the refrigerant circuit in the second heat exchanger is switched by switching to the second heating operation refrigerant flow path by the switching means. Since the low-temperature side refrigerant is heat-exchanged with the air flowing through the second ventilation path, the amount of heat for releasing moisture of the moisture absorbing member in the second ventilation path into the second ventilation path and the first When the amount of heat for heating the air flowing through the ventilation path is supplied from the evaporator of the other refrigeration equipment, and the heating load of the air-conditioned space is larger than the amount of heat supplied from the other refrigeration equipment, the second The heat exchanger acts as an evaporator, and the heat absorbed by the second heat exchanger and the evaporator of the other refrigeration equipment passes through the high temperature side refrigerant and the first ventilation path of the refrigerant circuit in the first heat exchanger. Used for heat exchange with circulating air.

本発明によれば、他の冷凍機器の冷却運転によって吸収した熱を除湿冷房運転及び暖房運転に利用することができるとともに、空調空間の暖房負荷が他の冷凍機器の排熱の熱量よりも大きい場合には第2の熱交換器によって吸収した熱を暖房運転に利用することができるので、従来、空調空間外に排出されていた他の冷凍機器の排熱を一年を通じて有効利用することができるとともに、暖房運転時の熱量の不足分を第2の熱交換器によって補うことができる。   According to the present invention, the heat absorbed by the cooling operation of the other refrigeration equipment can be used for the dehumidifying cooling operation and the heating operation, and the heating load of the air-conditioned space is larger than the heat quantity of the exhaust heat of the other refrigeration equipment. In some cases, the heat absorbed by the second heat exchanger can be used for heating operation, so that the exhaust heat of other refrigeration equipment that has been exhausted outside the air-conditioned space can be effectively used throughout the year. In addition, the second heat exchanger can compensate for the shortage of heat during heating operation.

図1乃至図5は本発明の一実施形態を示すもので、図1は空気調和装置の冷媒回路図、図2は制御系を示すブロック図、図3は除湿冷房運転時の冷媒の流路を示す冷媒回路図、図4は第1の暖房運転時の冷媒の流路を示す冷媒回路図、図5は第2の暖房運転時の冷媒の流路を示す冷媒回路図である。   1 to 5 show an embodiment of the present invention. FIG. 1 is a refrigerant circuit diagram of an air conditioner, FIG. 2 is a block diagram showing a control system, and FIG. 3 is a refrigerant flow path during dehumidifying and cooling operation. FIG. 4 is a refrigerant circuit diagram showing the refrigerant flow path during the first heating operation, and FIG. 5 is a refrigerant circuit diagram showing the refrigerant flow path during the second heating operation.

この空気調和装置は、店舗A内の空調を行う空調ユニット10と、店舗A内に設置された他の冷凍装置としての複数の冷蔵ショーケース20と、空調ユニット10及び各冷蔵ショーケース20のぞれぞれの熱源となる冷凍機ユニット30と、空調ユニット10側の冷凍サイクルを構成する第1の冷媒回路40と、冷蔵ショーケース20側の冷凍サイクルを構成する第2の冷媒回路50と、空調ユニット10及び各冷蔵ショーケース20の温度または運転等の制御を行う制御部60とから構成されている。   The air conditioner includes an air conditioning unit 10 that performs air conditioning in the store A, a plurality of refrigerated showcases 20 as other refrigeration devices installed in the store A, and the air conditioning unit 10 and each refrigerated showcase 20. A refrigerator unit 30 serving as each heat source, a first refrigerant circuit 40 constituting a refrigeration cycle on the air conditioning unit 10 side, a second refrigerant circuit 50 constituting a refrigeration cycle on the refrigerated showcase 20 side, It is comprised from the control part 60 which controls the temperature of the air-conditioning unit 10 and each refrigerated showcase 20, or a driving | operation.

空調ユニット10は、店舗Aの天井裏または店舗Aに隣接して設けられたバックヤードまたは機械室内に設置されたユニット本体11と、除湿冷房時に店舗A内の空気を除湿する吸湿部材としてのデシカントロータ12と、店舗A内の空気を流通させる空調用送風機13と、店舗A内の空気を冷却または加熱する第1の熱交換器14と、店舗A外の空気を流通させる再生用送風機15と、店舗A外の空気を加熱するための第2の熱交換器16とを備えている。   The air conditioning unit 10 includes a unit main body 11 installed in the back yard or machine room adjacent to the ceiling of the store A or adjacent to the store A, and a desiccant as a moisture absorbing member that dehumidifies the air in the store A during dehumidifying and cooling. The rotor 12, the air conditioner blower 13 that circulates the air in the store A, the first heat exchanger 14 that cools or heats the air in the store A, and the regeneration fan 15 that circulates the air outside the store A, And a second heat exchanger 16 for heating the air outside the store A.

ユニット本体11は、その内部を仕切ることにより並べて設けられた第1の通風路11a及び第2の通風路11bを備え、第1の通風路11aの両端部及び第2の通風路11bの両端部にはそれぞれダクトが接続される開口部が設けられている。また、第1の通風路11aの両端部は店舗A内にそれぞれ連通するとともに、第2の通風路11bの両端部は店舗A外にそれぞれ連通するようになっている。   The unit body 11 includes a first ventilation path 11a and a second ventilation path 11b provided side by side by partitioning the inside thereof, and both end portions of the first ventilation path 11a and both end portions of the second ventilation path 11b. Each is provided with an opening to which a duct is connected. Further, both end portions of the first ventilation path 11a communicate with each other in the store A, and both end portions of the second ventilation path 11b communicate with each other outside the store A.

デシカントロータ12は、例えばシリカゲル、ゼオライト等の吸湿剤を含んだエレメント12aを円板状に形成した部材からなり、第1の通風路11a及び第2の通風路11bに亘って設けられている。また、デシカントロータ12は、図示しないモータによってエレメント12aを径方向の中心を軸に回転させることにより、第1の通風路11a内と第2の通風路11b内との間をエレメント12aが回転しながら移動するようになっている。   The desiccant rotor 12 is made of a member in which an element 12a containing a hygroscopic agent such as silica gel or zeolite is formed in a disk shape, and is provided across the first ventilation path 11a and the second ventilation path 11b. Further, the desiccant rotor 12 rotates the element 12a between the first ventilation path 11a and the second ventilation path 11b by rotating the element 12a around the radial center by a motor (not shown). While moving.

空調用送風機13は、第1の通風路11a内に設置され、第1の通風路11aの一端側から他端側に向かって空気を流通させることにより店舗A内の空気を循環させるようになっている。   The air conditioner blower 13 is installed in the first ventilation path 11a, and circulates the air in the store A by circulating air from one end side to the other end side of the first ventilation path 11a. ing.

第1の熱交換器14は、第1の通風路11a内のデシカントロータ12の下流側に設けられ、デシカントロータ12によって除湿された店舗A内の空気を加熱または冷却するようになっている。   The first heat exchanger 14 is provided on the downstream side of the desiccant rotor 12 in the first ventilation path 11a, and heats or cools the air in the store A dehumidified by the desiccant rotor 12.

再生用送風機15は、第2の通風路11b内に設置され、第1の通風路11a内の空気の流れ方向と逆向きに店舗A外の空気を第2の通風路11b内に流通させるようになっている。また、再生用送風機15は送風量を変更可能に構成されている。   The regenerative blower 15 is installed in the second ventilation path 11b, and distributes the air outside the store A into the second ventilation path 11b in the direction opposite to the air flow direction in the first ventilation path 11a. It has become. Further, the regenerative blower 15 is configured to be able to change the blown amount.

第2の熱交換器16は、第2の通風路11b内のデシカントロータ12の上流側に設けられ、第2の通風路11bを流通する空気を加熱または冷却するようになっている。   The second heat exchanger 16 is provided on the upstream side of the desiccant rotor 12 in the second ventilation path 11b, and heats or cools the air flowing through the second ventilation path 11b.

各冷蔵ショーケース20は、前面を開放したオープンショーケースや前面をガラス扉によって開閉するリーチインショーケース等からなり、それぞれの冷蔵ショーケース20の内部には第2の冷媒回路50に接続された蒸発器21が設けられている。また、それぞれの冷蔵ショーケース20内部には各冷蔵ショーケース20内の空気と蒸発器21内の冷媒とをそれぞれ熱交換させる蒸発器用送風機22が設けられている。   Each refrigerated showcase 20 includes an open showcase with the front opened, a reach-in showcase that opens and closes the front with a glass door, and the like. Each refrigerated showcase 20 has an evaporation connected to the second refrigerant circuit 50 inside. A vessel 21 is provided. Further, an evaporator blower 22 is provided in each refrigerated showcase 20 to exchange heat between the air in each refrigerated showcase 20 and the refrigerant in the evaporator 21.

冷凍機ユニット30は、第1の冷媒回路40に接続された第1の圧縮機31と、第2の冷媒回路50に接続された第2の圧縮機32と、第3の熱交換器としての周知のカスケードコンデンサ33とを備え、カスケードコンデンサ33によって第1の冷媒回路40の冷媒と第2の冷媒回路50の冷媒とを熱交換させるようになっている。また、カスケードコンデンサ33の第2の冷媒回路50側の吐出側には、カスケードコンデンサ33の第2の冷媒回路50側の凝縮圧力が所定の圧力以下にならないように調整可能な凝縮圧力調整弁34が設けられている。また、凝縮圧力調整弁34の吐出側には液化した冷媒を一時的に貯蔵する受液器35が設けられている。   The refrigerator unit 30 includes a first compressor 31 connected to the first refrigerant circuit 40, a second compressor 32 connected to the second refrigerant circuit 50, and a third heat exchanger. A well-known cascade condenser 33 is provided, and the cascade condenser 33 exchanges heat between the refrigerant in the first refrigerant circuit 40 and the refrigerant in the second refrigerant circuit 50. Further, on the discharge side of the cascade condenser 33 on the second refrigerant circuit 50 side, a condensation pressure adjustment valve 34 that can be adjusted so that the condensation pressure on the second refrigerant circuit 50 side of the cascade condenser 33 does not become a predetermined pressure or less. Is provided. Further, a liquid receiver 35 for temporarily storing the liquefied refrigerant is provided on the discharge side of the condensing pressure adjusting valve 34.

第1の冷媒回路40は、図1に示すように、第1の熱交換器14、第2の熱交換器16、第1の圧縮機31、カスケードコンデンサ33、四方弁41、第1、第2、第3、第4及び第5の電磁弁42a,42b,42c,42d,42e、第1、第2及び第3の膨張弁43a,43b,43cを備え、これらは冷媒流通用の配管によって接続されている。即ち、第1の圧縮機31の吐出側には四方弁41の第1の冷媒流通口が接続され、四方弁41の第2の冷媒流通口には第2の熱交換器16の一端側が接続されている。第2の熱交換器16の他端側には第1の熱交換器14の一端側が接続され、第1の熱交換器14の他端側には四方弁の第3の冷媒流通口が接続されている。このとき、第2の熱交換器16の他端側と第1の熱交換器14の一端側との間には第1の電磁弁42a及び第1の膨張弁43aがそれぞれ並列に設けられ、それぞれ並列に設けられた第1の電磁弁42a及び第1の膨張弁43aと第1の熱交換器14の一端側との間には第2の電磁弁42b及び第2の膨張弁43bがそれぞれ並列に設けられている。また、第1の電磁弁42a及び第1の膨張弁43aと第2の電磁弁42b及び第2の膨張弁43bとの間にはカスケードコンデンサ33の第1の冷媒回路40側の吸入側が接続され、カスケードコンデンサ33の吐出側には第1の圧縮機31の吸入側が接続されている。このとき、第1の電磁弁42a及び第1の膨張弁43aと第2の電磁弁42b及び第2の膨張弁43bとの間とカスケードコンデンサ33の第1の冷媒回路40側の吸入側との間には第3の電磁弁42cが設けられ、第3の電磁弁42cのカスケードコンデンサ33側には第3の膨張弁43cが設けられている。更に、四方弁41の第4の冷媒流通口と第1の圧縮機31の吸入側が接続され、その間には第4の電磁弁42dが設けられている。また、四方弁41の第4の冷媒流通口と第4の電磁弁42dとの間と第3の電磁弁42cと第3の膨張弁43cとの間が接続され、その間には第5の電磁弁42eが設けられている。   As shown in FIG. 1, the first refrigerant circuit 40 includes a first heat exchanger 14, a second heat exchanger 16, a first compressor 31, a cascade condenser 33, a four-way valve 41, a first, a first, 2, 3rd, 4th and 5th electromagnetic valves 42a, 42b, 42c, 42d, 42e, 1st, 2nd, and 3rd expansion valves 43a, 43b, 43c are provided, and these are provided by piping for refrigerant circulation. It is connected. That is, the first refrigerant flow port of the four-way valve 41 is connected to the discharge side of the first compressor 31, and one end side of the second heat exchanger 16 is connected to the second refrigerant flow port of the four-way valve 41. Has been. One end side of the first heat exchanger 14 is connected to the other end side of the second heat exchanger 16, and a third refrigerant flow port of a four-way valve is connected to the other end side of the first heat exchanger 14. Has been. At this time, a first electromagnetic valve 42a and a first expansion valve 43a are provided in parallel between the other end side of the second heat exchanger 16 and one end side of the first heat exchanger 14, respectively. Between the first electromagnetic valve 42a and the first expansion valve 43a provided in parallel with each other and one end side of the first heat exchanger 14, the second electromagnetic valve 42b and the second expansion valve 43b are respectively provided. It is provided in parallel. The suction side of the cascade condenser 33 on the first refrigerant circuit 40 side is connected between the first electromagnetic valve 42a and the first expansion valve 43a and the second electromagnetic valve 42b and the second expansion valve 43b. The suction side of the first compressor 31 is connected to the discharge side of the cascade condenser 33. At this time, between the first solenoid valve 42a and the first expansion valve 43a and the second solenoid valve 42b and the second expansion valve 43b and the suction side of the cascade condenser 33 on the first refrigerant circuit 40 side. A third electromagnetic valve 42c is provided between them, and a third expansion valve 43c is provided on the cascade capacitor 33 side of the third electromagnetic valve 42c. Further, the fourth refrigerant flow port of the four-way valve 41 and the suction side of the first compressor 31 are connected, and a fourth electromagnetic valve 42d is provided between them. Further, the fourth refrigerant flow port of the four-way valve 41 and the fourth electromagnetic valve 42d and the third electromagnetic valve 42c and the third expansion valve 43c are connected, and the fifth electromagnetic valve is interposed between them. A valve 42e is provided.

第2の冷媒回路50は、図1に示すように、各蒸発器21、第2の圧縮機32、カスケードコンデンサ33、凝縮圧力調整弁34、受液器35、複数の第6の電磁弁51及び複数の第4の膨張弁52を備え、これらは冷媒流通用の配管によって接続されている。即ち、第2の圧縮機32の吐出側にはカスケードコンデンサ33の第2の冷媒回路50側の吸入側が接続され、カスケードコンデンサ33の第2の冷媒回路50側の吐出側には受液器35の吸入側が接続されている。このとき、カスケードコンデンサ33の第2の冷媒回路50側の吐出側と受液器35の吸入側との間には凝縮圧力調整弁34が設けられている。受液器35の吐出側には各蒸発器21の吸入側がそれぞれ並列に接続され、各蒸発器21の吐出側には第2の圧縮機32の吸入側がそれぞれ並列に接続されている。このとき、受液器35の吐出側と各蒸発器21の吸入側との間には第6の電磁弁51がそれぞれ設けられ、各第6の電磁弁51の各蒸発器21側には第4の膨張弁52がそれぞれ設けられている。   As shown in FIG. 1, the second refrigerant circuit 50 includes each evaporator 21, a second compressor 32, a cascade condenser 33, a condensing pressure adjustment valve 34, a liquid receiver 35, and a plurality of sixth electromagnetic valves 51. And a plurality of fourth expansion valves 52, which are connected by a refrigerant circulation pipe. That is, the suction side of the cascade condenser 33 on the second refrigerant circuit 50 side is connected to the discharge side of the second compressor 32, and the receiver 35 is connected to the discharge side of the cascade condenser 33 on the second refrigerant circuit 50 side. The suction side is connected. At this time, a condensing pressure adjusting valve 34 is provided between the discharge side of the cascade condenser 33 on the second refrigerant circuit 50 side and the suction side of the liquid receiver 35. The suction side of each evaporator 21 is connected in parallel to the discharge side of the liquid receiver 35, and the suction side of the second compressor 32 is connected in parallel to the discharge side of each evaporator 21. At this time, a sixth solenoid valve 51 is provided between the discharge side of the liquid receiver 35 and the suction side of each evaporator 21, and the sixth solenoid valve 51 is provided on the evaporator 21 side of each sixth solenoid valve 51. Four expansion valves 52 are provided.

制御部60はマイクロコンピュータからなり、図2に示すように、デシカントロータ12、空調用送風機13、再生用送風機15、蒸発器用送風機22、第1の圧縮機31、第2の圧縮機32、四方弁41、第1、第2、第3、第4、第5及び第6の電磁弁42a,42b,42c,42d,42e,51及び運転切換スイッチ61が接続されている。   As shown in FIG. 2, the control unit 60 is composed of a microcomputer, and as shown in FIG. 2, the desiccant rotor 12, the air conditioner blower 13, the regeneration blower 15, the evaporator blower 22, the first compressor 31, the second compressor 32, and four-way The valve 41, the first, second, third, fourth, fifth and sixth electromagnetic valves 42a, 42b, 42c, 42d, 42e, 51 and the operation changeover switch 61 are connected.

以上のように構成された空気調和装置において、運転切換スイッチ61によって除湿冷房運転が選択されると、図3に示すように、制御部60はデシカントロータ12、空調用送風機13、再生用送風機15、蒸発器用送風機22、第1の圧縮機31及び第2の圧縮機32を運転する。また、制御部60は四方弁41の第1の冷媒流通口と第2の冷媒流通口を連通するとともに、第3の冷媒流通口と第4の冷媒流通口を連通し、第1、第3及び第4の電磁弁42a,42c,42dを開放して第2及び第5の電磁弁42b,42eを閉鎖する。これにより、第1の圧縮機31から吐出された冷媒は四方弁41を介して第2の熱交換器16に流通した後、一部の冷媒は第1の電磁弁42a及び第2の膨張弁43bを介して第1の熱交換器14に流通するとともに、他の冷媒は第1の電磁弁42a、第3の電磁弁42c及び第3の膨張弁43cを介してカスケードコンデンサ33に流通する。また、第1の熱交換器14から吐出した冷媒は四方弁41及び第4の電磁弁42dを介して第1の圧縮機31に吸入されるとともに、カスケードコンデンサ33から吐出した冷媒も第1の圧縮機31に吸入される。また、第2の圧縮機32から吐出された冷媒は、カスケードコンデンサ33を流通した後、第6の電磁弁51及び第4の膨張弁52を介して各蒸発器21に流通し、第2の圧縮機32に吸入される。   In the air conditioner configured as described above, when the dehumidifying and cooling operation is selected by the operation changeover switch 61, as shown in FIG. 3, the control unit 60 performs the desiccant rotor 12, the air-conditioning blower 13, and the regeneration blower 15. The evaporator blower 22, the first compressor 31, and the second compressor 32 are operated. Further, the control unit 60 communicates the first refrigerant flow port and the second refrigerant flow port of the four-way valve 41 and also communicates the third refrigerant flow port and the fourth refrigerant flow port, and the first and third refrigerant flow ports. The fourth solenoid valves 42a, 42c and 42d are opened, and the second and fifth solenoid valves 42b and 42e are closed. Thus, after the refrigerant discharged from the first compressor 31 flows to the second heat exchanger 16 via the four-way valve 41, a part of the refrigerant is the first electromagnetic valve 42a and the second expansion valve. The refrigerant flows through the first heat exchanger 14 through 43b, and the other refrigerant flows through the first condenser valve 42a, the third solenoid valve 42c, and the third expansion valve 43c to the cascade condenser 33. The refrigerant discharged from the first heat exchanger 14 is sucked into the first compressor 31 via the four-way valve 41 and the fourth electromagnetic valve 42d, and the refrigerant discharged from the cascade condenser 33 is also the first refrigerant. It is sucked into the compressor 31. The refrigerant discharged from the second compressor 32 circulates through the cascade condenser 33 and then circulates through each of the evaporators 21 via the sixth electromagnetic valve 51 and the fourth expansion valve 52. It is sucked into the compressor 32.

このとき、第1の電磁弁42aと第1の膨張弁43a、第2の電磁弁42bと第2の膨張弁43bとはそれぞれ並列に第1の冷媒回路40に接続され、電磁弁を開放することにより冷媒は電磁弁及び膨張弁にそれぞれ流通可能となる。しかし、開放された電磁弁は膨張弁と比較して流通する冷媒の圧力損失が著しく小さくなるために、流通する冷媒の殆どは膨張弁を流通することなく電磁弁に流通する。   At this time, the first electromagnetic valve 42a and the first expansion valve 43a, the second electromagnetic valve 42b and the second expansion valve 43b are connected in parallel to the first refrigerant circuit 40, and the electromagnetic valve is opened. As a result, the refrigerant can flow through the electromagnetic valve and the expansion valve. However, since the pressure loss of the refrigerant flowing through the opened solenoid valve is significantly smaller than that of the expansion valve, most of the circulating refrigerant flows through the solenoid valve without flowing through the expansion valve.

このようにして、空調ユニット10では、空調用送風機13によって店舗A内から第1の通風路11aに流通させた還気(RA)をデシカントロータ12によって除湿し、除湿した空気を第1の熱交換器14と熱交換させることにより冷却した後に給気(SA)として店舗A内に供給する。また、再生用送風機15によって店舗A外から第2の通風路11bに流通させた外気(OA)を第2の熱交換器16と熱交換させて加熱し、加熱した空気をデシカントロータ12に接触させることによりデシカントロータ12のエレメント12aに吸着した水分を蒸発させる。これにより、デシカントロータ12のエレメント12aが再生され、再生に利用されて水分を吸収した空気は排気(EA)として店舗A外に排出される。また、各冷蔵ショーケース20では、冷蔵ショーケース20内の空気を蒸発器用送風機22によって循環させ、循環する空気を蒸発器21によって冷却することにより冷蔵ショーケース20内の商品が冷却される。   In this manner, in the air conditioning unit 10, the return air (RA) circulated from the store A to the first ventilation path 11a by the air conditioner blower 13 is dehumidified by the desiccant rotor 12, and the dehumidified air is first heated. After cooling by exchanging heat with the exchanger 14, the air is supplied into the store A as supply air (SA). Further, the outside air (OA) circulated from the outside of the store A to the second ventilation path 11b by the regeneration fan 15 is heated by exchanging heat with the second heat exchanger 16, and the heated air contacts the desiccant rotor 12. As a result, the moisture adsorbed on the element 12a of the desiccant rotor 12 is evaporated. As a result, the element 12a of the desiccant rotor 12 is regenerated, and the air that has been used for regeneration and absorbed moisture is discharged outside the store A as exhaust (EA). In each refrigerated showcase 20, the air in the refrigerated showcase 20 is circulated by the evaporator blower 22, and the circulating air is cooled by the evaporator 21, thereby cooling the products in the refrigerated showcase 20.

このとき、冷凍機ユニット30のカスケードコンデンサ33では、第1の冷媒回路40の冷媒と第2の冷媒回路50の冷媒とが熱交換し、第1の冷媒回路40の冷媒は蒸発するとともに、第2の冷媒回路50の冷媒は凝縮する。これにより、第1の冷媒回路40の冷媒は第1の熱交換器14及びカスケードコンデンサ33によって第2の通風路11bを流通する空気を加熱するために必要な熱を吸収し、従来外気に排出されていた第2の冷媒回路50の排熱が有効利用される。   At this time, in the cascade capacitor 33 of the refrigerator unit 30, the refrigerant in the first refrigerant circuit 40 and the refrigerant in the second refrigerant circuit 50 exchange heat, and the refrigerant in the first refrigerant circuit 40 evaporates, The refrigerant in the second refrigerant circuit 50 condenses. As a result, the refrigerant in the first refrigerant circuit 40 absorbs heat necessary for heating the air flowing through the second ventilation path 11b by the first heat exchanger 14 and the cascade condenser 33, and discharges it to the outside in the past. The exhaust heat of the second refrigerant circuit 50 that has been used is effectively used.

また、冷蔵ショーケース20の前面開口部から冷蔵ショーケース20の前方の通路に冷気が下降することにより生ずるコールドエイルを防止するためには、高温・低湿の給気(SA)を冷蔵ショーケース20の下部から通路に向かって吐出する。これにより、冷蔵ショーケース20から下降する冷気と給気(SA)とが混合し、コールドエイルが解消される。   In addition, in order to prevent cold aisles caused by the cool air descending from the front opening of the refrigerated showcase 20 to the passage in front of the refrigerated showcase 20, the high-temperature and low-humidity supply air (SA) is supplied to the refrigerated showcase 20. It discharges toward the passage from the lower part. Thereby, the cold air descending from the refrigerated showcase 20 and the supply air (SA) are mixed, and the cold ale is eliminated.

次に、運転切換スイッチ61によって暖房運転が選択され、例えば店舗A内の温度を検出することにより得られる店舗A内の暖房負荷がカスケードコンデンサ33の第2の冷媒回路50側から放出される熱量よりも小さい場合には第1の暖房運転として、図4に示すように、制御部60は空調用送風機13、再生用送風機15、蒸発器用送風機22、第1の圧縮機31及び第2の圧縮機32を運転し、デシカントロータ12を停止する。また、制御部60は四方弁41の第1の冷媒流通口と第2の冷媒流通口を連通するとともに、第3の冷媒流通口と第4の冷媒流通口を連通し、第1、第2及び第5の電磁弁42a,42b,42eを開放して第3及び第4の電磁弁42c,42dを閉鎖する。これにより、第1の圧縮機31から吐出された冷媒は、四方弁41を介して第2の熱交換器16に流通した後、第1の電磁弁42a及び第2の電磁弁42bを介して第1の熱交換器14に流通する。また、第1の熱交換器14から吐出した冷媒は四方弁41、第5の電磁弁42e及び第3の膨張弁43cを介してカスケードコンデンサ33に流通し、カスケードコンデンサ33から吐出した冷媒は第1の圧縮機31に吸入される。また、第2の圧縮機32から吐出された冷媒は、カスケードコンデンサ33を流通した後、第6の電磁弁51及び第4の膨張弁52を介して各蒸発器21に流通し、第2の圧縮機32に吸入される。   Next, the heating operation is selected by the operation changeover switch 61, and the amount of heat released from the second refrigerant circuit 50 side of the cascade condenser 33 by the heating load in the store A obtained by detecting the temperature in the store A, for example. If it is smaller than the first heating operation, as shown in FIG. 4, the controller 60 controls the air conditioner blower 13, the regeneration blower 15, the evaporator blower 22, the first compressor 31, and the second compression. The machine 32 is operated and the desiccant rotor 12 is stopped. In addition, the control unit 60 communicates the first refrigerant flow port and the second refrigerant flow port of the four-way valve 41 and also communicates the third refrigerant flow port and the fourth refrigerant flow port, and the first and second refrigerant flow ports. The fifth electromagnetic valves 42a, 42b and 42e are opened, and the third and fourth electromagnetic valves 42c and 42d are closed. As a result, the refrigerant discharged from the first compressor 31 flows to the second heat exchanger 16 via the four-way valve 41, and then passes through the first electromagnetic valve 42a and the second electromagnetic valve 42b. It distributes to the first heat exchanger 14. The refrigerant discharged from the first heat exchanger 14 flows to the cascade condenser 33 via the four-way valve 41, the fifth electromagnetic valve 42e, and the third expansion valve 43c, and the refrigerant discharged from the cascade condenser 33 is the first refrigerant. 1 is sucked into one compressor 31. The refrigerant discharged from the second compressor 32 circulates through the cascade condenser 33 and then circulates through each of the evaporators 21 via the sixth electromagnetic valve 51 and the fourth expansion valve 52. It is sucked into the compressor 32.

このようにして、空調ユニット10では、空調用送風機13によって店舗A内から第1の通風路11aに流通させた還気(RA)を第1の熱交換器14と熱交換させることにより加熱した後に給気(SA)として店舗A内に供給する。また、再生用送風機15によって店舗A外から第2の通風路11bに流通させた外気(OA)を第2の熱交換器16と熱交換させて加熱し、加熱した空気を排気(EA)として店舗A外に排出する。また、各冷蔵ショーケース20では、冷蔵ショーケース20内の空気を蒸発器用送風機22によって循環させ、循環する空気を蒸発器21によって冷却することにより冷蔵ショーケース20内の商品が冷却される。   Thus, in the air conditioning unit 10, the return air (RA) circulated from the store A to the first ventilation path 11 a by the air conditioning blower 13 is heated by exchanging heat with the first heat exchanger 14. Later, it is supplied into the store A as an air supply (SA). Further, the outside air (OA) circulated from outside the store A to the second ventilation path 11b by the regeneration fan 15 is heated by exchanging heat with the second heat exchanger 16, and the heated air is used as exhaust (EA). Discharge outside store A. In each refrigerated showcase 20, the air in the refrigerated showcase 20 is circulated by the evaporator blower 22, and the circulating air is cooled by the evaporator 21, thereby cooling the products in the refrigerated showcase 20.

このとき、冷凍機ユニット30のカスケードコンデンサ33では、第1の冷媒回路40の冷媒と第2の冷媒回路50の冷媒とが熱交換し、第1の冷媒回路40の冷媒が蒸発するとともに、第2の冷媒回路50の冷媒が凝縮する。これにより、第1の冷媒回路40の冷媒はカスケードコンデンサ33によって第1の通風路40を流通する空気を加熱するために必要な熱を第2の冷媒回路50から吸熱し、従来外気に排出されていた第2の冷媒回路50の排熱が有効利用される。店舗A内の暖房負荷が小さい場合には、再生用送風機15の送風量を増加させることにより第1の熱交換器14の交換熱量を減少させ、カスケードコンデンサ33において吸収した熱を第2の熱交換器16を中心に放熱させて第2の通風路11bを流通する空気中に排熱として放出することが可能となる。店舗A内の暖房負荷が大きい場合には、再生用送風機15の送風量を低下させることにより第2の熱交換器16の交換熱量を減少させてカスケードコンデンサ33において吸収した熱を第1の熱交換器14を中心に放熱させることが可能となる。更に、暖房運転時にデシカントロータ12を運転することにより、店舗A内の暖房運転を行うとともに、除湿を行うことも可能である。   At this time, in the cascade condenser 33 of the refrigerator unit 30, the refrigerant in the first refrigerant circuit 40 and the refrigerant in the second refrigerant circuit 50 exchange heat, the refrigerant in the first refrigerant circuit 40 evaporates, The refrigerant in the second refrigerant circuit 50 condenses. As a result, the refrigerant in the first refrigerant circuit 40 absorbs heat necessary for heating the air flowing through the first ventilation path 40 from the second refrigerant circuit 50 by the cascade condenser 33 and is discharged to the outside air conventionally. The exhaust heat of the second refrigerant circuit 50 that has been used is effectively used. When the heating load in the store A is small, the amount of exchange heat of the first heat exchanger 14 is decreased by increasing the amount of air blown by the regeneration fan 15, and the heat absorbed in the cascade condenser 33 is second heat. It becomes possible to release heat as exhaust heat into the air flowing through the second ventilation path 11b by dissipating heat around the exchanger 16. When the heating load in the store A is large, the amount of heat exchanged by the second heat exchanger 16 is reduced by reducing the amount of air blown by the regeneration fan 15, and the heat absorbed in the cascade condenser 33 is reduced to the first heat. Heat can be radiated around the exchanger 14. Furthermore, by operating the desiccant rotor 12 during the heating operation, it is possible to perform the heating operation in the store A and to perform dehumidification.

また、運転切換スイッチ61によって暖房運転が選択され、例えば店舗A内の温度を検出することにより得られる店舗A内の暖房負荷がカスケードコンデンサ33の第2の冷媒回路50側から放出される熱量よりも大きい場合には第2の暖房運転として、図5に示すように、制御部60は空調用送風機13、再生用送風機15、蒸発器用送風機22、第1の圧縮機31及び第2の圧縮機32を運転し、デシカントロータ12を停止する。また、制御部60は四方弁41の第1の冷媒流通口と第4の冷媒流通口を連通するとともに、第2の冷媒流通口と第3の冷媒流通口を連通し、第2、第3及び第4の電磁弁42b,42c,42dを開放して第1及び第5の電磁弁42a,42eを閉鎖する。これにより、第1の圧縮機31から吐出された冷媒は、四方弁41を介して第1の熱交換器14に流通した後、一部の冷媒は第2の電磁弁42b及び第1の膨張弁43aを介して第2の熱交換器16に流通するとともに、他の冷媒は第2の電磁弁42b、第3の電磁弁42c及び第3の膨張弁43cを介してカスケードコンデンサ33に流通する。また、第2の熱交換器16から吐出した冷媒は四方弁41及び第4の電磁弁42dを介して第1の圧縮機31に吸入されるとともに、カスケードコンデンサ33から吐出した冷媒も第1の圧縮機31に吸入される。また、第2の圧縮機32から吐出された冷媒は、カスケードコンデンサ33を流通した後、第6の電磁弁51及び第4の膨張弁52を介して各蒸発器21に流通し、第2の圧縮機32に吸入される。   Moreover, the heating operation is selected by the operation changeover switch 61, and for example, the heating load in the store A obtained by detecting the temperature in the store A is based on the amount of heat released from the second refrigerant circuit 50 side of the cascade capacitor 33. As shown in FIG. 5, the control unit 60 performs the air conditioning blower 13, the regeneration blower 15, the evaporator blower 22, the first compressor 31, and the second compressor. 32 is operated and the desiccant rotor 12 is stopped. In addition, the control unit 60 communicates the first refrigerant circulation port and the fourth refrigerant circulation port of the four-way valve 41, and communicates the second refrigerant circulation port and the third refrigerant circulation port. The fourth solenoid valves 42b, 42c and 42d are opened, and the first and fifth solenoid valves 42a and 42e are closed. Thereby, after the refrigerant discharged from the first compressor 31 flows to the first heat exchanger 14 via the four-way valve 41, a part of the refrigerant becomes the second electromagnetic valve 42b and the first expansion. While circulating to the second heat exchanger 16 via the valve 43a, the other refrigerant flows to the cascade condenser 33 via the second solenoid valve 42b, the third solenoid valve 42c and the third expansion valve 43c. . The refrigerant discharged from the second heat exchanger 16 is sucked into the first compressor 31 via the four-way valve 41 and the fourth electromagnetic valve 42d, and the refrigerant discharged from the cascade condenser 33 is also the first refrigerant. It is sucked into the compressor 31. The refrigerant discharged from the second compressor 32 circulates through the cascade condenser 33 and then circulates through each of the evaporators 21 via the sixth electromagnetic valve 51 and the fourth expansion valve 52. It is sucked into the compressor 32.

このようにして、空調ユニット10では、空調用送風機13によって店舗A内から第1の通風路11aに流通させた還気(RA)を第1の熱交換器14と熱交換させることにより加熱した後に給気(SA)として店舗A内に供給する。また、再生用送風機15によって店舗A外から第2の通風路11bに流通させた外気(OA)を第2の熱交換器16と熱交換させて冷却し、冷却した空気を排気(EA)として店舗A外に排出する。また、各冷蔵ショーケース20では、冷蔵ショーケース20内の空気を蒸発器用送風機22によって循環させ、循環する空気を蒸発器21によって冷却することにより冷蔵ショーケース20内の商品が冷却される。   Thus, in the air conditioning unit 10, the return air (RA) circulated from the store A to the first ventilation path 11 a by the air conditioning blower 13 is heated by exchanging heat with the first heat exchanger 14. Later, it is supplied into the store A as an air supply (SA). Further, the outside air (OA) circulated from outside the store A to the second ventilation path 11b by the regeneration fan 15 is cooled by exchanging heat with the second heat exchanger 16, and the cooled air is used as exhaust (EA). Discharge outside store A. In each refrigerated showcase 20, the air in the refrigerated showcase 20 is circulated by the evaporator blower 22, and the circulating air is cooled by the evaporator 21, thereby cooling the products in the refrigerated showcase 20.

このとき、冷凍機ユニット30のカスケードコンデンサ33では、第1の冷媒回路40の冷媒と第2の冷媒回路50の冷媒とが熱交換し、第1の冷媒回路40の冷媒が蒸発するとともに、第2の冷媒回路50の冷媒が凝縮する。これにより、第1の冷媒回路40の冷媒は第2の熱交換器16及びカスケードコンデンサ33によって第1の通風路11aを流通する空気を加熱するために必要な熱量を吸熱し、従来外気に排出されていた第2の冷媒回路50の排熱が有効利用される。店舗A内の暖房負荷が大きい場合には、再生用送風機15の送風量を増加させることにより第2の熱交換器16の交換熱量を増加させて第2の熱交換器16及びカスケードコンデンサ33において吸収した熱を第1の熱交換器14において放熱させることが可能となる。   At this time, in the cascade condenser 33 of the refrigerator unit 30, the refrigerant in the first refrigerant circuit 40 and the refrigerant in the second refrigerant circuit 50 exchange heat, the refrigerant in the first refrigerant circuit 40 evaporates, The refrigerant in the second refrigerant circuit 50 condenses. As a result, the refrigerant in the first refrigerant circuit 40 absorbs the amount of heat necessary to heat the air flowing through the first ventilation path 11a by the second heat exchanger 16 and the cascade condenser 33, and is discharged to the outside air conventionally. The exhaust heat of the second refrigerant circuit 50 that has been used is effectively used. When the heating load in the store A is large, the amount of exchange heat of the second heat exchanger 16 is increased by increasing the amount of air blown by the regeneration fan 15, and the second heat exchanger 16 and the cascade condenser 33 The absorbed heat can be dissipated in the first heat exchanger 14.

このように、本実施形態の空気調和装置によれば、冷凍機ユニット30のカスケードコンデンサ33によって第1の冷媒回路40の冷媒と第2の冷媒回路50の冷媒とを熱交換させるとともに、第2の暖房運転によって第2の熱交換器16を蒸発器として作用させるようにしたので、各冷蔵ショーケース20の冷却運転によって吸収した熱を除湿冷房運転及び暖房運転に利用することができるとともに、店舗A内の暖房負荷が冷蔵ショーケース20の排熱の熱量よりも大きい場合には第2の熱交換器16によって吸収した熱を暖房運転に利用することができ、従来店舗A外に排出されていた冷蔵ショーケース20の排熱を一年を通じて有効利用することができるとともに、暖房運転の熱量の不足分を第2の熱交換器16によって補うことができる。   Thus, according to the air conditioning apparatus of the present embodiment, the cascade condenser 33 of the refrigerator unit 30 exchanges heat between the refrigerant of the first refrigerant circuit 40 and the refrigerant of the second refrigerant circuit 50, and the second Since the second heat exchanger 16 is allowed to act as an evaporator by the heating operation, the heat absorbed by the cooling operation of each refrigerated showcase 20 can be used for the dehumidifying and cooling operation and the heating operation. When the heating load in A is larger than the heat quantity of the exhaust heat of the refrigerated showcase 20, the heat absorbed by the second heat exchanger 16 can be used for heating operation and is conventionally discharged outside the store A. The exhaust heat from the refrigerated showcase 20 can be effectively used throughout the year, and the second heat exchanger 16 can compensate for the shortage of heat in the heating operation. That.

また、空調ユニット10の第1の暖房運転時に暖房負荷が増加すると、再生用送風機15の送風量を低下させるようにしたので、カスケードコンデンサ33において吸熱した熱を主に第1の熱交換器14の熱交換に利用することができ、十分な暖房能力を得ることができる。   Further, when the heating load increases during the first heating operation of the air conditioning unit 10, the amount of air blown from the regeneration blower 15 is reduced, so that the heat absorbed in the cascade condenser 33 is mainly used in the first heat exchanger 14. Can be used for heat exchange, and sufficient heating capacity can be obtained.

また、カスケードコンデンサ33の第2の冷媒回路50側の吐出側にカスケードコンデンサ33の冷蔵側凝縮圧力が所定の圧力以下にならないように調整する凝縮圧力調整弁34を設けたので、第2の冷媒回路50の凝縮圧力と蒸発圧力の差を所定の圧力差以下にならないようにすることができ、各冷蔵ショーケース20の冷却能力の低下を防止することができる。   Further, since the condensing pressure adjusting valve 34 for adjusting the refrigeration-side condensing pressure of the cascade condenser 33 so as not to become a predetermined pressure or less is provided on the discharge side of the cascade condenser 33 on the second refrigerant circuit 50 side, the second refrigerant It is possible to prevent the difference between the condensation pressure and the evaporation pressure in the circuit 50 from becoming a predetermined pressure difference or less, and to prevent the cooling capacity of each refrigerated showcase 20 from being lowered.

図6乃至図10は本発明の他の実施形態を示すもので、図6は空気調和装置の冷媒回路図、図7は制御系を示すブロック図、図8は除湿冷房運転時の冷媒の流路を示す冷媒回路図、図9は第1の暖房運転時の冷媒の流路を示す冷媒回路図、図10は第2の冷房運転時の冷媒の流路を示す冷媒回路図である。尚、前記実施形態と同等の構成部分には同一の符号を付して示す。   FIGS. 6 to 10 show other embodiments of the present invention. FIG. 6 is a refrigerant circuit diagram of an air conditioner, FIG. 7 is a block diagram showing a control system, and FIG. 8 is a refrigerant flow during dehumidifying and cooling operation. FIG. 9 is a refrigerant circuit diagram illustrating the refrigerant flow path during the first heating operation, and FIG. 10 is a refrigerant circuit diagram illustrating the refrigerant flow path during the second cooling operation. In addition, the same code | symbol is attached | subjected and shown to the component equivalent to the said embodiment.

この空気調和装置は、前記実施形態のように空調ユニット10側及び冷蔵ショーケース20側の熱源としてのカスケードコンデンサ33を備えることなく、空調ユニット10側及び冷蔵ショーケース20側の冷凍サイクルを構成する冷媒回路70を備えている。   This air conditioner does not include the cascade condenser 33 as a heat source on the air conditioning unit 10 side and the refrigerated showcase 20 side as in the above embodiment, but constitutes a refrigeration cycle on the air conditioning unit 10 side and the refrigerated showcase 20 side. A refrigerant circuit 70 is provided.

冷媒回路70は、図6に示すように、第1の熱交換器14、第2の熱交換器16、各蒸発器21、第1の圧縮機31、第2の圧縮機32、四方弁71、第1、第2、第3、第4及び第5の電磁弁72a,72b,72c,72d,72e、第1、第2及び第3の膨張弁73a,73b,73cを備え、これらは冷媒流通用の配管によって接続されている。即ち、第1の圧縮機31の吐出側には四方弁71の第1の冷媒流通口が接続され、四方弁71の第2の冷媒流通口には第2の熱交換器16の一端側が接続されている。第2の熱交換器16の他端側には第1の熱交換器14の一端側が接続され、第1の熱交換器14の他端側には四方弁71の第3の冷媒流通口が接続されている。このとき、第2の熱交換器16の他端側と第1の熱交換器14の一端側との間には第1の電磁弁72a及び第1の膨張弁73aがそれぞれ並列に設けられ、それぞれ並列に設けられた第1の電磁弁72a及び第1の膨張弁73aと第1の熱交換器14の一端側との間には第2の電磁弁72b及び第2の膨張弁73bがそれぞれ並列に設けられている。また、第1の電磁弁72a及び第1の膨張弁73aと第2の電磁弁72b及び第2の膨張弁73bとの間には各蒸発器21の吸入側がそれぞれ並列に接続され、各蒸発器21の吐出側には第2の圧縮機32の吸入側がそれぞれ並列に接続されている。このとき、第1の電磁弁72a及び第1の膨張弁73aと第2の電磁弁72b及び第2の膨張弁73bとの間と各蒸発器21の吸入側との間には第3の電磁弁72cが設けられ、第3の電磁弁72cと各蒸発器21の吸入側との間にはそれぞれ第5の電磁弁72eが設けられている。また、第5の電磁弁72eと蒸発器21の吸入側との間には第3の膨張弁73cが設けられている。第2の圧縮機32の吐出側には第1の圧縮機31の吐出側と四方弁71の第1の冷媒流通口との間が接続され、四方弁71の第4の冷媒流通口には第1の圧縮機31の吸入側が接続されている。また、第1の熱交換器14の他端側と四方弁71の第3の冷媒流通口との間には第3の電磁弁72cと各第5の電磁弁72eとの間が接続され、その間には第4の電磁弁72dが設けられている。   As shown in FIG. 6, the refrigerant circuit 70 includes a first heat exchanger 14, a second heat exchanger 16, each evaporator 21, a first compressor 31, a second compressor 32, and a four-way valve 71. , First, second, third, fourth and fifth electromagnetic valves 72a, 72b, 72c, 72d, 72e, first, second and third expansion valves 73a, 73b, 73c, which are refrigerants Connected by distribution piping. That is, the first refrigerant flow port of the four-way valve 71 is connected to the discharge side of the first compressor 31, and one end side of the second heat exchanger 16 is connected to the second refrigerant flow port of the four-way valve 71. Has been. One end side of the first heat exchanger 14 is connected to the other end side of the second heat exchanger 16, and a third refrigerant flow port of the four-way valve 71 is connected to the other end side of the first heat exchanger 14. It is connected. At this time, a first electromagnetic valve 72a and a first expansion valve 73a are provided in parallel between the other end side of the second heat exchanger 16 and one end side of the first heat exchanger 14, respectively. Between the first electromagnetic valve 72a and the first expansion valve 73a provided in parallel with each other and one end side of the first heat exchanger 14, the second electromagnetic valve 72b and the second expansion valve 73b are respectively provided. It is provided in parallel. The suction side of each evaporator 21 is connected in parallel between the first solenoid valve 72a and the first expansion valve 73a and the second solenoid valve 72b and the second expansion valve 73b, respectively. The discharge side of 21 is connected in parallel with the suction side of the second compressor 32. At this time, the third electromagnetic valve 72 a and the first expansion valve 73 a, the second electromagnetic valve 72 b and the second expansion valve 73 b, and between the suction side of each evaporator 21, the third electromagnetic valve A valve 72 c is provided, and a fifth electromagnetic valve 72 e is provided between the third electromagnetic valve 72 c and the suction side of each evaporator 21. A third expansion valve 73c is provided between the fifth electromagnetic valve 72e and the suction side of the evaporator 21. The discharge side of the second compressor 32 is connected between the discharge side of the first compressor 31 and the first refrigerant flow port of the four-way valve 71, and the fourth refrigerant flow port of the four-way valve 71 is connected to the discharge side of the second compressor 32. The suction side of the first compressor 31 is connected. Moreover, between the other end side of the 1st heat exchanger 14 and the 3rd refrigerant | coolant flow port of the four-way valve 71, between the 3rd solenoid valve 72c and each 5th solenoid valve 72e is connected, In the meantime, a fourth solenoid valve 72d is provided.

制御部80は、図7に示すように、デシカントロータ12、空調用送風機13、再生用送風機15、蒸発器用送風機22、第1の圧縮機31、第2の圧縮機32、第1、第2、第3、第4及び第5電磁弁72a,72b,72c,72d,72e及び運転切換スイッチ61が接続されている。   As shown in FIG. 7, the control unit 80 includes a desiccant rotor 12, an air conditioner blower 13, a regeneration blower 15, an evaporator blower 22, a first compressor 31, a second compressor 32, a first and a second. The third, fourth and fifth electromagnetic valves 72a, 72b, 72c, 72d, 72e and the operation changeover switch 61 are connected.

以上のように構成された空気調和装置において、運転切換スイッチ61によって除湿冷房運転が選択されると、図8に示すように、制御部80はデシカントロータ12、空調用送風機13、再生用送風機15、蒸発器用送風機22、第1の圧縮機31及び第2の圧縮機32を運転する。また、制御部80は四方弁71の第1の冷媒流通口と第2の冷媒流通口を連通するとともに、第3の冷媒流通口と第4の冷媒流通口を連通し、第1、第3及び第5の電磁弁72a,72c,72eを開放して第2及び第4の電磁弁72b,72dを閉鎖する。これにより、第1の圧縮機31及び第2の圧縮機32から吐出された冷媒は四方弁71を介して第2の熱交換器16に流通した後、一部の冷媒は第1の電磁弁72a及び第2の膨張弁73bを介して第1の熱交換器14に流通し、第1の熱交換器14から吐出した冷媒は四方弁71を介して第1の圧縮機31に吸入される。また、他の冷媒は第1の電磁弁72a、第3の電磁弁72c、第5の電磁弁72e及び第3の膨張弁73cを介して蒸発器21に流通し、蒸発器21から吐出した冷媒は第2の圧縮機32に吸入される。   In the air conditioner configured as described above, when the dehumidifying and cooling operation is selected by the operation changeover switch 61, as shown in FIG. 8, the control unit 80 causes the desiccant rotor 12, the air-conditioning blower 13, and the regeneration blower 15 to operate. The evaporator blower 22, the first compressor 31, and the second compressor 32 are operated. In addition, the control unit 80 communicates the first refrigerant flow port and the second refrigerant flow port of the four-way valve 71 and also communicates the third refrigerant flow port and the fourth refrigerant flow port, and the first and third refrigerant flow ports. The fifth electromagnetic valves 72a, 72c and 72e are opened and the second and fourth electromagnetic valves 72b and 72d are closed. Thus, after the refrigerant discharged from the first compressor 31 and the second compressor 32 flows to the second heat exchanger 16 via the four-way valve 71, a part of the refrigerant is the first electromagnetic valve. The refrigerant flowing through the first heat exchanger 14 via the 72a and the second expansion valve 73b and discharged from the first heat exchanger 14 is sucked into the first compressor 31 via the four-way valve 71. . The other refrigerant flows through the first electromagnetic valve 72a, the third electromagnetic valve 72c, the fifth electromagnetic valve 72e, and the third expansion valve 73c to the evaporator 21, and is discharged from the evaporator 21. Is sucked into the second compressor 32.

このとき、第1の電磁弁72aと第1の膨張弁73a、第2の電磁弁72bと第2の膨張弁73bとはそれぞれ並列に冷媒回路に接続され、電磁弁を開放することにより冷媒は電磁弁及び膨張弁にそれぞれ流通可能となる。しかし、開放された電磁弁は膨張弁と比較して流通する冷媒の圧力損失が著しく小さくなるために、流通する冷媒の殆どは膨張弁を流通することなく電磁弁に流通する。   At this time, the first electromagnetic valve 72a and the first expansion valve 73a, the second electromagnetic valve 72b and the second expansion valve 73b are connected to the refrigerant circuit in parallel, and the refrigerant is released by opening the electromagnetic valve. Each can be distributed to the solenoid valve and the expansion valve. However, since the pressure loss of the refrigerant flowing through the opened solenoid valve is significantly smaller than that of the expansion valve, most of the circulating refrigerant flows through the solenoid valve without flowing through the expansion valve.

このようにして、空調ユニット10では、空調用送風機13によって店舗A内から第1の通風路11aに流通させた還気(RA)をデシカントロータ12によって除湿し、除湿した空気を第1の熱交換器14と熱交換させることにより冷却した後に給気(SA)として店舗A内に供給する。また、再生用送風機15によって店舗A外から第2の通風路11bに流通させた外気(OA)を第2の熱交換器16と熱交換させて加熱し、加熱した空気をデシカントロータ12に接触させることによりデシカントロータ12のエレメント12aに吸着した水分を蒸発させる。これにより、デシカントロータ12のエレメント12aが再生され、再生に利用されて水分を吸着した空気は排気(EA)として店舗A外に排出される。また、各冷蔵ショーケース20では、冷蔵ショーケース20内の空気を蒸発器用送風機22によって循環させ、循環する空気を蒸発器21によって冷却することにより冷蔵ショーケース20内の商品が冷却される。   In this manner, in the air conditioning unit 10, the return air (RA) circulated from the store A to the first ventilation path 11a by the air conditioner blower 13 is dehumidified by the desiccant rotor 12, and the dehumidified air is first heated. After cooling by exchanging heat with the exchanger 14, the air is supplied into the store A as supply air (SA). Further, the outside air (OA) circulated from the outside of the store A to the second ventilation path 11b by the regeneration fan 15 is heated by exchanging heat with the second heat exchanger 16, and the heated air contacts the desiccant rotor 12. As a result, the moisture adsorbed on the element 12a of the desiccant rotor 12 is evaporated. As a result, the element 12a of the desiccant rotor 12 is regenerated, and the air that has been used for regeneration and adsorbs moisture is discharged outside the store A as exhaust (EA). In each refrigerated showcase 20, the air in the refrigerated showcase 20 is circulated by the evaporator blower 22, and the circulating air is cooled by the evaporator 21, thereby cooling the products in the refrigerated showcase 20.

このとき、冷媒回路70の冷媒は第1の熱交換器14及び蒸発器21によって第2の通風路11bを流通する空気を加熱するために必要な熱量を吸熱し、従来外気に排出されていた冷蔵ショーケース20の排熱が有効利用される。   At this time, the refrigerant in the refrigerant circuit 70 absorbs the amount of heat necessary to heat the air flowing through the second ventilation path 11b by the first heat exchanger 14 and the evaporator 21, and is conventionally discharged to the outside air. The exhaust heat of the refrigerated showcase 20 is effectively used.

また、冷蔵ショーケース20の前面開口部から冷蔵ショーケース20の前方の通路に冷気が下降することにより生ずるコールドエイルを防止するためには、高温、低湿の給気(SA)を冷蔵ショーケース20の下部から通路に向かって吐出する。これにより、冷蔵ショーケース20から下降する冷気と給気(SA)とが混合し、コールドエイルが解消される。   In addition, in order to prevent cold aisles caused by cold air descending from the front opening of the refrigerated showcase 20 to the passage in front of the refrigerated showcase 20, a high-temperature, low-humidity supply air (SA) is supplied to the refrigerated showcase 20. It discharges toward the passage from the lower part. Thereby, the cold air descending from the refrigerated showcase 20 and the supply air (SA) are mixed, and the cold ale is eliminated.

次に、運転切換スイッチ61によって暖房運転が選択され、例えば店舗A内の温度を検出することにより得られる店舗A内の暖房負荷が冷蔵ショーケース20の蒸発器21が吸熱した熱量よりも小さい場合には第1の暖房運転として、図9に示すように、制御部80は空調用送風機13、再生用送風機15、蒸発用送風機22、第2の圧縮機32を運転し、デシカントロータ12及び第1の圧縮機31を停止する。また、制御部80は四方弁71の第1の冷媒流通口と第2の冷媒流通口を連通するとともに、第3の冷媒流通口と第4の冷媒流通口を連通し、第1、第2、第4及び第5の電磁弁72a,72b,72d,72eを開放して第3の電磁弁72cを閉鎖する。これにより、第2の圧縮機32から吐出された冷媒は、四方弁71を介して第2の熱交換器16に流通した後、第1の電磁弁72a及び第2の電磁弁72bを介して第1の熱交換器14に流通する。また、第1の熱交換器14から吐出した冷媒は第4の電磁弁72d、第5の電磁弁72e及び第3の膨張弁73cを介して蒸発器21に流通し、蒸発器21から吐出した冷媒は第2の圧縮機32に吸入される。   Next, when the heating operation is selected by the operation changeover switch 61, for example, the heating load in the store A obtained by detecting the temperature in the store A is smaller than the amount of heat absorbed by the evaporator 21 of the refrigerated showcase 20 As shown in FIG. 9, the control unit 80 operates the air conditioning fan 13, the regeneration fan 15, the evaporation fan 22, and the second compressor 32 as the first heating operation. 1 compressor 31 is stopped. In addition, the control unit 80 communicates the first refrigerant flow port and the second refrigerant flow port of the four-way valve 71 and also communicates the third refrigerant flow port and the fourth refrigerant flow port, and the first and second refrigerant flow ports. The fourth and fifth electromagnetic valves 72a, 72b, 72d and 72e are opened, and the third electromagnetic valve 72c is closed. Thereby, the refrigerant discharged from the second compressor 32 flows to the second heat exchanger 16 through the four-way valve 71, and then passes through the first electromagnetic valve 72a and the second electromagnetic valve 72b. It distributes to the first heat exchanger 14. The refrigerant discharged from the first heat exchanger 14 circulates in the evaporator 21 via the fourth solenoid valve 72d, the fifth solenoid valve 72e, and the third expansion valve 73c, and is discharged from the evaporator 21. The refrigerant is sucked into the second compressor 32.

このようにして、空調ユニット10では、空調用送風機13によって店舗A内から第1の通風路11aに流通させた還気(RA)を第1の熱交換器14と熱交換させることにより加熱した後に給気(SA)として店舗A内に供給する。また、再生用送風機15によって店舗A外から第2の通風路11bに流通させた外気(OA)を第2の熱交換器16と熱交換させて加熱し、加熱した空気を排気(EA)として店舗A外に排出する。また、各冷蔵ショーケース20では、冷蔵ショーケース20内の空気を蒸発器用送風機22によって循環させ、循環する空気を蒸発器21によって冷却することにより冷蔵ショーケース20内の商品が冷却される。   Thus, in the air conditioning unit 10, the return air (RA) circulated from the store A to the first ventilation path 11 a by the air conditioning blower 13 is heated by exchanging heat with the first heat exchanger 14. Later, it is supplied into the store A as an air supply (SA). Further, the outside air (OA) circulated from outside the store A to the second ventilation path 11b by the regeneration fan 15 is heated by exchanging heat with the second heat exchanger 16, and the heated air is used as exhaust (EA). Discharge outside store A. In each refrigerated showcase 20, the air in the refrigerated showcase 20 is circulated by the evaporator blower 22, and the circulating air is cooled by the evaporator 21, thereby cooling the products in the refrigerated showcase 20.

このとき、冷媒回路70の冷媒は蒸発器21によって第1の通風路11aを加熱するために必要な熱量を吸熱し、従来外気に排出されていた冷蔵ショーケース20の排熱が有効利用される。店舗A内の暖房負荷が小さい場合には、再生用送風機15の送風量を増加させることにより第1の熱交換器14の交換熱量を減少させ、蒸発器21において吸収した熱量を第2の熱交換器16を中心に放熱させて第2の通風路11bを流通する空気中に排熱として放出することが可能となる。店舗A内の暖房負荷が大きい場合には、再生用送風機15の送風量を低下させることにより第2の熱交換器16の交換熱量を減少させ、蒸発器21において吸収した熱を第1の熱交換器14を中心に放熱させることが可能となる。更に、暖房運転時にデシカントロータ12を運転することにより、店舗A内の暖房運転を行うとともに、除湿を行うことも可能である。   At this time, the refrigerant in the refrigerant circuit 70 absorbs the amount of heat necessary for heating the first ventilation path 11a by the evaporator 21, and the exhaust heat of the refrigerated showcase 20 that has been conventionally discharged to the outside air is effectively used. . When the heating load in the store A is small, the amount of heat exchanged by the first heat exchanger 14 is decreased by increasing the amount of air blown by the regeneration fan 15, and the amount of heat absorbed in the evaporator 21 is reduced to the second heat. It becomes possible to release heat as exhaust heat into the air flowing through the second ventilation path 11b by dissipating heat around the exchanger 16. When the heating load in the store A is large, the amount of exchange heat of the second heat exchanger 16 is reduced by reducing the amount of air blown from the regeneration fan 15, and the heat absorbed in the evaporator 21 is reduced to the first heat. Heat can be radiated around the exchanger 14. Furthermore, by operating the desiccant rotor 12 during the heating operation, it is possible to perform the heating operation in the store A and to perform dehumidification.

また、運転切換スイッチ61によって暖房運転が選択され、例えば店舗A内の温度を検出することにより得られる店舗A内の暖房負荷が冷蔵ショーケース20の蒸発器21が吸熱した熱量よりも大きい場合には第2の暖房運転として、図10に示すように、制御部80は空調用送風機13、再生用送風機15、蒸発器用送風機22、第1の圧縮機31、第2の圧縮機32を運転し、デシカントロータ12を停止する。また、制御部80は四方弁71の第1の冷媒流通口と第4の冷媒流通口を連通するとともに、第2の冷媒流通口と第3の冷媒流通口を連通し、第2、第3及び第5の電磁弁72b,72c,72eを開放して第1及び第4の電磁弁73a,73dを閉鎖する。これにより、第1の圧縮機31及び第2の圧縮機32から吐出された冷媒は、四方弁71を介して第1の熱交換器14に流通した後、一部の冷媒は第2の電磁弁72b及び第1の膨張弁73aを介して第2の熱交換器16に流通し、第2の熱交換器16から吐出する冷媒は第1の圧縮機31に吸入される。また、他の冷媒は第2の電磁弁72b、第3の電磁弁72c、第5の電磁弁72e及び第3の膨張弁73cを介して蒸発器21に流通し、蒸発器21から吐出する冷媒は第2の圧縮機32に吸入される。   Further, when the heating operation is selected by the operation changeover switch 61 and the heating load in the store A obtained by detecting the temperature in the store A, for example, is larger than the amount of heat absorbed by the evaporator 21 of the refrigerated showcase 20. As the second heating operation, as shown in FIG. 10, the control unit 80 operates the air conditioner blower 13, the regenerative blower 15, the evaporator blower 22, the first compressor 31, and the second compressor 32. Then, the desiccant rotor 12 is stopped. In addition, the control unit 80 communicates the first refrigerant circulation port and the fourth refrigerant circulation port of the four-way valve 71, and communicates the second refrigerant circulation port and the third refrigerant circulation port. The fifth electromagnetic valves 72b, 72c, 72e are opened and the first and fourth electromagnetic valves 73a, 73d are closed. Thereby, after the refrigerant discharged from the first compressor 31 and the second compressor 32 flows to the first heat exchanger 14 via the four-way valve 71, a part of the refrigerant becomes the second electromagnetic wave. The refrigerant flowing through the second heat exchanger 16 through the valve 72b and the first expansion valve 73a and discharged from the second heat exchanger 16 is sucked into the first compressor 31. Further, the other refrigerant flows to the evaporator 21 via the second electromagnetic valve 72b, the third electromagnetic valve 72c, the fifth electromagnetic valve 72e, and the third expansion valve 73c, and is discharged from the evaporator 21. Is sucked into the second compressor 32.

このようにして、空調ユニット10では、空調用送風機13によって店舗A内から第1の通風路11aに流通させた還気(RA)を第1の熱交換器14と熱交換させることにより加熱した後に給気(SA)として店舗A内に供給する。また、再生用送風機15によって店舗A外から第2の通風路11bに流通させた外気(OA)を第2の熱交換器16と熱交換させて冷却し、冷却した空気を排気(EA)として店舗A外に排出する。また、各冷蔵ショーケース20では、冷蔵ショーケース20内の空気を蒸発器用送風機22によって循環させ、循環する空気を蒸発器21によって冷却することにより冷蔵ショーケース20内の商品が冷却される。   Thus, in the air conditioning unit 10, the return air (RA) circulated from the store A to the first ventilation path 11 a by the air conditioning blower 13 is heated by exchanging heat with the first heat exchanger 14. Later, it is supplied into the store A as an air supply (SA). Further, the outside air (OA) circulated from outside the store A to the second ventilation path 11b by the regeneration fan 15 is cooled by exchanging heat with the second heat exchanger 16, and the cooled air is used as exhaust (EA). Discharge outside store A. In each refrigerated showcase 20, the air in the refrigerated showcase 20 is circulated by the evaporator blower 22, and the circulating air is cooled by the evaporator 21, thereby cooling the products in the refrigerated showcase 20.

このとき、冷媒回路70の冷媒は第2の熱交換器16及び蒸発器21によって第1の通風路11aを流通する空気を加熱するために必要な熱量を吸熱し、従来外気に排出されていた冷蔵ショーケース20の排熱が有効利用される。店舗A内の暖房負荷が大きい場合には、再生用送風機15の送風量を増加させることにより第2の熱交換器16の交換熱量を増加させ、第2の熱交換器16及び蒸発器21において吸収した熱を第1の熱交換器14において放熱させることが可能となる。   At this time, the refrigerant in the refrigerant circuit 70 absorbs the amount of heat necessary for heating the air flowing through the first ventilation path 11a by the second heat exchanger 16 and the evaporator 21, and has been discharged into the outside air conventionally. The exhaust heat of the refrigerated showcase 20 is effectively used. When the heating load in the store A is large, the amount of exchange heat of the second heat exchanger 16 is increased by increasing the amount of air blown from the regeneration blower 15, and the second heat exchanger 16 and the evaporator 21 The absorbed heat can be dissipated in the first heat exchanger 14.

このように、本実施形態の空気調和装置によれば、各冷蔵ショーケース20の蒸発器21によって冷媒回路70の冷媒を蒸発させるとともに、第2の暖房運転によって第2の熱交換器16を蒸発器として作用させるようにしたので、各冷蔵ショーケース20の冷却運転によって吸収した熱を除湿冷房運転及び暖房運転に利用することができるとともに、店舗A内の暖房負荷が冷蔵ショーケース20の排熱の熱量よりも大きい場合には第2の熱交換器16によって吸収した熱を暖房運転に利用することができ、従来店舗A外に排出されていた冷蔵ショーケース20の排熱を一年を通じて有効利用することができるとともに、暖房運転の熱量の不足分を第2の熱交換器16によって補うことができる。   Thus, according to the air conditioning apparatus of the present embodiment, the refrigerant in the refrigerant circuit 70 is evaporated by the evaporator 21 of each refrigerated showcase 20, and the second heat exchanger 16 is evaporated by the second heating operation. Since the heat absorbed by the cooling operation of each refrigerated showcase 20 can be used for the dehumidifying and cooling operation and the heating operation, the heating load in the store A is the exhaust heat of the refrigerated showcase 20. The heat absorbed by the second heat exchanger 16 can be used for heating operation, and the exhaust heat of the refrigerated showcase 20 that has been exhausted outside the store A is effective throughout the year. The second heat exchanger 16 can make up for the shortage of heat in the heating operation.

尚、前記実施形態では、冷蔵ショーケース20内の冷却によって第2の冷媒回路50の蒸発器21が吸収した排熱をカスケードコンデンサ33において第1の冷媒回路40の冷媒に吸熱させるようにしたものを示したが、図11に示すように、第2の冷媒回路50に第4の熱交換器91をカスケードコンデンサ33と直列または並列に設け、空調ユニット10の運転を停止したときに電磁弁93を閉鎖して熱交換用送風機92によって店舗A外の空気と熱交換するようにして各冷蔵ショーケース20の排熱を放出するようにしてもよい。この場合、第1の冷媒回路40の運転を停止した場合でも熱交換用送風機92を運転することにより第2の冷媒回路50の運転を継続することができ、空調ユニット10が故障等により運転することができない場合でもバックアップとして冷蔵ショーケース20の冷却運転を継続することができる。   In the embodiment, the exhaust heat absorbed by the evaporator 21 of the second refrigerant circuit 50 due to the cooling in the refrigerated showcase 20 is absorbed by the refrigerant of the first refrigerant circuit 40 in the cascade capacitor 33. 11, the fourth heat exchanger 91 is provided in the second refrigerant circuit 50 in series or in parallel with the cascade capacitor 33, and the operation of the air conditioning unit 10 is stopped when the operation of the air conditioning unit 10 is stopped. The exhaust heat of each refrigerated showcase 20 may be released by closing the air and exchanging heat with the air outside the store A by the heat exchange fan 92. In this case, even when the operation of the first refrigerant circuit 40 is stopped, the operation of the second refrigerant circuit 50 can be continued by operating the blower 92 for heat exchange, and the air conditioning unit 10 is operated due to a failure or the like. Even if it is not possible, the cooling operation of the refrigerated showcase 20 can be continued as a backup.

また、前記実施形態では、空調用送風機13によって店舗A内から第1の通風路11aに流通させた還気(RA)をデシカントロータ12によって除湿し、除湿した空気を第1の熱交換器14と熱交換させて冷却した後に給気(SA)として店舗A内に供給するとともに、再生用送風機15によって店舗A外から第2の通風路11bに流通させた外気(OA)を第2の熱交換器16と熱交換させて加熱し、加熱した空気をデシカントロータ12のエレメント12aに接触させることにより吸湿したデシカントロータ12を再生し、再生に利用された空気を排気(EA)として外部に排出するように空調ユニット10を構成したものを示したが、図12に示すように、第1及び第2の通風路11a,11bに亘って設けられた顕熱交換器94によって第1の通風路11aの第1の熱交換器14と熱交換する前の空気と第2の通風路11bの第2の熱交換器16と熱交換する前の空気とを熱交換させるようにしてもよい。この場合、デシカントロータ12によって還気(RA)が除湿されることにより空気の絶対湿度は低下するが温度は上昇するため、除湿された空気と外気(OA)とを顕熱交換器94によって熱交換することにより第1の通風路11aを流通する空気を冷却するとともに、第2の通風路11bを流通する空気を加熱する。これにより、デシカントロータ12によって除湿された空気の温度を上昇させることなく第1の熱交換器14と熱交換させることができる。   Moreover, in the said embodiment, the return air (RA) distribute | circulated from the shop A to the 1st ventilation path 11a with the air conditioner blower 13 is dehumidified with the desiccant rotor 12, and the 1st heat exchanger 14 dehumidifies the dehumidified air. The air is supplied to the store A as the supply air (SA) after being cooled with the heat exchange, and the outside air (OA) circulated from the outside of the store A to the second ventilation path 11b by the regeneration fan 15 is supplied to the second heat. Heat is exchanged with the exchanger 16 and heated, and the heated air is brought into contact with the element 12a of the desiccant rotor 12 to regenerate the desiccant rotor 12 that has absorbed moisture, and the air used for the regeneration is discharged to the outside as exhaust (EA). As shown in FIG. 12, the sensible heat exchanger 94 provided over the first and second ventilation paths 11a and 11b is used. Thus, heat is exchanged between the air before heat exchange with the first heat exchanger 14 in the first ventilation path 11a and the air before heat exchange with the second heat exchanger 16 in the second ventilation path 11b. You may do it. In this case, the return air (RA) is dehumidified by the desiccant rotor 12 so that the absolute humidity of the air is decreased but the temperature is increased. Therefore, the dehumidified air and the outside air (OA) are heated by the sensible heat exchanger 94. By exchanging, the air flowing through the first ventilation path 11a is cooled, and the air flowing through the second ventilation path 11b is heated. Thereby, it is possible to exchange heat with the first heat exchanger 14 without increasing the temperature of the air dehumidified by the desiccant rotor 12.

また、前記実施形態では、空調ユニット10の第1の熱交換器14をデシカントロータの12下流側に配置したものを示したが、第1の熱交換器14をデシカントロータの上流側に配置するようにしてもよい。この場合、デシカントロータ12において還気(RA)を除湿前に冷却することにより相対湿度を高くすることができ、デシカントロータ12の除湿効率を向上させることができる。   Moreover, in the said embodiment, although what showed the 1st heat exchanger 14 of the air conditioning unit 10 arrange | positioned 12 downstream of a desiccant rotor was shown, the 1st heat exchanger 14 is arrange | positioned upstream of a desiccant rotor. You may do it. In this case, by cooling the return air (RA) in the desiccant rotor 12 before dehumidification, the relative humidity can be increased, and the dehumidification efficiency of the desiccant rotor 12 can be improved.

また、前記実施形態では、一組の第1の冷媒回路40によって空調ユニット10に冷蔵ショーケース20の排熱を供給するようにしたものを示したが、複数の第1の冷媒回路40を並列または直列に接続して空調ユニット10に冷蔵ショーケース20の排熱を供給するようにしてもよい。   In the above-described embodiment, the exhaust heat of the refrigerated showcase 20 is supplied to the air conditioning unit 10 by the set of first refrigerant circuits 40. However, the plurality of first refrigerant circuits 40 are arranged in parallel. Alternatively, the exhaust heat of the refrigerated showcase 20 may be supplied to the air conditioning unit 10 by connecting in series.

また、前記実施形態では、冷蔵ショーケース20の冷却運転によって冷媒が吸収した熱を空調ユニット10に供給するようにしたものを示したが、冷凍ショーケースやその他冷却回路を構成するシステムの冷却運転の排熱を空調ユニット10に供給するようにしてもよい。   In the embodiment, the heat absorbed by the refrigerant by the cooling operation of the refrigerated showcase 20 is supplied to the air conditioning unit 10, but the cooling operation of the system constituting the refrigeration showcase and other cooling circuits is shown. The exhaust heat may be supplied to the air conditioning unit 10.

本発明の一実施形態を示す空気調和装置の冷媒回路図The refrigerant circuit diagram of the air conditioning apparatus which shows one Embodiment of this invention 制御系を示すブロック図Block diagram showing the control system 除湿冷房運転時の冷媒の流路を示す冷媒回路図Refrigerant circuit diagram showing refrigerant flow path during dehumidifying and cooling operation 第1の暖房運転時の冷媒の流路を示す冷媒回路図Refrigerant circuit diagram showing refrigerant flow path during first heating operation 第2の暖房運転時の冷媒の流路を示す冷媒回路図Refrigerant circuit diagram showing refrigerant flow path during second heating operation 本発明の他の実施形態を示す空気調和装置の冷媒回路図The refrigerant circuit diagram of the air conditioning apparatus which shows other embodiment of this invention. 制御系を示すブロック図Block diagram showing the control system 除湿冷房運転時の冷媒の流路を示す冷媒回路図Refrigerant circuit diagram showing refrigerant flow path during dehumidifying and cooling operation 第1の暖房運転時の冷媒の流路を示す冷媒回路図Refrigerant circuit diagram showing refrigerant flow path during first heating operation 第2の冷房運転時の冷媒の流路を示す冷媒回路図Refrigerant circuit diagram showing the refrigerant flow path during the second cooling operation その他の実施形態を示す空気調和装置の冷媒回路図Refrigerant circuit diagram of an air conditioner showing another embodiment その他の実施形態を示す空気調和装置の冷媒回路図Refrigerant circuit diagram of an air conditioner showing another embodiment

符号の説明Explanation of symbols

10…空調ユニット、11a…第1の通風路、11b…第2の通風路、12…デシカントロータ、14…第1の熱交換器、15…再生用送風機、16…第2の熱交換器、21…蒸発器、30…冷凍機ユニット、31…第1の圧縮機、32…第2の圧縮機、33…カスケードコンデンサ、34…凝縮圧力調整弁、40…第1の冷媒回路、50…第2の冷媒回路、60…制御部、70…冷媒回路、80…制御部、A…店舗。
DESCRIPTION OF SYMBOLS 10 ... Air conditioning unit, 11a ... 1st ventilation path, 11b ... 2nd ventilation path, 12 ... Desiccant rotor, 14 ... 1st heat exchanger, 15 ... Blower for reproduction | regeneration, 16 ... 2nd heat exchanger, DESCRIPTION OF SYMBOLS 21 ... Evaporator, 30 ... Refrigerator unit, 31 ... 1st compressor, 32 ... 2nd compressor, 33 ... Cascade condenser, 34 ... Condensation pressure regulating valve, 40 ... 1st refrigerant circuit, 50 ... 1st 2 refrigerant circuits, 60 ... control unit, 70 ... refrigerant circuit, 80 ... control unit, A ... store.

Claims (5)

第1の通風路内を流通する空気と熱交換する第1の熱交換器と、第2の通風路内を流通する空気と熱交換する第2の熱交換器と、第1の通風路内を流通する空気中の水分を吸着して第2の通風路内に放出する吸湿部材と、第1の圧縮機によって第1の熱交換器及び第2の熱交換器に冷媒を循環する第1の冷媒回路とを備えた空気調和装置において、
他の冷凍機器の蒸発器に第2の圧縮機から吐出した冷媒を膨張手段を介して流通させて第2の圧縮機に吸入する第2の冷媒回路と、
第1の冷媒回路の第1の圧縮機に吸入される低温側冷媒と第2の冷媒回路の第2の圧縮機から吐出される高温側冷媒とを熱交換する第3の熱交換器と、
第1の圧縮機から吐出する冷媒を膨張手段を介さずに第2の熱交換器に流通させ、第2の熱交換器から吐出する冷媒の一部を膨張手段を介して第1の熱交換器に流通させるとともに、他の冷媒を第1の熱交換器に流通させずに膨張手段を介して第3の熱交換器に流通させることにより第1の熱交換器によって第1の通風路を流通する空気を冷却する除湿冷房運転用冷媒流通経路と、
第1の圧縮機から吐出する冷媒を膨張手段を介さずに第2の熱交換器に流通させ、第2の熱交換器から吐出する冷媒を膨張手段を介さずに第1の熱交換器に流通させ、第1の熱交換器から吐出する冷媒を膨張手段を介して第3の熱交換器に流通させることにより第1の熱交換器によって第1の通風路を流通する空気を加熱する第1の暖房運転用冷媒流通経路と、
第1の圧縮機から吐出する冷媒を膨張手段を介さずに第1の熱交換器に流通させ、第1の熱交換器から吐出する冷媒の一部を膨張手段を介して第2の熱交換器に流通させるとともに、他の冷媒を第2の熱交換器に流通させずに膨張手段を介して第3の熱交換器に流通させることにより第1の熱交換器によって第1の通風路を流通する空気を加熱する第2の暖房運転用冷媒流通経路と、
各冷媒流通経路を切換える切換手段とを備えた
ことを特徴とする空気調和装置。
A first heat exchanger for exchanging heat with air flowing in the first ventilation path, a second heat exchanger for exchanging heat with air flowing in the second ventilation path, and in the first ventilation path A moisture absorbing member that adsorbs moisture in the air flowing through the air and releases it into the second ventilation path, and a first compressor that circulates the refrigerant to the first heat exchanger and the second heat exchanger by the first compressor. In an air conditioner equipped with a refrigerant circuit of
A second refrigerant circuit that circulates the refrigerant discharged from the second compressor to the evaporator of the other refrigeration equipment via the expansion means and sucks it into the second compressor;
A third heat exchanger for exchanging heat between the low temperature side refrigerant sucked into the first compressor of the first refrigerant circuit and the high temperature side refrigerant discharged from the second compressor of the second refrigerant circuit;
The refrigerant discharged from the first compressor is circulated through the second heat exchanger without passing through the expansion means, and a part of the refrigerant discharged from the second heat exchanger is exchanged through the expansion means through the first heat exchange. Circulate through the first heat exchanger without causing the other refrigerant to circulate through the first heat exchanger and through the third heat exchanger via the expansion means. A refrigerant flow path for dehumidifying and cooling operation for cooling the circulating air;
The refrigerant discharged from the first compressor is circulated to the second heat exchanger without passing through the expansion means, and the refrigerant discharged from the second heat exchanger is transferred to the first heat exchanger without passing through the expansion means. A first heat exchanger is used to heat the air flowing through the first ventilation path by circulating the refrigerant discharged from the first heat exchanger through the expansion means to the third heat exchanger. 1 refrigerant distribution route for heating operation,
The refrigerant discharged from the first compressor is circulated through the first heat exchanger without passing through the expansion means, and a part of the refrigerant discharged from the first heat exchanger is exchanged through the expansion means as the second heat exchange. The first heat exchanger causes the first ventilation path to flow through the third heat exchanger through the expansion means without causing the other refrigerant to flow through the second heat exchanger. A second refrigerant distribution path for heating operation for heating the circulating air;
An air conditioning apparatus comprising switching means for switching each refrigerant flow path.
第1の通風路内を流通する空気と熱交換する第1の熱交換器と、第2の通風路内を流通する空気と熱交換する第2の熱交換器と、第1の通風路内を流通する空気中の水分を吸着して第2の通風路内に放出する吸湿部材と、第1の圧縮機によって第1の熱交換器及び第2の熱交換器に冷媒を循環する冷媒回路とを備えた空気調和装置において、
前記冷媒回路に他の冷凍機器の蒸発器及び第2の圧縮機を接続するとともに、第1及び第2の圧縮機から吐出される冷媒を第1の熱交換器、第2の熱交換器及び蒸発器を流通するように構成し、
第1及び第2の圧縮機から吐出する冷媒を膨張手段を介さずに第2の熱交換器に流通させ、第2の熱交換器から吐出する冷媒の一部を膨張手段を介して第1の熱交換器に流通させるとともに、他の冷媒を第1の熱交換器に流通させずに膨張手段を介して蒸発器に流通させることにより第1の熱交換器によって第1の通風路を流通する空気を冷却する除湿冷房運転用冷媒流通経路と、
第1の圧縮機によって冷媒を循環させることなく、第2の圧縮機から吐出する冷媒を膨張手段を介さずに第2の熱交換器に流通させ、第2の熱交換器から吐出する冷媒を膨張手段を介さずに第1の熱交換器に流通させ、第1の熱交換器から吐出する冷媒を膨張手段を介して蒸発器に流通させることにより第1の熱交換器によって第1の通風路を流通する空気を加熱する第1の暖房運転用冷媒流通経路と、
第1及び第2の圧縮機から吐出する冷媒を膨張手段を介さずに第1の熱交換器に流通させ、第1の熱交換器から吐出する冷媒の一部を膨張手段を介して第2の熱交換器に流通させるとともに、他の冷媒を第2の熱交換器に流通させずに膨張手段を介して蒸発器に流通させることにより第1の熱交換器によって第1の通風路を流通する空気を加熱する第2の暖房運転用冷媒流通経路と、
各冷媒流通経路を切換える切換手段とを備えた
ことを特徴とする空気調和装置。
A first heat exchanger for exchanging heat with air flowing in the first ventilation path, a second heat exchanger for exchanging heat with air flowing in the second ventilation path, and in the first ventilation path A moisture absorbing member that adsorbs moisture in the air flowing through the air and releases it into the second ventilation path, and a refrigerant circuit that circulates the refrigerant to the first heat exchanger and the second heat exchanger by the first compressor In an air conditioner equipped with
The refrigerant circuit is connected to an evaporator and a second compressor of another refrigeration device, and the refrigerant discharged from the first and second compressors is supplied to the first heat exchanger, the second heat exchanger, and Configured to circulate the evaporator,
The refrigerant discharged from the first and second compressors is circulated through the second heat exchanger without passing through the expansion means, and a part of the refrigerant discharged from the second heat exchanger is passed through the expansion means through the first expansion means. The first heat exchanger circulates the first ventilation path by circulating the other refrigerant to the evaporator via the expansion means without circulating the other refrigerant to the first heat exchanger. A refrigerant flow path for dehumidifying and cooling operation for cooling the air to be
Without circulating the refrigerant by the first compressor, the refrigerant discharged from the second compressor is circulated to the second heat exchanger without passing through the expansion means, and the refrigerant discharged from the second heat exchanger is The first heat exchanger causes the first ventilation to flow through the first heat exchanger without passing through the expansion means, and the refrigerant discharged from the first heat exchanger flows through the expansion means through the evaporator. A first heating operation refrigerant distribution path for heating air flowing through the path;
The refrigerant discharged from the first and second compressors is circulated through the first heat exchanger without passing through the expansion means, and a part of the refrigerant discharged from the first heat exchanger is passed through the expansion means through the second means. The first heat exchanger circulates the first ventilation path by circulating the refrigerant through the expansion means via the expansion means without circulating the other refrigerant through the second heat exchanger. A second heating operation refrigerant circulation path for heating the air to be
An air conditioning apparatus comprising switching means for switching each refrigerant flow path.
前記第2の通風路に設けられた風量調整可能な送風機と、
第1の暖房運転時に暖房負荷が増加すると送風機の風量を低下させるとともに、第2の暖房運転時に暖房負荷が増加すると送風機の風量を増加させる制御手段とを備えた
ことを特徴とする請求項1または2記載の空気調和装置。
An air volume adjustable air blower provided in the second ventilation path;
2. A control means for decreasing the air volume of the blower when the heating load increases during the first heating operation and increasing the air volume of the blower when the heating load increases during the second heating operation. Or the air conditioning apparatus of 2.
前記第2の冷媒回路の高温側冷媒と外気とを熱交換可能な第4の熱交換器を備えた
ことを特徴とする請求項1または3記載の空気調和装置。
The air conditioner according to claim 1 or 3, further comprising a fourth heat exchanger capable of exchanging heat between the high temperature side refrigerant of the second refrigerant circuit and the outside air.
前記第3の熱交換器における第2の冷媒回路側の凝縮圧力を所定圧力以上に調整可能な凝縮圧力調整手段を備えた
ことを特徴とする請求項1、3または4記載の空気調和装置。
5. The air conditioner according to claim 1, 3 or 4, further comprising a condensing pressure adjusting unit capable of adjusting a condensing pressure on the second refrigerant circuit side in the third heat exchanger to a predetermined pressure or higher.
JP2004216266A 2004-07-23 2004-07-23 Air conditioner Expired - Fee Related JP4317498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216266A JP4317498B2 (en) 2004-07-23 2004-07-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216266A JP4317498B2 (en) 2004-07-23 2004-07-23 Air conditioner

Publications (2)

Publication Number Publication Date
JP2006038293A true JP2006038293A (en) 2006-02-09
JP4317498B2 JP4317498B2 (en) 2009-08-19

Family

ID=35903471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216266A Expired - Fee Related JP4317498B2 (en) 2004-07-23 2004-07-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP4317498B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255882A (en) * 2006-02-21 2007-10-04 Fuji Electric Retail Systems Co Ltd Dehumidifying air-conditioner
JP2009142716A (en) * 2007-12-11 2009-07-02 Chugoku Electric Power Co Inc:The Dehumidification air-conditioning system and method using rotary dehumidifier, and control device and control method of this dehumidification air-conditioning system
EP2336676A3 (en) * 2009-11-20 2011-08-03 LG Electronics, Inc. Combined refrigerating/freezing and air conditioning system
CN102425874A (en) * 2011-10-16 2012-04-25 大连三洋冷链有限公司 Integrated refrigeration energy-saving system for convenience stores
EP3351863A1 (en) * 2017-01-18 2018-07-25 Heatcraft Refrigeration Products LLC System and method for reducing moisture in a refrigerated room
JP2023023572A (en) * 2021-08-05 2023-02-16 日本熱源システム株式会社 Adsorption/dehumidification method for moisture and adsorption/dehumidification apparatus for moisture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255882A (en) * 2006-02-21 2007-10-04 Fuji Electric Retail Systems Co Ltd Dehumidifying air-conditioner
JP2009142716A (en) * 2007-12-11 2009-07-02 Chugoku Electric Power Co Inc:The Dehumidification air-conditioning system and method using rotary dehumidifier, and control device and control method of this dehumidification air-conditioning system
EP2336676A3 (en) * 2009-11-20 2011-08-03 LG Electronics, Inc. Combined refrigerating/freezing and air conditioning system
US8393173B2 (en) 2009-11-20 2013-03-12 Lg Electronics Inc. Combined refrigerating/freezing and air conditioning system
CN102425874A (en) * 2011-10-16 2012-04-25 大连三洋冷链有限公司 Integrated refrigeration energy-saving system for convenience stores
EP3351863A1 (en) * 2017-01-18 2018-07-25 Heatcraft Refrigeration Products LLC System and method for reducing moisture in a refrigerated room
US10578348B2 (en) 2017-01-18 2020-03-03 Heatcraft Refrigeration Products Llc System and method for reducing moisture in a refrigerated room
JP2023023572A (en) * 2021-08-05 2023-02-16 日本熱源システム株式会社 Adsorption/dehumidification method for moisture and adsorption/dehumidification apparatus for moisture
JP7248333B2 (en) 2021-08-05 2023-03-29 日本熱源システム株式会社 Moisture adsorption dehumidification method and moisture adsorption dehumidification device

Also Published As

Publication number Publication date
JP4317498B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP3864982B2 (en) Air conditioning system
JP3668785B2 (en) Air conditioner
US7437884B2 (en) Air conditioner
EP1901010B1 (en) Humidity control device
JP5611079B2 (en) Outside air treatment equipment using desiccant rotor
KR20080014871A (en) Air conditioning system
WO2008069559A1 (en) Air conditioning system with heat recovery function
JPWO2013061377A1 (en) Refrigeration air conditioner and humidity control device
JP4654073B2 (en) Refrigeration air conditioning system
JP5890873B2 (en) Outside air treatment equipment using desiccant rotor
JP4317498B2 (en) Air conditioner
JP4296187B2 (en) Desiccant air conditioner
JP5537832B2 (en) External air conditioner and external air conditioning system
JP2006057883A (en) Refrigerating/air-conditioning system
JP2005326121A (en) Air conditioner
US7874174B2 (en) Humidity control system
KR20160097694A (en) Air conditioner
JPH10205821A (en) Air conditioner and air conditioning system
JPH10205819A (en) Air conditioner and air conditioning system
JP2004060954A (en) Humidity controller
JP2006038288A (en) Refrigeration air conditioning system
JP4250001B2 (en) Desiccant air conditioner
WO2003067159A1 (en) Humidity conditioning device
JP2005140372A (en) Air conditioner
JP2000171057A (en) Dehumidification air-conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090522

R150 Certificate of patent or registration of utility model

Ref document number: 4317498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees