JP2005015905A - Method for manufacturing high-density, functionality-added gold-alloy sintered compact, and product - Google Patents

Method for manufacturing high-density, functionality-added gold-alloy sintered compact, and product Download PDF

Info

Publication number
JP2005015905A
JP2005015905A JP2003186248A JP2003186248A JP2005015905A JP 2005015905 A JP2005015905 A JP 2005015905A JP 2003186248 A JP2003186248 A JP 2003186248A JP 2003186248 A JP2003186248 A JP 2003186248A JP 2005015905 A JP2005015905 A JP 2005015905A
Authority
JP
Japan
Prior art keywords
powder
gold
sintering
gold alloy
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003186248A
Other languages
Japanese (ja)
Inventor
Takeshi Takayanagi
猛 高柳
Yumio Kobayashi
勇美雄 小林
Takaaki Murata
敬昭 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuwayama KK
Original Assignee
Kuwayama KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuwayama KK filed Critical Kuwayama KK
Priority to JP2003186248A priority Critical patent/JP2005015905A/en
Publication of JP2005015905A publication Critical patent/JP2005015905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adornments (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To aim for cost reduction in the manufacture of gold products by a powder sintering method, to provide a method for manufacturing more intricate gold jewelry by applying post-processing to a high-density sintered compact obtained by a sintering method and also to provide a method for manufacturing a gold-alloy sintered article having an effect of maintaining and promoting the health of the human body by blending functional ceramic powder with the sintered compact. <P>SOLUTION: To powder of a base material for sintering composed of pure gold or gold alloy, 2 to 60% of gold-alloy powder for sintering enhancement usually having a purity nearly equal to that of the base material and having a low-melting composition is added, and the resultant powder mixture is sintered at 250 to 600°C or 600 to 900°C for 0.2 to 50 h. In the sintering, the gold alloy for sintering enhancement is partly or wholly melted and the sintering can be further enhanced via the resultant melt, by which the high-density gold-alloy sintered compact of prescribed gold grade can be obtained. Further, the gold jewelry, which is prepared by impregnating aromatic chemicals into a sintered compact in which the functional ceramic powder is blended with the raw materials for sintering, can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
日本国内の金宝飾品市場では金品位の高いものからK24の純金、そしてK22からK9までが金製品として認められている。とりわけ、金含有量が75重量%の18カラット金(K18)の製品が加工性、科学的安定性、色相等から優れているため、金製品全体のほぼ90%をしめる。これらのカラット金製品の中でネックレス、ブレスレット等のチェーンはマシン加工で、その他指輪、ペンダントトップ、ブローチ、イヤリング等複雑形状の多い物はほとんど鋳造で作られている。しかし、複雑形状の金宝飾品及び部品でも製造工程の長い鋳造によらなくて粉末焼結法によって完成品の一歩手前までの焼結品を作り、その後に若干の機械加工を付与することによって製造でき、さらに様々な機能を付与した金製品も出来る。本発明は、粉末焼結法による高密度で機械加工が可能な高密度な金合金焼結体の製造及び抗菌、電磁気、遠赤外線、消臭、アロマセラピー効果を発揮する機能性金合金宝飾品を製造する技術である。
【0002】
【従来の技術】
従来は、チェーンはマシン加工で、チェーンを除く金合金製品の多くはロストワックス鋳造によって作られていた。ロストワックス鋳造は工程が長く、人手もかかって製品のコスト低減が難しい。一方、機械加工により無垢の金合金ブロックから留め金等の部品を作れば多量の切削粉が発生して無駄が多い。また、これらマシン加工、鋳造及び機械加工では機能性を付与した金製品の鋳造が困難である。
【0003】
【発明が解決しようとする課題】
金の宝飾品の多くはマシン加工や鋳造で作られているが、マシン加工はチェーン等、比較的形状が単純な宝飾用部品の製作に利用され、形状の複雑なものが多い指輪、ブローチ、ペンダント、イヤリング等の製品の多くはロストワックス鋳造で製造されているが、鋳造での宝飾品の製作は工程が長いのでコストアップに繋がる。
【0004】
本発明は、粉末焼結法による金製品の製造によるコストの低減化を目指すと共に、焼結法によって得られた高密度の焼結品へ後加工を施して、より複雑な金宝飾品の製造、また、この焼結体へ機能性セラミック粉を配合することによって人体の健康維持・促進効果を発揮するような金合金焼結品を製造することを目的とした。
【0005】
【課題を解決するための手段】
金合金(カラット金)の母材粉末へ焼結母材よりも低融点の焼結促進用金合金粉末を加えたものを焼結促進用金合金の固相線温度以下30℃の所から液相線温度以下として焼結時に焼結促進用金合金粉を部分的あるいは全てを融体化して成形体の焼結を一段と促進させ所定カラット金の金合金焼結体とする。
【0006】
製品形状が比較的単純な製品であれば金合金粉末をプレス成形によって成形体とし、この成形体を真空中あるいは不活性ガス雰囲気中で焼結して所定形状の焼結体とするが、この焼結体に後加工を加えて最終製品としても良い。形状が複雑な製品の場合には、最終製品の寸法よりも1.5〜2割ほど大きな寸法の金型をセットしたキャビティ内へ金合金母材粉末と焼結促進用金合金粉末の混合粉を射出成形して成形体とする。この成形体をアルミナ粉中へ埋没してまずは250〜500℃でバインダーを除去した後、250〜900℃で0.2〜50時間加熱して焼結体とし、この焼結体に後工程を行って所定寸法の部品にした後、バフによる仕上げ加工を製品とする。機能性を付加した金合金焼結体を得るには金合金の母材及び焼結促進粉末のいずれかあるいは両者の混合粉へ機能性セラミック粉、多孔質セラミック粉等を配合した金合金焼結体とする。多孔質セラミック粉を配合した焼結体へは香料エキスをしみこませることによってアロマセラピー効果を有する金合金焼結体とすることが出来る。
【0007】
【発明の実施の形態】
以下、実施例1〜21に基づいて本発明を詳細に述べる。
【0008】
【実施例1】
K22(22カラット金)母材粉末(Au91.7:Pd8.3) 75g
K22(22カラット金)焼結促進用金合金粉末(Au91.5:Cu8.5)25g
上記の配合物をメノウ乳鉢の中へ入れ、これに有機バインダー(カルボキシメチルセルローズ、CMC)を溶かした水溶液を少量加えてから、これらを乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これを丸棒成形用の金型へ装入し500kg/cmで 加圧してφ8mm×20mmの丸棒を成形した。この成形体をまず500℃に加熱して有機バインダーを除去した後、真空中で880℃、2時間焼結を行った。得られた焼結体の見かけ気孔率は6.1%で、良好なK22の高密度焼結体が得られた。 また、この焼結丸棒を小型旋盤に取り付け切削性を調べたところ、切削時、バイトの刃先から出てきた切削片は途切れて細かくなることなく、リボン状に連続したもので滑らかな切削作業ができ切削面にも光沢があった。
【0009】
【実施例2】
K22母材粉末(Au91.7:Pd8.3) 80g
K22焼結促進用金合金粉末(Au91.5:Ge8.5) 10g
トルマリン粉 8.5g
上記の配合物をメノウ乳鉢の中へ入れ、これにアラビアゴムの水溶液を加えてから乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これをタブレット成形用の金型へ装入し800kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中500℃で加熱してアラビアゴムを除去した後、引き続いて330℃、20時間焼結を行った。得られた焼結体の見かけ気孔率は6.8%で、この焼結体をX線透過法で観察したところトルマリン粉が均一に分散したK20相当の焼結体であった。
【0010】
【実施例3】
K18(18カラット金)母材粉末(Au75:Ag12.5:Cu12.5) 90gK18(18カラット金)焼結促進用金合金粉末(Au75:In25) 10g上記の混合物を200ml容器のポットミルへ入れ、2時間回転させて均一に混ぜ合わせた。攪拌後、混合粉を取り出してこれにアラビアゴム水溶液を少量加え、乳鉢中でよく混ぜた物を丸棒成形用の金型へ装入し800kg/cmで加圧してφ8mm×20mmの丸棒を成形した。この成形体を真空中で385℃でアラビアゴムを除去してから続いて2時間の焼結を行った。得られた焼結体の見かけ気孔率は5.6%で良好なK18の高密度焼結体が得られた。また、この丸棒を小型旋盤に取り付け切削してみたところ切削性も優れ、切削面は光沢があり滑らかであった。
【0011】
【実施例4】
K20母材粉末(Au83.3:Ag8.35:Cu8.35) 90g
K18焼結促進用金合金粉末(Au75:Ge25) 5g
トルマリン粉 9g
上記混合物を小型振動ボールミルの中へ入れ2時間混合した。この混合粉にパラフィンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌してワックスを出来るだけ均一に混合粉へ混ぜ合わせた。これをタブレット成形用の金型へ装入し1000kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中で480℃で加熱してパラフィンを気化させて除去した後そのままの温度で2時間焼結を行った。得られた焼結体の見かけ気孔率は5.9%で、トルマリン粉が均一に分散したK18焼結体が得られた。
【0012】
【実施例5】
K18母材粉末(Au75:Ag15:Cu10) 90g
K18焼結促進用金合金粉末(Au75:Sn25) 3g
最初に、上記の混合物をメノウ乳鉢中でよく攪拌混合した後、これにパラジクロルベンゼンを少量加えて、さらに十分な攪拌を行って出来るだけ均一に混ぜ合わせた。この混合物を簡易射出成形機の金型へ装入し800kg/cmで加圧して内径5mm×外形7mmのリングを成形した。このリング成形体をアルミナ粉中へセットして真空中で45℃に6時間保持してパラジクロルベンゼンを除去した後、250℃で5時間焼結を行った。得られた焼結体の見かけ気孔率は3.6%で、良好なK18の高密度焼結体が得られた。
【0013】
【実施例6】
K22母材粉末(Au91.6:Ag4.2:Cu4.2) 60g
K18焼結促進用金合金粉末(Au92:Si8) 30g
フェライト粉(磁性粉) 12g
上記の混合物にパラフィンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳鉢を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これをタブレット成形用の金型へ装入し800kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中で500℃で加熱してパラフィンワックスを気化させて除去した後、少し温度を上げて580℃で2時間焼結を行った。得られた焼結体の見かけ気孔率は5.9%で、フェライト粉が均一に分散したK18焼結体が得られた。
【0014】
【実施例7】
K20母材粉末(Au83.3:Ag8.35:Cu8.35) 90g
K18焼結促進用金合金粉末(Au75:Ag9:Cu6:Sn10) 5g
抗菌性チタニア(TiO) 9g
上記の混合物にパラフィンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳鉢を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これをタブレット成形用の金型へ装入し800kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中で500℃で加熱してパラフィンを気化させて除去した後、さらに温度を上げて700℃で3時間焼結を行った。得られた焼結体の見かけ気孔率は5.9%で、チタニア粉が均一に分散した良好なK18焼結体が得られた。
【0015】
【実施例8】
K18母材粉末(Au75:Ag12.5:Cu12.5) 95g
K18焼結促進用金合金粉末(Au75:Ag9:Cu6:Zn10) 5g
最初に、上記の混合物をメノウ乳鉢中でよく攪拌混合した後、これにパラジクロルベンゼンを少量加えて、さらに十分な攪拌を行って出来るだけ均一に混ぜ合わせた。この混合物を簡易射出成形機の金型中へ装入し1000kg/cmで加圧して内径5mm×外形7mmのリングを成形した。このリング成形体をアルミナ粉中へセットして真空中で60℃でパラジクロールベンゼンを気化除去してから680℃で2時間焼結を行った。得られた焼結体の見かけ気孔率は3.6%で、良好なK18の高密度焼結体が得られた。
【0016】
【実施例9】
K22母材粉末(Au91.6:Ag4.2:Cu4.2) 60g
K18焼結促進用金合金粉末(Au92:Si8) 30g
遠赤外線放射セラミック粉 12g
(ここで用いた赤外線放射セラミック粉は(MnO60%:Fe20%:CuO10%:CoO10%)25%とコージェライト粉75%の混合粉を焼結後、粉砕したものである。)
最初に、上記の3種類の粉末をメノウ乳鉢中でよく攪拌混合した後、これにパラフィンとパラジクロールベンゼンを少量づつ加えて、さらに十分な攪拌を行って出来るだけ均一に混ぜ合わせた。この混合物を簡易射出成形機の金型中へ装入し500kg/cmの射出圧で加圧して内径5mm×外形7mmの甲丸リングを成形した。このリング成形体をアルミナ粉中へセットして真空中で100℃でパラジクロールベンゼンを気化除去してから450℃でパラフィンを気化除去した後、680℃で2時間焼結を行った。得られた焼結体の見かけ気孔率は3.6%で、人体の加温と血液の循環性を良好にする遠赤外線放射セラミック粉が均一に分散したK18の高密度焼結体が得られた。
【0017】
【実施例10】
K18母材粉末(Au75:Pd15:Ag2:Cu8) 85g
(ホワイトゴールド)
K18焼結促進用金合金粉末(Au75:Ag10:Cu6:Zn7:In2)15g
(ホワイトゴールド)
ホワイトゴールド焼結体を作るため、上記の混合物にパラフィンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これをタブレット成形用の金型へ装入し800kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中で450℃で加熱してパラフィンワックスを気化させて除去した後、少し温度を上げて650℃で6時間焼結を行った。得られた焼結体の見かけ気孔率は7.6%で、良好で切削性の優れたK18ホワイトゴールドの高密度結晶体が得られた。
【0018】
【実施例11】
K18母材粉末(Au75:Ag10:Cu15) 90g
K18焼結促進用金合金粉末(Au75:Ag10:Cu8:Zn5:In2)10g
上記の混合物にマイクロクリスタリンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これをタブレット成形用の金型へ装入し800kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中で450℃で加熱してマイクロクリスタリンワックスを気化させて除去した後、少し温度を上げて690℃で1.5時間焼結を行った。得られた焼結体の見かけ気孔率は4.5%で、良好なK18の高密度結晶体が得られた。
【0019】
【実施例12】
K14母材粉末(Au58.3:Ag13:Pd18.5:Cu8.5:Zn1.5) 80g
(ホワイトゴールド)
K14焼結促進用金合金粉末(Au58.3:Ag22:Pd15:In4.7) 20g
(ホワイトゴールド)
上記の混合物にマイクロクリスタリンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これを丸棒成形用の金型へ装入し500kg/cmで加圧してφ8mm×20mmの丸棒を成形した。この成形体を真空中で450℃で加熱してマイクロクリスタリンワックスを気化させて除去した後、少し温度を上げて630℃で5時間焼結を行った。得られた焼結体の見かけ気孔率は6.2%で良好なK14ホワイトゴールドの高密度焼結体が得られた。また、この丸棒を小型旋盤に取り付け切削性を調べたところ、バイトの刃先から出る切り屑はリボン状に連続したもので切削性も優れていた。
【0020】
【実施例13】
K14母材粉末(Au58.3:Pd19:Ag11.5:Cu11) 80g
K14焼結促進用金合金粉末(Au58.5:Ag37:In4.5) 20g
上記の混合物にマイクロクリスタリンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これを丸棒成形用の金型へ装入し500kg/cmで加圧してφ8mm×20mmの丸棒を成形した。この成形体を真空中で450℃で加熱してマイクロクリスタリンワックスを気化させて除去した後、少し温度を上げて700℃で3時間焼結を行った。得られた焼結体の見かけ気孔率は6.2%で良好なK14の高密度焼結体が得られた。また、この丸棒を小型旋盤に取り付け切削性を調べたところ、切削性も良好で切削面も滑らかであった。
【0021】
【実施例14】
K18母材粉末(Au75:Ag12.5:Cu12.5) 75g
K14焼結促進用金合金粉末(Au58.3:In41.7) 15g
抗菌性チタニア粉(TiO) 21g
上記の混合物にパラフィンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これをタブレット成形用の金型へ装入し800kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中で455℃で加熱してパラフィンワックスを気化させて除去した後、そのまま455℃で10時間焼結を行った。得られた焼結体の見かけ気孔率は7.6%で抗菌効果のあるチタニア粉が均一に分散した焼結体が得られた。
【0022】
【実施例15】
K10母材粉末(Au41.7:Cu30.8:Zn27.5) 85g
K10焼結促進用金合金粉末(Au41.7:Cu16.3:Zn10) 15g
上記の混合物にマイクロクリスタリンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これをタブレット成形用の金型へ装入し800kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中で450℃で加熱してマイクロクリスタリンワックスを気化させて除去した後、少し温度を上げて740℃で1.5時間焼結を行った。得られた焼結体の見かけ気孔率は5.1%で良好なK10の高密度焼結体が得られた。
【0023】
【実施例16】
純金(K24)母材粉末 55g
K14焼結促進用金合金粉末(Au58.3:Cu37:In4.7) 80g
上記の混合物にパラフィンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これを丸棒成形用の金型へ装入し800kg/cmで加圧してφ8mm×20mmの丸棒を成形した。この成形体を真空中で450℃で加熱してパラフィンワックスを気化させて除去した後、少し温度を上げて750℃で6時間焼結を行った。得られた焼結体の見かけ気孔率は6.3%で良好なK18の高密度焼結体が得られた。また、この丸棒を小型旋盤に取り付け切削性を調べたところ、切削片はリボン状に連続したもので切削面は光沢のある滑らかな面をしていた。
【0024】
【実施例17】
純金(K24)母材粉末 32g
K10焼結促進用金合金粉末(Au41.7:Ag35:Cu21.9:Zn1.4)80g
上記の混合物にマイクロクリスタリンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これをタブレット成形用の金型へ装入し800kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中で450℃で加熱してマイクロクリスタリンワックスを気化させて除去した後、少し温度を上げて730℃で1.5時間焼結を行った。得られた焼結体の見かけ気孔率は5.9%で良好なK14の高密度焼結体が得られた。
【0025】
【実施例18】
K20母材粉末(Au83.3:Ag8.35:Cu8.35) 90g
K18焼結促進用金合金粉末(Au75:Ag9:Cu6:Sn10) 5g
珪藻土粉 9g
上記の混合物にパラフィンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これをタブレット成形用の金型へ装入し800kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中で500℃で加熱してパラフィンワックスを気化させて除去した後、さらに温度を上げて700℃で3時間焼結を行った。得られた焼結体の見かけ気孔率は26%の多孔質セラミック含有金合金焼結体が得られた。これにラベンダー香料エキスをしみ込ませて芳香を放つ金合金とし、精神的なストレス緩和性をもつK18焼結体とした。
【0026】
【実施例19】
K20母材粉末(Au83.3:Ag8.35:Cu8.35) 90g
K18焼結促進用金合金粉末(Au75:Ag9:Cu6:Sn10) 5g
ポーラスリン酸カルシウム粉 9g
上記の混合物にパラフィンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これをタブレット成形用の金型へ装入し800kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中で500℃で加熱してパラフィンワックスを気化させて除去した後、さらに温度を上げて700℃で5時間焼結を行った。得られた焼結体の見かけ気孔率は26%の多孔質セラミック含有金合金焼結体が得られた。これにジャスミン香料エキスをしみ込ませて芳香を放つ金合金とし、消臭及びストレス緩和性をもつK18焼結体とした。
【0027】
【実施例20】
K18母材粉末(Au75:Ag12.5:Cu12.5) 75g
K14焼結促進用金合金粉末(Au58.3:In41.7) 11g
珪藻土粉 10g
上記の混合物にパラフィンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これをタブレット成形用の金型へ装入し800kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中で455℃で加熱してパラフィンワックスを気化させて除去した後、そのまま455℃で10時間焼結を行った。得られた焼結体の見かけ気孔率は15.6%であった。この焼結体へラベンダーエキスを含浸させ、ストレス緩和と電磁気効果をもつK14焼結体が得られた。
【0028】
【実施例21】
K18母材粉末(Au75:Ag12.5:Cu12.5) 75g
K14焼結促進用金合金粉末(Au58.3:In41.7) 15g
ポーラスシャモット粉 21g
上記の混合物にパラフィンワックスを少量加え、それらをメノウ乳鉢の中へ入れ、乳棒を使って手でよく攪拌して出来るだけ均一に混ぜ合わせた。これをタブレット成形用の金型へ装入し800kg/cmで加圧してφ8mm×5mmのタブレットを成形した。この成形体を真空中で455℃で加熱してパラフィンワックスを気化させて除去した後、そのまま455℃で10時間焼結を行った。得られた焼結体の見かけ気孔率は18.3%で、ポーラスシャモット粉が均一に分散したK14焼結体が得られた。次に、この焼結体をテトラプトキシチタン{Ti(O−nC}の加水分解溶液へ浸漬した後乾燥した。加水分解溶液への浸漬と乾燥の処理を3回繰り返して焼結体の内部と表面へ抗菌効果のあるチタニア(TiO)をコーティングした。
【0029】
【発明の効果】
以上説明したように、本発明による金合金の焼結体は焼結促進用金合金の添加効果によって焼結が著しく加速されることによって気孔率が小さい高密度の金合金焼結体が得られるため、切削加工その他の後加工による最終製品への形状及び寸法等の調整が自由に出来る。したがって、無垢のブロックから切削加工だけで部品を作る場合のように多量の切削屑を出すことなく、また、ロストワックス鋳造のような長い製造工程を経ることなく機械加工品と同等の機械的特性を有する金合金製品を作ることができ、鋳造や機械加工品等に比較して製品コストの低減化ができる。また電磁気、抗菌、遠赤外線放射効果等の機能性セラミック粉を金合金に配合することによって健康の維持促進に効果のある金合金宝飾品、さらには多孔質セラミック粉を配合して意図的に多孔質の金合金焼結体とし、これに芳香性香料をしみ込ませて消臭と精神的ストレス緩和性をもたせた金宝飾品は近時における消費者の健康志向の高まりに応えたものといえよう。
[0001]
[Technical field to which the invention belongs]
In the gold jewelery market in Japan, K24 pure gold and K22 to K9 are recognized as gold products from the highest quality gold. In particular, a product of 18 carat gold (K18) having a gold content of 75% by weight is excellent in processability, scientific stability, hue, etc., and therefore accounts for almost 90% of the total gold product. Among these carat gold products, chains such as necklaces and bracelets are machined, and other complicated shapes such as rings, pendant tops, brooches and earrings are almost always made by casting. However, even complex shaped gold jewelery and parts can be manufactured by making a sintered product up to one step before the finished product by powder sintering method without casting with a long manufacturing process and then giving some machining. In addition, gold products with various functions can be made. The present invention provides a high-density gold alloy sintered body that can be machined at high density by a powder sintering method, and a functional gold alloy jewelry that exhibits antibacterial, electromagnetic, far-infrared, deodorant, and aromatherapy effects. Is the technology to manufacture.
[0002]
[Prior art]
Traditionally, chains were machined, and many gold alloy products except chains were made by lost wax casting. Lost wax casting is a long process and requires manpower, making it difficult to reduce product costs. On the other hand, if a part such as a clasp is made from a solid gold alloy block by machining, a large amount of cutting powder is generated and wasteful. In addition, it is difficult to cast a gold product imparted with functionality by these machining, casting and machining.
[0003]
[Problems to be solved by the invention]
Most gold jewelery is made by machining or casting, but machine processing is used for the production of jewelry parts with relatively simple shapes such as chains. Rings, brooches, Most of the products such as pendants and earrings are manufactured by lost wax casting, but the production of jewelry by casting leads to cost increase because of the long process.
[0004]
The present invention aims to reduce the cost by manufacturing a gold product by a powder sintering method, and also performs post-processing on a high-density sintered product obtained by the sintering method to manufacture a more complicated gold jewelry, Another object of the present invention is to produce a sintered gold alloy that exhibits the effect of maintaining and promoting the health of the human body by blending functional ceramic powder into the sintered body.
[0005]
[Means for Solving the Problems]
A solution obtained by adding a gold alloy powder for promoting the sintering having a melting point lower than that of the sintered base material to a base material powder of the gold alloy (carat gold) from a temperature of 30 ° C. or less below the solidus temperature of the gold alloy for promoting sintering. The sintering-promoting gold alloy powder is partially or wholly melted at the time of sintering at a temperature lower than the phase line temperature to further promote the sintering of the molded body to obtain a gold alloy sintered body of a predetermined carat gold.
[0006]
If the product shape is relatively simple, the gold alloy powder is formed into a compact by press molding, and the compact is sintered in a vacuum or in an inert gas atmosphere to obtain a sintered body of a predetermined shape. The sintered body may be post-processed to obtain a final product. In the case of a product with a complicated shape, a mixed powder of a gold alloy base material powder and a sintering-promoting gold alloy powder into a cavity in which a mold having a size 1.5 to 20% larger than the final product is set Is molded into a molded body. This molded body is buried in alumina powder, and after removing the binder at 250 to 500 ° C., it is heated at 250 to 900 ° C. for 0.2 to 50 hours to form a sintered body. After making the parts of a predetermined size, finish processing by buffing is made into a product. To obtain a gold alloy sintered body with added functionality, sintered gold alloy containing functional ceramic powder, porous ceramic powder, etc. in either the gold alloy base material and the sintering-promoting powder or a mixture of both Let it be the body. A gold alloy sintered body having an aromatherapy effect can be obtained by impregnating a fragrance extract into a sintered body containing porous ceramic powder.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on Examples 1 to 21.
[0008]
[Example 1]
K22 (22 carat gold) base material powder (Au91.7: Pd8.3) 75g
25 g of K22 (22 carat gold) gold alloy powder for promoting sintering (Au91.5: Cu8.5)
Put the above mixture into an agate mortar, add a small amount of an aqueous solution containing organic binder (carboxymethylcellulose, CMC), and mix them as uniformly as possible with a pestle. Combined. This was placed in a mold for forming a round bar and pressurized at 500 kg / cm 2 to form a round bar of φ8 mm × 20 mm. The molded body was first heated to 500 ° C. to remove the organic binder, and then sintered in vacuum at 880 ° C. for 2 hours. The apparent porosity of the obtained sintered body was 6.1%, and a good K22 high-density sintered body was obtained. In addition, when this sintered round bar was attached to a small lathe and the machinability was examined, the cutting piece coming out of the cutting edge of the cutting tool was not cut off and became fine during cutting, and it was a continuous ribbon-like cutting operation. The cutting surface was glossy.
[0009]
[Example 2]
K22 base material powder (Au91.7: Pd8.3) 80g
Gold alloy powder for promoting K22 sintering (Au91.5: Ge8.5) 10 g
Tourmaline powder 8.5g
The above mixture was put into an agate mortar, and an aqueous solution of gum arabic was added thereto. After that, the mixture was mixed as uniformly as possible with a hand using a pestle. This was molded tablets 8 mm diameter × 5 mm pressurized with charged to 800 kg / cm 2 into a mold for the tablet molding. The molded body was heated in vacuum at 500 ° C. to remove gum arabic, and then sintered at 330 ° C. for 20 hours. The apparent porosity of the obtained sintered body was 6.8%. When this sintered body was observed by an X-ray transmission method, it was a sintered body corresponding to K20 in which tourmaline powder was uniformly dispersed.
[0010]
[Example 3]
K18 (18 carat gold) base material powder (Au75: Ag12.5: Cu12.5) 90 g K18 (18 carat gold) gold alloy powder for sintering promotion (Au75: In25) 10 g The above mixture was put in a pot mill of a 200 ml container, Rotated for 2 hours and mixed uniformly. After stirring, to which was added a small amount of gum arabic aqueous solution removed mixed powder, 8 mm diameter × 20 mm round bar pressurized with charged to 800 kg / cm 2 things mixed well in a mortar into a mold for the round bar molding Was molded. After the gum arabic was removed at 385 ° C. in a vacuum, the molded body was then sintered for 2 hours. The apparent porosity of the obtained sintered body was 5.6%, and a good K18 high-density sintered body was obtained. Further, when this round bar was mounted on a small lathe and cut, the cutting performance was excellent, and the cutting surface was glossy and smooth.
[0011]
[Example 4]
K20 base material powder (Au83.3: Ag8.35: Cu8.35) 90g
K18 Sintering promotion gold alloy powder (Au75: Ge25) 5g
Tourmaline powder 9g
The mixture was placed in a small vibrating ball mill and mixed for 2 hours. A small amount of paraffin wax was added to this mixed powder, they were put into an agate mortar, and the mixture was mixed with the mixed powder as uniformly as possible by thoroughly stirring by hand with a pestle. This was inserted into a tablet molding die and pressed at 1000 kg / cm 2 to mold a tablet of φ8 mm × 5 mm. The molded body was heated in vacuum at 480 ° C. to vaporize and remove paraffin, and then sintered at the same temperature for 2 hours. The apparent porosity of the obtained sintered body was 5.9%, and a K18 sintered body in which tourmaline powder was uniformly dispersed was obtained.
[0012]
[Example 5]
K18 base material powder (Au75: Ag15: Cu10) 90g
K18 Sintering promotion gold alloy powder (Au75: Sn25) 3g
First, the above mixture was thoroughly stirred and mixed in an agate mortar, and then a small amount of paradichlorobenzene was added thereto and further sufficiently stirred to mix as uniformly as possible. This mixture was charged into a mold of a simple injection molding machine and pressurized at 800 kg / cm 2 to form a ring having an inner diameter of 5 mm × an outer diameter of 7 mm. The ring molded body was set in alumina powder and held at 45 ° C. in vacuum for 6 hours to remove paradichlorobenzene, and then sintered at 250 ° C. for 5 hours. The apparent porosity of the obtained sintered body was 3.6%, and a good K18 high-density sintered body was obtained.
[0013]
[Example 6]
K22 base material powder (Au91.6: Ag4.2: Cu4.2) 60g
K18 Sintering promotion gold alloy powder (Au92: Si8) 30g
Ferrite powder (magnetic powder) 12g
A small amount of paraffin wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a mortar with sufficient stirring. This was inserted into a tablet molding die and pressed at 800 kg / cm 2 to mold a tablet of φ8 mm × 5 mm. This molded body was heated in vacuum at 500 ° C. to vaporize and remove the paraffin wax, and then heated at 580 ° C. for 2 hours at a slightly elevated temperature. The apparent porosity of the obtained sintered body was 5.9%, and a K18 sintered body in which ferrite powder was uniformly dispersed was obtained.
[0014]
[Example 7]
K20 base material powder (Au83.3: Ag8.35: Cu8.35) 90g
K18 Sintering promotion gold alloy powder (Au75: Ag9: Cu6: Sn10) 5g
Antibacterial titania (TiO 2 ) 9g
A small amount of paraffin wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a mortar with sufficient stirring. This was inserted into a tablet molding die and pressed at 800 kg / cm 2 to mold a tablet of φ8 mm × 5 mm. This molded body was heated in vacuum at 500 ° C. to vaporize and remove paraffin, and then the temperature was further raised and sintering was performed at 700 ° C. for 3 hours. The apparent porosity of the obtained sintered body was 5.9%, and a good K18 sintered body in which titania powder was uniformly dispersed was obtained.
[0015]
[Example 8]
K18 base material powder (Au75: Ag12.5: Cu12.5) 95g
K18 Sintering promotion gold alloy powder (Au75: Ag9: Cu6: Zn10) 5g
First, the above mixture was thoroughly stirred and mixed in an agate mortar, and then a small amount of paradichlorobenzene was added thereto and further sufficiently stirred to mix as uniformly as possible. This mixture was charged into a mold of a simple injection molding machine and pressed at 1000 kg / cm 2 to form a ring having an inner diameter of 5 mm × an outer diameter of 7 mm. This ring molded body was set in alumina powder, and paradichlorobenzene was vaporized and removed at 60 ° C. in vacuum, followed by sintering at 680 ° C. for 2 hours. The apparent porosity of the obtained sintered body was 3.6%, and a good K18 high-density sintered body was obtained.
[0016]
[Example 9]
K22 base material powder (Au91.6: Ag4.2: Cu4.2) 60g
K18 Sintering promotion gold alloy powder (Au92: Si8) 30g
Far-infrared radiation ceramic powder 12g
(The infrared radiation ceramic powder used here is obtained by sintering and then milling a mixed powder of 25% (MnO 2 60%: Fe 2 O 3 20%: CuO 10%: CoO 10%) and cordierite powder 75%. .)
First, the above-mentioned three kinds of powders were thoroughly mixed in an agate mortar, and then paraffin and paradichlorobenzene were added in small portions, and the mixture was further stirred thoroughly and mixed as uniformly as possible. This mixture was charged into a mold of a simple injection molding machine and pressurized with an injection pressure of 500 kg / cm 2 to form a round ring with an inner diameter of 5 mm and an outer diameter of 7 mm. This ring molded body was set in alumina powder, paradichlorobenzene was vaporized and removed at 100 ° C. in vacuum, and paraffin was vaporized and removed at 450 ° C., followed by sintering at 680 ° C. for 2 hours. The apparent porosity of the obtained sintered body is 3.6%, and a high-density sintered body of K18 in which far-infrared radiation ceramic powder that improves the warming of the human body and the circulation of blood is uniformly dispersed is obtained. It was.
[0017]
[Example 10]
K18 base material powder (Au75: Pd15: Ag2: Cu8) 85g
(White gold)
K18 Sintering promotion gold alloy powder (Au75: Ag10: Cu6: Zn7: In2) 15g
(White gold)
In order to make a white gold sintered body, a small amount of paraffin wax was added to the above mixture, and they were put into an agate mortar and mixed by using a pestle with hands to mix as evenly as possible. This was molded tablets 8 mm diameter × 5 mm pressurized with charged to 800 kg / cm 2 into a mold for the tablet molding. The molded body was heated in vacuum at 450 ° C. to vaporize and remove the paraffin wax, and then the temperature was raised slightly and sintering was performed at 650 ° C. for 6 hours. The apparent porosity of the obtained sintered body was 7.6%, and a high-density crystal of K18 white gold having good and excellent machinability was obtained.
[0018]
Example 11
K18 base material powder (Au75: Ag10: Cu15) 90g
K18 sintering promotion gold alloy powder (Au75: Ag10: Cu8: Zn5: In2) 10g
A small amount of microcrystalline wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a pestle and mixed as evenly as possible. This was inserted into a tablet molding die and pressed at 800 kg / cm 2 to mold a tablet of φ8 mm × 5 mm. The molded body was heated in vacuum at 450 ° C. to vaporize and remove the microcrystalline wax, and then the temperature was raised slightly and sintering was performed at 690 ° C. for 1.5 hours. The apparent porosity of the obtained sintered body was 4.5%, and a good K18 high-density crystal was obtained.
[0019]
Example 12
K14 base material powder (Au58.3: Ag13: Pd18.5: Cu8.5: Zn1.5) 80 g
(White gold)
Gold alloy powder for K14 sintering promotion (Au58.3: Ag22: Pd15: In4.7) 20g
(White gold)
A small amount of microcrystalline wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a pestle and mixed as evenly as possible. This was charged into a round bar mold and pressed at 500 kg / cm 2 to form a round bar of φ8 mm × 20 mm. The molded body was heated in vacuum at 450 ° C. to vaporize and remove the microcrystalline wax, and then the temperature was raised slightly and sintering was performed at 630 ° C. for 5 hours. The apparent porosity of the obtained sintered body was 6.2%, and a good high-density sintered body of K14 white gold was obtained. In addition, when this round bar was attached to a small lathe and the machinability was examined, the chips coming out of the cutting edge of the cutting tool were continuous in a ribbon shape and had excellent machinability.
[0020]
Example 13
K14 base material powder (Au58.3: Pd19: Ag11.5: Cu11) 80g
20g gold alloy powder for promoting K14 sintering (Au58.5: Ag37: In4.5)
A small amount of microcrystalline wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a pestle and mixed as evenly as possible. This was charged into a round bar mold and pressed at 500 kg / cm 2 to form a round bar of φ8 mm × 20 mm. This molded body was heated in vacuum at 450 ° C. to vaporize and remove the microcrystalline wax, and then the temperature was raised slightly and sintering was performed at 700 ° C. for 3 hours. The apparent porosity of the obtained sintered body was 6.2%, and a good K14 high-density sintered body was obtained. Further, when this round bar was attached to a small lathe and the machinability was examined, the machinability was good and the cutting surface was smooth.
[0021]
Example 14
K18 base material powder (Au75: Ag12.5: Cu12.5) 75g
K14 Gold alloy powder for promoting sintering (Au58.3: In41.7) 15g
Antibacterial titania powder (TiO 2 ) 21g
A small amount of paraffin wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a pestle and mixed as uniformly as possible. This was inserted into a tablet molding die and pressed at 800 kg / cm 2 to mold a tablet of φ8 mm × 5 mm. The molded body was heated in vacuum at 455 ° C. to vaporize and remove the paraffin wax, and then sintered at 455 ° C. for 10 hours. The sintered body thus obtained had an apparent porosity of 7.6%, and a sintered body in which titania powder having an antibacterial effect was uniformly dispersed was obtained.
[0022]
Example 15
K10 base material powder (Au41.7: Cu30.8: Zn27.5) 85g
15g of gold alloy powder for promoting K10 sintering (Au41.7: Cu16.3: Zn10)
A small amount of microcrystalline wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a pestle and mixed as evenly as possible. This was inserted into a tablet molding die and pressed at 800 kg / cm 2 to mold a tablet of φ8 mm × 5 mm. The molded body was heated in vacuum at 450 ° C. to vaporize and remove the microcrystalline wax, and then the temperature was raised slightly and sintering was performed at 740 ° C. for 1.5 hours. The apparent porosity of the obtained sintered body was 5.1%, and a good K10 high-density sintered body was obtained.
[0023]
Example 16
Pure gold (K24) base material powder 55g
K14 gold alloy powder for promoting sintering (Au58.3: Cu37: In4.7) 80g
A small amount of paraffin wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a pestle and mixed as uniformly as possible. This was charged into a round bar mold and pressed at 800 kg / cm 2 to form a round bar of φ8 mm × 20 mm. This molded body was heated in vacuum at 450 ° C. to vaporize and remove the paraffin wax, and then the temperature was raised slightly and sintering was performed at 750 ° C. for 6 hours. The apparent porosity of the obtained sintered body was 6.3%, and a good K18 high-density sintered body was obtained. Further, when this round bar was attached to a small lathe and the machinability was examined, the cutting piece was continuous in a ribbon shape, and the cutting surface was glossy and smooth.
[0024]
[Example 17]
Pure gold (K24) base material powder 32g
K10 sintering promotion gold alloy powder (Au41.7: Ag35: Cu21.9: Zn1.4) 80g
A small amount of microcrystalline wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a pestle and mixed as evenly as possible. This was inserted into a tablet molding die and pressed at 800 kg / cm 2 to mold a tablet of φ8 mm × 5 mm. The molded body was heated in vacuum at 450 ° C. to vaporize and remove the microcrystalline wax, and then the temperature was raised slightly and sintering was performed at 730 ° C. for 1.5 hours. The apparent porosity of the obtained sintered body was 5.9%, and a good K14 high-density sintered body was obtained.
[0025]
Example 18
K20 base material powder (Au83.3: Ag8.35: Cu8.35) 90g
K18 Sintering promotion gold alloy powder (Au75: Ag9: Cu6: Sn10) 5g
Diatomaceous earth powder 9g
A small amount of paraffin wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a pestle and mixed as uniformly as possible. This was inserted into a tablet molding die and pressed at 800 kg / cm 2 to mold a tablet of φ8 mm × 5 mm. This molded body was heated in vacuum at 500 ° C. to vaporize and remove paraffin wax, and then the temperature was further raised and sintering was performed at 700 ° C. for 3 hours. A porous ceramic-containing gold alloy sintered body having an apparent porosity of 26% was obtained. This was impregnated with a lavender fragrance extract to give a scented gold alloy, and a K18 sintered body having mental stress relaxation properties was obtained.
[0026]
Example 19
K20 base material powder (Au83.3: Ag8.35: Cu8.35) 90g
K18 Sintering promotion gold alloy powder (Au75: Ag9: Cu6: Sn10) 5g
Porous calcium phosphate powder 9g
A small amount of paraffin wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a pestle and mixed as uniformly as possible. This was molded tablets 8 mm diameter × 5 mm pressurized with charged to 800 kg / cm 2 into a mold for the tablet molding. The molded body was heated in vacuum at 500 ° C. to vaporize and remove the paraffin wax, and then the temperature was further raised and sintering was performed at 700 ° C. for 5 hours. A porous ceramic-containing gold alloy sintered body having an apparent porosity of 26% was obtained. This was impregnated with a jasmine fragrance extract to give a scented gold alloy, and a K18 sintered body having deodorant and stress relaxation properties.
[0027]
Example 20
K18 base material powder (Au75: Ag12.5: Cu12.5) 75g
K14 Sintering promotion gold alloy powder (Au58.3: In41.7) 11g
Diatomaceous earth powder 10g
A small amount of paraffin wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a pestle and mixed as uniformly as possible. This was inserted into a tablet molding die and pressed at 800 kg / cm 2 to mold a tablet of φ8 mm × 5 mm. The molded body was heated in vacuum at 455 ° C. to vaporize and remove the paraffin wax, and then sintered at 455 ° C. for 10 hours. The apparent porosity of the obtained sintered body was 15.6%. This sintered body was impregnated with a lavender extract to obtain a K14 sintered body having stress relaxation and an electromagnetic effect.
[0028]
Example 21
K18 base material powder (Au75: Ag12.5: Cu12.5) 75g
K14 Gold alloy powder for promoting sintering (Au58.3: In41.7) 15g
Porous chamotte powder 21g
A small amount of paraffin wax was added to the above mixture, and they were put into an agate mortar and mixed by hand with a pestle and mixed as uniformly as possible. This was inserted into a tablet molding die and pressed at 800 kg / cm 2 to mold a tablet of φ8 mm × 5 mm. The molded body was heated in vacuum at 455 ° C. to vaporize and remove the paraffin wax, and then sintered at 455 ° C. for 10 hours. The apparent porosity of the obtained sintered body was 18.3%, and a K14 sintered body in which porous chamotte powder was uniformly dispersed was obtained. Next, this sintered body was immersed in a hydrolyzed solution of tetraptoxytitanium {Ti (O-nC 4 H 9 ) 4 } and then dried. The immersion and drying treatments in the hydrolysis solution were repeated three times to coat the inside and the surface of the sintered body with titania (TiO 2 ) having an antibacterial effect.
[0029]
【The invention's effect】
As described above, the sintered body of the gold alloy according to the present invention can obtain a high-density gold alloy sintered body having a low porosity by significantly accelerating the sintering due to the effect of the addition of the sintering promoting gold alloy. Therefore, the shape and size of the final product can be freely adjusted by cutting or other post-processing. Therefore, mechanical properties equivalent to machined products are not produced without producing a large amount of cutting waste as in the case of making parts from solid blocks by cutting alone, and without going through a long manufacturing process such as lost wax casting. The gold alloy product having the above can be made, and the product cost can be reduced as compared with casting or machined product. In addition, by combining functional ceramic powders such as electromagnetic, antibacterial and far-infrared radiation effects in gold alloys, gold alloy jewelry that is effective in promoting health maintenance and porous ceramic powders are intentionally made porous. Gold jewelery made of high quality gold alloy sintered body with aromatic fragrance soaked in deodorant and mental stress relief can be said to have responded to the recent increase in consumer health.

Claims (4)

純金(24カラット金)及び金(Au)の含有量が91.7重量%(22カラット金)から37.5重量%(9カラット金)までの金合金(カラット金)の焼結母材粉末へ母材よりも低融点の焼結促進用金合金粉末を2〜60重量%加えたものを大気中下あるいは真空、不活性ガス雰囲気中で乳鉢等での手動攪拌もしくはポットミル、アトライター、振動ボールミル等の攪拌機器を使って均一に混合する。この混合粉をプレス成形、射出成型等によって指輪、ペンダント、ブローチ、その他の金宝飾用部品等、所望形状の成形体とし、この成形体を大気中、真空中あるいは水素、アルゴン、窒素、ヘリウム等の不活性ガス雰囲気中で250〜900℃で0.2〜50時間焼結する。焼結温度は基本的に焼結促進用金合金の固相線温度以下30℃の所から液相線温度以下として焼結時に焼結促進用金合金粉を部分的あるいは全てを溶融させ、生成した融体を介して成型体全体の焼結を促進させることを特徴とした高密度金合金焼結体の製法。Sintered base metal powder of gold alloy (carat gold) with a content of pure gold (24 carat gold) and gold (Au) from 91.7 wt% (22 carat gold) to 37.5 wt% (9 carat gold) Hand-stirred in a mortar or the like in a mortar or in a vacuum or inert gas atmosphere with 2-60% by weight of a gold alloy powder for sintering promotion having a melting point lower than that of the base metal, pot mill, attritor, vibration Mix evenly using an agitator such as a ball mill. This mixed powder is formed into a desired shape such as a ring, a pendant, a brooch and other gold jewelery parts by press molding, injection molding, etc., and this molded body is in the atmosphere, vacuum or hydrogen, argon, nitrogen, helium, etc. Sintering in an inert gas atmosphere at 250 to 900 ° C. for 0.2 to 50 hours. Sintering temperature is basically from 30 ° C below the solidus temperature of the gold alloy for promoting sintering to below the liquidus temperature. During sintering, a part or all of the gold alloy powder for promoting sintering is melted to form A method for producing a high-density gold alloy sintered body characterized in that sintering of the entire molded body is promoted through the melt. 焼結用金合金の母材粉末へ添加する焼結促進用金合金粉末は接合用金ロウの組成を基本とするもので、焼結温度は金合金母材の金品位によって異なるので、焼結を600〜900℃で行う場合、母材粉末へ添加する焼結促進用金合金粉末は、金(Au)58.3〜95%、銀(Ag)8〜20%、パラジウム(Pd)5〜30%、銅(Cu)5〜20%、亜鉛(Zn)5〜10%の範囲で組成調整を行う。また、焼結を600℃以下の低温で行う場合、母材粉末へ添加する焼結促進用金合金粉末は固相線温度が600℃以下で、且つ、成形体を焼結する温度近くになるように、金(Au)36〜95%、銀(Ag)8〜20%、パラジウム(Pd)5〜30%、銅(Cu)5〜20%、亜鉛(Zn)5〜10%、錫(Sn)2〜10%、インジウム(In)5〜25%、ケイ素(Si)2〜10%、ゲルマニウム(Ge)5〜25%の範囲で組成調整した低融点の焼結促進用金合金粉末を母材粉末へ添加したことを特徴とした高密度金合金焼結体の製法。The gold alloy powder for promoting sintering added to the base metal powder of the sintering gold alloy is based on the composition of the gold brazing filler metal, and the sintering temperature varies depending on the gold quality of the gold alloy base material. Is carried out at 600 to 900 ° C., the gold alloy powder for sintering promotion added to the base material powder is 58.3 to 95% gold (Au), 8 to 20% silver (Ag), 5 palladium (Pd) 5 The composition is adjusted in the range of 30%, copper (Cu) 5 to 20%, and zinc (Zn) 5 to 10%. In addition, when sintering is performed at a low temperature of 600 ° C. or lower, the sintering promoting gold alloy powder added to the base material powder has a solidus temperature of 600 ° C. or lower and close to the temperature at which the compact is sintered. Gold (Au) 36-95%, silver (Ag) 8-20%, palladium (Pd) 5-30%, copper (Cu) 5-20%, zinc (Zn) 5-10%, tin ( Sn) 2-10%, indium (In) 5-25%, silicon (Si) 2-10%, germanium (Ge) 5-25% composition adjusted gold alloy powder for sintering promotion having a low melting point A method for producing a sintered body of high-density gold alloy characterized by being added to a base material powder. 請求項1の純金及び金合金母材粉末及び請求項2に記した低融点の焼結促進用金合金粉末のいずれか、もしくは両者の混合粉に機能性付与材であるフェライト粉、トルマリン粉、チタニア粉、遠赤外線放射セラミック粉、多孔質セラミック粉等を1種もしくは2種以上を1〜30重量%添加した混合粉を大気中あるいは真空、不活性ガス雰囲気中で請求項1に記した攪拌方法とによって均一な混合粉とする。混合粉はプレス成形、射出成形等によって指輪、ペンダント、ブローチ等の成形体とし、この成形体を請求項1と同様の雰囲気、焼結条件で焼結することによって得られる電磁気、赤外線放射、抗菌性、吸着消臭性等に優れることを特徴とした機能性付加金合金焼結体の製品。Any one of the pure gold and the gold alloy base material powder according to claim 1 and the low melting point gold alloy powder for sintering promotion described in claim 2, or a mixed powder of both, ferrite powder, tourmaline powder, Stirring according to claim 1, wherein a mixed powder obtained by adding 1 to 30% by weight of one or more of titania powder, far-infrared radiation ceramic powder, porous ceramic powder, etc. in air, vacuum or inert gas atmosphere Depending on the method, a uniform mixed powder is obtained. The mixed powder is formed into a molded body such as a ring, a pendant or a broach by press molding, injection molding or the like, and electromagnetic, infrared radiation, antibacterial obtained by sintering the molded body in the same atmosphere and sintering conditions as in claim 1. Product of functional addition gold alloy sintered compact characterized by excellent properties and adsorption deodorization properties. 請求項1の純金及び金合金母材粉末及び請求項2の低融点の焼結促進用金合金粉末のいずれか、もしくは両者の混合粉に珪藻土粉、ポーラスシャモット粉、ポーラスリン酸カルシウム粉等の多孔質セラミック粉を1種もしくは2種以上を0.5〜30重量%添加した混合粉を請求項1に記した攪拌方法によって均一な混合粉にして、混合粉をプレス成形、射出成形等によって指輪、ペンダント、ブローチ等の成形体とし、この成形体を請求項1と同様の雰囲気条件で焼結し、多孔質セラミック粉が分散した金合金焼結体とする。そして、この焼結体へアロマセラピー効果のある芳香性香料をしみこませたことを特徴とした機能性付加金合金焼結体の製品。Porous materials such as diatomaceous earth powder, porous chamotte powder, and porous calcium phosphate powder in any one of the pure gold and gold alloy base material powder of claim 1 and the low melting point gold alloy powder for sintering promotion of claim 2 or a mixture of both. A mixed powder obtained by adding 0.5 to 30% by weight of one or more ceramic powders is made into a uniform mixed powder by the stirring method described in claim 1, the mixed powder is subjected to press molding, injection molding or the like, A molded body such as a pendant or broach is formed, and this molded body is sintered under the same atmospheric conditions as in claim 1 to obtain a gold alloy sintered body in which porous ceramic powder is dispersed. A product of a functional addition gold alloy sintered body characterized by impregnating this sintered body with an aromatic fragrance having an aromatherapy effect.
JP2003186248A 2003-06-30 2003-06-30 Method for manufacturing high-density, functionality-added gold-alloy sintered compact, and product Pending JP2005015905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186248A JP2005015905A (en) 2003-06-30 2003-06-30 Method for manufacturing high-density, functionality-added gold-alloy sintered compact, and product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186248A JP2005015905A (en) 2003-06-30 2003-06-30 Method for manufacturing high-density, functionality-added gold-alloy sintered compact, and product

Publications (1)

Publication Number Publication Date
JP2005015905A true JP2005015905A (en) 2005-01-20

Family

ID=34185432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186248A Pending JP2005015905A (en) 2003-06-30 2003-06-30 Method for manufacturing high-density, functionality-added gold-alloy sintered compact, and product

Country Status (1)

Country Link
JP (1) JP2005015905A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053640A1 (en) * 2010-10-22 2012-04-26 三菱マテリアル株式会社 Clay-like composition for forming sintered body, powder for clay-like composition for forming sintered body, method for producing clay-like composition for forming sintered body, gold sintered body, and method for producing gold sintered body
JP2016210675A (en) * 2015-05-13 2016-12-15 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Method for manufacturing composite component of timepiece or of jewelry part, and composite component obtained by such method
JP2019069139A (en) * 2017-08-23 2019-05-09 学校法人東京理科大学 Jewelry and method for producing the same
KR20230040049A (en) * 2021-09-15 2023-03-22 주식회사 스카이랩스 Smart ring for sensing bio signal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053640A1 (en) * 2010-10-22 2012-04-26 三菱マテリアル株式会社 Clay-like composition for forming sintered body, powder for clay-like composition for forming sintered body, method for producing clay-like composition for forming sintered body, gold sintered body, and method for producing gold sintered body
JP2016210675A (en) * 2015-05-13 2016-12-15 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Method for manufacturing composite component of timepiece or of jewelry part, and composite component obtained by such method
JP2019069139A (en) * 2017-08-23 2019-05-09 学校法人東京理科大学 Jewelry and method for producing the same
KR20230040049A (en) * 2021-09-15 2023-03-22 주식회사 스카이랩스 Smart ring for sensing bio signal
KR102595840B1 (en) * 2021-09-15 2023-10-30 주식회사 스카이랩스 Smart ring for sensing bio signal

Similar Documents

Publication Publication Date Title
WO2013128416A2 (en) Silver-based alloy powder for manufacturing of 3-dimensional metal objects
EP1711641B1 (en) Platinum alloy and method of production thereof
US5376328A (en) Precious metal article, method for manufacturing same, moldable mixture for use in manufacture of same and method for producing moldable mixture
AU2004235379A1 (en) Anti-tarnish silver alloy
KR0179371B1 (en) Moldable mixture for use in the manufacturing of precious metal articles
WO2014174482A1 (en) Master alloys for manufacturing white gold alloys, and method for manufacturing thereof
JP2005015905A (en) Method for manufacturing high-density, functionality-added gold-alloy sintered compact, and product
EP1820867A1 (en) Platin alloy and method for its manufacture
US4820487A (en) Gold alloy
US5558833A (en) Silver alloy
JPH11264036A (en) Gold-aluminum alloy, its production and ornament or accessory using it
JPS6055468B2 (en) Manufacturing method of golden ceramic ornaments
JP3792153B2 (en) Precious metal decorative member, method for manufacturing the same, decorative component and accessory component
CN114231774A (en) Manufacturing process of silver-germanium infrared health-care ornament
KR102247697B1 (en) Precious metal alloy composition and its manufacturing method
JP2932647B2 (en) Manufacturing method of metal articles
CN109940166A (en) A kind of fastness 3D printing silver alloy spherical powder
KR102244521B1 (en) Manufacturing method for fragrance emission porous metal
WO2013126022A2 (en) Metal clays sintering at low temperature
JP2005002424A (en) Metallic formed article and manufacturing method therefor
JPS5846523B2 (en) Manufacturing method of scented porous material for precious metal accessories
JP3197566U (en) Precious metal bullion and components using the bullion
JPH04120203A (en) Manufacture of metal article
JPH083663A (en) Gold-palladium-silver series white gold alloy powder excellent in sinterability
JPH083662A (en) Gold-palladium series white gold alloy powder excellent in sinterability