JP2005015910A - Method for manufacturing composite particle, and composite particle manufactured thereby - Google Patents

Method for manufacturing composite particle, and composite particle manufactured thereby Download PDF

Info

Publication number
JP2005015910A
JP2005015910A JP2004046570A JP2004046570A JP2005015910A JP 2005015910 A JP2005015910 A JP 2005015910A JP 2004046570 A JP2004046570 A JP 2004046570A JP 2004046570 A JP2004046570 A JP 2004046570A JP 2005015910 A JP2005015910 A JP 2005015910A
Authority
JP
Japan
Prior art keywords
particles
particle
child
mother
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004046570A
Other languages
Japanese (ja)
Inventor
Masuo Hosokawa
益男 細川
Kazuki Suhara
一樹 須原
Toyokazu Yokoyama
豊和 横山
Masayoshi Kawahara
正佳 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSOKAWA FUNTAI GIJUTSU KENKYU
Hosokawa Powder Technology Research Institute
Original Assignee
HOSOKAWA FUNTAI GIJUTSU KENKYU
Hosokawa Powder Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSOKAWA FUNTAI GIJUTSU KENKYU, Hosokawa Powder Technology Research Institute filed Critical HOSOKAWA FUNTAI GIJUTSU KENKYU
Priority to JP2004046570A priority Critical patent/JP2005015910A/en
Publication of JP2005015910A publication Critical patent/JP2005015910A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Glanulating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently obtain a composite particle having an adequate composite film and a coating layer, even on fine powder particles. <P>SOLUTION: This method for manufacturing the composite particle having various characteristics by combining physically different materials includes simultaneously giving a compressive force and a shearing force to an article to be processed 4, which is a mixture of base-particles as nuclei and sub-particles finer than them, to fix the sub-particles or form the coating layer of the sub-particles on the surfaces of the base-particles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、粉末冶金、セラミックス、トナー、粉体塗料、ハイブリット樹脂、二次電池、その他各種工業分野における新素材材料としても使用される複合粒子の製造方法に関する。   The present invention relates to a method for producing composite particles that are also used as new material materials in powder metallurgy, ceramics, toner, powder paint, hybrid resin, secondary battery, and other various industrial fields.

従来、粒子の表面に別の物質を被覆させる方法として、溶液および溶液中に懸濁させた微粒子を溶液として噴霧乾燥させたり、流動あるいは攪拌分散した粉体粒子に溶液または懸濁溶液を噴霧混合させるもの、粉砕ボールやビーズ等の媒体を攪拌混合して粉砕を行うボールミルおよび機械式の衝撃粉砕機による打撃力やジェットミルのように空気や流体流を使って高速度で粒子同士を衝突させるなど機械的エネルギーを付与して母粒子の表面に子粒子を固定する方法などがある(例えば特許文献1参照)。   Conventionally, as a method of coating the surface of the particles with another substance, the solution and the fine particles suspended in the solution are spray-dried as a solution, or the solution or suspension solution is spray-mixed to the powder particles that are fluidized or stirred and dispersed. The particles are collided at high speeds using air or fluid flow, such as the impact force of a ball mill and a mechanical impact pulverizer, or a jet mill that pulverizes by mixing and mixing media such as pulverized balls and beads. For example, there is a method in which mechanical energy is applied to fix the child particles on the surface of the mother particle (for example, see Patent Document 1).

また、機械的エネルギーによるもので、粉末冶金の原料として金属粉末とセラミックス粉末をボールミルや乳鉢を使って複合粒子を造ることも実験室段階では従来から行われてはいた。   In addition, it is based on mechanical energy, and it has been conventionally performed at the laboratory stage to form composite particles of metal powder and ceramic powder as raw materials for powder metallurgy using a ball mill or mortar.

特公平3−2009号公報Japanese Patent Publication No. 3-2009

しかし、これらの方法では核となる母粒子の粒径例えば数十ミクロンに対し、子粒子の粒径は数ミクロンが微細化の限界であり、子粒子の粒径が1μm以下になると所望のものを製造することはできなかった。   However, in these methods, the particle size of the core particle, for example, several tens of microns, is smaller than the particle size of the child particle of several microns. When the particle size of the child particle is 1 μm or less, the desired size is obtained. Could not be manufactured.

本発明は、この点に鑑み、微細な粉体粒子であっても良好な複合皮膜および被覆層を有する複合粒子を効率よく得ることを目的とするものである。   In view of this point, an object of the present invention is to efficiently obtain composite particles having a fine composite film and a coating layer even if they are fine powder particles.

第1の発明に係る複合粒子の製造方法は、二種以上の粉体状の材料を混合状態におき、核となる母粒子とそれよりも微細な子粒子とを該混合状態で圧縮力と剪断力を付与させて母粒子の表面に子粒子を固定または子粒子の被覆層を形成させて複合化させるものである。   In the method for producing composite particles according to the first aspect of the present invention, two or more kinds of powdery materials are placed in a mixed state, and the core particles serving as nuclei and finer child particles are compressed in the mixed state. By applying a shearing force, the child particles are fixed on the surface of the mother particles or a coating layer of the child particles is formed to be combined.

本発明を実施するには、例えば図1や図2に示すような粉体処理装置を使用することによって効率良く所望の製品を得ることができる。なお、図1の粉体処理装置は通常バッチ運転を行うもので、1回毎に原料の供給と処理製品の排出を行い、運転中は製品の取り出しは行わない構造になっている。図2に示す粉体処理装置では、原料の供給と共に処理製品の排出をも行うことができ、連続運転が行えるようになっている。   In order to carry out the present invention, a desired product can be efficiently obtained by using a powder processing apparatus as shown in FIGS. 1 and 2, for example. The powder processing apparatus of FIG. 1 normally performs batch operation, and is configured to supply raw materials and discharge processed products every time, and does not take out products during operation. In the powder processing apparatus shown in FIG. 2, the processed product can be discharged together with the supply of the raw material, and the continuous operation can be performed.

〔作用効果〕第1の発明に係る複合粒子の製造方法は、複合粒子の形成を複合化処理によって行うことである。複合化処理とは、複数の原料を混ぜ合わせたものに圧縮力および剪断力を加えて特定の原料の表面に他の原料を融合し、一体化する処理をいう。これにより、夫々の材料の分布が均質なものとなり、均一な成分の被覆膜および被覆層をもった複合粒子が得られる。また、当該処理工程に温度制御を加えることで、種々の材料や形状に合せた組み合わせが行える。さらに、子粒子を懸濁液として噴霧する場合のようにバインダ成分が複合粒子に混入することがないので、材料として次工程への影響の少ないものを提供できる。   [Function and Effect] The method for producing composite particles according to the first invention is to form composite particles by a composite treatment. The compounding process refers to a process in which a compression force and a shearing force are applied to a mixture of a plurality of raw materials so that other raw materials are fused and integrated on the surface of a specific raw material. Thereby, the distribution of each material becomes uniform, and composite particles having a coating film and a coating layer of uniform components can be obtained. Moreover, the combination according to various materials and shapes can be performed by adding temperature control to the said process process. Further, since the binder component is not mixed into the composite particles as in the case where the child particles are sprayed as a suspension, it is possible to provide a material that has less influence on the next process.

第2の発明に係る複合粒子の製造方法は、第1の発明に係る複合粒子の製造方法の好適な条件を限定するもので、前記母粒子の粒径が10nm以上、子粒子の粒径が1μm以下で、且つ子粒子に対する母粒子の粒径比が10以上である。すなわち、母粒子の粒径が10nm以上、子粒子の粒径が1μm以下のものであっても、子粒子に対する母粒子の母粒子の粒径比が10以上であれば良好な複合化が可能であり、100以上であればさらに良好に複合化することができるものである。   The method for producing composite particles according to the second invention limits the preferred conditions of the method for producing composite particles according to the first invention, wherein the mother particles have a particle size of 10 nm or more and the child particles have a particle size of 1 μm or less and the particle size ratio of the mother particles to the child particles is 10 or more. That is, even if the particle size of the mother particle is 10 nm or more and the particle size of the child particle is 1 μm or less, if the particle size ratio of the mother particle to the child particle is 10 or more, a good composite is possible. If it is 100 or more, it can be combined more satisfactorily.

〔作用効果〕本発明の複合粒子の形成では、核となる母粒子と微小な子粒子とを混合して圧縮力および剪断力を加えるが、圧縮力および剪断力を加える段階でも混合作用は促進されることで、両者の凝集を抑えて精密混合することができ、粒径が1μm以下、例えば1nm程度の微小な子粒子であっても母粒子との接触付着を促進し複合化を行わせることができる。ここで精密混合とは、異種の原料を単一粒子レベルで均一に分散させた状態に混合することをいう。   [Function and effect] In the formation of the composite particles of the present invention, the mother particles as the core and the small child particles are mixed to apply the compressive force and shear force, but the mixing action is promoted even at the stage of applying the compressive force and shear force. As a result, it is possible to suppress the agglomeration of the two and precisely mix them, and even if the particle size is 1 μm or less, for example, about 1 nm, it is possible to promote contact adhesion with the mother particle and make it complex. be able to. Here, the precision mixing means mixing different kinds of raw materials in a state of being uniformly dispersed at a single particle level.

第3の発明に係る複合粒子は、第1または第2の発明に係る複合粒子の製造方法によって製造された複合粒子であり、母粒子の表面に子粒子を固定または子粒子の被覆層を形成させて複合化させて製造された複合粒子は、核となる母粒子と微細な子粒子が均一混合されつつ圧縮力と剪断力とを同時に付与されるため、個々の母粒子に対して子粒子が均一に分布され、かつ満遍なく押し付けられ強力な圧縮力と剪断力により母粒子表面に強固に固定化されるものである。   The composite particle according to the third invention is a composite particle produced by the method for producing a composite particle according to the first or second invention, and the child particle is fixed on the surface of the mother particle or a coating layer of the child particle is formed. The composite particles produced by combining the core particles and the fine child particles are uniformly mixed and simultaneously applied with compressive force and shear force. Are uniformly distributed and uniformly pressed and firmly fixed on the surface of the mother particle by a strong compressive force and shear force.

〔作用効果〕本発明による複合粒子は、母粒子を核とし子粒子による均質かつ強固な皮膜あるいは被覆層を有する微細な複合粒子であり、しかも、母粒子および子粒子に無機、有機、金属、及び粉体材料のほか液状材料まで、種々の材料を適用できるので、使用目的および用途に適応した最適な複合材料を提供することができる。   [Function and Effect] The composite particles according to the present invention are fine composite particles having a mother particle as a core and a homogeneous and strong film or coating layer of the child particles, and the mother particles and the child particles are inorganic, organic, metal, and Since various materials can be applied to liquid materials as well as powder materials, it is possible to provide an optimal composite material adapted to the intended purpose and application.

また、本発明の複合粒子は、被覆材としての子粒子を懸濁液として噴霧する場合のようにバインダ成分が複合粒子に混入することがないので、食品や医薬製剤などの原料や製品としても利用分野を拡大できる。なお、複合化に当っては特に溶液やバインダーなどを加える必要はないが、強度を高めたい時など、必要に応じてバインダを加えてもよい。   Further, the composite particles of the present invention do not mix the binder component into the composite particles as in the case of spraying the child particles as the coating material as a suspension, so that the composite particles can be used as raw materials and products such as foods and pharmaceutical preparations. The field of use can be expanded. In addition, it is not necessary to add a solution, a binder, or the like in the case of compounding, but a binder may be added as necessary when it is desired to increase the strength.

第4の発明に係る複合粒子の製造方法は、第1または第2の発明に係る複合粒子の製造方法に基づく応用発明といえるものである。すなわち、核となる母粒子を溶融または溶解性の材料とし、該母粒子とそれよりも微細な子粒子とを混合状態で圧縮力と剪断力を付与させて母粒子の表面に子粒子を固定または子粒子の被覆層を形成させて複合粒子を製造した後に、該複合粒子から母粒子成分のみを溶融または溶解除去して中空状にするもので、母粒子に溶融または溶解性の材料を使用することによって可能とするものである。   The method for producing composite particles according to the fourth invention is an applied invention based on the method for producing composite particles according to the first or second invention. In other words, the core particle as a core is made of a molten or soluble material, and the child particle is fixed on the surface of the mother particle by applying a compressive force and a shearing force in a mixed state of the mother particle and a child particle finer than that. Alternatively, a composite particle is manufactured by forming a coating layer of child particles, and then only the mother particle component is melted or dissolved and removed from the composite particle to make it hollow, and a molten or soluble material is used for the mother particle. It is possible by doing.

〔作用効果〕本発明による中空状の複合粒子は、複合粒子の核となる母粒子部分が溶融蒸発あるいは溶出してなくなることで中空粒子状になるもので、母粒子に溶融性または溶解性にすぐれた材料を使用することで容易に実施することができる。そして、母粒子成分を溶融除去させる場合には、熱溶融性が低く不要なガス等の発生の少ない材料が好ましい。母粒子成分を溶解除去させる場合には、溶剤に対して溶解し易い材料を選択することが大切である。なお、溶融や溶解を促進するためには炉内や処理室内の圧力および温度の制御が必要である。   [Effect] The hollow composite particles according to the present invention are formed into hollow particles when the core particle portion that is the core of the composite particles is not melted and evaporated or eluted. It can be easily implemented by using excellent materials. When the mother particle component is melted and removed, a material having low heat melting property and less generation of unnecessary gas or the like is preferable. When the mother particle component is dissolved and removed, it is important to select a material that is easily dissolved in the solvent. In order to promote melting and melting, it is necessary to control the pressure and temperature in the furnace and the processing chamber.

第5の発明に係る複合粒子は、第4の発明に係る複合粒子の製造方法によって製造された中空状の複合粒子であり、母粒子および子粒子の材料選択を含めて種々の組合せが考えられ、今後の新素材の開発分野への利用が期待されるものである。   The composite particle according to the fifth invention is a hollow composite particle manufactured by the method for manufacturing a composite particle according to the fourth invention, and various combinations including selection of the material of the mother particle and the child particle are conceivable. The use of new materials in the development field is expected.

以上のように、本発明によれば、核となる母粒子の表面に子粒子を固定または子粒子の被覆層が形成された複合粒子を効率よく製造することができるほか、サブミクロン以下の微細な粉体粒子の複合皮膜および被覆層を有する複合粒子を得ることできる。   As described above, according to the present invention, it is possible to efficiently produce composite particles in which a child particle is fixed on the surface of a mother particle serving as a nucleus or a coating layer of the child particle is formed, and fine particles of submicron or less are produced. Composite particles having a composite coating and a coating layer of various powder particles can be obtained.

以下に本発明の実施の形態を図面に基づいて説明する。図1および図2は本発明に用いる粉体処理装置の概略を示す。図3〜図14は本発明の実施により製造された複合粒子を示す。   Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 schematically show a powder processing apparatus used in the present invention. 3 to 14 show composite particles produced by the practice of the present invention.

(粉体処理装置)図1の粉体処理装置は、主に、基台1に設置した略円筒形状のケーシング2、および、当該ケーシング2の内部に設けた同じく略円筒形状の筒状回転体3、当該筒状回転体3との間に押圧力を発生させて被処理物4を処理すべく前記筒状回転体3の内部に配設したプレスヘッド5とからなる。前記筒状回転体3を回転させることで、当該筒状回転体3の内周面に形成した受け面6と前記プレスヘッド5とを相対回転させ、前記受け面6と前記プレスヘッド5との間の空間7に存する被処理物4に圧縮力および剪断力を付与して、前述のごとく原料どうしの複合化・混合・球状化等を行うのである。尚、本発明においては、これらの処理を総称してメカノフュージョン処理という。   (Powder Processing Apparatus) The powder processing apparatus in FIG. 1 mainly includes a substantially cylindrical casing 2 installed on a base 1 and a cylindrical rotating body having a substantially cylindrical shape provided inside the casing 2. 3 and a press head 5 disposed inside the cylindrical rotating body 3 for generating a pressing force between the cylindrical rotating body 3 and processing the workpiece 4. By rotating the cylindrical rotating body 3, the receiving surface 6 formed on the inner peripheral surface of the cylindrical rotating body 3 and the press head 5 are relatively rotated, and the receiving surface 6 and the press head 5 are A compression force and a shearing force are applied to the workpiece 4 existing in the space 7 between them, and as described above, the raw materials are combined, mixed, spheroidized, and the like. In the present invention, these processes are collectively called mechanofusion processes.

前記プレスヘッド5によって圧縮力および剪断力を付与された前記被処理物4は、主に前記筒状回転体3の周壁8に設けた孔部9を介して外方に排出され、前記周壁8の外周部に形成した羽根部材10によって再び前記筒状回転体3の内部に循環させる。本構成にすることで、プレスヘッドと受け面6との間に挟まれた被処理物4を積極的に流動・循環させ、前記受け面6に対する被処理物4の付着量を少なくすることができる。尚、処理する材料の種類によっては、過大な圧縮力あるいは剪断力を加えると物性を損ねたりする場合がある。しかし、当該粉体処理装置のごとく、孔部9を介して被処理物4を循環させる構成の装置を用いることとすれば、被処理物4に作用させる圧縮力等を適宜加減することができる。例えば、前記孔部9の開口面積を広く設定しておけば、被処理物4は筒状回転体3の外部に容易に排出されるから、被処理物4に対するプレスヘッド5の作用時間が短かくなり、被処理物4に作用する圧縮力等が結果的に弱まることとなる。逆に、前記孔部9の開口面積を狭く設定しておけば、被処理物4に対するプレスヘッド5の作用時間が長くなり、前記圧縮力等は強まることとなる。このように、本構成の粉体処理装置を用いる場合には、被処理物4に作用させる圧縮力等を任意に変更して最適な粉体処理条件を得ることが可能であり、優れた品質の製品を得ることができる。   The workpiece 4 to which the compressive force and the shearing force are applied by the press head 5 is discharged outwardly mainly through a hole 9 provided in the peripheral wall 8 of the cylindrical rotating body 3, and the peripheral wall 8 It is made to circulate again inside the said cylindrical rotary body 3 by the blade member 10 formed in the outer peripheral part. By adopting this configuration, the workpiece 4 sandwiched between the press head and the receiving surface 6 can be actively flowed and circulated to reduce the amount of the workpiece 4 attached to the receiving surface 6. it can. Depending on the type of material to be treated, physical properties may be impaired when an excessive compressive force or shear force is applied. However, if an apparatus configured to circulate the workpiece 4 through the hole 9 as in the powder processing apparatus is used, the compressive force applied to the workpiece 4 can be appropriately adjusted. . For example, if the opening area of the hole 9 is set wide, the workpiece 4 is easily discharged to the outside of the cylindrical rotating body 3, so that the operation time of the press head 5 on the workpiece 4 is short. As a result, the compressive force or the like acting on the workpiece 4 is weakened as a result. On the contrary, if the opening area of the hole 9 is set to be narrow, the operation time of the press head 5 with respect to the object to be processed 4 becomes longer, and the compression force and the like become stronger. Thus, when using the powder processing apparatus of this structure, it is possible to obtain the optimum powder processing conditions by arbitrarily changing the compressive force or the like that acts on the object 4 to be processed. You can get a product.

処理する材料によっては、粉体処理装置の内部を減圧したり所定のガス雰囲気にする場合がある。そのため、本発明に係る粉体処理装置では、例えば、ケーシング2と筒状回転体3の軸体3aとの間、あるいは、ケーシング2とプレスヘッド5の支持杆5aとの間にシール部材11a,11bを設けてある。   Depending on the material to be processed, the inside of the powder processing apparatus may be depressurized or a predetermined gas atmosphere. Therefore, in the powder processing apparatus according to the present invention, for example, the seal member 11a, between the casing 2 and the shaft body 3a of the cylindrical rotating body 3 or between the casing 2 and the support rod 5a of the press head 5 is provided. 11b is provided.

図2に示す粉体処理装置は、連続処理を可能とするもので、機台(図示省略)に固定された横型長胴のケーシング22に対して、横向き状態の回転軸20に支持されたプレスヘッド25が複数個、回転軸20の外周部に複数列に亘って配置されてケーシング22の内面に沿って回転するように構成され、かつ原料の供給口と処理製品の排出口が前記回転軸20の両端部側に配置されて構成されている点が異なるものの、プレスヘッド25とケーシング22の内面間で行われる作用効果は、図1の装置と同様である。図2に示すごとく、回転軸20の長手方向に沿って隣接するプレスヘッド25の間に、ケーシング22の内面から突出すると共に回転軸20の回転方向に延出するスリット板30を設け、処理材料が回転軸20の軸方向に移動するときの速度を抑えて機内での滞留時間を確保させるようにしている。同時に、スリット板30にスリット状の開口31を設け、処理材料の量に応じて軸方向の移動速度を調整できるようにしてある。   The powder processing apparatus shown in FIG. 2 is capable of continuous processing, and is a press supported by a rotary shaft 20 in a lateral direction with respect to a casing 22 of a horizontal long barrel fixed to a machine base (not shown). A plurality of heads 25 are arranged in a plurality of rows on the outer peripheral portion of the rotary shaft 20 and are configured to rotate along the inner surface of the casing 22, and a raw material supply port and a processed product discharge port are the rotary shafts. Although different in that it is arranged on both ends of 20, the operational effects performed between the press head 25 and the inner surface of the casing 22 are the same as those of the apparatus of FIG. 1. As shown in FIG. 2, a slit plate 30 that protrudes from the inner surface of the casing 22 and extends in the rotation direction of the rotary shaft 20 is provided between the press heads 25 adjacent to each other along the longitudinal direction of the rotary shaft 20. The movement time in the axial direction of the rotary shaft 20 is suppressed to ensure the residence time in the machine. At the same time, a slit-like opening 31 is provided in the slit plate 30 so that the moving speed in the axial direction can be adjusted according to the amount of the processing material.

〔複合粉体〕本発明による複合粉体(複合粒子)の形態としては、(1)母粒子の表面に子粒子が皮膜層を形成するもの、(2)複数種の子粒子を順番に処理することで多層の被覆層を形成させるもの、(3)子粒子が母粒子の内部に閉じ込められるもの、(4)複合化された粒子同士が凝集塊を形成するもの、(5)子粒子の皮膜層によって本来の電気的、物理的、化学的な特性が変化するもの、(6)一又は複数種の粒子を結合させて造粒物粒子にするものなどがある。これらは、単に材料同士の組合せによって決定されるものではなく、粒子の大きさや形状、複合化状態の違い等によって多様かつ多機能的な特性を有するものである。   [Composite powder] The form of the composite powder (composite particles) according to the present invention is as follows: (1) Child particles form a coating layer on the surface of the mother particles; (2) Multiple types of child particles are processed in order To form a multilayer coating layer, (3) the child particles are confined in the mother particles, (4) the composite particles form an aggregate, (5) the child particles There are those in which the original electrical, physical, and chemical properties change depending on the coating layer, and (6) those in which one or more kinds of particles are combined to form granulated particles. These are not simply determined by the combination of materials but have various and multifunctional characteristics depending on the size and shape of the particles, the difference in the composite state, and the like.

次に、本発明を実施して製造した複合粒子について説明する。
図3および図4は、母粒子である鉄粉(Fe)に子粒子である安定化ジルコニア(PSZ)粉末を被覆させたもので、図3の(a)は原料のFe粒子、(b)は原料のPSZ粉末、図4は両原料を複合化処理してできた複合粒子の顕微鏡写真である。
Next, composite particles produced by carrying out the present invention will be described.
FIGS. 3 and 4 show iron powder (Fe) as a base particle coated with stabilized zirconia (PSZ) powder as a child particle, where (a) in FIG. 3 is a raw material Fe particle, (b) Is a raw material PSZ powder, and FIG. 4 is a micrograph of composite particles obtained by combining both raw materials.

図5は、母粒子である銅粉(Cu)に子粒子であるジルコニア(ZrO2)と酸化ケイ素(SiO2)を被覆させた複合粒子で、Cu粒子の表面を他の粒子が完全に被覆しているのが分かる。   FIG. 5 is a composite particle in which copper powder (Cu) as a mother particle is coated with zirconia (ZrO2) and silicon oxide (SiO2) as child particles, and other particles completely cover the surface of the Cu particle. I can see that

図6(a)は、母粒子である平均粒径30μmのグラスボールビーズ(GB)と子粒子である平均粒径25nmの酸化セリウム(CeO2)をそれぞれ70%と30%の割合で30分間処理して複合粒子にしたものである(子粒子に対する母粒子の粒径比は1200となる)。図6(b)は、この複合粒子の断面TEM写真で、CeO2がGBの表面全体に被膜を形成しているのが分かる。   Fig. 6 (a) shows the treatment of glass ball beads (GB) with an average particle size of 30 μm as mother particles and cerium oxide (CeO2) with an average particle size of 25 nm as child particles at a rate of 70% and 30% for 30 minutes, respectively. Thus, composite particles are obtained (the particle diameter ratio of the mother particles to the child particles is 1200). FIG. 6 (b) is a cross-sectional TEM photograph of this composite particle, and it can be seen that CeO2 forms a coating on the entire surface of GB.

図7は、母粒子であるコバルト酸リチウムと子粒子であるナノカーボンを複合化したもので、(a)は原料のコバルト酸リチウムで平均粒径10μm、(b)は原料のナノカーボンで平均粒径50nm、(c)はこれらを複合化処理してできた複合粒子である(子粒子に対する母粒子の粒径比は200となる)。この複合粒子はリチウムイオン電池の正極用活物質として使用されるものである。   FIG. 7 shows a composite of lithium cobalt oxide as a mother particle and nanocarbon as a child particle. (A) is an average particle size of 10 μm of raw material lithium cobaltate, and (b) is an average of raw material nanocarbon. The particle size is 50 nm, and (c) is a composite particle obtained by compounding these (the particle size ratio of the mother particle to the child particle is 200). This composite particle is used as an active material for a positive electrode of a lithium ion battery.

図8は、母粒子である平均粒径50μmのチタン(Ti)と子粒子である平均粒径15nmのカーボンブラック(CB)をそれぞれ91%と9%の割合で30分間処理してできた複合粒子である(子粒子に対する母粒子の粒径比は3333となる)。   FIG. 8 shows a composite obtained by treating titanium (Ti) with an average particle size of 50 μm as a mother particle and carbon black (CB) with an average particle size of 15 nm as a child particle at a ratio of 91% and 9% for 30 minutes, respectively. Particles (the particle size ratio of the mother particles to the child particles is 3333).

図9は、母粒子である平均粒径8μmの銅(Cu)と子粒子である平均粒径0.7nmのフラーレン(C60)をそれぞれ95%と5%の割合で2時間処理してできた複合粒子(子粒子に対する母粒子の粒径比は11429となる)の断面TEM写真である。   FIG. 9 is obtained by treating copper (Cu) having an average particle size of 8 μm as a mother particle and fullerene (C60) having an average particle size of 0.7 nm as a child particle at a ratio of 95% and 5% for 2 hours, respectively. It is a cross-sectional TEM photograph of composite particles (particle size ratio of mother particles to child particles is 11429).

図10は、母粒子である平均粒径12μmのメタクリル樹脂(PMMA)と子粒子である平均粒径12nmのジルコニウムシリケート(ZrO2/SiO2)を2時間処理してできた複合粒子(子粒子に対する母粒子の粒径比は1000となる)で、PMMAの表面がZrO2およびSiO2によって被覆されているのが分かる。   FIG. 10 shows composite particles (mother particles for child particles) obtained by treating methacrylic resin (PMMA) having an average particle size of 12 μm as a parent particle and zirconium silicate (ZrO2 / SiO2) having an average particle size of 12 nm as a child particle for 2 hours. It can be seen that the PMMA surface is covered with ZrO 2 and SiO 2.

図11は、母粒子である平均粒径10μmのMCMB(メソ・カーボン・マイクロ・ビーズ)と子粒子である平均粒径150nmのPMMAをそれぞれ95%と5%の割合で30分間処理してできた複合粒子である(子粒子に対する母粒子の粒径比は67となる)。MCMBの表面をPMMAによる被覆層が形成されており、これを直接ヒートプレスしたり、混練のマスターバッチとして使用し、導電性シートを作成できる。また、ディスプレーの表示粒子として利用できる可能性もある。   FIG. 11 shows that MCMB (meso carbon micro beads) having an average particle size of 10 μm as a mother particle and PMMA having an average particle size of 150 nm as a child particle were treated at a ratio of 95% and 5% for 30 minutes, respectively. Composite particles (the particle size ratio of the mother particles to the child particles is 67). A coating layer made of PMMA is formed on the surface of MCMB, and this can be directly heat pressed or used as a master batch for kneading to create a conductive sheet. Further, it may be used as display particles for display.

図12(a)は、母粒子である平均粒径12μmのPMMAと子粒子である平均粒径15nmのTiO2をそれぞれ67%と33%の割合で3時間処理してできた複合粒子である(子粒子に対する母粒子の粒径比は800となる)。(b)は、この複合粒子を500℃に加熱させて複合粒子からPMMAの成分を溶融蒸発させて除去したもので、割れたものはをガス化した際に破裂したものである。   FIG. 12 (a) shows composite particles obtained by treating PMMA with an average particle size of 12 μm as a mother particle and TiO2 with an average particle size of 15 nm as a child particle at a rate of 67% and 33% for 3 hours, respectively ( The particle size ratio of the mother particles to the child particles is 800). (b) is obtained by heating the composite particles to 500 ° C. to melt and remove the PMMA components from the composite particles, and the broken ones are ruptured when gasified.

図13(a)は、母粒子である平均粒径12μmのPMMAと子粒子である平均粒径50nmのスズ酸化物(SnO2)をそれぞれ77%と23%の割合で90分間処理してできた複合粒子である(子粒子に対する母粒子の粒径比は240となる)。(b)は、この複合粒子の断面SEM写真で、PMMA粒子の表面全体にSnO2が被膜を形成しているのが分かる。図14は、この複合粒子を500℃に加熱させて複合粒子からPMMAの成分を溶融蒸発させて除去したもので、割れたものはをガス化した際に破裂したものである。   FIG. 13 (a) was obtained by treating PMMA with an average particle size of 12 μm as a mother particle and tin oxide (SnO2) with an average particle size of 50 nm as a child particle at a rate of 77% and 23%, respectively, for 90 minutes. It is a composite particle (the particle size ratio of the mother particle to the child particle is 240). (b) is a cross-sectional SEM photograph of this composite particle, and it can be seen that SnO2 forms a film on the entire surface of the PMMA particle. In FIG. 14, the composite particles are heated to 500 ° C. to remove the PMMA components by melting and evaporating from the composite particles, and the broken ones burst when they are gasified.

以上の実施例に加え、今後の複合粒子を形成する際に考えられる粒子材料の組合せとその用途および期待される効果等を以下に列挙する。何れも粒子レベルでの精密混合により異種材料粒子が混在する緻密な組成物が形成されることで多様な特性を持った複合粒子が得られる。また、圧縮力と剪断力を付与する過程で混合造粒作用に伴い球状化されて充填性が向上するという効果も挙げられる。   In addition to the above examples, combinations of particulate materials considered when forming composite particles in the future, their uses, expected effects, and the like are listed below. In any case, composite particles having various characteristics can be obtained by forming a dense composition in which different kinds of material particles are mixed by precise mixing at the particle level. In addition, there is also an effect that in the process of applying compressive force and shearing force, it is spheroidized with the mixing granulation action and the filling property is improved.

(A)母粒子と子粒子が共に金属の場合、用途面では各種合金化が可能で傾斜機能材料、耐熱材料、錆止材料に応用でき、耐薬品性、造粒による充填性改善の効果も期待できる。   (A) When both the mother particle and the child particle are metal, it can be alloyed in various applications, and can be applied to functionally gradient materials, heat-resistant materials, and rust-preventing materials. I can expect.

(B)母粒子が金属で子粒子が無機材料あるいは母粒子が無機材料で子粒子が金属の場合、燒結体としてコアーの渦電流を低下させたり、燒結密度の向上のほか、耐熱性、耐食性、耐摩耗性、耐薬品性、充填性向上などが図れ、傾斜機能材料、導電性材料、発光材料などの用途に利用できる。   (B) When the mother particle is a metal and the child particle is an inorganic material or the mother particle is an inorganic material and the child particle is a metal, as a sintered body, the core eddy current is reduced, the sintering density is improved, and the heat resistance and corrosion resistance. It can be used for applications such as functionally gradient materials, conductive materials, and luminescent materials.

(C)母粒子が金属で子粒子が有機材料あるいは母粒子が有機材料で子粒子が金属の場合、導電体材料として電極バルク、フィルム、グリース等に、熱伝導体材料としてフィルム、グリース等に、ナノバルーン化させて増量材、軽量材、保温材、吸音材等に、またナノバルーン化させた粒子の表面に凝集防止効果を持たせてセンサーとして利用できる。さらに、耐熱性、耐食性、耐薬品性などを持たせて、錆止材、カビ防止材、高強度材、難燃材、発光材料、電気絶縁材等の用途に利用できる。   (C) When the mother particle is a metal and the child particle is an organic material or the mother particle is an organic material and the child particle is a metal, the conductor material is an electrode bulk, film, grease, etc., and the heat conductor material is a film, grease, etc. It can be used as a sensor by making it into a nanoballoon to provide a bulking material, a lightweight material, a heat insulating material, a sound absorbing material, etc., or to give a nanoballooned particle surface an anti-aggregation effect. Furthermore, it has heat resistance, corrosion resistance, chemical resistance, etc., and can be used for applications such as rust prevention materials, anti-mold materials, high-strength materials, flame retardant materials, light-emitting materials, and electrical insulation materials.

(D)母粒子が金属で子粒子として液または液状物の場合、母粒子表面への被膜形成により、燒結体の薄膜材、酸およびアルカリ洗浄材、酸化および還元材、親水性および疎水性付与材などの用途に利用できる。また、液がバインダの場合、強固で均一な粒径の造粒物を作成することができ、充填材、焼結用粒子、触媒などに利用できる。   (D) When the mother particle is a metal and is a liquid or liquid substance as a child particle, a thin film material of a sintered body, an acid and alkali cleaning material, an oxidizing and reducing material, hydrophilicity and hydrophobicity are imparted by forming a film on the surface of the mother particle. It can be used for materials. Further, when the liquid is a binder, a granulated product having a strong and uniform particle size can be prepared, and can be used as a filler, sintering particles, a catalyst, and the like.

(E)母粒子と子粒子が共に無機材料の場合、フィラーの充填量を増加してCPU封止剤に、顔料の発色性向上に、カーボン、軸受部品の硫化モリブデン被膜などの潤滑性改善に、電気伝導材、紫外線の遮蔽材、高強度材、耐候性付与材などの用途のほか、ナノバルーンの破片をフィラーとして化粧品や分散材としても利用できる。また、造粒による充填性改善の効果も期待できる。   (E) When both the mother particles and the child particles are inorganic materials, the filler filling amount is increased to improve the coloring property of the pigment in the CPU sealant, and the lubricity of carbon and molybdenum sulfide coatings on bearing parts. In addition to applications such as electrical conductive materials, ultraviolet shielding materials, high-strength materials, weather resistance-imparting materials, nanoballoon fragments can also be used as cosmetics and dispersion materials. Moreover, the effect of the filling property improvement by granulation can also be expected.

(F)母粒子が無機材料で子粒子が有機材料あるいは母粒子が有機材料で子粒子が無機材料の場合、高強度材、難燃材、発光材料、電気伝導材などの用途ほか、ペーパーライクディスプレ(帯電粒子)、二次電池のバインダ付活物質材料、フィラーとして誘電体粒子の熱伝導率や濡れ性の向上に、ナノバルーン化して増量材、保温材、吸音材に、また粒子表面に凝集防止効果を持たせてセンサーとしても利用できる。   (F) When the mother particle is an inorganic material and the child particle is an organic material, or the mother particle is an organic material and the child particle is an inorganic material, it is used for high-strength materials, flame retardants, light-emitting materials, electrical conductive materials, etc. To improve the thermal conductivity and wettability of dielectric particles as a display (charged particles), secondary battery binder active materials, and fillers, use nanoballoons for bulking materials, heat insulating materials, sound absorbing materials, and on the particle surface It can also be used as a sensor with an anti-aggregation effect.

(G)母粒子が無機粒子で子粒子として液または液状物の場合、母粒子表面への被膜形成により、カップリング処理して虫歯詰の樹脂フィラーに、また各基材の濡れ性を改善するフィラーに、親水性および疎水性付与材などの用途に利用できる。また、造粒物は充填性改善の効果も期待できる。   (G) In the case where the mother particle is an inorganic particle and is a liquid or liquid substance as a child particle, a coating treatment is performed on the surface of the mother particle to improve the wettability of each substrate by coupling treatment to a dental filler. The filler can be used for applications such as hydrophilicity and hydrophobicity imparting materials. In addition, the granulated product can be expected to improve the filling property.

(H)母粒子と子粒子が共に有機材料の場合、徐放性や生体親和性とコントロールリリースを目的としたDDS(ドラッグ・デリバリー・システム)による医薬品への応用、および耐光性による紫外線の遮蔽材、PEGやPVAなどの高分子材料の表面融合により樹脂自体の可溶性や不溶性を向上させることができ、同種の樹脂を使用する用途に利用できる。   (H) When both the mother particle and the child particle are organic materials, they are applied to pharmaceuticals by DDS (drug delivery system) for the purpose of sustained release, biocompatibility and control release, and UV shielding by light resistance It is possible to improve the solubility and insolubility of the resin itself by surface fusion of a material, a polymer material such as PEG and PVA, and it can be used for applications using the same kind of resin.

(I)母粒子が有機粒子で子粒子として液または液状物の場合、母粒子表面への被膜形成により可溶性および不溶性を付与したり、親水性および疎水性などを付与することができる。   (I) When the mother particle is an organic particle and is a liquid or liquid substance as a child particle, solubility and insolubility can be imparted by imparting a film to the surface of the mother particle, and hydrophilicity and hydrophobicity can be imparted.

なお、有機材料として主要な材料である樹脂で粉粒体にできるものは、熱硬化性樹脂、熱可塑性樹脂、その他特殊樹脂であれ、すべて本発明に使用可能である。熱硬化性樹脂としては、エポキシ樹脂(EP)、ジアリルフタレート樹脂(PDAP)、シリコーン樹脂(SI)、フェノール樹脂(PF)、不飽和ポリエステル樹脂(UP)、ポリイミド樹脂(PI)、ポリウレタン樹脂(PUR)、メラミン樹脂(MF)、ユリア樹脂(UF)などが挙げられる。   In addition, what can be made into a granular material with resin which is a main material as an organic material can be used for this invention, even if it is a thermosetting resin, a thermoplastic resin, and other special resin. Thermosetting resins include epoxy resin (EP), diallyl phthalate resin (PDAP), silicone resin (SI), phenol resin (PF), unsaturated polyester resin (UP), polyimide resin (PI), polyurethane resin (PUR). ), Melamine resin (MF), urea resin (UF), and the like.

熱可塑性樹脂として、エチレン酢ビコポリマー(EVA)、エチレンビニルアルコール強重合樹脂(PVAL)、塩化ビニル樹脂(PVC)、塩素化ポリエチレン(CPE)、酢酸繊維素樹脂(CA)ポリアセタール樹脂(POM)、ポリアミド樹脂(PA)、ポリアクリレート樹脂(PAR)、熱可塑性ポリウレタンエラストマー(TPU)、熱可塑性エラストマー(TPE)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSU)、ポリエーテルサルホン(PES)、高密度ポリエチレン樹脂(HDPE)、低密度ポリエチレン樹脂(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリエチレンテレフタレート(PET)、ポリエステル樹脂(PEN)ポリカーボネート樹脂(PC)、ポリスチレン樹脂(PS)、ポリフェニレンエーテル樹脂(PPE)、ポリフェニレンオキサイド(PPO)、ポリフェニレンサルファイド(PPS)、ポリブタジエン樹脂(PBD)、ポリブチレンテレフタレート(PBT)、ポリプロピレン樹脂(PP)、メタクリル樹脂(PMMA)、ポリメチルペンテン樹脂(PMP)などが挙げられる。   As the thermoplastic resin, ethylene vinyl acetate copolymer (EVA), ethylene vinyl alcohol strong polymerization resin (PVAL), vinyl chloride resin (PVC), chlorinated polyethylene (CPE), cellulose acetate resin (CA) polyacetal resin (POM), Polyamide resin (PA), polyacrylate resin (PAR), thermoplastic polyurethane elastomer (TPU), thermoplastic elastomer (TPE), liquid crystal polymer (LCP), polyether ether ketone (PEEK), polysulfone (PSU), polyether sal Hong (PES), high density polyethylene resin (HDPE), low density polyethylene resin (LDPE), linear low density polyethylene (LLDPE), polyethylene terephthalate (PET), polyester resin (PEN) polycarbonate resin (PC) Polystyrene resin (PS), polyphenylene ether resin (PPE), polyphenylene oxide (PPO), polyphenylene sulfide (PPS), polybutadiene resin (PBD), polybutylene terephthalate (PBT), polypropylene resin (PP), methacrylic resin (PMMA), Examples thereof include polymethylpentene resin (PMP).

その他の特殊樹脂として、様々な熱硬化性特殊樹脂および熱可塑性特殊樹脂が各樹脂メーカーから製造販売されているが、これらについても樹脂の形態が粉粒体状であれば本発明に利用可能である。   As other special resins, various thermosetting special resins and thermoplastic special resins are manufactured and sold by respective resin manufacturers, and these can also be used in the present invention if the form of the resin is granular. is there.

本発明により製造された複合粒子は、粉末冶金、セラミックス、トナー、粉体塗料、ハイブリット樹脂、二次電池、その他各種工業分野における新素材材料として使用できる。   The composite particles produced according to the present invention can be used as a new material material in powder metallurgy, ceramics, toner, powder coating, hybrid resin, secondary battery, and other various industrial fields.

また本発明の複合粒子は、微細な複合粒子であっても溶液やバインダなどを加える必要がないので、複合粒子にバインダなどの不要な成分が混入しない製品が得られ、医薬品や食品用としても利用できる。   Further, since the composite particles of the present invention do not require addition of a solution or a binder even if they are fine composite particles, a product in which unnecessary components such as a binder are not mixed into the composite particles can be obtained, and it can be used for pharmaceuticals and foods. Available.

さらに、本発明の複合粒子の製造方法は、複合化処理工程に温度制御を加えることで、材料の種類、組み合わせ、形状や性状を問わず実施でき、種々の良好な複合粒子の製造を可能とし、製品となる複合粒子は各種素材として様々な工業分野において利用されるほか、新素材として技術開発分野での新たな用途開発への適用範囲を広げることができる。   Furthermore, the method for producing composite particles of the present invention can be carried out regardless of the type, combination, shape, and properties of materials by adding temperature control to the composite treatment step, and enables production of various good composite particles. The product composite particles can be used as various materials in various industrial fields, and as a new material, the range of application to new application development in the technical development field can be expanded.

本発明の実施に用いる粉体処理装置の概要を示す正面断面図Front sectional view showing an outline of a powder processing apparatus used in the practice of the present invention 本発明の実施に用いる別の粉体処理装置の概要を示す正面断面図Front sectional drawing which shows the outline | summary of another powder processing apparatus used for implementation of this invention 本発明の一実施例に使用する原料粉体の顕微鏡写真Micrograph of raw material powder used in one embodiment of the present invention 図3の原料粉体を複合化した複合粒子の顕微鏡写真Photomicrograph of composite particles obtained by compounding the raw material powder shown in FIG. 本発明の一実施例による複合粒子の顕微鏡写真1 is a micrograph of a composite particle according to an embodiment of the present invention. 本発明の一実施例による複合粒子の顕微鏡写真1 is a micrograph of a composite particle according to an embodiment of the present invention. 本発明の一実施例による複合粒子の顕微鏡写真1 is a micrograph of a composite particle according to an embodiment of the present invention. 本発明の一実施例による複合粒子の顕微鏡写真1 is a micrograph of a composite particle according to an embodiment of the present invention. 本発明の一実施例による複合粒子の顕微鏡写真1 is a micrograph of a composite particle according to an embodiment of the present invention. 本発明の一実施例による複合粒子の顕微鏡写真1 is a micrograph of a composite particle according to an embodiment of the present invention. 本発明の一実施例による複合粒子の顕微鏡写真1 is a micrograph of a composite particle according to an embodiment of the present invention. 本発明の一実施例による複合粒子の顕微鏡写真1 is a micrograph of a composite particle according to an embodiment of the present invention. 本発明の一実施例による複合粒子の顕微鏡写真1 is a micrograph of a composite particle according to an embodiment of the present invention. 図13の複合粒子を中空化した複合粒子の顕微鏡写真Photomicrograph of composite particles obtained by hollowing out composite particles in FIG.

符号の説明Explanation of symbols

1 基台
2 ケーシング
3 筒状回転体
4 被処理物
5 プレスヘッド
6 受け面
7 空間
8 筒状回転体の周壁
9 孔部
10 羽根部材
20 回転軸
22 ケーシング
25 プレスヘッド
30 スリット板
31 開口
DESCRIPTION OF SYMBOLS 1 Base 2 Casing 3 Cylindrical rotating body 4 To-be-processed object 5 Press head 6 Receiving surface 7 Space 8 Peripheral wall of a cylindrical rotating body 9 Hole 10 Blade member 20 Rotating shaft 22 Casing 25 Press head 30 Slit plate 31 Opening

Claims (5)

核となる母粒子とそれよりも微細な子粒子とを混合状態で圧縮力と剪断力を付与させて母粒子の表面に子粒子を固定または子粒子の被覆層を形成させて複合化させることを特徴とする複合粒子の製造方法。   Applying compressive force and shear force in a mixed state to core particles that are cores and finer child particles, and fixing the child particles on the surface of the mother particles or forming a coating layer of the child particles to form a composite A method for producing composite particles characterized by the above. 前記母粒子の粒径が10nm以上、子粒子の粒径が1μm以下で、且つ子粒子に対する母粒子の粒径比が10以上である請求項1に記載の複合粒子の製造方法。   2. The method for producing composite particles according to claim 1, wherein the mother particles have a particle size of 10 nm or more, the child particles have a particle size of 1 μm or less, and the particle size ratio of the mother particles to the child particles is 10 or more. 核となる母粒子とそれよりも微細な子粒子とを混合状態で圧縮力と剪断力を付与させて母粒子の表面に子粒子を固定または子粒子の被覆層を形成させて複合化された複合粒子。   The core mother particles and finer child particles are mixed to give a compressive force and a shearing force in a mixed state to fix the child particles on the surface of the mother particles or to form a coating layer of the child particles. Composite particles. 核となる母粒子を溶融または溶解性の材料とし、該母粒子とそれよりも微細な子粒子とを混合状態で圧縮力と剪断力を付与させて母粒子の表面に子粒子を固定または子粒子の被覆層を形成させて複合粒子を製造した後に、該複合粒子から母粒子成分のみを溶融または溶解除去して中空状にすることを特徴とする複合粒子の製造方法。   The core particle as a core is made of a melting or soluble material, and the child particle is fixed to the surface of the mother particle by applying a compressive force and a shearing force in a mixed state of the mother particle and a child particle finer than the mother particle. A method for producing composite particles, comprising forming composite particles by forming a coating layer of particles, and then melting or dissolving only the mother particle components from the composite particles to form a hollow shape. 核となる母粒子を溶融または溶解性の材料とし、該母粒子とそれよりも微細な子粒子とを混合状態で圧縮力と剪断力を付与させて母粒子の表面に子粒子を固定または子粒子の被覆層を形成させて複合粒子を製造した後に、該複合粒子から母粒子成分のみを溶融または溶解除去して中空状にした複合粒子。
The core particle as a core is made of a melting or soluble material, and the child particle is fixed to the surface of the mother particle by applying a compressive force and a shearing force in a mixed state of the mother particle and a child particle finer than the mother particle. A composite particle in which a composite particle is manufactured by forming a particle coating layer, and then only a mother particle component is melted or dissolved and removed from the composite particle to form a hollow shape.
JP2004046570A 2003-06-03 2004-02-23 Method for manufacturing composite particle, and composite particle manufactured thereby Pending JP2005015910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046570A JP2005015910A (en) 2003-06-03 2004-02-23 Method for manufacturing composite particle, and composite particle manufactured thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003193928 2003-06-03
JP2004046570A JP2005015910A (en) 2003-06-03 2004-02-23 Method for manufacturing composite particle, and composite particle manufactured thereby

Publications (1)

Publication Number Publication Date
JP2005015910A true JP2005015910A (en) 2005-01-20

Family

ID=34197100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046570A Pending JP2005015910A (en) 2003-06-03 2004-02-23 Method for manufacturing composite particle, and composite particle manufactured thereby

Country Status (1)

Country Link
JP (1) JP2005015910A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302781A (en) * 2006-05-11 2007-11-22 Teijin Techno Products Ltd Carbon nanotube-containing aromatic polyamide composition, its production method and fiber
JP2008198465A (en) * 2007-02-13 2008-08-28 Sanyo Electric Co Ltd Positive electrode for non-aqueous electrolyte secondary battery, and its manufacturing method
JP2009187963A (en) * 2009-05-26 2009-08-20 Tdk Corp Composite particle for electrode and electrochemical device
JP2010170750A (en) * 2009-01-20 2010-08-05 Tdk Corp Method for producing active material and electrode, and active material and electrode
KR101095375B1 (en) 2006-02-14 2011-12-16 간사이네쯔카가꾸가부시끼가이샤 Negative electrode material for lithium ion secondary battery, and method of manufacturing the same
DE112010003894T5 (en) 2009-10-02 2012-11-22 Nippon Coke & Engineering Co., Ltd. processing device
WO2014054618A1 (en) * 2012-10-03 2014-04-10 戸田工業株式会社 Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP2015053466A (en) * 2013-08-07 2015-03-19 株式会社Nttファシリティーズ Thermoelectric material, process of manufacturing the same, and thermoelectric conversion device
JP2015170508A (en) * 2014-03-07 2015-09-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2016041850A (en) * 2014-07-04 2016-03-31 ゼネラル・エレクトリック・カンパニイ Method for treating powder and powder treated by said method
CN114191832A (en) * 2021-09-30 2022-03-18 宜宾锂宝新材料有限公司 Integrated drying and coating equipment for ternary cathode material and using method of integrated drying and coating equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101095375B1 (en) 2006-02-14 2011-12-16 간사이네쯔카가꾸가부시끼가이샤 Negative electrode material for lithium ion secondary battery, and method of manufacturing the same
JP2007302781A (en) * 2006-05-11 2007-11-22 Teijin Techno Products Ltd Carbon nanotube-containing aromatic polyamide composition, its production method and fiber
JP2008198465A (en) * 2007-02-13 2008-08-28 Sanyo Electric Co Ltd Positive electrode for non-aqueous electrolyte secondary battery, and its manufacturing method
JP2010170750A (en) * 2009-01-20 2010-08-05 Tdk Corp Method for producing active material and electrode, and active material and electrode
JP2009187963A (en) * 2009-05-26 2009-08-20 Tdk Corp Composite particle for electrode and electrochemical device
DE112010003894T5 (en) 2009-10-02 2012-11-22 Nippon Coke & Engineering Co., Ltd. processing device
WO2014054618A1 (en) * 2012-10-03 2014-04-10 戸田工業株式会社 Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP2015053466A (en) * 2013-08-07 2015-03-19 株式会社Nttファシリティーズ Thermoelectric material, process of manufacturing the same, and thermoelectric conversion device
JP2015170508A (en) * 2014-03-07 2015-09-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2016041850A (en) * 2014-07-04 2016-03-31 ゼネラル・エレクトリック・カンパニイ Method for treating powder and powder treated by said method
CN114191832A (en) * 2021-09-30 2022-03-18 宜宾锂宝新材料有限公司 Integrated drying and coating equipment for ternary cathode material and using method of integrated drying and coating equipment

Similar Documents

Publication Publication Date Title
Caruso et al. Production of hollow microspheres from nanostructured composite particles
US6855426B2 (en) Methods for producing composite nanoparticles
JP2005015910A (en) Method for manufacturing composite particle, and composite particle manufactured thereby
CN103415481B (en) hollow microspheres
JPWO2009035019A1 (en) Titanium dioxide ultrafine particles and method for producing the same
JP5824069B2 (en) Hollow microspheres and methods for making hollow microspheres
CA2648643A1 (en) Thermal spray coating of porous nanostructured ceramic feedstock
JP4359858B2 (en) Method for producing titanium dioxide ultrafine particles
CN112454723A (en) Melt emulsion extrusion process for preparing thermoplastic polymer particles
EP3789430A2 (en) Thermoplastic polyester particles and methods of production and uses thereof
Pfeiffer et al. Crack-reduced alumina/aluminum titanate composites additive manufactured by laser powder bed fusion of black TiO2− x doped alumina granules
WO2018037854A1 (en) Processing apparatus and powder-processing method
KR101751329B1 (en) Method for Manufacturing Ceramic Spherical Bead
WO2018212279A1 (en) Composite particle material, production method therefor, composite particle material slurry, and resin composition
Ogi et al. Improving the crystallinity and purity of monodisperse Ag fine particles by heating colloidal sprays in-flight
JP4883790B2 (en) Inorganic material-polymer resin composite granulated product and method for producing the same
Zhao et al. Applications, fluid mechanics, and colloidal science of carbon-nanotube-based 3D printable inks
JP2008093629A (en) Manufacturing method of composite particle
JP2018188629A (en) Manufacturing method of thermoplastic molding material powder
JP2006213870A (en) Thermoplastic resin composite composition and method for producing the same
JP5039270B2 (en) Mica-based powder with controlled shape and structure, and method for producing the same
JP4263045B2 (en) Ferrite-encapsulated ceramic hollow particles and method for producing the same
EP2251077A1 (en) Process for producing ceramic microparticle and ceramic microparticle producing apparatus therefor
JP2005028356A (en) Method for producing composite particle and composite particle produced by the same
KR20050095030A (en) A process of nano powder materials for thermal spray coating