JP2005015715A - Foamable thermoplastic resin particles, prefoamed particles and molded foam - Google Patents

Foamable thermoplastic resin particles, prefoamed particles and molded foam Download PDF

Info

Publication number
JP2005015715A
JP2005015715A JP2003185480A JP2003185480A JP2005015715A JP 2005015715 A JP2005015715 A JP 2005015715A JP 2003185480 A JP2003185480 A JP 2003185480A JP 2003185480 A JP2003185480 A JP 2003185480A JP 2005015715 A JP2005015715 A JP 2005015715A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
particles
resin particles
weight
expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003185480A
Other languages
Japanese (ja)
Other versions
JP4184171B2 (en
Inventor
Yasuhiro Sakota
康宏 迫田
Ryosuke Chiumi
良輔 地海
Masaya Sato
雅也 佐藤
Shigehiko Tokyo
成彦 都郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2003185480A priority Critical patent/JP4184171B2/en
Publication of JP2005015715A publication Critical patent/JP2005015715A/en
Application granted granted Critical
Publication of JP4184171B2 publication Critical patent/JP4184171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide foamable thermoplastic resin particles that provides reduced amount of falling-away powdery coating agent during the transportation to a prefoaming machine and a foam molding machine, excellent flowability, and a shortened transportation time, and can form molded foams with excellent gloss. <P>SOLUTION: These foamable thermoplastic resin particles have their surfaces coated with a skin layer. The layer comprises, based on 100 pts.wt. of the foamable thermoplastic resin particles, 0.1-0.6 pts.wt. of an aqueous mixture solution obtained by mixing a polyalkylene glycol and a polyvinyl resin in a weight ratio (the polyalkylene glycol/the polyvinyl resin) of 4-50, and having viscosity of 100-300 mPa×s, and 0.03-0.6 pts.wt. of a powdery coating agent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発泡性熱可塑性樹脂粒子、この発泡性熱可塑性樹脂粒子を予備発泡させてなる予備発泡粒子及び発泡性熱可塑性樹脂粒子を発泡成形させて得られた発泡成形品に関する。
【0002】
【従来の技術】
従来から、スチレン系樹脂粒子中に物理発泡剤を含浸させてなる発泡性スチレン系樹脂粒子を予備発泡機にて予備発泡させて予備発泡粒子を製造し、この予備発泡粒子を発泡成形機の金型内に充填した上で加熱、発泡させて互いに融着一体化させて所望形状を有する発泡成形容器を製造していた。
【0003】
そして、発泡性スチレン系樹脂粒子を水蒸気などによって加熱して予備発泡させる際に、複数個の発泡性スチレン系樹脂粒子同士が予備発泡過程において合体して一つになる(合着)と、発泡成形機の金型内に予備発泡粒子を均一に充填することができないので、複数個の発泡性スチレン系樹脂粒子が予備発泡中に合着してなるもの、つまり、複数個の予備発泡粒子同士が合着してなるものを除去することを目的として、予備発泡粒子を篩で篩うことが従来から行なわれているが、生産性が低下するといった問題点があった。なお、「複数個の粒子が合体して一つになること」を以下の説明において「合着」という。
【0004】
そこで、発泡性スチレン系樹脂粒子の予備発泡中における発泡性スチレン系樹脂粒子同士の合着を防止するべく、発泡性スチレン系樹脂粒子の表面に、ステアリン酸亜鉛、ステアリン酸亜鉛マグネシウムなどの脂肪酸金属塩などの合着防止剤を付着させることが行なわれている。
【0005】
更に、発泡性スチレン系樹脂粒子の表面に静電気によって埃などが付着するのを防止するために、発泡性スチレン系樹脂粒子の表面に、ポリエチレングリコール、ポリプロピレングリコールなどの多価アルコール類、高級脂肪酸のエチレングリコール付加物などのノニオン系界面活性剤などの液体状の帯電防止剤を塗布することが行なわれている。
【0006】
一方、発泡性スチレン系樹脂粒子を発泡させて発泡成形品を製造する過程において、発泡性スチレン系樹脂粒子は、一端部が予備発泡機に接続されてなる発泡性粒子流通管内を予備発泡機に向かって吸引する、所謂、空気輸送によって発泡性粒子流通管を通じて予備発泡機内に供給されると共に、この予備発泡機で予備発泡されて得られた予備発泡粒子も、一端部がサイロ或いは発泡成形機に接続されてなる予備発泡粒子流通管内をサイロ或いは発泡成形機に向かって吸引することによって予備発泡粒子流通管を通じてサイロ或いは発泡成形機内に供給される。
【0007】
しかしながら、上記発泡性スチレン系樹脂粒子及び予備発泡粒子の表面に塗布させる合着防止剤の多くは粉体状であることから、上述のように流通管内を流通させる過程において、粒子表面に塗布した合着防止剤が脱落して流通管の内面に付着堆積し、流通管内の流通空間が狭くなって発泡性スチレン系樹脂粒子及び予備発泡粒子の輸送効率が低下したり、或いは、流通管の内面に付着堆積した合着防止剤が流通管の内面から脱落して発泡成形品内に混入して問題を生じる虞れがあるといった問題点があった。
【0008】
又、上記帯電防止剤の多くは粘稠な液体であることから、上記合着防止剤を粒子表面に付着させる作用を発揮する一方、合着防止剤が粒子表面から脱落するのを確実に防止するために、粒子表面に塗布する帯電防止剤の量を増加させると、粒子表面がべたつき、樹脂粒子を予備発泡機、サイロ又は発泡成形機に流通管を通じて空気輸送する際の樹脂粒子の流動性が低下して輸送に要する時間が長くなるといった問題点があった。
【0009】
このような問題点を解消するために、特許文献1では、発泡性スチレン系重合体粒子の表面に、該粒子100重量部当たりグリセリン脂肪酸エステル0.01〜0.3重量部及びステアリン酸亜鉛及び/又は無機物0.01〜0.5重量部を塗布したことを特徴とする発泡性スチレン系重合体粒子が提案されている。
【0010】
しかしながら、上記発泡性スチレン系重合体粒子は、グリセリン脂肪酸エステルを用いていることから、発泡性スチレン系重合体粒子を発泡成形させて得られる発泡成形体の表面光沢が無く、発泡成形体の商品価値を低下させるといった問題点を生じていた。
【0011】
【特許文献1】
特開平4−320434号公報
【0012】
【発明が解決しようとする課題】
本発明は、予備発泡機、サイロ又は発泡成形機への流通過程において粉体状被覆剤の脱落を抑え且つ流動性が優れていて流通時間を短縮することができると共に優れた光沢性を有する発泡成形品を得ることができる発泡性熱可塑性樹脂粒子、この発泡性熱可塑性樹脂粒子を予備発泡させて得られた予備発泡粒子、及び、発泡性熱可塑性樹脂粒子を発泡成形して得られた光沢性に優れた発泡成形品を提供する。
【0013】
【課題を解決するための手段】
本発明の発泡性熱可塑性樹脂粒子は、発泡性熱可塑性樹脂粒子の表面が表皮層で被覆されており、この表皮層は、発泡性熱可塑性樹脂粒子100重量部に対して、ポリアルキレングリコール及びポリビニル系樹脂が重量比(ポリアルキレングリコール/ポリビニル系樹脂)4〜50で混合され且つ粘度が100〜300mPa・sである混合水溶液0.1〜0.6重量部と、粉体状被覆剤0.03〜0.6重量部とからなることを特徴とする。
【0014】
上記発泡性熱可塑性樹脂粒子を構成する熱可塑性樹脂としては、特に限定されず、例えば、スチレン系樹脂;ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体などのオレフィン系樹脂;メタクリル酸エステル系樹脂、塩化ビニリデン樹脂、ポリフェニレンエーテル、オレフィン系樹脂にビニル単量体をグラフト共重合させてなる複合樹脂などが挙げられ、スチレン系樹脂、オレフィン系樹脂が好ましく、スチレン系樹脂がより好ましい。なお、熱可塑性樹脂は単独で用いられても併用されてもよい。
【0015】
上記スチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系単量体の単独重合体又はこれらの共重合体等が挙げられる。
【0016】
又、上記スチレン系樹脂としては、上記スチレン系単量体を主成分とする、上記スチレン系単量体とこのスチレン系単量体と共重合可能なビニル単量体との共重合体であってもよく、このようなビニル単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレート、無水マレイン酸、アクリロニトリルの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性単量体などが挙げられる。
【0017】
なお、上記スチレン系樹脂の重量平均分子量は、15万〜40万が好ましく、25万〜35万がより好ましい。又、上記発泡性熱可塑性樹脂粒子の平均粒径は、0.2〜1.0mmが好ましい。
【0018】
ここで、発泡性熱可塑性樹脂粒子の製造方法としては、汎用の製造方法が用いられ、熱可塑性樹脂粒子を汎用の方法で製造し、この熱可塑性樹脂粒子に物理発泡剤を含浸させる方法などが挙げられる。
【0019】
上記物理発泡剤としては、特に限定されず、例えば、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、シクロペンタンなどの易揮発性脂肪族炭化水素、トリクロロモノフロオロメタン(フロン11)、ジクロロジフルオロメタン(フロン12)などのフロン、二酸化炭素、窒素、水などが挙げられる。なお、上記発泡性スチレン系樹脂粒子には、紫外線吸収剤、増量剤、着色剤などの汎用の添加剤が添加されていてもよい。
【0020】
そして、上記発泡性熱可塑性樹脂粒子の表面は好ましくは全面的に表皮層によって被覆されている。この表皮層は、ポリアルキレングリコール及びポリビニル系樹脂が特定の重量比(ポリアルキレングリコール/ポリビニル系樹脂)で混合されて特定粘度を有する混合水溶液と、粉体状被覆剤とからなる。
【0021】
ここで、ポリアルキレングリコール水溶液及びポリビニル系樹脂水溶液は、それぞれ単独でもある程度の粘稠性を有しており、後述する粉体状被覆剤を発泡性熱可塑性樹脂粒子の表面に付着させる効果を有するものの、その効果は充分なものではない。
【0022】
そこで、本発明は、種々検討した結果、ポリアルキレングリコールに少量のポリビニル系樹脂を混合してなる水溶液は、ある混合比率の時にゲル状を呈して粘度が上昇する一方、その粘度上昇にもかかわらず、水溶液にべとつき感が少ないことを見出したことによるものである。
【0023】
ここで、ポリアルキレングリコールとしては、特に限定されず、例えば、ポリエチレングリコール、ポリプロピレングリコールなどが挙げられ、ポリエチレングリコールが好ましい。
【0024】
上記ポリアルキレングリコールの重量平均分子量は、小さいと、ポリビニル系樹脂の水溶液と混合した場合にゲル状になりにくいことがある一方、大きいと、ポリアルキレングリコールとポリビニル系樹脂とが均一に混合し難いことがあるので、200〜500が好ましい。なお、ポリアルキレングリコールの重量平均分子量は、ポリアルキレングリコールの水酸基価(x)を求め、下記式により算出したものをいう。
ポリアルキレングリコールの重量平均分子量=56.1×2 ×1000/x
【0025】
又、上記ポリビニル系樹脂としては、特に限定されず、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルホルマール、ポリビニルブチラールなどが挙げられ、ポリビニルアルコール又はポリビニルピロリドンの何れか一方を用いること、或いは、ポリビニルアルコール及びポリビニルピロリドンを併用することが好ましい。
【0026】
そして、ポリアルキレングリコール及びポリビニル系樹脂からなる混合水溶液中におけるポリアルキレングリコール及びポリビニル系樹脂の重量比(ポリアルキレングリコール/ポリビニル系樹脂)は、小さくても大きくても、混合水溶液の粘度が低くなって粉体状被覆剤が発泡性熱可塑性樹脂粒子の表面から脱落するので、4〜50に限定され、5〜30が好ましい。
【0027】
更に、上記混合水溶液の粘度は、小さくても大きくても、混合水溶液の粘度が低くなって粉体状被覆剤が発泡性熱可塑性樹脂粒子の表面から脱落するので、100〜300mPa・sに限定され、105〜200mPa・sが好ましい。なお、混合水溶液の粘度は、混合水溶液を23℃の恒温室に24時間放置した後、B型粘度計を用いて測定されたものをいう。このB型粘度計は、例えば、東京計器社から市販されている。
【0028】
ここで、混合水溶液の製造方法としては、ポリアルキレングリコールとポリビニル系樹脂とが均一に混合されれば、特に限定されず、例えば、ポリアルキレングリコールとポリビニル系樹脂水溶液とを攪拌羽を有するオートクレーブ中に供給してポリアルキレングリコールとポリビニル系樹脂水溶液とを混合する方法が挙げられる。なお、ポリアルキレングリコールとポリビニル系樹脂水溶液とを混合するに際しては、ポリアルキレングリコール中にポリビニル系樹脂水溶液を供給しても、或いは、ポリビニル系樹脂水溶液中にポリアルキレングリコールを供給してもよい。
【0029】
そして、発泡性熱可塑性樹脂粒子の表面を被覆している表皮層中における混合水溶液の含有量は、少ないと、表皮層中の粉体状被覆剤が発泡性熱可塑性樹脂粒子の表面から脱落するのを抑制する効果が発現しない一方、多いと、発泡性熱可塑性樹脂粒子を発泡成形させて得られる発泡成形品の光沢が低下すると共に、発泡性熱可塑性樹脂粒子の表面の湿りが大きくなって流通管内を空気輸送する際の発泡性熱可塑性樹脂粒子の流動性が低下して輸送時間に要する時間が長くなるので、発泡性熱可塑性樹脂粒子100重量部に対して0.1〜0.6重量部に限定され、0.1〜0.5重量部が好ましい。
【0030】
又、上記表皮層を構成する粉体状被覆剤としては、発泡性熱可塑性樹脂粒子同士が予備発泡過程において互いに合着しないようにする効果があればよく、例えば、ステアリン酸亜鉛、オレイン酸亜鉛、パルミチン酸亜鉛などの脂肪酸金属塩、炭酸カルシウム、高級脂肪酸アマイドなどが挙げられ、脂肪酸金属塩が好ましく、ステアリン酸亜鉛がより好ましい。
【0031】
そして、発泡性熱可塑性樹脂粒子の表面を被覆している表皮層中における粉体状被覆剤の含有量は、少ないと、発泡性熱可塑性樹脂粒子同士の予備発泡過程における合着防止効果が低下する一方、多くても、効果は変わらないので、発泡性熱可塑性樹脂粒子100重量部に対して0.03〜0.6重量部に限定される。
【0032】
なお、上記表皮層には、粉体状の帯電防止剤としては、脂肪酸モノグリセライド、脂肪酸ジグリセライドなどのグリセリン脂肪酸エステルなどの帯電防止剤;ラウリン酸アミド、オレイン酸アミドなどの脂肪酸アミド、米糖油のアミドや硬化牛脂油アミドなどの天然脂肪酸をアミド化したもの、ステアリン酸トリグリセライド、パルミチン酸トリグリセライドなどの脂肪酸のトリグリセライド、大豆硬化油や硬化ヒマシ油などの天然トリグリセライドなどの融着促進剤;サイクロデキストリン、リシノール酸亜鉛などの漏れ防止剤などが添加されてもよい。
【0033】
そして、上記発泡性熱可塑性樹脂粒子の表面を上記表皮層で被覆する方法としては、発泡性熱可塑性樹脂粒子と、この発泡性熱可塑性樹脂粒子100重量部に対して、ポリアルキレングリコール及びポリビニル系樹脂が重量比(ポリアルキレングリコール/ポリビニル系樹脂)4〜50で混合され且つ粘度が100〜300mPa・sである混合水溶液0.1〜0.6重量部と、粉体状被覆剤0.03〜0.6重量部とからなる被覆剤とを、スーパーミキサー、ヘンシェルミキサー、レーディゲーミキサーなどの汎用の混合機に供給して混合することによって、発泡性熱可塑性樹脂粒子の表面に被覆剤を全面的に塗布し、発泡性熱可塑性樹脂粒子の表面を被覆剤からなる表皮層で全面的に被覆する方法が挙げられる。
【0034】
なお、上記混合機の攪拌速度(周速度)は、低いと、発泡性熱可塑性樹脂粒子の表面を被覆剤で被覆するのに時間を要する一方、高くても、効果に差はないので、5〜30m/sが好ましい。
【0035】
この時、被覆剤として、発泡性熱可塑性樹脂粒子100重量部に対して、ポリアルキレングリコール及びポリビニル系樹脂が重量比(ポリアルキレングリコール/ポリビニル系樹脂)4〜50で混合され且つ粘度が100〜300mPa・sである混合水溶液0.1〜0.6重量部と、粉体状被覆剤0.03〜0.6重量部とからなる被覆剤を用いており、この被覆剤は塗布に際して適度な粘度を有していることから発泡性熱可塑性樹脂粒子の表面に略均一な厚みでもって塗布することができ、その結果、発泡性熱可塑性樹脂粒子の表面に略均一な厚みを有する表皮層を適度な厚みでもって形成することができる。
【0036】
そして、発泡性熱可塑性樹脂粒子の表面を被覆している表皮層は、特定の混合水溶液及び粉体状被覆剤からなり、上記混合水溶液は、所定の粘度を有するゲル状を呈し、粉体状被覆剤を発泡性熱可塑性樹脂粒子の表面に確実に付着させている。
【0037】
従って、発泡性熱可塑性樹脂粒子及びこれを予備発泡させて得られる予備発泡粒子を空気輸送する際に粒子表面の粉体状被覆剤が脱落するのを極めて効果的に防止して、流通管の内面に粉体状被覆剤が付着堆積して輸送効率を低下させたり或いはこの流通管内面に付着堆積した粉体状被覆剤が脱落して発泡成形品に混入し、発泡成形品の品質を低下させるといったことはない。
【0038】
しかも、発泡性熱可塑性樹脂粒子の表面を被覆している表皮層を構成する混合水溶液は、べとつき感が極めて低いことから、発泡性熱可塑性樹脂粒子の流動性に優れており、流通管を通じた空気輸送を円滑に行なうことができる。
【0039】
更に、発泡性熱可塑性樹脂粒子の表面を被覆している表皮層中はポリアルキレングリコールを含有していることから、表皮層は優れた帯電防止性能を有しており、発泡性熱可塑性樹脂粒子表面に静電気によって埃などが付着、混入するようなことはなく、発泡性熱可塑性樹脂粒子からは埃などの異物の混入のない優れた品質の発泡成形品を得ることができる。
【0040】
このようにして得られた、表面が特定の表皮層で被覆された発泡性熱可塑性樹脂粒子は、予備発泡機で予備発泡されて予備発泡粒子とされ、得られた予備発泡粒子は発泡成形機の金型内に充填された上で加熱蒸気などの加熱媒体により発泡させられて発泡圧によって互いに熱融着一体化して所望形状を有する発泡成形品とされる。なお、予備発泡粒子の嵩倍率は、5〜100倍が好ましい。
【0041】
【実施例】
(実施例1〜5、7、比較例5〜10)
攪拌装置を備えたステンレス製の内容量が100リットルのオートクレーブ内に、イオン交換水40000重量部、平均粒径が0.8mmのポリスチレン粒子40000重量部、リン酸三カルシウム120重量部及びドデシルベンゼンスルホン酸ナトリウム4.0重量部を供給して1時間かけて110℃まで昇温した。
【0042】
しかる後、上記オートクレーブ内にブタン2800重量部を圧入して110℃で2時間に亘って放置した後に冷却して水を分離除去した上で乾燥させて、発泡剤としてブタンが6.0重量%含有された平均粒径0.8mmの発泡性ポリスチレン粒子を得た。
【0043】
一方、表1に示した所定量のポリアルキレングリコールであるポリエチレングリコール(日本油脂社製 商品名「PEG#300」、重量平均分子量:300)、ポリビニル系樹脂であるポリビニルピロリドン(アイエスピー・ジャパン社製 商品名「PVPK−30」)又はポリビニルアルコール(ゴーセノール社製商品名「GH−23」)、及び、水を内容量が5リットルのオートクレーブ中に供給し、150rpmの攪拌速度で攪拌しながら1℃/分の速度で80℃まで昇温させ、80℃に2時間に亘って保持した後に常温まで冷却して、ポリアルキレングリコール及びポリビニル系樹脂が表1に示した重量比(ポリアルキレングリコール/ポリビニル系樹脂)で混合された混合水溶液を得た。なお、混合水溶液の粘度及び濃度を表1に示した。
【0044】
次に、上記発泡性ポリスチレン粒子100重量部及び表1に示した所定量の上記混合水溶液をスーパーミキサーに供給して攪拌速度(攪拌羽の周速度)25m/sで2分間攪拌した後、ステアリン酸亜鉛(日本油脂社製 商品名「ジンクステアレート」)を表1に示した所定量だけ添加して攪拌速度(攪拌羽の周速度)25m/sで更に2分間攪拌して、混合水溶液及びステアリン酸亜鉛からなる被覆剤を全て、各発泡性ポリスチレン粒子の表面全面に塗布して、被覆剤からなる表皮層で表面全面が被覆されている発泡性ポリスチレン粒子を得た。
【0045】
なお、各発泡性ポリスチレン粒子の表面には混合水溶液及びステアリン酸亜鉛が発泡性ポリスチレン粒子に対して、スーパーミキサー中における発泡性ポリスチレン粒子、混合水溶液及びステアリン酸亜鉛の重量割合と同様の重量割合でもって被覆されていた。
【0046】
この発泡性ポリスチレン粒子を回転攪拌式予備発泡機にて約90℃の常圧飽和蒸気によって0.05MPaの圧力で加熱して予備発泡させて、嵩倍率が50倍の予備発泡粒子を得た。
【0047】
次に、上記予備発泡粒子を30℃の乾燥室内で24時間放置して熟成させた後、この予備発泡粒子を発泡成形機(積水工機社製 商品名「ACE−3SP」)の金型内に供給、充填し、予備発泡粒子を0.07MPaの水蒸気を用いて20秒間に亘って加熱、発泡させた後に20秒間に亘って水冷して縦300mm×横450mm×高さ100mmの直方体状の発泡成形品を得た。
【0048】
(実施例6)
ステアリン酸亜鉛のスーパーミキサーへの供給量を0.4重量部とし、先ず、スーパーミキサーに発泡性ポリスチレン粒子及びステアリン酸亜鉛を供給して2分間攪拌した後、スーパーミキサーに混合水溶液を供給して更に2分間攪拌したこと以外は実施例2と同様にして発泡性ポリスチレン粒子、予備発泡粒子及び発泡成形品を得た。
【0049】
(比較例1)
混合水溶液の代わりに、ポリエチレングリコール(日本油脂社製 商品名「PEG#300」)を用いたこと以外は実施例1と同様にして発泡性ポリスチレン粒子、予備発泡粒子及び発泡成形品を得た。
【0050】
(比較例2)
オートクレーブ中に、ポリエチレングリコールを添加せずにポリビニルピロリドン400重量部及び水3600重量部を供給したこと以外は実施例1と同様にして発泡性ポリスチレン粒子、予備発泡粒子及び発泡成形品を得た。
【0051】
(比較例3)
オートクレーブ中に、ポリエチレングリコールを添加せずにポリビニルアルコール240重量部及び水3760重量部を供給したこと以外は実施例1と同様にして発泡性ポリスチレン粒子、予備発泡粒子及び発泡成形品を得た。
【0052】
(比較例4)
混合水溶液を用いなかったこと以外は実施例1と同様にして発泡性ポリスチレン粒子、予備発泡粒子及び発泡成形品を得た。
【0053】
(比較例11)
実施例1で得られた発泡性ポリスチレン粒子100重量部と、グリセリンモノオレート及びグリセリンジオレートの混合物(理研ビタミン社製 商品名「ポエムOL−200」)0.04重量部をスーパーミキサーに供給して攪拌速度(攪拌羽の周速度)25m/sで2分間攪拌した後、ステアリン酸亜鉛(日本油脂社製 商品名「ジンクステアレート」)0.1重量部を添加して攪拌速度(攪拌羽の周速度)25m/sで更に2分間攪拌して、グリセリンモノオレート及びグリセリンジオレートの混合物並びにステアリン酸亜鉛で表面全面が被覆されている発泡性ポリスチレン粒子を得た。この発泡性ポリスチレン粒子を用いて実施例1と同様の要領で予備発泡粒子及び発泡成形品を得た。
【0054】
【表1】

Figure 2005015715
【0055】
上記の如くして発泡性ポリスチレン粒子の脱落性、予備発泡時の合着試験及び帯電性、並びに、発泡成形品の光沢性を下記の要領で測定し、その結果を表2に示した。
【0056】
(発泡性ポリスチレン粒子の脱落性)
図1に示したような、内径が20mmの直条の移送管1を垂直に起立した状態に配設し、この移送管1の上端に該移送管の上端部を開閉自在に閉止するバルブ2を介して漏斗状の受入部材3を一体的に設けていると共に、移送管1の下端開口部の垂直下方に、縦130mm×横50mm×厚み2mmの平面矩形状のアクリル板(三菱レーヨン社製 商品名「アクリライト透明」)4をその平滑な上面41が水平方向から30°だけ傾斜した状態に配設してなる表皮層脱落試験機を用意した。なお、バルブ2の下端からアクリル4の上面41中央部までの上下間隔は1mであった。
【0057】
一方、発泡性ポリスチレン粒子2000gを室温23℃及び湿度50%の恒温恒湿槽内に24時間放置した後、この発泡性ポリスチレン粒子を全て、表皮層脱落試験機の受入部材3内に供給した上でバルブ2を全面的に開放して移送管1内を垂直下方に落下させ、移送管1の下端開口部から流出した発泡性ポリスチレン粒子をアクリル板4の上面41中央部に衝突させた。
【0058】
そして、発泡性ポリスチレン粒子を衝突させる前のアクリル板4の重量を予め測定しておき、発泡性ポリスチレン粒子2000gの全てをアクリル板4の上面41中央部に衝突させた後のアクリル板4の重量を測定し、アクリル板4の増加量を算出した。
【0059】
アクリル板4の増加量、即ち、発泡性ポリスチレン粒子の表面から脱落した表皮層部分の重量が10mgを超えると、発泡性ポリスチレン粒子及び予備発泡粒子を流通管内に流通させた際に流通管内に発泡性ポリスチレン粒子の表皮層が脱落、付着し、流通管内の流通空間を減少或いは閉塞するといった問題が生じる可能性が高い。
【0060】
(発泡性ポリスチレン粒子の予備発泡時の合着試験)
発泡性ポリスチレン粒子500gを回転攪拌式予備発泡機にて約90℃の常圧飽和蒸気によって0.05MPaの圧力で加熱して予備発泡させて、嵩倍率が50倍の予備発泡粒子を得た。
【0061】
この予備発泡粒子を目開き10mmの網でふるい、網上に残った予備発泡粒子の重量を測定した。この網上に残った予備発泡粒子の重量が少ない程、予備発泡粒子同士の合着が少なく、予備発泡粒子を発泡成形機の金型内に均一に充填することができる。
【0062】
(発泡性ポリスチレン粒子の帯電性)
平面長方形状の底面部の外周縁から一定高さを有する四角枠状の周壁部が上方に向かって突設されてなり、上端が全面的に開放された試験容器を用意した。なお、試験容器の内容積は縦10mm×横130mm×高さ75mmであり、又、試験容器における周壁部の前後部はアルミ板から形成されている一方、周壁部の左右部及び底面部はポリテトラフルオロエチレンから形成されていた。
【0063】
そして、上記試験容器内に発泡性ポリスチレン粒子を上端開口縁まで充填した後、試験容器における周壁部の前後部間に1000Vの直流電圧Eを印加した時に流れる電流I(A)を測定し、抵抗R(Ω)をR=E/Iから算出した。
【0064】
更に、上記抵抗Rに、アルミ板の面積0.00975mを乗じると共にアルミ板間の距離0.01mで除して体積固有抵抗値を算出し、この体積固有抵抗値を帯電性とした。
【0065】
(発泡成形品の光沢性)
発泡成形品から縦50mm×横50mm×高さ10mmの直方体形状の試験片を切り出した。なお、試験片における一辺50mmの正方形状の面が発泡成形品の表面から形成されるように切り出した。
【0066】
そして、上記試験片における一辺50mmの正方形状の面(発泡成形品の表面に相当する面)を測定面として、三次元光度計(村上色彩研究所製 商品名「ゴニオフォトメターGP−200」)を用いて、ハロゲンランプを光源とした光を測定面に対して60°の入射角で入射させて、試験片の測定面からの反射光を−90°〜+90°の範囲で測定した。
【0067】
又、反射光の検出は、分光感度185〜850nm、最高感度波長530nmの光電子倍増管により検出し、反射光のピーク強度を0°の反射光強度で除した値を光沢性とした。
【0068】
なお、光沢性は、その値が大きいほど光沢性に優れている。光沢性が17以下である場合、発泡成形品を目視観察すると、発泡成形品の表面がくすんで好ましくない。
【0069】
【表2】
Figure 2005015715
【0070】
【発明の効果】
本発明の発泡性熱可塑性樹脂粒子は、発泡性熱可塑性樹脂粒子の表面が表皮層で被覆されており、この表皮層は、発泡性熱可塑性樹脂粒子100重量部に対して、ポリアルキレングリコール及びポリビニル系樹脂が重量比(ポリアルキレングリコール/ポリビニル系樹脂)4〜50で混合され且つ粘度が100〜300mPa・sである混合水溶液0.1〜0.6重量部と、粉体状被覆剤0.03〜0.6重量部とからなることを特徴とするので、表皮層は発泡性熱可塑性樹脂粒子の表面に概ね均一に形成されており、発泡性熱可塑性樹脂粒子が流通管内を流通する際に表皮層成分が多量に脱落して流通管の内面を汚染したり流通管の流通面積を減少させ或いは発泡成形品に表皮層成分が混入して発泡成形品の品質を損ねるといったことはない。
【0071】
そして、本発明の発泡性熱可塑性樹脂粒子の表皮層にはべとつき感がないことから、発泡性熱可塑性樹脂粒子の流動性に優れており、発泡性熱可塑性樹脂粒子を流通管によって空気輸送した場合にあっても、発泡性熱可塑性樹脂粒子を効率良く輸送することができる。
【0072】
更に、本発明の発泡性熱可塑性樹脂粒子は、その表皮層の存在によって予備発泡過程にて複数個の発泡性熱可塑性樹脂同士が合致するといったことは殆どない。従って、予備発泡粒子を発泡成形機の金型内に供給するにあたり、複数個の予備発泡粒子が合着してなるものを除去するために予備発泡粒子を篩にかけるといった作業を行なうことなく、予備発泡粒子を発泡成形機の金型内に均一に充填して均質な発泡成形品を得ることができる。
【0073】
又、本発明の発泡性熱可塑性樹脂粒子を用いて発泡成形させて得られる発泡成形品は優れた光沢性を有しており、得られる発泡成形品は優れた外観性を有する。
【0074】
更に、本発明の発泡性熱可塑性樹脂粒子の表皮層にはポリアルキレングリコールが含有されていることから表皮層は優れた帯電防止性能を有しており、発泡性熱可塑性樹脂粒子の表面に静電気によって埃などが付着して発泡成形品に混入するようなことはなく美麗な発泡成形品を得ることができる。
【0075】
そして、ポリアルキレングリコールがポリプロピレングリコール及び/又はポリエチレングリコールを含有する場合、或いは、ポリビニル系樹脂がポリビニルピロリドン及び/又はポリビニルアルコールを含有する場合には、発泡性熱可塑性樹脂粒子の表皮層成分の脱落をより効果的に防止することができると共に、発泡性熱可塑性樹脂粒子の空気輸送をより円滑に行なうことができ、更に、予備発泡時に発泡性熱可塑性樹脂粒子同士の合着を更に効果的に防止して効率良く美麗な発泡成形品を得ることができる。
【0076】
又、ポリアルキレングリコールの重量平均分子量は200〜500である場合には、表皮層成分が発泡性熱可塑性樹脂粒子の表面から脱落するのをより効果的に防止することができる。
【0077】
そして、粉体状被覆剤がステアリン酸亜鉛である場合には、発泡性熱可塑性樹脂粒子を予備発泡させる際に、複数個の発泡性熱可塑性樹脂粒子同士が合着するのをより効果的に防止して、複数個が合着した予備発泡粒子の発生を阻止することができ、予備発泡粒子を発泡成形機の金型内に更に均一に充填して、より均質な発泡成形品を得ることができる。
【0078】
更に、発泡性熱可塑性樹脂粒子がその予備発泡時に複数個が合着するというような事態が殆ど発生することはないから、複数個の予備発泡粒子同士が合着してなるものを除去する作業を必要せずに、予備発泡粒子を発泡成形機の金型内に均一に充填して均質な発泡成形品を得ることができる。
【0079】
そして、本発明の予備発泡粒子を発泡成形させて得られる発泡成形品は、優れた光沢性を有していると共に発泡性熱可塑性樹脂粒子の発泡成形過程において表皮層成分の脱落に起因した汚れが混入することはなく、美麗にして高品質である。
【図面の簡単な説明】
【図1】表皮層脱落試験機を示した正面図である。
【符号の説明】
1 移送管
2 バルブ
3 受入部材
4 アクリル板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to expandable thermoplastic resin particles, pre-expanded particles obtained by pre-expanding the expandable thermoplastic resin particles, and a foam-molded product obtained by foam-molding the expandable thermoplastic resin particles.
[0002]
[Prior art]
Conventionally, expandable styrene resin particles obtained by impregnating a styrene resin particle with a physical foaming agent are pre-foamed by a pre-foaming machine to produce pre-foamed particles. After filling the mold, it is heated and foamed and fused together to produce a foam molded container having a desired shape.
[0003]
Then, when the expandable styrene resin particles are heated with water vapor or the like to be pre-foamed, a plurality of expandable styrene resin particles are combined into one in the pre-foaming process (fusing), and foaming is performed. Since the pre-expanded particles cannot be uniformly filled in the mold of the molding machine, a plurality of expandable styrene resin particles are joined together during the pre-expansion, that is, the plurality of pre-expanded particles For the purpose of removing particles formed by coalescence, it has been conventionally practiced to screen pre-foamed particles with a sieve, but there has been a problem that productivity is lowered. In the following description, “joining a plurality of particles into one” is referred to as “joining”.
[0004]
Therefore, in order to prevent coalescence of the expandable styrene resin particles during the pre-expansion of the expandable styrene resin particles, a fatty acid metal such as zinc stearate or zinc magnesium stearate is formed on the surface of the expandable styrene resin particles. Adhesion inhibitors such as salt are adhered.
[0005]
Furthermore, in order to prevent dust and the like from adhering to the surface of the expandable styrene resin particles due to static electricity, polyhydric alcohols such as polyethylene glycol and polypropylene glycol, Liquid antistatic agents such as nonionic surfactants such as ethylene glycol adducts are applied.
[0006]
On the other hand, in the process of producing a foam molded product by foaming expandable styrene resin particles, the expandable styrene resin particles are used as a pre-foaming machine in the foamable particle distribution pipe having one end connected to the pre-foaming machine. The pre-foamed particles obtained by being pre-foamed by the pre-foaming machine while being supplied into the pre-foaming machine through so-called pneumatic transportation by the so-called pneumatic transport, which is sucked toward the silo or foam molding machine The pre-expanded particle distribution pipe connected to the is supplied to the silo or the foam molding machine through the pre-expanded particle distribution pipe by sucking the pre-expanded particle distribution pipe toward the silo or the foam molding machine.
[0007]
However, since most of the anti-fusing agent to be applied to the surface of the expandable styrene resin particles and the pre-expanded particles is in the form of powder, it was applied to the particle surface in the process of flowing through the flow pipe as described above. The anti-fusing agent falls off and adheres to and accumulates on the inner surface of the flow pipe, the flow space in the flow pipe becomes narrower, and the transportation efficiency of the expandable styrene resin particles and the pre-foamed particles decreases, or the inner surface of the flow pipe There is a problem that the anti-fusing agent deposited and deposited on the inner surface of the flow pipe may fall off and be mixed into the foamed molded product to cause a problem.
[0008]
In addition, since most of the antistatic agents are viscous liquids, they exhibit the effect of adhering the antiadhesive agent to the particle surface, while reliably preventing the antiadhesive agent from falling off the particle surface. Therefore, if the amount of the antistatic agent applied to the particle surface is increased, the particle surface becomes sticky, and the fluidity of the resin particles when the resin particles are pneumatically transported to the pre-foaming machine, silo or foam molding machine through the flow pipe There is a problem that the time required for transportation becomes longer due to a decrease in the temperature.
[0009]
In order to solve such problems, in Patent Document 1, 0.01 to 0.3 parts by weight of glycerin fatty acid ester and zinc stearate per 100 parts by weight of the particles are formed on the surface of the expandable styrene polymer particles. Expandable styrene polymer particles characterized by applying 0.01 to 0.5 parts by weight of an inorganic substance have been proposed.
[0010]
However, since the above expandable styrene polymer particles use glycerin fatty acid ester, there is no surface gloss of the foam molded product obtained by foam molding of the expandable styrene polymer particles, and the product of the foam molded product. There was a problem of lowering the value.
[0011]
[Patent Document 1]
JP-A-4-320434
[0012]
[Problems to be solved by the invention]
The present invention is a foam having excellent glossiness while suppressing the falling off of the powdery coating agent in the process of distribution to a pre-foaming machine, silo or foam molding machine, and having excellent fluidity and shortening the distribution time. Expandable thermoplastic resin particles capable of obtaining a molded product, pre-expanded particles obtained by pre-expanding the expandable thermoplastic resin particles, and gloss obtained by foam-molding the expandable thermoplastic resin particles Providing foam molded products with excellent properties.
[0013]
[Means for Solving the Problems]
In the expandable thermoplastic resin particles of the present invention, the surface of the expandable thermoplastic resin particles is coated with a skin layer, and the cover layer is composed of polyalkylene glycol and 100 parts by weight of the expandable thermoplastic resin particles. 0.1 to 0.6 parts by weight of a mixed aqueous solution in which polyvinyl resin is mixed at a weight ratio (polyalkylene glycol / polyvinyl resin) of 4 to 50 and the viscosity is 100 to 300 mPa · s; 0.03 to 0.6 parts by weight.
[0014]
The thermoplastic resin constituting the foamable thermoplastic resin particles is not particularly limited. For example, styrene resin; olefin resin such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer; methacrylate ester resin; Examples thereof include vinylidene chloride resin, polyphenylene ether, and composite resins obtained by graft copolymerization of olefin resins with vinyl monomers. Styrene resins and olefin resins are preferable, and styrene resins are more preferable. In addition, a thermoplastic resin may be used independently or may be used together.
[0015]
The styrene resin is not particularly limited, and for example, a single weight of a styrene monomer such as styrene, α-methyl styrene, vinyl toluene, chlorostyrene, ethyl styrene, i-propyl styrene, dimethyl styrene, bromo styrene or the like. Examples thereof include copolymers or copolymers thereof.
[0016]
The styrenic resin is a copolymer of the styrenic monomer and a vinyl monomer copolymerizable with the styrenic monomer, the main component of which is the styrenic monomer. Examples of such vinyl monomers include alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and cetyl (meth) acrylate, and (meth) In addition to acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl fumarate, ethyl fumarate, maleic anhydride, acrylonitrile, bifunctional monomers such as divinylbenzene, alkylene glycol dimethacrylate, and the like.
[0017]
In addition, 150,000-400,000 are preferable and, as for the weight average molecular weight of the said styrene resin, 250,000-350,000 are more preferable. The average particle diameter of the foamable thermoplastic resin particles is preferably 0.2 to 1.0 mm.
[0018]
Here, as a manufacturing method of expandable thermoplastic resin particles, a general-purpose manufacturing method is used, and a method of manufacturing the thermoplastic resin particles by a general-purpose method and impregnating the thermoplastic resin particles with a physical foaming agent is used. Can be mentioned.
[0019]
The physical foaming agent is not particularly limited. For example, volatile aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, and cyclopentane, trichloromonofluoromethane (Freon 11), Fluorocarbons such as dichlorodifluoromethane (Freon 12), carbon dioxide, nitrogen, water and the like can be mentioned. Note that general-purpose additives such as an ultraviolet absorber, a bulking agent, and a colorant may be added to the expandable styrene resin particles.
[0020]
The surface of the expandable thermoplastic resin particles is preferably entirely covered with a skin layer. The skin layer is composed of a mixed aqueous solution in which polyalkylene glycol and polyvinyl resin are mixed at a specific weight ratio (polyalkylene glycol / polyvinyl resin) and having a specific viscosity, and a powdery coating agent.
[0021]
Here, each of the polyalkylene glycol aqueous solution and the polyvinyl resin aqueous solution has a certain degree of viscosity even when used alone, and has the effect of adhering a powdery coating agent to be described later to the surface of the expandable thermoplastic resin particles. However, the effect is not sufficient.
[0022]
Therefore, as a result of various investigations, the present invention shows that an aqueous solution obtained by mixing a small amount of a polyvinyl resin with polyalkylene glycol exhibits a gel-like shape at a certain mixing ratio and increases its viscosity, while the viscosity increases. This is due to the fact that the aqueous solution is less sticky.
[0023]
Here, it does not specifically limit as polyalkylene glycol, For example, polyethylene glycol, polypropylene glycol, etc. are mentioned, Polyethylene glycol is preferable.
[0024]
When the weight average molecular weight of the polyalkylene glycol is small, it may be difficult to form a gel when mixed with an aqueous solution of a polyvinyl resin, whereas when it is large, it is difficult to uniformly mix the polyalkylene glycol and the polyvinyl resin. In some cases, 200 to 500 is preferable. In addition, the weight average molecular weight of polyalkylene glycol means what calculated | required the hydroxyl value (x) of polyalkylene glycol, and computed with the following formula.
Weight average molecular weight of polyalkylene glycol = 56.1 × 2 × 1000 / x
[0025]
Further, the polyvinyl resin is not particularly limited, and examples thereof include polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl formal, polyvinyl butyral, etc., using either polyvinyl alcohol or polyvinyl pyrrolidone, or polyvinyl alcohol and It is preferable to use polyvinyl pyrrolidone in combination.
[0026]
And even if the weight ratio (polyalkylene glycol / polyvinyl resin) of the polyalkylene glycol and the polyvinyl resin in the mixed aqueous solution composed of the polyalkylene glycol and the polyvinyl resin is small or large, the viscosity of the mixed aqueous solution is low. Since the powdery coating agent falls off from the surface of the expandable thermoplastic resin particles, the powder coating agent is limited to 4 to 50, and preferably 5 to 30.
[0027]
Furthermore, even if the viscosity of the mixed aqueous solution is small or large, the viscosity of the mixed aqueous solution becomes low and the powdery coating agent falls off from the surface of the foamable thermoplastic resin particles, so that the viscosity is limited to 100 to 300 mPa · s. And 105 to 200 mPa · s is preferable. The viscosity of the mixed aqueous solution refers to that measured using a B-type viscometer after leaving the mixed aqueous solution in a thermostatic chamber at 23 ° C. for 24 hours. This B-type viscometer is commercially available from, for example, Tokyo Keiki Co., Ltd.
[0028]
Here, the production method of the mixed aqueous solution is not particularly limited as long as the polyalkylene glycol and the polyvinyl resin are uniformly mixed. For example, in an autoclave having a stirring blade of the polyalkylene glycol and the polyvinyl resin aqueous solution. And a method of mixing the polyalkylene glycol and the aqueous polyvinyl resin solution. In mixing the polyalkylene glycol and the aqueous polyvinyl resin solution, the aqueous polyvinyl resin solution may be supplied into the polyalkylene glycol, or the polyalkylene glycol may be supplied into the aqueous polyvinyl resin solution.
[0029]
When the content of the mixed aqueous solution in the skin layer covering the surface of the foamable thermoplastic resin particles is small, the powdery coating agent in the skin layer falls off from the surface of the foamable thermoplastic resin particles. On the other hand, if the amount is too large, the gloss of the foam-molded product obtained by foam-molding the foamable thermoplastic resin particles decreases, and the surface wetness of the foamable thermoplastic resin particles increases. Since the flowability of the foamable thermoplastic resin particles when pneumatically transporting the inside of the flow pipe is lowered and the time required for the transport time is increased, 0.1 to 0.6 to 100 parts by weight of the foamable thermoplastic resin particles. It is limited to parts by weight, and is preferably 0.1 to 0.5 parts by weight.
[0030]
Further, the powdery coating material constituting the skin layer may have an effect of preventing the foaming thermoplastic resin particles from being bonded to each other in the preliminary foaming process. For example, zinc stearate, zinc oleate And fatty acid metal salts such as zinc palmitate, calcium carbonate, higher fatty acid amides and the like. Fatty acid metal salts are preferred, and zinc stearate is more preferred.
[0031]
And, if the content of the powdery coating agent in the skin layer covering the surface of the expandable thermoplastic resin particles is small, the anti-fusing effect in the pre-foaming process between the expandable thermoplastic resin particles decreases. On the other hand, since the effect is not changed at most, the amount is limited to 0.03 to 0.6 parts by weight with respect to 100 parts by weight of the expandable thermoplastic resin particles.
[0032]
In the above skin layer, powdered antistatic agents include, for example, antistatic agents such as fatty acid monoglyceride and glycerin fatty acid ester such as fatty acid diglyceride; fatty acid amides such as lauric acid amide and oleic acid amide, rice sugar oil Fusion accelerators such as amidated natural fatty acids such as amides and hardened beef tallow oil amide, triglycerides of fatty acids such as stearic acid triglyceride and palmitic acid triglyceride, natural triglycerides such as soybean hardened oil and hardened castor oil; cyclodextrin, Leak preventives such as zinc ricinoleate may be added.
[0033]
And as a method of coat | covering the surface of the said expandable thermoplastic resin particle with the said skin layer, with respect to 100 parts by weight of expandable thermoplastic resin particles and this expandable thermoplastic resin particle, polyalkylene glycol and polyvinyl type 0.1 to 0.6 parts by weight of a mixed aqueous solution in which the resin is mixed at a weight ratio (polyalkylene glycol / polyvinyl resin) of 4 to 50 and the viscosity is 100 to 300 mPa · s, and the powdery coating agent 0.03 A coating agent composed of ~ 0.6 parts by weight is supplied to a general-purpose mixer such as a super mixer, a Henschel mixer, or a Ladige mixer, and mixed to form a coating agent on the surface of the foamable thermoplastic resin particles. Is applied to the entire surface, and the surface of the foamable thermoplastic resin particles is entirely covered with a skin layer made of a coating agent.
[0034]
When the stirring speed (circumferential speed) of the mixer is low, it takes time to coat the surface of the foamable thermoplastic resin particles with a coating agent, but even if it is high, there is no difference in effect. -30 m / s is preferred.
[0035]
At this time, as a coating agent, polyalkylene glycol and polyvinyl resin are mixed at a weight ratio (polyalkylene glycol / polyvinyl resin) of 4 to 50 with respect to 100 parts by weight of expandable thermoplastic resin particles, and the viscosity is 100 to 100. A coating agent comprising 0.1 to 0.6 parts by weight of a mixed aqueous solution of 300 mPa · s and 0.03 to 0.6 parts by weight of a powdery coating agent is used. Since it has a viscosity, it can be applied to the surface of the expandable thermoplastic resin particles with a substantially uniform thickness. As a result, a skin layer having a substantially uniform thickness on the surface of the expandable thermoplastic resin particles is formed. It can be formed with an appropriate thickness.
[0036]
The skin layer covering the surface of the expandable thermoplastic resin particles is composed of a specific mixed aqueous solution and a powdery coating agent, and the mixed aqueous solution has a gel shape having a predetermined viscosity, and is in a powdery state. The coating agent is securely attached to the surface of the expandable thermoplastic resin particles.
[0037]
Therefore, when the foamable thermoplastic resin particles and the prefoamed particles obtained by pre-foaming the foamed thermoplastic resin particles are pneumatically transported, it is extremely effectively prevented that the powdery coating material on the surface of the particles falls off. The powdery coating material adheres and accumulates on the inner surface to reduce transport efficiency, or the powdery coating material that adheres and accumulates on the inner surface of the flow pipe falls off and mixes into the foamed molded product, degrading the quality of the foamed molded product. There is no such thing as letting go.
[0038]
Moreover, since the mixed aqueous solution constituting the skin layer covering the surface of the expandable thermoplastic resin particles has a very low stickiness, the flowability of the expandable thermoplastic resin particles is excellent, Pneumatic transportation can be performed smoothly.
[0039]
Furthermore, since the skin layer covering the surface of the foamable thermoplastic resin particles contains polyalkylene glycol, the skin layer has excellent antistatic performance, and the foamable thermoplastic resin particles Dust and the like are not attached and mixed in due to static electricity on the surface, and an excellent quality foamed molded article free from foreign matters such as dust can be obtained from the foamable thermoplastic resin particles.
[0040]
The foamed thermoplastic resin particles whose surface is coated with a specific skin layer thus obtained are pre-foamed by a pre-foaming machine to be pre-foamed particles, and the obtained pre-foamed particles are produced by a foam molding machine. After being filled in the mold, it is foamed by a heating medium such as heating steam, and is heat-fusion integrated with each other by the foaming pressure to obtain a foam molded product having a desired shape. The bulk magnification of the pre-expanded particles is preferably 5 to 100 times.
[0041]
【Example】
(Examples 1-5, 7 and Comparative Examples 5-10)
In a 100 liter stainless steel autoclave equipped with a stirrer, 40000 parts by weight of ion-exchanged water, 40000 parts by weight of polystyrene particles having an average particle size of 0.8 mm, 120 parts by weight of tricalcium phosphate and dodecylbenzenesulfone 4.0 parts by weight of sodium acid was supplied and the temperature was raised to 110 ° C. over 1 hour.
[0042]
Thereafter, 2800 parts by weight of butane was pressed into the autoclave and left at 110 ° C. for 2 hours, and then cooled, separated and removed, and dried to give 6.0% by weight of butane as a blowing agent. Expanded polystyrene particles having an average particle diameter of 0.8 mm were obtained.
[0043]
On the other hand, polyethylene glycol (trade name “PEG # 300” manufactured by NOF Corporation, weight-average molecular weight: 300) as a predetermined amount of polyalkylene glycol shown in Table 1 and polyvinyl pyrrolidone (IS Japan Co., Ltd.) as a polyvinyl resin. Product name “PVPK-30”) or polyvinyl alcohol (product name “GH-23” manufactured by Gohsenol Co., Ltd.) and water are fed into an autoclave having an internal volume of 5 liters and stirred at a stirring speed of 150 rpm. The temperature was raised to 80 ° C. at a rate of 0 ° C./minute, held at 80 ° C. for 2 hours, and then cooled to room temperature, so that the polyalkylene glycol and polyvinyl resin had a weight ratio shown in Table 1 (polyalkylene glycol / A mixed aqueous solution mixed with a polyvinyl resin) was obtained. The viscosity and concentration of the mixed aqueous solution are shown in Table 1.
[0044]
Next, 100 parts by weight of the expandable polystyrene particles and a predetermined amount of the mixed aqueous solution shown in Table 1 were supplied to a super mixer and stirred for 2 minutes at a stirring speed (circumferential speed of stirring blades) of 25 m / s. Zinc acid (Nippon Yushi Co., Ltd., trade name “zinc stearate”) was added in a predetermined amount shown in Table 1 and stirred for another 2 minutes at a stirring speed (circumferential speed of stirring blade) of 25 m / s. All of the coating agent composed of zinc stearate was applied to the entire surface of each expandable polystyrene particle to obtain expandable polystyrene particles whose entire surface was coated with a skin layer composed of the coating agent.
[0045]
In addition, on the surface of each expandable polystyrene particle, the mixed aqueous solution and zinc stearate are in a weight ratio similar to the weight ratio of the expandable polystyrene particles, the mixed aqueous solution and zinc stearate in the supermixer with respect to the expandable polystyrene particles. It was covered.
[0046]
The expandable polystyrene particles were pre-expanded by heating at a pressure of 0.05 MPa with normal-pressure saturated steam at about 90 ° C. in a rotary stirring pre-expander to obtain pre-expanded particles having a bulk magnification of 50 times.
[0047]
Next, the pre-expanded particles are allowed to age for 24 hours in a 30 ° C. drying chamber, and then the pre-expanded particles are placed in a mold of a foam molding machine (trade name “ACE-3SP” manufactured by Sekisui Koki Co., Ltd.). The pre-expanded particles are heated and foamed with 0.07 MPa water vapor for 20 seconds and then water-cooled for 20 seconds to form a rectangular parallelepiped of length 300 mm × width 450 mm × height 100 mm. A foam molded product was obtained.
[0048]
(Example 6)
The supply amount of zinc stearate to the super mixer is 0.4 parts by weight. First, expandable polystyrene particles and zinc stearate are supplied to the super mixer and stirred for 2 minutes, and then the mixed aqueous solution is supplied to the super mixer. Further, expandable polystyrene particles, pre-expanded particles and a foam-molded product were obtained in the same manner as in Example 2 except that stirring was performed for 2 minutes.
[0049]
(Comparative Example 1)
Expandable polystyrene particles, pre-expanded particles and foamed molded articles were obtained in the same manner as in Example 1 except that polyethylene glycol (trade name “PEG # 300” manufactured by NOF Corporation) was used instead of the mixed aqueous solution.
[0050]
(Comparative Example 2)
Expandable polystyrene particles, pre-expanded particles, and foamed molded articles were obtained in the same manner as in Example 1 except that 400 parts by weight of polyvinylpyrrolidone and 3600 parts by weight of water were supplied into the autoclave without adding polyethylene glycol.
[0051]
(Comparative Example 3)
Expandable polystyrene particles, pre-expanded particles and foamed molded articles were obtained in the same manner as in Example 1 except that 240 parts by weight of polyvinyl alcohol and 3760 parts by weight of water were supplied into the autoclave without adding polyethylene glycol.
[0052]
(Comparative Example 4)
Expandable polystyrene particles, pre-expanded particles and a foam-molded product were obtained in the same manner as in Example 1 except that the mixed aqueous solution was not used.
[0053]
(Comparative Example 11)
100 parts by weight of the expandable polystyrene particles obtained in Example 1 and 0.04 part by weight of a mixture of glycerol monooleate and glycerol diolate (trade name “Poem OL-200” manufactured by Riken Vitamin Co., Ltd.) were supplied to a super mixer. After stirring for 2 minutes at a stirring speed (circumferential speed of stirring blade) of 25 m / s, 0.1 part by weight of zinc stearate (trade name “Zinc stearate” manufactured by NOF Corporation) was added and stirring speed (stirring blade) was added. The peripheral surface speed was 25 m / s, and the mixture was further stirred for 2 minutes to obtain expandable polystyrene particles whose entire surface was coated with a mixture of glycerol monooleate and glycerol dioleate and zinc stearate. Using the expandable polystyrene particles, pre-expanded particles and a foam-molded product were obtained in the same manner as in Example 1.
[0054]
[Table 1]
Figure 2005015715
[0055]
As described above, the detachability of the expandable polystyrene particles, the adhesion test and chargeability at the time of preliminary foaming, and the glossiness of the foamed molded product were measured in the following manner, and the results are shown in Table 2.
[0056]
(Falling property of expandable polystyrene particles)
As shown in FIG. 1, a straight transfer pipe 1 having an inner diameter of 20 mm is arranged in a vertically standing state, and a valve 2 for closing the upper end of the transfer pipe at the upper end of the transfer pipe 1 so as to be openable and closable. And a flat rectangular acrylic plate (manufactured by Mitsubishi Rayon Co., Ltd.) having a length of 130 mm × width of 50 mm × thickness of 2 mm, vertically below the lower end opening of the transfer pipe 1. A skin layer drop-off tester was prepared, in which the product name “acrylic transparent”) 4 was disposed in a state where the smooth upper surface 41 was inclined by 30 ° from the horizontal direction. The vertical distance from the lower end of the bulb 2 to the center of the upper surface 41 of the acrylic 4 was 1 m.
[0057]
On the other hand, after 2000 g of expandable polystyrene particles were left in a constant temperature and humidity chamber at room temperature 23 ° C. and humidity 50% for 24 hours, all of the expandable polystyrene particles were supplied into the receiving member 3 of the skin layer drop-off tester. Then, the valve 2 was fully opened to drop the inside of the transfer pipe 1 vertically downward, and the expandable polystyrene particles flowing out from the lower end opening of the transfer pipe 1 were collided with the center of the upper surface 41 of the acrylic plate 4.
[0058]
And the weight of the acrylic board 4 before making an expandable polystyrene particle collide is measured beforehand, and the weight of the acrylic board 4 after making all the expandable polystyrene particles 2000g collide with the upper surface 41 center part of the acrylic board 4 is. Was measured, and the amount of increase in the acrylic plate 4 was calculated.
[0059]
When the amount of the acrylic plate 4 increased, that is, when the weight of the skin layer portion that has fallen off from the surface of the expandable polystyrene particles exceeds 10 mg, the expandable polystyrene particles and the pre-expanded particles are foamed in the distribution pipe when distributed. There is a high possibility that a problem arises that the skin layer of the conductive polystyrene particles falls off and adheres to reduce or block the flow space in the flow pipe.
[0060]
(Fixing test during pre-expansion of expandable polystyrene particles)
500 g of expandable polystyrene particles were pre-foamed by heating at a pressure of 0.05 MPa with atmospheric saturated steam at about 90 ° C. in a rotary stirring pre-foaming machine to obtain pre-foamed particles having a bulk magnification of 50 times.
[0061]
The pre-expanded particles were sieved with a 10 mm mesh, and the weight of the pre-expanded particles remaining on the net was measured. The smaller the weight of the pre-expanded particles remaining on the net, the less the coalescence of the pre-expanded particles, and the pre-expanded particles can be uniformly filled in the mold of the foam molding machine.
[0062]
(Chargeability of expandable polystyrene particles)
A test container was prepared in which a square frame-shaped peripheral wall portion having a fixed height protruded upward from the outer peripheral edge of the bottom surface of the flat rectangular shape, and the upper end was fully opened. The internal volume of the test container is 10 mm long x 130 mm wide x 75 mm high. The front and rear parts of the peripheral wall part of the test container are formed of aluminum plates, while the left and right parts and the bottom part of the peripheral wall part are made of poly. It was formed from tetrafluoroethylene.
[0063]
Then, after filling the test container with expandable polystyrene particles up to the upper opening edge, the current I (A) flowing when a DC voltage E of 1000 V is applied between the front and rear portions of the peripheral wall portion in the test container is measured, and the resistance R (Ω) was calculated from R = E / I.
[0064]
Furthermore, the area of the aluminum plate is 0.00975 m to the resistance R. 2 And a volume specific resistance value was calculated by dividing the distance between the aluminum plates by a distance of 0.01 m, and this volume specific resistance value was defined as charging property.
[0065]
(Glossiness of foam molded products)
A rectangular parallelepiped test piece having a length of 50 mm, a width of 50 mm, and a height of 10 mm was cut out from the foam molded product. In addition, it cut out so that the square-shaped surface of 50 mm of sides in a test piece might be formed from the surface of a foaming molded product.
[0066]
Then, a three-dimensional photometer (trade name “Gonio Photometa GP-200” manufactured by Murakami Color Research Laboratory) was used with a square-shaped surface (surface corresponding to the surface of the foamed molded product) having a side of 50 mm in the test piece as a measurement surface. Was used, and light having a halogen lamp as a light source was incident on the measurement surface at an incident angle of 60 °, and the reflected light from the measurement surface of the test piece was measured in the range of −90 ° to + 90 °.
[0067]
The reflected light was detected by a photomultiplier having a spectral sensitivity of 185 to 850 nm and a maximum sensitivity wavelength of 530 nm, and the value obtained by dividing the peak intensity of the reflected light by the reflected light intensity of 0 ° was defined as gloss.
[0068]
In addition, glossiness is so excellent that the value is large. When the glossiness is 17 or less, when the foamed molded product is visually observed, the surface of the foamed molded product becomes dull, which is not preferable.
[0069]
[Table 2]
Figure 2005015715
[0070]
【The invention's effect】
In the expandable thermoplastic resin particles of the present invention, the surface of the expandable thermoplastic resin particles is coated with a skin layer, and the cover layer is composed of polyalkylene glycol and 100 parts by weight of the expandable thermoplastic resin particles. 0.1 to 0.6 parts by weight of a mixed aqueous solution in which polyvinyl resin is mixed at a weight ratio (polyalkylene glycol / polyvinyl resin) of 4 to 50 and the viscosity is 100 to 300 mPa · s; 0.03 to 0.6 parts by weight, and the skin layer is substantially uniformly formed on the surface of the expandable thermoplastic resin particles, and the expandable thermoplastic resin particles circulate in the flow pipe. At that time, the skin layer component may drop in a large amount to contaminate the inner surface of the flow pipe, reduce the flow area of the flow pipe, or the skin layer component may be mixed into the foam molded product to deteriorate the quality of the foam molded product. .
[0071]
And since the skin layer of the foamable thermoplastic resin particles of the present invention has no stickiness, the foamable thermoplastic resin particles are excellent in fluidity, and the foamable thermoplastic resin particles are pneumatically transported through a flow pipe. Even in this case, the foamable thermoplastic resin particles can be efficiently transported.
[0072]
Further, in the foamable thermoplastic resin particles of the present invention, a plurality of foamable thermoplastic resins are hardly matched in the preliminary foaming process due to the presence of the skin layer. Therefore, when supplying the pre-expanded particles into the mold of the foam molding machine, without performing the operation of sieving the pre-expanded particles in order to remove what is formed by combining a plurality of pre-expanded particles, Pre-expanded particles can be uniformly filled in a mold of a foam molding machine to obtain a uniform foam molded product.
[0073]
In addition, a foam molded product obtained by foam molding using the foamable thermoplastic resin particles of the present invention has excellent gloss, and the foam molded product obtained has excellent appearance.
[0074]
Furthermore, since the skin layer of the foamable thermoplastic resin particles of the present invention contains polyalkylene glycol, the skin layer has excellent antistatic performance, and the surface of the foamable thermoplastic resin particles is electrostatically charged. Therefore, it is possible to obtain a beautiful foam-molded product without dust and the like adhering to the foam-molded product.
[0075]
When the polyalkylene glycol contains polypropylene glycol and / or polyethylene glycol, or when the polyvinyl resin contains polyvinyl pyrrolidone and / or polyvinyl alcohol, the skin layer component of the foamable thermoplastic resin particles is removed. Can be more effectively prevented, and the pneumatic transportation of the expandable thermoplastic resin particles can be performed more smoothly, and further, the coalescence of the expandable thermoplastic resin particles can be more effectively performed during the preliminary foaming. Therefore, it is possible to efficiently obtain a beautiful foam-molded product.
[0076]
Moreover, when the weight average molecular weight of polyalkylene glycol is 200-500, it can prevent more effectively that a skin layer component falls off from the surface of an expandable thermoplastic resin particle.
[0077]
When the powdery coating agent is zinc stearate, it is more effective that the plurality of expandable thermoplastic resin particles are bonded together when pre-expanding the expandable thermoplastic resin particles. This prevents the generation of pre-expanded particles that are bonded together, and the pre-expanded particles are more uniformly filled into the mold of the foam molding machine to obtain a more uniform foam-molded product. Can do.
[0078]
Furthermore, since there is almost no situation where a plurality of expandable thermoplastic resin particles are bonded together at the time of the preliminary foaming, an operation of removing what is formed by combining a plurality of prefoamed particles with each other Therefore, it is possible to uniformly fill the pre-expanded particles in the mold of the foam molding machine to obtain a uniform foam molded product.
[0079]
The foam-molded product obtained by foam-molding the pre-foamed particles of the present invention has excellent gloss and is soiled due to the fall of the skin layer component in the foam-molding process of the foamable thermoplastic resin particles. It is beautiful and high quality.
[Brief description of the drawings]
FIG. 1 is a front view showing a skin layer drop-off tester.
[Explanation of symbols]
1 Transfer pipe
2 Valve
3 receiving material
4 Acrylic board

Claims (7)

発泡性熱可塑性樹脂粒子の表面が表皮層で被覆されており、この表皮層は、発泡性熱可塑性樹脂粒子100重量部に対して、ポリアルキレングリコール及びポリビニル系樹脂が重量比(ポリアルキレングリコール/ポリビニル系樹脂)4〜50で混合され且つ粘度が100〜300mPa・sである混合水溶液0.1〜0.6重量部と、粉体状被覆剤0.03〜0.6重量部とからなることを特徴とする発泡性熱可塑性樹脂粒子。The surface of the expandable thermoplastic resin particles is covered with a skin layer, and this skin layer has a weight ratio of polyalkylene glycol and polyvinyl resin to 100 parts by weight of the foamable thermoplastic resin particles (polyalkylene glycol / (Polyvinyl-based resin) composed of 0.1 to 0.6 parts by weight of a mixed aqueous solution mixed in 4 to 50 and having a viscosity of 100 to 300 mPa · s, and 0.03 to 0.6 parts by weight of a powdery coating agent. Expandable thermoplastic resin particles characterized by the above. ポリアルキレングリコールは、ポリプロピレングリコール及び/又はポリエチレングリコールを含有することを特徴とする請求項1に記載の発泡性熱可塑性樹脂粒子。2. The expandable thermoplastic resin particles according to claim 1, wherein the polyalkylene glycol contains polypropylene glycol and / or polyethylene glycol. ポリアルキレングリコールの重量平均分子量は200〜500であることを特徴とする請求項1又は請求項2に記載の発泡性熱可塑性樹脂粒子。The expandable thermoplastic resin particles according to claim 1 or 2, wherein the polyalkylene glycol has a weight average molecular weight of 200 to 500. ポリビニル系樹脂は、ポリビニルピロリドン及び/又はポリビニルアルコールを含有することを特徴とする請求項1乃至請求項3の何れか1項に記載の発泡性熱可塑性樹脂粒子。The expandable thermoplastic resin particle according to any one of claims 1 to 3, wherein the polyvinyl resin contains polyvinyl pyrrolidone and / or polyvinyl alcohol. 粉体状被覆剤がステアリン酸亜鉛であることを特徴とする請求項1乃至請求項4の何れか1項に記載の発泡性熱可塑性樹脂粒子。The expandable thermoplastic resin particle according to any one of claims 1 to 4, wherein the powder coating agent is zinc stearate. 請求項1乃至請求項5の何れか1項に記載の発泡性熱可塑性樹脂粒子を予備発泡させてなることを特徴とする予備発泡粒子。Pre-expanded particles obtained by pre-expanding the expandable thermoplastic resin particles according to any one of claims 1 to 5. 請求項1乃至請求項5の何れか1項に記載の発泡性熱可塑性樹脂粒子を予備発泡し、得られた予備発泡粒子を発泡成形させて得られたことを特徴とする発泡成形品。A foam-molded product obtained by pre-foaming the expandable thermoplastic resin particles according to any one of claims 1 to 5 and foam-molding the obtained pre-foamed particles.
JP2003185480A 2003-06-27 2003-06-27 Expandable thermoplastic resin particles, pre-expanded particles and foamed molded products Expired - Fee Related JP4184171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003185480A JP4184171B2 (en) 2003-06-27 2003-06-27 Expandable thermoplastic resin particles, pre-expanded particles and foamed molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185480A JP4184171B2 (en) 2003-06-27 2003-06-27 Expandable thermoplastic resin particles, pre-expanded particles and foamed molded products

Publications (2)

Publication Number Publication Date
JP2005015715A true JP2005015715A (en) 2005-01-20
JP4184171B2 JP4184171B2 (en) 2008-11-19

Family

ID=34184915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185480A Expired - Fee Related JP4184171B2 (en) 2003-06-27 2003-06-27 Expandable thermoplastic resin particles, pre-expanded particles and foamed molded products

Country Status (1)

Country Link
JP (1) JP4184171B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206753A (en) * 2005-01-28 2006-08-10 Sekisui Plastics Co Ltd Foamable thermoplastic resin particle, method for producing the same, antistatic agent composition for foamable thermoplastic resin particle, and method for making foamable thermoplastic resin particle antistatic
JP2010100823A (en) * 2008-09-26 2010-05-06 Sekisui Plastics Co Ltd Expandable styrene-based resin particle
JP2011144351A (en) * 2009-12-16 2011-07-28 Sekisui Plastics Co Ltd Foaming styrenic resin particle
JP2012177033A (en) * 2011-02-25 2012-09-13 Sekisui Plastics Co Ltd Expandable polystyrene-based resin particle, expanded particle, and expansion molded body
JP2018090707A (en) * 2016-12-02 2018-06-14 株式会社カネカ Foamable polystyrene-based resin particle and method for producing the same
JPWO2018225649A1 (en) * 2017-06-09 2020-03-19 株式会社カネカ Expanded polyolefin resin particles, method for producing expanded polyolefin resin particles, and expanded molded article within polyolefin resin mold
JP2021147598A (en) * 2020-03-24 2021-09-27 積水化成品工業株式会社 Foamable styrene resin small particle, preliminarily foamed styrene resin small particle, and styrene resin foam molding

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206753A (en) * 2005-01-28 2006-08-10 Sekisui Plastics Co Ltd Foamable thermoplastic resin particle, method for producing the same, antistatic agent composition for foamable thermoplastic resin particle, and method for making foamable thermoplastic resin particle antistatic
JP2010100823A (en) * 2008-09-26 2010-05-06 Sekisui Plastics Co Ltd Expandable styrene-based resin particle
JP2012067321A (en) * 2008-09-26 2012-04-05 Sekisui Plastics Co Ltd Expandable styrene-based resin particle
JP2011144351A (en) * 2009-12-16 2011-07-28 Sekisui Plastics Co Ltd Foaming styrenic resin particle
JP2012177033A (en) * 2011-02-25 2012-09-13 Sekisui Plastics Co Ltd Expandable polystyrene-based resin particle, expanded particle, and expansion molded body
JP2018090707A (en) * 2016-12-02 2018-06-14 株式会社カネカ Foamable polystyrene-based resin particle and method for producing the same
JPWO2018225649A1 (en) * 2017-06-09 2020-03-19 株式会社カネカ Expanded polyolefin resin particles, method for producing expanded polyolefin resin particles, and expanded molded article within polyolefin resin mold
JP6990242B2 (en) 2017-06-09 2022-02-03 株式会社カネカ Polyolefin-based resin foamed particles, method for producing polyolefin-based resin foamed particles, and polyolefin-based resin mold in-foamed molded product.
JP2021147598A (en) * 2020-03-24 2021-09-27 積水化成品工業株式会社 Foamable styrene resin small particle, preliminarily foamed styrene resin small particle, and styrene resin foam molding
JP7445480B2 (en) 2020-03-24 2024-03-07 積水化成品工業株式会社 Expandable styrenic resin small particles, pre-expanded styrenic resin small particles, and styrenic resin foam molded products

Also Published As

Publication number Publication date
JP4184171B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
TWI478968B (en) Pre-expanded particles, a method for producing the same, and a foamed molded article
BRPI0407204B1 (en) Expandable Thermoplastic Resin Particles, Foam Container, Molded Article, and Coating Composition for Coating Expandable Thermoplastic Resin Particles
JP4184171B2 (en) Expandable thermoplastic resin particles, pre-expanded particles and foamed molded products
JP4947815B2 (en) Expandable styrene resin particles
JP5582934B2 (en) Expandable styrene resin particles
JP6722443B2 (en) Low-chargeable expandable styrenic resin particles, pre-expanded particles, and method for producing expanded molded article
JP2004155870A (en) Expandable styrenic resin particle for building material and its expanded molded product
JP2023021144A (en) Foaming polystyrene-based resin particle and utilization thereof
JP2011074239A (en) Foamable polystyrene resin particle for cushioning material
JP7250768B2 (en) Expandable thermoplastic resin particles, thermoplastic resin pre-expanded particles and thermoplastic resin foam
JP4622155B2 (en) Expandable polystyrene resin particles and foamed moldings using the same
JP3983116B2 (en) Expandable thermoplastic resin particles and foamed molded products
JP4959863B2 (en) Expandable styrene resin particles
JP2011126558A (en) Cup container
JP4898486B2 (en) Expandable polystyrene resin particles, pre-expanded particles, and foam molded products
JP5496637B2 (en) Seafood container
JP2022095530A (en) Method for producing foamable thermoplastic resin particle
JP5303906B2 (en) Expandable styrenic resin particles and foamed molded article
JP7334077B2 (en) Expandable resin particles, expanded particles and expanded molded articles
JPH04272942A (en) Foamable thermoplastic resin bead and molded foam
JP5022806B2 (en) Expandable polystyrene resin particles, pre-expanded particles, foam-molded articles, and methods for producing expandable polystyrene resin particles
JP4260032B2 (en) Expandable polystyrene resin particles
JP2022186193A (en) Foamable styrenic resin particle, and method for producing foamable styrenic resin particle
TWI413656B (en) Foamable styrene resin beads
JP2024041493A (en) Expandable resin particles, manufacturing method thereof, expanded particles and expanded molded products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120912

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees