JP2005012691A - 放射線撮影装置、放射線画像処理方法、記録媒体及びプログラム - Google Patents

放射線撮影装置、放射線画像処理方法、記録媒体及びプログラム Download PDF

Info

Publication number
JP2005012691A
JP2005012691A JP2003176990A JP2003176990A JP2005012691A JP 2005012691 A JP2005012691 A JP 2005012691A JP 2003176990 A JP2003176990 A JP 2003176990A JP 2003176990 A JP2003176990 A JP 2003176990A JP 2005012691 A JP2005012691 A JP 2005012691A
Authority
JP
Japan
Prior art keywords
image
radiation
digital data
subject
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003176990A
Other languages
English (en)
Inventor
Hideki Nonaka
秀樹 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003176990A priority Critical patent/JP2005012691A/ja
Publication of JP2005012691A publication Critical patent/JP2005012691A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】S/N比が高く、かつ被検体内組織輪郭が受像部領域に因らず一様に描出されるサブトラクション像を得ることができるようにする。
【解決手段】被写体に放射線をパルス状に照射して撮影した造影剤注入前の原マスク像を第1〜第nのフレームメモリ23−iに記憶して、造影剤注入後のライブ像を撮影した際に、当該ライブ画像と同じ位置から撮影した原マスク像にフィルタ28にてフィルタ処理を施して二次マスク像を生成し、生成した二次マスク像をライブ像から減算してサブトラクション像を取得するようにして、ライブ像から減算するマスク像におけるノイズを抑制できるようにするとともに、画像領域に因らず画像の輪郭を一様に描出することができるようにする。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、放射線撮影装置、放射線画像処理方法、記録媒体及びプログラムに関し、特に、撮影した放射線画像をディジタルデータで取得するディジタル放射線撮影装置に関し、例えばディジタルサブトラクションアンギオグラフィ(以下、「DSA」と称す。)装置に用いて好適なものである。
【0002】
【従来の技術】
回転DSAは、放射線発生部と受像部とを被検体の周囲に回転させ、造影剤注入前の透過放射線像(マスク像)と造影剤注入後の透過放射線像(ライブ像)とを所定の回転角度毎にそれぞれ撮影して、同一角度から撮影したライブ像とマスク像との間で減算を行うものである。従来のDSA装置においては、同一角度から撮影した1枚ずつのライブ像とマスク像との間で減算を行い、当該角度でのサブトラクション像を得ていた。
【0003】
【特許文献1】
特許第2871037号公報
【0004】
【発明が解決しようとする課題】
しかしながら、同一角度から撮影した1枚ずつのライブ像とマスク像との間で減算を行う従来のDSA装置においては、得られるサブトラクション像のS/N比が悪いという問題があった。回転DSAでは、放射線発生部と受像部とを被検体の周囲に回転させながら撮影を行うことや、被検体の総被曝線量の点から短時間(5ms程度)のパルス放射線により1つの画像を撮影するため、マスク像及びライブ像ともにS/N比が悪い画像になる。マスク像とライブ像との間での加減算におけるノイズ重畳は二乗和で効いてくるので、サブトラクション像のS/N比はさらに悪化する。
【0005】
また、サブトラクション像は、マスク像とライブ像との間での減算を行うことから造影剤注入部(血管等)以外の部位については完全に消去されてしまい、造影剤注入部の被検体内における位置関係の把握が困難になってしまう。
【0006】
これらの問題点に鑑み、上記特許文献1には、ある角度でのライブ像に対して、前後の角度でのマスク像を含む複数のマスク像を加算平均して得られたマスク像を減算することによりサブトラクション像を得る方法が開示されている。上記特許文献1には、前後角度でのマスク像を加算平均することにより、演算後のマスク像はS/N比が向上し、且つ前後角度での画像成分がマスク像に取り入れられるので減算処理後も造影剤注入部以外の部位についての画像が完全には消去されずに輪郭が残り、位置関係の把握が容易になると示されている。
【0007】
しかしながら、上記特許文献1に開示されている方法では、異なる角度の画像情報により被検体画像の輪郭を描出している。ここで、被検体に対する放射線の照射角度に応じた被検体内組織輪郭部の受像部上への投影位置は、受像部の領域により異なる。すなわち、2つの異なる角度での画像の輪郭部のズレ量は、受像部中心ほど小さく、受像部中心から周辺部に至るに従って(受像部中心からの距離の増加にともなって)大きくなっていく。したがって、輪郭部のズレ量が小さい受像部中心ほど被検体内組織輪郭の描出が行われなくなる。
【0008】
ここで、サブトラクション像にて注目する関心領域は、通常、画像の中心部、すなわち受像部中心に配置させるようにすることが多いので、上記特許文献1に開示されている方法では関心領域ほど位置関係の把握が困難になるという問題がある。さらに、観察対象になるべき造影部境界においても背景部位の輪郭描出が行われるので、造影部境界においてはフィルタ処理の影響による鮮鋭度の低下や輪郭のオーバーシュートなど不必要な効果が減算処理により加えられ、診断能を劣化させるおそれがある。
【0009】
本発明は、このような問題を解決するために成されたものであり、S/N比が高く、かつ被検体内組織輪郭が受像部領域に因らず一様に描出されるサブトラクション像を得ることができるようにすることを目的とする。
【0010】
【課題を解決するための手段】
本発明の放射線撮影装置は、被写体に対して放射線をパルス状に照射する放射線照射手段と、上記被写体を透過した放射線を検出して放射線強度に応じた電気信号を出力する放射線撮像手段と、上記放射線撮像手段より出力される電気信号をディジタルデータに変換する変換手段と、上記変換手段より出力される第1の画像のディジタルデータを記憶する記憶手段と、上記第1の画像と同じ位置から撮影された上記第1の画像とは異なる第2の画像のディジタルデータから、上記第1の画像に所定の画像処理を施して得られたディジタルデータを減算する演算手段とを備えることを特徴とする。
【0011】
本発明の放射線撮影装置は、被写体に対して放射線をパルス状に照射する放射線照射手段と、上記被写体を透過した放射線を検出し、検出した放射線強度に対応する電気信号を出力する放射線撮像手段と、上記放射線撮像手段より出力される電気信号をディジタルデータに変換する変換手段と、上記変換手段より出力される造影剤注入前の状態での原マスク像のディジタルデータを記憶する記憶手段と、上記変換手段より造影剤注入後の状態でのライブ像のディジタルデータが得られた際に、上記ライブ像に対応する原マスク像に基づいて二次マスク像を生成して上記ライブ像から減算する演算手段とを備えることを特徴とする。
【0012】
本発明の放射線撮影装置は、被写体に対して放射線をパルス状に照射し、上記被写体を透過した放射線を検出して得られる画像のディジタルデータを出力する放射線画像取得手段と、上記放射線画像取得手段より出力される第1の画像のディジタルデータに所定の画像処理を施して得られたディジタルデータを、上記第1の画像とは異なる上記放射線画像取得手段より出力される第2の画像のディジタルデータから減算する画像信号処理手段とを備えることを特徴とする。
【0013】
本発明の放射線画像処理方法は、被写体に対して放射線をパルス状に照射し、上記被写体を透過した放射線を検出して得られる画像のディジタルデータを出力する放射線画像取得手段より出力される第1の画像のディジタルデータに所定の画像処理を施して減算ディジタルデータを生成し、上記第1の画像とは異なる上記放射線画像取得手段より出力される第2の画像のディジタルデータから上記減算ディジタルデータを減算することを特徴とする。
【0014】
本発明のコンピュータ読み取り可能な記録媒体は、被写体に対して放射線をパルス状に照射し、上記被写体を透過した放射線を検出して得られる画像のディジタルデータを出力する放射線画像取得手段より出力される第1の画像のディジタルデータに所定の画像処理を施して減算ディジタルデータを生成するステップと、上記第1の画像とは異なる上記放射線画像取得手段より出力される第2の画像のディジタルデータから上記減算ディジタルデータを減算するステップとをコンピュータに実行させるためのプログラムを記録したことを特徴とする。
【0015】
本発明のプログラムは、被写体に対して放射線をパルス状に照射し、上記被写体を透過した放射線を検出して得られる画像のディジタルデータを出力する放射線画像取得手段より出力される第1の画像のディジタルデータに所定の画像処理を施して減算ディジタルデータを生成するステップと、上記第1の画像とは異なる上記放射線画像取得手段より出力される第2の画像のディジタルデータから上記減算ディジタルデータを減算するステップとをコンピュータに実行させることを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態による放射線撮影装置の一構成例を示すブロック図である。
【0017】
図1において、放射線管球1及び受像部3がアーム11に保持されており、アーム11の中央部にはベッドに横たわった被検者2が配される。
放射線管球1は、放射線制御部9からの信号に基づき高圧発生部8より供給される電源により、被検者2に対してパルス状に放射線を発する。放射線管球1より曝射される放射線は、被検者2を透過して受像部3に入射される。
【0018】
受像部3は、入射された放射線を放射線強度に応じた電気信号に変換し、受像制御部4を介して画像信号処理部12に出力する。受像部3は、放射線強度に応じて入射される放射線を電気信号に変換するデバイス(装置)であれば良く、例えばイメージインテンシファイアとTVカメラとの組み合わせ、あるいは蛍光体と二次元光センサアレイとの組み合わせなど、その種別は問わない。
【0019】
アーム11は、駆動部10により駆動されて被検者2の周囲を回転する。駆動部10によるアーム11の回転は、制御部6により制御される。さらに、制御部6は、回転角度によって放射線の曝射タイミングを制御するように放射線制御部9を制御し、ライブ像(造影剤注入後の放射線像)の撮影(取得)時に造影剤を被検者2に注入するインジェクタ7を制御する。
【0020】
これら各機能部の動作タイミング、例えば放射線の曝射レート、放射線管球1に与える管電圧、管電流、曝射時間や、アーム11の回転速度、インジェクタ7の造影剤注入のタイミングや注入時間等のパラメータは制御部6に接続されたキーボードなどの入力部5より設定され、これら設定に基づいて制御部6は接続された各機能部の制御を行う。
【0021】
図2は、上記図1に示した画像信号処理部12の構成例を示すブロック図である。図2に示すように画像信号処理部12は、A/D(アナログ/ディジタル)変換器21、スイッチ22、第1〜第nのフレームメモリ23−i(iは添え字であり、i=1〜n)、マルチプレクサ27、フィルタ28及び減算器29を有する。
【0022】
受像部3から出力されたアナログの電気信号は、受像制御部4を介してA/D変換器21に入力され、ディジタルデータに変換される。ここでスイッチ22は、マスク像(造影剤非注入時の放射線像)の撮影時において閉じられる(オン状態にされる)。
【0023】
これにより、マスク像の撮影時には、アーム11が被検者2の周囲を回転しながら放射線管球1より被検者2に対して放射線を曝射して、異なる角度からの被検者2の透過放射線像を取得し、取得した放射線像のディジタルデータを第1〜第nのフレームメモリ23−iに順次記憶する。したがって、第1〜第nのフレームメモリ23−iには、造影剤が注入されていない状態での複数の異なる角度からの原マスク像の画像データ(以下、「原マスク像データ」と称す。)がそれぞれ記憶される。
【0024】
原マスク像の撮影が終了すると、ライブ像の撮影が行われる。このとき、スイッチ22は開かれる(オフ状態にされる)とともに、制御部6はインジェクタ7を動作させて被検者2の体内に造影剤を注入する。注入された造影剤が被検者2内の観察対象部に流入するのに要する時間が経過した後、再びアーム11を回転駆動するとともに、放射線管球1による被検者2への放射線曝射が行われる。これにより、造影剤が注入された状態での透過放射線像であるライブ像が取得される。
【0025】
ここで、ある角度からのライブ像の撮影が行われたとき、マルチプレクサ27は、第1〜第nのフレームメモリ23−iに記憶されている原マスク像データの中から同一角度で撮影された原マスク像データを選択してフィルタ28に出力する。フィルタ28は、マルチプレクサ27より入力された原マスク像データに所定の画像処理(フィルタ処理)を施すことにより二次マスク像データを生成する。
【0026】
フィルタ28による二次マスク像の生成アルゴリズムとしては、画像(原マスク像)を空間周波数領域に展開してフィルタ処理を施して、再び空間領域に戻す方法や、任意の一点の画素に対して単純に周囲画素を加重平均するコンボリューション演算によりフィルタ処理を行う方法などがある。フィルタ28でのフィルタ処理による二次マスク像の生成の詳細については後述する。
【0027】
撮影されたライブ像データから、フィルタ28にて生成された二次マスク像データが減算器29にて減算処理され、その演算結果(サブトラクション像)は記録装置30に供給されて記録されたり、表示装置31に供給されて表示されたりする。このライブ像を撮影してサブトラクション像を取得する処理を、アーム11を被検者2の周囲に回転させながら任意の角度で行い、それぞれの角度でのサブトラクション像を取得する。
【0028】
二次マスク像を生成する際のフィルタ28でのフィルタ処理の一例について説明する。
原マスク像を空間周波数領域に展開してフィルタ処理を施して、再び空間領域に戻す方法について説明する。
【0029】
空間周波数領域におけるフィルタ処理は一般的には以下の手順で行われる。
ステップ1:空間領域における画像データf(i,j)にフーリエ変換を施してフーリエ係数F(u,v)を求める。
ステップ2:フーリエ係数F(u,v)を、周波数領域フィルタ関数H(u,v)を用いて補正する。ここで、フィルタ補正係数をG(u,v)であらわすと、
【0030】
【数1】
Figure 2005012691
【0031】
になる。
ステップ3:フィルタ補正係数G(u,v)にフーリエ逆変換を施してf(i,j)に対する処理画像g(i,j)を得る。
ここで、i,j,u,vは離散的変数を示し、大きさN×Nの画像データに対して、
【0032】
【数2】
Figure 2005012691
【0033】
と与えられる。u,vに関するフーリエ係数F(u,v)の周期性からu,vを以下のように定める。
【0034】
【数3】
Figure 2005012691
【0035】
また、変数u,vと周波数νには以下に示す(式1)の関係がある。
【0036】
【数4】
Figure 2005012691
【0037】
ここで、dは画像のピクセル幅を示す。
ナイキスト周波数をνとすると、フィルタ関数がν≦ν=1/(2d)を満足する周波数に対して定義されることから、大きさN×Nの周波数領域フィルタ関数H(u,v)は次のように定義される。
【0038】
【数5】
Figure 2005012691
【0039】
例えば、最終的に得られるサブトラクション像に背景部分の輪郭を描出させたい場合には、減算処理を行ってもライブ像における高周波成分が残存するようにマスク像における高周波成分を除去する低域通過形フィルタを使用する。この低域通過形フィルタとして、バターワースフィルタを使用する場合には、上記周波数領域フィルタ関数H(u,v)は以下の(式2)のように与えられる。
【0040】
【数6】
Figure 2005012691
【0041】
ここで、nはフィルタの次数を表し、ωはカットオフ周波数νに対応するもので、ω=ν/Δνである。
上記(式2)に示したフィルタ関数H(u,v)を用いて、上述したステップ1〜3を実行することにより、フィルタ28により画像の高周波成分が除去された二次マスク像を生成することができる。
【0042】
また、最終的に得られるサブトラクション像に背景部分の輪郭ではなく、その全体像をうっすらと(薄く)描出させたい場合には、減算処理によりライブ像における低周波成分が残存するようにマスク像の低周波成分を除去する高域通過形フィルタを使用すれば良い。このように、サブトラクション像に描出させたい背景の種類、あるいは原マスク像のノイズ除去を考慮して、これら諸特性を満足する帯域通過形や、帯域制限形のフィルタ、複数のフィルタから構成されるハイブリッドフィルタを用いても良い。
【0043】
また、フィルタ28でのフィルタ処理に、コンボリューション演算による処理を用いた場合でも、上述した周波数領域におけるフィルタ処理と同様の効果を得ることができる。最終的に得られるサブトラクション像に背景の輪郭部を描出させたい場合には、原マスク像に対してコンボリューション演算による平滑化処理を施す。平滑化処理のもっとも一般的な方法は、各画素の周囲に3×3、5×5など所定の大きさのピクセルグループマスクを設定し、設定したピクセルグループマスク内の画素について画素値の平均を求め、これを平滑値にする方法である。
【0044】
以上、説明したように第1の実施形態によれば、撮影により得られた造影剤注入前の原マスク像にフィルタ処理を施して二次マスク像を生成し、造影剤注入後のライブ像から減算するマスク像として生成した二次マスク像を使用してサブトラクション像を取得する。これにより、ライブ像から減算するマスク像におけるノイズを抑制することができ、得られるサブトラクション像のS/N比の向上を図ることができる。
【0045】
また、二次マスク像を用いてライブ像に対する減算処理を行うことにより、サブトラクション像は、造影剤流入部以外の部位(例えば、背景部位)も減算処理により完全に消失してしまうことがなく、サブトラクション像上にその情報(輪郭あるいは全体像)を残存させることができる。したがって、本来の観察対象である造影部位とその他の背景部位とが同一画像上に適度な割合で描出され、残った背景部位の画像を参照して造影部位の位置を容易に把握することができる。
【0046】
さらに、一枚のライブ像に対して、当該ライブ像に対応する一枚の原マスク像から二次マスク像を生成することにより、回転DSAにおける従来のような前後角度からのマスク像、つまり複数のマスク像による平均化処理という限定にとらわれず、通常のDSAにおいても適用することができる。
【0047】
上記特許文献1に開示された方法で生じる受像部中心と周辺部との輪郭部のズレ量の相違に起因する背景画像の描出ムラにより画像中心部に位置する関心領域ほど背景画像の描出が少なく位置関係の把握が困難になるという問題を解消し、受像部のどの領域においても背景の描出が一様に可能となり、位置関係を容易に把握することができる。
【0048】
(第2の実施形態)
次に、第2の実施形態について説明する
本発明の第2の実施形態による放射線撮影装置の構成については、上記図1に示した第1の実施形態による放射線撮影装置と同じ構成であるので、説明は省略する。
【0049】
図3は、第2の実施形態における画像信号処理部12’の構成例を示すブロック図である。なお、この図3において、図2に示したブロック等と同一の機能を有するブロック等には同一の符号を付し、重複する説明は省略する。
【0050】
図3に示すように画像信号処理部12’は、上記図2に示した画像信号処理部12に、撮影により得られたライブ像の画像データを一時的に記憶するフレームバッファ48と、当該ライブ像における造影部の解析を行う画像解析部49とをさらに設ける。そして、フィルタ50は、画像解析部49での解析結果に応じて画像処理パラメータを変更して原マスク像データにフィルタ処理を施し、二次マスク像データを生成する。
【0051】
原マスク像を順次撮影し、第1〜第nのフレームメモリ23−iに原マスク像データを記憶する動作は上述した第1の実施形態と同様である。
原マスク像の撮影が終了すると、上述した第1の実施形態と同様にしてライブ像の撮影が行われる。第2の実施形態においては、撮影により得られたライブ像データはフレームバッファ48に一時的に記憶される。
【0052】
フレームバッファ48に記憶されたライブ像データは、画像解析部49に供給されて造影部の解析が行われる。画像中の造影部は造影剤により放射線透過量が他の部分と比較して低くなるために、ある部位に対して撮影した画像の全画素値のヒストグラムは、図4(A)に示すように低画素値側に急峻な凸部を有する。
この凸部は造影部に相当するので、この凸部の前後に閾値を定めて範囲Vを設定し、ライブ像を構成する各画素の画素値が設定した範囲V内であるか否かをそれぞれ検証する。このようにしてライブ像の各画素を造影部とそれ以外の部分とに振り分けることにより、結果としてライブ像の2値化が行われる。
【0053】
さらに別の方法として、フレームバッファ48から入力されるライブ像と当該ライブ像に対応する原マスク像との減算処理を画像分析部49にて行い、得られたサブトラクション像に対して造影部であるか否かの検証を行う方法も考えられる。図4(B)に示すようにライブ像の全画素値のヒストグラムにおいて、急峻な凸部以外は背景画像による部分である。したがって、ライブ像から原マスク像を減算することにより背景画像部分をキャンセルして、造影部の抽出をより明確に行い造影部の抽出精度を向上させることができる。
【0054】
ここで、ある角度からのライブ像の撮影が行われたとき、マルチプレクサ27は、同一角度で取得された原マスク像データを第1〜第nのフレームメモリ23−iより選択しフィルタ50に出力する。フィルタ50は、マルチプレクサ27より入力された原マスク像に基づいて、画像処理を施した二次マスク像を生成する。フィルタ50による二次マスク像の生成アルゴリズムは上述した第1の実施形態と同様である。
【0055】
しかしながら、造影剤が流入するのは血管等のように障壁を有する器官であり、この障壁が観察部位とそれ以外の背景部を分けていることになる。原マスク像から二次マスク像を生成する際、原マスク像領域全体に対して同様のフィルタ処理を施すと、この障壁に対してもフィルタ処理が施されることになる。したがって、二次マスク像をライブ像より減算処理して得られるサブトラクション像の造影部境界においては、フィルタ処理の影響が及ぼす鮮鋭度の低下や輪郭のオーバーシュートなどが発生する可能性がある。
【0056】
そこで、第2の実施形態においては、造影部に対するフィルタ処理の影響を緩和するために、画像解析部49で得られた造影部の情報に基づいてライブ像中の造影部に対応する領域については画像処理パラメータを変更する、あるいはその領域については画像処理そのものを行わないようにして、原マスク像にフィルタ処理を施して二次マスク像を生成する。
【0057】
フィルタ50でのフィルタ処理に空間周波数領域におけるフィルタ処理を用いた場合には、原マスク像を構成する全画素が入力になり、得られる結果はフィルタ処理が施された二次マスク像の全画素である。そこで、フィルタ50は、画像解析部49から供給される造影部の領域情報に基づいて、造影部に対応する領域の画素についてはフィルタ処理により得られた結果を用いずに、原マスク像の画素値を用いて二次マスク像を生成する。
【0058】
あるいはフィルタ50は、非造影部に対するカットオフ周波数よりも高いカットオフ周波数でのフィルタ処理を別途行い、造影部に対応する画素については、高いカットオフ周波数でのフィルタ処理により得られた画像データを採用する方法でも良い。
【0059】
さらに別の方法として、フィルタ50にてフィルタ処理を行う画像サイズを全画像領域、つまり1つの画像領域ではなく、複数の領域に分割して個別にフィルタ処理を行う。そして、画像解析部49から供給される造影部の領域情報に基づいて、分割したフィルタ処理単位の領域に造影部が含まれると判断された場合には、フィルタ50のカットオフ周波数を高周波側にシフトさせる方法もある。
【0060】
また、フィルタ50でのフィルタ処理に、コンボリューション演算による処理を用いた場合には、原マスク像を構成する各画素と当該画素を中心とする周囲画素とで構成されるピクセルグループマスクにおける重み係数を造影部の領域情報に基づいて設定する。
【0061】
図5は、ピクセルグループマスクにおける重み係数の設定例を示す図である。
図5に示す例では、造影部に対応しない領域の場合には、図5(A)に示すように全画素の加重平均時の重み係数であるインテンシティ値は一律に“1”とし、単なる加算平均処理が行われているものとする。
【0062】
例えば、ピクセルグループマスク内の周囲画素のある画素が、画像解析部49から供給される造影部の領域情報に合致したとする。このとき、フィルタ50は、図5(B)に示すように造影部に対応する画素51のインテンシティ値を他画素に対して相対的に低くする。あるいは、図5(C)に示すように造影部に対応する画素52のインテンシティ値を“0”にして、加重平均処理の対象から除外し造影部に対応する画素の影響を排除することができる。
【0063】
図5に示したようにピクセルグループマスクにおける重み係数(インテンシティ値)を変更するようにした場合の中心画素の平滑値s(i,j)は、ピクセルグループマスクの各画素値f(i,j)とそれぞれの画素に対応するインテンシティ値g(k,l)とから、
【0064】
【数7】
Figure 2005012691
【0065】
となる。
なお、ピクセルグループマスクにおける中心画素が造影部に対応する画素の場合には、周囲画素のインテンシティ値を“0”にする、すなわち原マスク像の画素値をそのまま用いれば良い。
【0066】
また、別の方法としては、ピクセルグループマスクのマスクサイズを変更する方法がある。
図6は、ピクセルグループマスクのマスクサイズの変更例を示す図である。
造影部に対応しない領域の場合には、例えば図6(A)に示すようにピクセルグループマスクサイズは7×7とする。例えば、7×7のピクセルグループマスク内に造影部に対応する領域が含まれる場合には、図6(B)に示すようにマスクサイズを5×5に縮小して造影部に対応する領域の影響を排除する。
【0067】
さらに、5×5にマスクサイズを縮小しても造影部に対応する領域を排除できない場合には、図6(C)に示すようにマスクサイズを3×3に縮小し、最終的にはマスクサイズ1×1、つまり自身の画素のみになるまでピクセルグループマスクのマスクサイズを変更する。ここで、マスクサイズが1×1になる場合には、当該画素(中心画素)は、造影部に対応する領域に隣接する画素である。なお、中心画素が造影部に対応する画素の場合には、原マスク像の画素値を用いれば良い。
【0068】
以上説明したような空間周波数領域におけるフィルタ処理や、コンボリューション演算によるフィルタ処理等により、フィルタ50は、造影部に対応する領域とそれ以外の背景領域とについて、それぞれの領域の影響を抑制した二次マスク像を生成することができる。
【0069】
上述のようにしてフィルタ50にて生成した二次マスク像データが、フレームバッファ48から読み出されたライブ像データから減算器29にて減算処理され、その演算結果(サブトラクション像)は記録装置30に供給されて記録されたり、表示装置31に供給されて表示されたりする。このライブ像を撮影してサブトラクション像を取得する処理を、アーム11を被検者2の周囲に回転させながら任意の角度で行い、それぞれの角度でのサブトラクション像を取得する。
【0070】
以上、説明したように第2の実施形態によれば、第1の実施形態により得られる効果に加え、撮影したライブ像から抽出した造影部の領域情報に応じて、原マスク像にフィルタ処理を施す際のパラメータを変更して二次マスク像を生成することにより、原マスク像から二次マスク像を生成する際の造影部境界におけるフィルタ処理の影響を緩和することができる。これにより、サブトラクション像における造影部境界での鮮鋭度の低下、オーバーシュート等を抑制し、造影部周辺を明確に描出することができ、診断能の劣化を防止することができる。
【0071】
なお、上述した第1及び第2の実施形態においては、回転DSAに適用した場合を一例として説明したが、本発明はこれに限定されるものではなく、例えば、単一画像に対する通常のDSAにおいても適用可能であり、第1〜第nのフレームメモリ23−iの容量及び個数が変わり、マルチプレクサ27が不要であるなど、必須要件の増加はない。
【0072】
(本発明の他の実施形態)
上述した実施形態の機能を実現するべく各種のデバイスを動作させるように、該各種デバイスと接続された装置あるいはシステム内のコンピュータに対し、上記実施形態の機能を実現するためのソフトウェアのプログラムコードを供給し、そのシステムあるいは装置のコンピュータ(CPUあるいはMPU)に格納されたプログラムに従って上記各種デバイスを動作させることによって実施したものも、本発明の範疇に含まれる。
【0073】
また、この場合、上記ソフトウェアのプログラムコード自体が上述した実施形態の機能を実現することになり、そのプログラムコード自体は本発明を構成する。また、そのプログラムコードをコンピュータに供給するための手段、例えばかかるプログラムコードを格納した記録媒体は本発明を構成する。かかるプログラムコードを記憶する記録媒体としては、例えばフレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
【0074】
また、コンピュータが供給されたプログラムコードを実行することにより、上述の実施形態の機能が実現されるだけでなく、そのプログラムコードがコンピュータにおいて稼働しているOS(オペレーティングシステム)あるいは他のアプリケーションソフト等と共同して上述の実施形態の機能が実現される場合にもかかるプログラムコードは本発明の実施形態に含まれることは言うまでもない。
【0075】
さらに、供給されたプログラムコードがコンピュータの機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに格納された後、そのプログラムコードの指示に基づいてその機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部又は全部を行い、その処理によって上述した実施形態の機能が実現される場合にも本発明に含まれることは言うまでもない。
【0076】
例えば、第1及び第2の実施形態に示した放射線撮影装置は、図7に示すようなコンピュータ機能700を有し、そのCPU701により第1及び第2の実施形態での動作が実施される。
【0077】
コンピュータ機能700は、上記図7に示すように、CPU701と、ROM702と、RAM703と、キーボード(KB)709のキーボードコントローラ(KBC)705と、表示部としてのCRTディスプレイ(CRT)710のCRTコントローラ(CRTC)706と、ハードディスク(HD)711及びフレキシブルディスク(FD)712のディスクコントローラ(DKC)707と、ネットワークインタフェースカード(NIC)708とが、システムバス704を介して互いに通信可能に接続された構成としている。
【0078】
CPU701は、ROM702あるいはHD711に記憶されたソフトウェア、あるいはFD712より供給されるソフトウェアを実行することで、システムバス704に接続された各構成部を総括的に制御する。
すなわち、CPU701は、上述したような動作を行うための処理プログラムを、ROM702、あるいはHD711、あるいはFD712から読み出して実行することで、第1及び第2の実施形態での動作を実現するための制御を行う。
【0079】
RAM703は、CPU701の主メモリあるいはワークエリア等として機能する。
KBC705は、KB709や図示していないポインティングデバイス等からの指示入力を制御する。
CRTC706は、CRT710の表示を制御する。
DKC707は、ブートプログラム、種々のアプリケーション、ユーザファイル、ネットワーク管理プログラム、および第1及び第2の実施形態における上記処理プログラム等を記憶するHD711及びFD712とのアクセスを制御する。
NIC708はネットワーク713上の他の装置と双方向にデータをやりとりする。
【0080】
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
【0081】
【発明の効果】
以上説明したように、本発明によれば、被写体にパルス状に放射線を照射して撮影した第1の画像のディジタルデータを記憶し、上記第1の画像と同じ位置から撮影した上記第1の画像とは異なる第2の画像のディジタルデータから上記第1の画像に所定の画像処理を施して得られたディジタルデータを減算して、第1の画像と第2の画像とに基づいた差分画像を得る。これにより、第1の画像におけるノイズを抑制して第2の画像に対する減算処理を行うことができ、差分画像のS/N比を向上させることができる。また、同じ位置から撮影した第1及び第2の画像を用いるので、画像領域に関わらず画像の輪郭が一様に描出された差分画像を得ることができる。
【図面の簡単な説明】
【図1】第1の実施形態による放射線撮影装置の一構成例を示すブロック図である。
【図2】第1の実施形態における画像信号処理部の構成例を示すブロック図である。
【図3】第2の実施形態における画像信号処理部の構成例を示すブロック図である。
【図4】第2の実施形態における画像解析部での造影部抽出方法を説明するための図である。
【図5】第2の実施形態におけるコンボリューション演算に係る重み係数の設定例を示す図である。
【図6】第2の実施形態におけるコンボリューション演算に係るマスクサイズの変更例を示す図である。
【図7】第1及び第2の実施形態による放射線撮影装置を実現可能なコンピュータ機能を示すブロック図である。
【符号の説明】
1 放射線管球
2 被検者
3 受像部
4 受像制御部
5 入力部
6 制御部
7 インジェクタ
8 高圧発生部
9 放射線制御部
10 駆動部
12、12’ 画像信号処理部
21 A/D変換器
22 スイッチ
23 フレームメモリ
27 マルチプレクサ
28、50 フィルタ
29 減算器
48 フレームバッファ
49 画像解析部

Claims (16)

  1. 被写体に対して放射線をパルス状に照射する放射線照射手段と、
    上記被写体を透過した放射線を検出して放射線強度に応じた電気信号を出力する放射線撮像手段と、
    上記放射線撮像手段より出力される電気信号をディジタルデータに変換する変換手段と、
    上記変換手段より出力される第1の画像のディジタルデータを記憶する記憶手段と、
    上記第1の画像と同じ位置から撮影された上記第1の画像とは異なる第2の画像のディジタルデータから、上記第1の画像に所定の画像処理を施して得られたディジタルデータを減算する演算手段とを備えることを特徴とする放射線撮影装置。
  2. 上記画像処理は、空間周波数領域におけるフィルタ処理であることを特徴とする請求項1に記載の放射線撮影装置。
  3. 上記画像処理は、上記第1の画像の各画素における当該画素及び隣接画素の画素値の加重平均処理であることを特徴とする請求項1に記載の放射線撮影装置。
  4. 上記第2の画像を解析処理する画像解析手段をさらに備え、上記演算手段は、上記画像解析手段による解析結果に応じて、上記第1の画像に施す画像処理のパラメータを変更することを特徴とする請求項1〜3の何れか1項に記載の放射線撮影装置。
  5. 被写体に対して放射線をパルス状に照射する放射線照射手段と、
    上記被写体を透過した放射線を検出し、検出した放射線強度に対応する電気信号を出力する放射線撮像手段と、
    上記放射線撮像手段より出力される電気信号をディジタルデータに変換する変換手段と、
    上記変換手段より出力される造影剤注入前の状態での原マスク像のディジタルデータを記憶する記憶手段と、
    上記変換手段より造影剤注入後の状態でのライブ像のディジタルデータが得られた際に、上記ライブ像に対応する原マスク像に基づいて二次マスク像を生成して上記ライブ像から減算する演算手段とを備えることを特徴とする放射線撮影装置。
  6. 上記二次マスク像は、上記原マスク像に空間周波数領域におけるフィルタ処理を施した画像であることを特徴とする請求項5に記載の放射線撮影装置。
  7. 上記演算手段は、上記ライブ像における造影部を識別した結果に基づいて画像処理パラメータを変更して上記二次マスク像を生成することを特徴とする請求項6に記載の放射線撮影装置。
  8. 上記画像処理パラメータは、上記空間周波数領域におけるフィルタ処理のカットオフ周波数であることを特徴とする請求項7に記載の放射線撮影装置。
  9. 上記二次マスク像は、上記原マスク像にコンボリューション演算を施した画像であることを特徴とする請求項5に記載の放射線撮影装置。
  10. 上記演算手段は、上記ライブ像における造影部を識別した結果に基づいて画像処理パラメータを変更して上記二次マスク像を生成することを特徴とする請求項9に記載の放射線撮影装置。
  11. 上記画像処理パラメータは、上記コンボリューション演算におけるピクセルグループマスクのインテンシティ値であることを特徴とする請求項10に記載の放射線撮影装置。
  12. 上記画像処理パラメータは、上記コンボリューション演算におけるピクセルグループマスクのマスクサイズであることを特徴とする請求項10又は11に記載の放射線撮影装置。
  13. 被写体に対して放射線をパルス状に照射し、上記被写体を透過した放射線を検出して得られる画像のディジタルデータを出力する放射線画像取得手段と、
    上記放射線画像取得手段より出力される第1の画像のディジタルデータに所定の画像処理を施して得られたディジタルデータを、上記第1の画像とは異なる上記放射線画像取得手段より出力される第2の画像のディジタルデータから減算する画像信号処理手段とを備えることを特徴とする放射線撮影装置。
  14. 被写体に対して放射線をパルス状に照射し、上記被写体を透過した放射線を検出して得られる画像のディジタルデータを出力する放射線画像取得手段より出力される第1の画像のディジタルデータに所定の画像処理を施して減算ディジタルデータを生成し、
    上記第1の画像とは異なる上記放射線画像取得手段より出力される第2の画像のディジタルデータから上記減算ディジタルデータを減算することを特徴とする放射線画像処理方法。
  15. 被写体に対して放射線をパルス状に照射し、上記被写体を透過した放射線を検出して得られる画像のディジタルデータを出力する放射線画像取得手段より出力される第1の画像のディジタルデータに所定の画像処理を施して減算ディジタルデータを生成するステップと、
    上記第1の画像とは異なる上記放射線画像取得手段より出力される第2の画像のディジタルデータから上記減算ディジタルデータを減算するステップとをコンピュータに実行させるためのプログラムを記録したことを特徴とするコンピュータ読み取り可能な記録媒体。
  16. 被写体に対して放射線をパルス状に照射し、上記被写体を透過した放射線を検出して得られる画像のディジタルデータを出力する放射線画像取得手段より出力される第1の画像のディジタルデータに所定の画像処理を施して減算ディジタルデータを生成するステップと、
    上記第1の画像とは異なる上記放射線画像取得手段より出力される第2の画像のディジタルデータから上記減算ディジタルデータを減算するステップとをコンピュータに実行させるためのプログラム。
JP2003176990A 2003-06-20 2003-06-20 放射線撮影装置、放射線画像処理方法、記録媒体及びプログラム Pending JP2005012691A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176990A JP2005012691A (ja) 2003-06-20 2003-06-20 放射線撮影装置、放射線画像処理方法、記録媒体及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176990A JP2005012691A (ja) 2003-06-20 2003-06-20 放射線撮影装置、放射線画像処理方法、記録媒体及びプログラム

Publications (1)

Publication Number Publication Date
JP2005012691A true JP2005012691A (ja) 2005-01-13

Family

ID=34099710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176990A Pending JP2005012691A (ja) 2003-06-20 2003-06-20 放射線撮影装置、放射線画像処理方法、記録媒体及びプログラム

Country Status (1)

Country Link
JP (1) JP2005012691A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215925A (ja) * 2006-02-20 2007-08-30 Takeshi Nakaura X線診断装置、画像処理装置及びプログラム
CN107854130A (zh) * 2016-09-21 2018-03-30 通用电气公司 用于生成减影图像的系统和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215925A (ja) * 2006-02-20 2007-08-30 Takeshi Nakaura X線診断装置、画像処理装置及びプログラム
CN107854130A (zh) * 2016-09-21 2018-03-30 通用电气公司 用于生成减影图像的系统和方法
CN107854130B (zh) * 2016-09-21 2023-12-01 通用电气公司 用于生成减影图像的系统和方法

Similar Documents

Publication Publication Date Title
JP6442243B2 (ja) コンピュータ断層撮影画像再構成のアーチファクト低減の方法および装置
JP4859446B2 (ja) 回転血管撮影のための血管撮影x線診断装置
US11839501B2 (en) Image creation device
KR101576703B1 (ko) 화상 처리 장치, 화상 처리 방법 및 컴퓨터 판독 가능 저장 매체
JP3903027B2 (ja) 放射線画像処理方法及び装置並びにグリッドの選別方法及び装置
JP6071444B2 (ja) 画像処理装置及びその作動方法、プログラム
WO2017014406A1 (ko) 단층 촬영 장치 및 그에 따른 단층 영상 처리 방법
JP5480467B2 (ja) 自動プロトコル・アシスタンス装置
JP2018512241A (ja) 医用画像品質を改善するための装置及び方法
JP7317022B2 (ja) 口内画像の曝露時間を自動的に決定するための方法、システム、装置、およびコンピュータプログラム製品
JP3631215B2 (ja) 放射線画像処理装置、放射線画像処理システム、放射線撮影システム、放射線撮影装置、放射線画像処理方法、コンピュータ可読記憶媒体、及びプログラム
KR101076321B1 (ko) 콘빔 ct 장치에서의 3차원 영상 획득 방법 및 이를 적용한 콘빔 ct 장치
JP2010246862A (ja) 医用画像作成装置及びプログラム
JP6379114B2 (ja) X線ct装置、および、x線ct装置用画像演算装置
JP7221981B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP2005040506A (ja) X線画像処理方法及び装置
JP2005012691A (ja) 放射線撮影装置、放射線画像処理方法、記録媒体及びプログラム
JP3825988B2 (ja) 放射線画像処理装置、画像処理システム、放射線画像処理方法、記録媒体、及びプログラム
CN113313649B (zh) 图像重建方法及装置
CN111789603B (zh) 放射线透视摄影装置
JP6743975B2 (ja) 断層像生成方法および放射線撮影装置
CN113570586A (zh) 神经网络系统的创建、处理ct图像的方法及其装置
JP5537266B2 (ja) エネルギーサブトラクション処理装置および方法ならびにプログラム
JP2009054013A (ja) 画像処理装置
JP2001212139A (ja) 画像取得装置及び画像取得方法