JP2005011821A - Lithium secondary battery negative electrode member and lithium secondary battery - Google Patents

Lithium secondary battery negative electrode member and lithium secondary battery Download PDF

Info

Publication number
JP2005011821A
JP2005011821A JP2004258461A JP2004258461A JP2005011821A JP 2005011821 A JP2005011821 A JP 2005011821A JP 2004258461 A JP2004258461 A JP 2004258461A JP 2004258461 A JP2004258461 A JP 2004258461A JP 2005011821 A JP2005011821 A JP 2005011821A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
electrode member
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004258461A
Other languages
Japanese (ja)
Other versions
JP4379267B2 (en
Inventor
Yukihiro Ota
進啓 太田
Nobuyuki Okuda
伸之 奥田
Hiroyuki Ueki
宏行 植木
Hirohiko Ihara
寛彦 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004258461A priority Critical patent/JP4379267B2/en
Publication of JP2005011821A publication Critical patent/JP2005011821A/en
Application granted granted Critical
Publication of JP4379267B2 publication Critical patent/JP4379267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode member for a lithium secondary battery, having improved cycle characteristics and safety by suppressing the dendrite growth, caused through the reaction of a lithium metal and organic electrolyte solution during charge/discharge cycles. <P>SOLUTION: The negative electrode member 5A for a lithium secondary battery is formed by forming a polypropylene film 7 on a substrate of a copper foil 6 as an electric insulation layer, then forming a lithium metal film 3 on the copper foil 6 for conducting electricity, and forming an inorganic solid electrolytic membrane 4 thereon. A substrate of an electric insulating body can be used instead of the copper foil 6, to allow the lithium metal film 3 to also be used as a collecting body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、高安全性かつ高容量でサイクル特性に優れたリチウム二次電池の負極部材およびそれを用いたリチウム二次電池に関するものである。   The present invention relates to a negative electrode member of a lithium secondary battery having high safety, high capacity and excellent cycle characteristics, and a lithium secondary battery using the same.

リチウムイオン二次電池の体積及び重量容量密度を向上させることを目的として、従来のグラファイト内へのリチウムイオンのインターカレーションを利用する方法ではなく、リチウム金属の状態で負極電極に蓄積する方法が検討されているが、この方法は、リチウム金属と有機電解液が反応し、充放電時にリチウムが樹枝状晶となって析出するデンドライト成長が起こり、そのために負極の利用効率が低下してサイクル寿命が短くなるほか、正極との内部短絡を引き起こし、最終的には爆発に至る危険性がある。   For the purpose of improving the volume and weight capacity density of a lithium ion secondary battery, a method of accumulating in a negative electrode in the state of lithium metal is used instead of a conventional method using intercalation of lithium ions into graphite. Although this method has been studied, this method involves dendritic growth in which lithium metal reacts with the organic electrolyte, and lithium is deposited in the form of dendritic crystals during charge and discharge. In addition to shortening, there is an internal short circuit with the positive electrode, which may eventually lead to an explosion.

このデンドライト成長を抑えるための手法として、リチウム金属の表面にポリマー膜やフッ化物膜、炭酸化合物膜、酸化物膜、酸窒化物膜、硫化物膜等の固体電解質膜を形成することが従来検討されており、下記特許文献1〜4にこれらの膜が開示されている。   As a method for suppressing this dendrite growth, it has been studied in the past to form a solid electrolyte film such as a polymer film, a fluoride film, a carbonate compound film, an oxide film, an oxynitride film, or a sulfide film on the surface of lithium metal. These films are disclosed in Patent Documents 1 to 4 below.

リチウム金属層は、単位体積および重量当たりの電池容量を上げる目的から、その厚みを20μm以下、好ましくは5μm程度に抑える必要があるが、この厚み領域になるとリチウムの自立箔では機械的強度が弱すぎて使用できず、従って、強度のある銅箔等の集電体を基材にしてその上にリチウム箔を貼り合わせること、あるいは蒸着法等の気相堆積法で基材上にリチウム金属層を形成することが必要になる。   For the purpose of increasing the battery capacity per unit volume and weight, the lithium metal layer needs to have a thickness of 20 μm or less, preferably about 5 μm. However, in this thickness region, the lithium self-supporting foil has low mechanical strength. Therefore, the lithium metal layer is deposited on the base material by vapor deposition such as vapor deposition method such as using a strong current collector such as copper foil as a base material and bonding the lithium foil on the base material. It is necessary to form.

従来、リチウムイオン二次電池の負極の基材には、銅箔等の電気伝導体が使用されている。   Conventionally, an electrical conductor such as a copper foil has been used for a base material of a negative electrode of a lithium ion secondary battery.

一方、リチウム金属上に固体電解質膜を形成してデンドライト成長を抑制する手法においては、負極の作製過程やハンドリング工程などにおいて加水分解性の強いリチウム金属層および硫化物系固体電解質の部分的劣化が起こる可能性があり、固体電解質膜による被覆効果が発揮されなくなることが想定される。そのような事態が起こると、劣化部において固体電解質膜を破壊してデンドライト成長が起こり、サイクル寿命の低下を招く。また、基材に電気伝導性の材質を使用している場合には負極に電子が供給され続けるため、その部分で充放電が集中する可能性が高くなる。さらには、デンドライト成長の進行により正極との内部短絡を引き起し、最終的には爆発に至る危険性を有している。
US5,314,765(claim1参照) US6,025,094(claim1および4参照) 特開2000−340257(請求項6および7参照) 特開2002−329524(請求項1および9参照)
On the other hand, in the method of suppressing dendrite growth by forming a solid electrolyte film on lithium metal, the lithium metal layer and sulfide-based solid electrolyte, which are highly hydrolyzable, are partially degraded in the negative electrode fabrication process and handling process. It may occur, and it is assumed that the coating effect by the solid electrolyte membrane is not exhibited. When such a situation occurs, dendritic growth occurs due to destruction of the solid electrolyte membrane in the deteriorated portion, leading to a reduction in cycle life. In addition, when an electrically conductive material is used for the base material, electrons continue to be supplied to the negative electrode, so that there is a high possibility that charge and discharge concentrate at that portion. Furthermore, there is a risk of causing an internal short circuit with the positive electrode due to the progress of dendrite growth, and finally an explosion.
US 5,314,765 (see claim 1) US 6,025,094 (see claim 1 and 4) JP 2000-340257 (see claims 6 and 7) JP 2002-329524 A (refer to claims 1 and 9)

この発明は、かかる不具合を解消してリチウム二次電池用負極部材のサイクル特性と安全性を高めることを課題としている。   This invention makes it a subject to eliminate such a malfunction and to improve the cycling characteristics and safety | security of the negative electrode member for lithium secondary batteries.

発明者等は、基材として電気的絶縁体を使用することにより、基材上にリチウム金属膜と固体電解質膜を形成したリチウム二次電池負極部材におけるデンドライトの集中的成長の技術的課題が解決されることを見いだした。特に、基材として有機高分子材料を使用することによりデンドライト成長の抑制効果を高めることができる。   The inventors solved the technical problem of dendrite intensive growth in the negative electrode member of a lithium secondary battery in which a lithium metal film and a solid electrolyte film were formed on the base material by using an electrical insulator as the base material. I found out that In particular, the use of an organic polymer material as the substrate can enhance the effect of suppressing dendrite growth.

また、金属基材上に電気的絶縁体層を設けてこれを基材とする構造でも同一課題を解決することができる。金属基材は、銅、鉄、ステンレス、ニッケル、アルミニウムの何れであってもよい。また、電気的絶縁体層は有機高分子材料をコーティングして形成されるものでよく、この場合、基材のベースとなる部分が金属箔であるので負極の機械的強度も十分に確保することができる。   Further, the same problem can be solved even with a structure in which an electrical insulator layer is provided on a metal substrate and this is used as a substrate. The metal substrate may be any of copper, iron, stainless steel, nickel, and aluminum. In addition, the electrical insulator layer may be formed by coating an organic polymer material. In this case, since the base portion of the base material is a metal foil, the mechanical strength of the negative electrode must be sufficiently ensured. Can do.

有機高分子材料としては、ポリエチレン、ポリプロピレン等のポリビニールが通常使用されるが、ポリイミド、ポリアミド、ポリエステル、ポリエーテル、ポリウレタン、またはポリカーボネートでもよく、これ等を使用しても発明の目的を達成することができる。   Polyvinyl such as polyethylene and polypropylene is usually used as the organic polymer material, but polyimide, polyamide, polyester, polyether, polyurethane, or polycarbonate may be used, and even if these are used, the object of the invention is achieved. be able to.

この発明の負極部材は、これらの絶縁性基材上に形成したリチウム金属層を負極活物質として働かせ、同時に集電体としても機能させる。   In the negative electrode member of the present invention, the lithium metal layer formed on these insulating substrates functions as a negative electrode active material, and at the same time functions as a current collector.

これにより、不足の事態が生じて固体電解質膜の性能が低下し、局所的なデンドライト成長が発生しても、その部分のリチウム金属が消耗すれば自動的に電子の供給が停止し、その部位で集中的な充放電が繰り返される危険性がなくなる。この発明においては、かかる負極部材を使用したリチウム二次電池も併せて提供する。   As a result, even if a shortage occurs, the performance of the solid electrolyte membrane deteriorates, and even if local dendrite growth occurs, the supply of electrons automatically stops if the lithium metal in that portion is consumed, This eliminates the risk of repeated intensive charge / discharge. In the present invention, a lithium secondary battery using such a negative electrode member is also provided.

この発明によれば、負極部材の基材を電気的絶縁体や金属基材上に電気的絶縁体層を設けた部材で形成し、その上にリチウム金属膜と固体電解質膜を設けるので、リチウム金属と有機電解液が反応して起こるデンドライト成長が抑制され、また、局所的なデンドライト成長が仮に生じてもその部位のリチウム金属の消耗により電子の供給が自動的にストップし、これにより、デンドライト成長に起因した短絡が無くなり、エネルギー密度が高くて充放電サイクル特性に優れた安定性、安全性の高いリチウム二次電池が得られる。   According to this invention, the base material of the negative electrode member is formed of an electrical insulator or a member provided with an electrical insulator layer on a metal base material, and a lithium metal film and a solid electrolyte film are provided thereon. Dendrite growth caused by the reaction between the metal and the organic electrolyte is suppressed, and even if local dendrite growth occurs, the supply of electrons automatically stops due to the consumption of lithium metal at that site. A short circuit caused by growth is eliminated, and a lithium secondary battery having high energy density, excellent charge / discharge cycle characteristics, and high stability and safety is obtained.

〔実施例1〕
図1に示すように、厚さ10μm、直径30mmの銅箔6を基材にしてその銅箔6の上面に、上面の周辺部0.5mm幅の部分を残してポリプロピレン膜7をキャスティング法で1μm厚にマスク形成した。
[Example 1]
As shown in FIG. 1, using a copper foil 6 having a thickness of 10 μm and a diameter of 30 mm as a base material, a polypropylene film 7 is cast on the upper surface of the copper foil 6 by leaving a peripheral portion of the upper surface 0.5 mm wide by a casting method. A mask was formed to a thickness of 1 μm.

引き続き、上面全面に蒸着法によりリチウム金属膜3を形成した。このリチウム金属膜3の膜厚は5μmであった。膜厚の測定は触針式段差計を用いて行った。さらに、リチウム金属膜3上に、リチウム(Li)−リン(P)−イオウ(S)組成の固体電解質膜4を蒸着法により0.2μm厚に形成して負極部材5Aとした。なお、固体電解質膜4は分析の結果、Li34原子%、P14原子%、S52原子%組成の非晶質体であった。   Subsequently, a lithium metal film 3 was formed on the entire upper surface by vapor deposition. The thickness of this lithium metal film 3 was 5 μm. The film thickness was measured using a stylus step meter. Furthermore, a solid electrolyte film 4 having a lithium (Li) -phosphorus (P) -sulfur (S) composition was formed on the lithium metal film 3 to a thickness of 0.2 μm by a vapor deposition method to obtain a negative electrode member 5A. As a result of analysis, the solid electrolyte membrane 4 was an amorphous body having a composition of Li 34 atomic%, P 14 atomic%, and S 52 atomic%.

正極は、活物質となるLiCoO2粒子、電子伝導性を付与する炭素粒子、及びポリフッ化ビニリデンを有機溶媒と共に混合し、アルミニウム箔上に塗布して作製した。活物質層は、厚みが100μm、容量密度が3mAh(ミリアンペア・時)/cm2、総容量21mAhであった。また、正極の直径は30mmであった。 The positive electrode was prepared by mixing LiCoO 2 particles serving as an active material, carbon particles imparting electron conductivity, and polyvinylidene fluoride together with an organic solvent, and applying the mixture onto an aluminum foil. The active material layer had a thickness of 100 μm, a capacity density of 3 mAh (milliampere · hour) / cm 2 , and a total capacity of 21 mAh. The positive electrode had a diameter of 30 mm.

露点−80℃以下のアルゴンガス雰囲気下で、前述の負極部材5A、セパレータ(多孔質ポリマーフィルム)、及び正極部材をコイン型セル内に設置し、さらにエチレンカーボネートとプロピレンカーボネートの混合液に電解塩として1モル%のLiPFを溶解させた有機電解液を滴下してリチウム二次電池を100個作製した。 In an argon gas atmosphere with a dew point of −80 ° C. or lower, the negative electrode member 5A, the separator (porous polymer film), and the positive electrode member are placed in a coin-type cell, and an electrolytic salt is added to a mixed solution of ethylene carbonate and propylene carbonate. As an example, 100 lithium secondary batteries were prepared by dropping an organic electrolyte solution in which 1 mol% of LiPF 6 was dissolved.

その後、この試作品について充放電のサイクル試験を行った。サイクル試験の条件は10mA定電流、充電4.2V、放電3.0Vとした。その結果を表1に試料No.1として示す。   After that, a charge / discharge cycle test was performed on this prototype. The conditions for the cycle test were a 10 mA constant current, a charge of 4.2 V, and a discharge of 3.0 V. The results are shown in Table 1 as Sample No. 1.

Figure 2005011821
Figure 2005011821

この結果から判るように、試料No.1は500サイクル後も100個すべてが内部短絡を起こしていない。また、容量の低下も見られず、良品の歩留りは100%であった。   As can be seen from this result, 100 samples No. 1 did not cause an internal short circuit even after 500 cycles. Further, no decrease in capacity was observed, and the yield of non-defective products was 100%.

充放電サイクル試験後、コインセルを分解して負極を取り出し、その負極について走査型電子顕微鏡(SEM)による観察とエネルギー分散X線分析(EDX)を行った。
その結果、95個のリチウム二次電池負極についてはリチウム金属のデンドライト成長は見られず、負極面に固体電解質膜が保持されていることが確認された。
After the charge / discharge cycle test, the coin cell was disassembled, the negative electrode was taken out, and the negative electrode was observed with a scanning electron microscope (SEM) and subjected to energy dispersive X-ray analysis (EDX).
As a result, it was confirmed that no dendritic growth of lithium metal was observed in the 95 lithium secondary battery negative electrodes, and the solid electrolyte membrane was held on the negative electrode surface.

また、残りの5個の電池負極については、固体電解質膜が部分的に破壊され、局所的にデンドライト成長が起きていることが観察されたが、初期段階でそのデンドライト成長が停止して発生部位は負極の表面近傍に限られていた。   Further, with respect to the remaining five battery negative electrodes, it was observed that the solid electrolyte membrane was partially destroyed and dendrite growth occurred locally. Was limited to the vicinity of the surface of the negative electrode.

〔比較例1〕
比較試験として、基材として圧延銅箔を用い、その上にリチウム金属膜と固体電解質膜を形成した部材を負極とするリチウム二次電池を100個作製し、実施例1と同じ条件で充放電のサイクル試験を行った。
[Comparative Example 1]
As a comparative test, 100 lithium secondary batteries using a rolled copper foil as a base material and a member having a lithium metal film and a solid electrolyte film formed thereon as a negative electrode were produced and charged and discharged under the same conditions as in Example 1. The cycle test was conducted.

その結果、97個の電池がほぼ300〜500サイクルにて電圧上昇によりサイクルが停止した。また、残り3個については、100サイクル程度で短絡が生じた。   As a result, 97 batteries stopped at approximately 300 to 500 cycles due to voltage increase. Moreover, about the remaining 3 pieces, the short circuit occurred in about 100 cycles.

また、充放電サイクル試験後、コインセルを分解して負極を取り出し、その負極について走査型電子顕微鏡(SEM)による観察とエネルギー分散X線分析(EDX)を行ったところ、300サイクル以上の寿命を示した電池の負極についてはリチウム金属のデンドライト成長は見られず、負極面に固体電解質膜が保持されていることが確認されたが、短絡を生じた負極については局所的デンドライト成長が起こり、その成長が正極まで至っていることが確認された。   After the charge / discharge cycle test, the coin cell was disassembled and the negative electrode was taken out. The negative electrode was observed with a scanning electron microscope (SEM) and subjected to energy dispersive X-ray analysis (EDX). It was confirmed that no lithium metal dendrite growth was observed for the negative electrode of the battery, and that the solid electrolyte membrane was retained on the negative electrode surface. Was confirmed to reach the positive electrode.

この発明の負極部材の一例を示す断面図Sectional drawing which shows an example of the negative electrode member of this invention

符号の説明Explanation of symbols

3 リチウム金属膜
4 固体電解質膜
5A 負極部材
6 銅箔
7 ポリプロピレン膜
3 Lithium metal film 4 Solid electrolyte film 5A Negative electrode member 6 Copper foil 7 Polypropylene film

Claims (5)

基材上にリチウム金属膜を形成し、さらにその上に無機固体電解質膜を形成したリチウム二次電池負極部材において、前記基材を電気的絶縁体で形成し、この基材上に前記リチウム金属膜を形成し、そのリチウム金属膜を負極活物質及び集電体として機能させるようにしたことを特徴とするリチウム二次電池負極部材。   In a lithium secondary battery negative electrode member in which a lithium metal film is formed on a base material and an inorganic solid electrolyte film is further formed thereon, the base material is formed of an electrical insulator, and the lithium metal film is formed on the base material. A lithium secondary battery negative electrode member characterized in that a film is formed and the lithium metal film functions as a negative electrode active material and a current collector. 金属基材上にリチウム金属膜を形成し、さらにその上に無機固体電解質膜を形成したリチウム二次電池負極部材において、前記金属基材とリチウム金属膜の界面に電気的絶縁体層を設け、前記金属基材の周辺部でこの金属基材と前記リチウム金属膜を電気的に接続したことを特徴とするリチウム二次電池負極部材。   In a lithium secondary battery negative electrode member in which a lithium metal film is formed on a metal substrate and an inorganic solid electrolyte film is further formed thereon, an electrical insulator layer is provided at the interface between the metal substrate and the lithium metal film, A lithium secondary battery negative electrode member, wherein the metal base and the lithium metal film are electrically connected at a peripheral portion of the metal base. 電気的絶縁体が有機高分子物質であることを特徴とする請求項1又は2に記載のリチウム二次電池負極部材。   The lithium secondary battery negative electrode member according to claim 1, wherein the electrical insulator is an organic polymer substance. 有機高分子物質が、ポリエチレン、ポリプロピレン、ポリイミド、ポリアミド、ポリエステル、ポリエーテル、ポリウレタン、ポリカーボネートの中のいずれかであることを特徴とする請求項3に記載のリチウム二次電池負極部材。   4. The lithium secondary battery negative electrode member according to claim 3, wherein the organic polymer substance is any one of polyethylene, polypropylene, polyimide, polyamide, polyester, polyether, polyurethane, and polycarbonate. 請求項1又は2記載の負極部材を用いて構成されるリチウム二次電池。   The lithium secondary battery comprised using the negative electrode member of Claim 1 or 2.
JP2004258461A 2004-09-06 2004-09-06 Negative electrode member of lithium secondary battery provided with organic electrolyte and lithium secondary battery provided with organic electrolyte Expired - Fee Related JP4379267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258461A JP4379267B2 (en) 2004-09-06 2004-09-06 Negative electrode member of lithium secondary battery provided with organic electrolyte and lithium secondary battery provided with organic electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258461A JP4379267B2 (en) 2004-09-06 2004-09-06 Negative electrode member of lithium secondary battery provided with organic electrolyte and lithium secondary battery provided with organic electrolyte

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003006113A Division JP3680835B2 (en) 2003-01-14 2003-01-14 Negative electrode member of lithium secondary battery provided with organic electrolyte and lithium secondary battery provided with organic electrolyte

Publications (2)

Publication Number Publication Date
JP2005011821A true JP2005011821A (en) 2005-01-13
JP4379267B2 JP4379267B2 (en) 2009-12-09

Family

ID=34101499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258461A Expired - Fee Related JP4379267B2 (en) 2004-09-06 2004-09-06 Negative electrode member of lithium secondary battery provided with organic electrolyte and lithium secondary battery provided with organic electrolyte

Country Status (1)

Country Link
JP (1) JP4379267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150014879A (en) * 2013-07-30 2015-02-09 주식회사 엘지화학 Electrode Current Collector Comprising Nonconductor for Preventing Internal Short-Circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150014879A (en) * 2013-07-30 2015-02-09 주식회사 엘지화학 Electrode Current Collector Comprising Nonconductor for Preventing Internal Short-Circuit
KR101596494B1 (en) 2013-07-30 2016-02-23 주식회사 엘지화학 Electrode Current Collector Comprising Nonconductor for Preventing Internal Short-Circuit

Also Published As

Publication number Publication date
JP4379267B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
Assegie et al. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery
JP3676301B2 (en) Electrode for lithium secondary battery and lithium secondary battery
EP2605325A2 (en) Cathode current collector coated with a primer and magnesium secondary battery including same
TWI275196B (en) Nonaqueous electrolyte comprising oxyanion and lithium secondary battery using the same
Hu et al. A substrate-influenced three-dimensional unoriented dispersion pathway for dendrite-free lithium metal anodes
KR101495451B1 (en) Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
EP3550639A1 (en) Anode for secondary battery and secondary battery comprising same
JP2002270156A (en) Lithium secondary battery electrode and lithium secondary battery
CN110024184B (en) Negative electrode for rechargeable battery and rechargeable battery including the same
Sengupta et al. Investigation on lithium conversion behavior and degradation mechanisms in Tin based ternary component alloy anodes for lithium ion batteries
KR101509358B1 (en) Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, capacitor negative electrode, lithium ion secondary battery, and capacitor
KR101116099B1 (en) Lithium secondary battery negative-electrode component material and lithium secondary battery
JP2004247317A (en) Lithium secondary battery
JP2002289177A (en) Lithium secondary battery and electrode for it
Zhang et al. Carbon-coated SnO 2 thin films developed by magnetron sputtering as anode material for lithium-ion batteries
Offen-Polak et al. A binary carbon-free aluminum anode for lithium-ion batteries
US20200295333A1 (en) Separators for electrochemical cells and methods of making the same
JP4329357B2 (en) Lithium secondary battery negative electrode member and manufacturing method thereof
US10170755B2 (en) Lithium sulfur cell and preparation method
JP2005011696A (en) Negative electrode material for nonaqueous electrolyte secondary battery
JP3680835B2 (en) Negative electrode member of lithium secondary battery provided with organic electrolyte and lithium secondary battery provided with organic electrolyte
JP4379267B2 (en) Negative electrode member of lithium secondary battery provided with organic electrolyte and lithium secondary battery provided with organic electrolyte
JPWO2012035698A1 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JP6200541B2 (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees