JP2005011619A - Fuel cell power generator - Google Patents

Fuel cell power generator Download PDF

Info

Publication number
JP2005011619A
JP2005011619A JP2003173175A JP2003173175A JP2005011619A JP 2005011619 A JP2005011619 A JP 2005011619A JP 2003173175 A JP2003173175 A JP 2003173175A JP 2003173175 A JP2003173175 A JP 2003173175A JP 2005011619 A JP2005011619 A JP 2005011619A
Authority
JP
Japan
Prior art keywords
water quality
water
cooling water
fuel cell
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003173175A
Other languages
Japanese (ja)
Inventor
Shinji Miyauchi
伸二 宮内
Tetsuya Ueda
哲也 上田
Akinari Nakamura
彰成 中村
Kunihiro Tsuruta
邦弘 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003173175A priority Critical patent/JP2005011619A/en
Publication of JP2005011619A publication Critical patent/JP2005011619A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generator capable of prompting a user for maintenance beforehand before any trouble in operation occurs, by detecting degradation of quality of cooling water in a simple and low-cost structure, without using an expensive device such as a deionization device. <P>SOLUTION: A water quality treatment means 8 for adjusting quality of water supplied to a cooling water tank 5 and a water quality detecting means 13 for detecting quality of cooling water are provided. When a speed of water quality degradation as detected by the water quality detecting means 13 reaches a given value, a water quality control means 14 directs a warning means 15 to warn on maintenance, judging that the water quality treatment means 8 is at end of life. With this, the problem is solved that condensed water in a condensed water tank released in the air has contaminant infiltrate in it to degrade water quality, and a volume and an extent of conductive ion seeping into a cooling water channel 10 from a heat exchanger 12 are varied, on which nothing was available for detecting in a simple structure before to warn the user on the quality degradation of the cooling water before any trouble in operation occurs. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池の冷却水の水質劣化を検知する発電装置に関する。
【0002】
【従来の技術】
従来、この種の燃料電池発電装置は、図7に示されるものが一般的であった。この装置は図7に示すように、燃料電池1より排出される排気燃料ガスを冷却し含まれる水蒸気を凝縮させる燃料側凝縮器2と、燃料電池1から排出される排気空気を冷却し含まれる水蒸気を凝縮させる空気側凝縮器3と、燃料側凝縮器2と空気側凝縮器器3とで凝縮した水を蓄える凝縮水タンク4と、凝縮水を冷却水タンク5に送る水供給手段6(例えば、ポンプ)を設けた水供給路7とを備えている。水供給路7には、凝縮水を所定の水質に調整する水質処理手段8としてイオン除去フィルターが備えられている。また、冷却水タンク5内部の余剰冷却水を排出する水排出路9とを備えている。さらに、燃料電池1に対して冷却水タンク5から冷却水路10を通じて冷却水ポンプ11により冷却水を供給し、燃料電池1を通過した冷却水は、熱交換器12により、冷却水を放熱するかもしくは、貯湯タンク等の排熱回収手段(図示せず)等へ排熱回収され、冷却された後に冷却水タンク5に帰還する冷却水循環系統を構成している。この時、冷却水の冷却を行なう熱交換器12より導電性イオンが冷却水中に溶け出し、この導電性イオンが増加すると燃料電池1内でショートして発電量が低下する問題があるため、冷却水中から導電性イオンを除去するために、水供給路7を通じて水質調整された水が冷却水タンク5に供給される。それに応じて過剰となった冷却水は水排出路9を通じて排出され、凝縮水タンク4に回収される。冷却水タンク5に供給される水は、排出される水と比較して水質は良好である。そのため、冷却水の水質を良化するようにしてある(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−141095号公報
【0004】
【発明が解決しようとする課題】
上記従来例に示した燃料電池発電装置はシステム運転時の冷却水の温度上昇による冷却水系(冷却水路10、冷却水タンク5)の圧力上昇、システム運転停止時の冷却水温度低下時の圧力低下といった温度変化による圧力変動を避けるため、凝縮水タンク4を大気開放しており、冷却水タンク5、水排出路9、凝縮水タンク4の経路で圧力変動をなくしている。このため、大気開放された凝縮水タンク内の凝縮水は大気中の汚染物質が侵入し、これにより凝縮水及び凝縮水を利用する冷却水の水質が劣化する。また、熱交換器12から冷却水経路10に溶け出す導電性イオンの量、程度は一様ではなく、製品によるばらつきも存在する。
【0005】
本発明は、上記従来の燃料電池発電装置が有する課題を考慮して、電気脱イオン装置等の高価な装置を用いずに、簡単で安価な構成で、冷却水の水質劣化を検知し、利用者に運転に支障が出る前に、事前にメンテナンスを促すことができる燃料電池発電装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明の燃料電池装置は、燃料ガス及び酸化剤ガスを用いて発電を行なう燃料電池と、燃料電池を冷却する冷却水を貯える冷却水タンクと、前記燃料電池から排出される燃料ガス及び酸化剤ガス中の発電反応より生成された水分および/または燃料ガスを供給する改質器より排出される燃焼排ガス中の水分を冷却し含有水蒸気を凝縮させる凝縮手段と、凝縮手段で凝縮した凝縮水を貯える凝縮水タンクと、凝縮水タンクより冷却水タンクに水を供給する水供給手段を有する水供給路と、水供給路に冷却水タンクに供給する水の水質を調整する水質処理手段と、冷却水の水質を検知する水質検知手段と、前記水質検知手段により検知した水質の劣化速度が所定値に到達したとき前記水質処理手段の寿命限界であると判断する水質制御手段とを具備することを特徴とする。
【0007】
また、本発明は、前記水供給路は、ぞれぞれ水質処理手段を複数を有する複数の分岐した流路と、前記流路を切り替える流路切換手段とを具備し、水質検知手段により検知した水質劣化速度が所定値に到達したとき、流路切換手段により水質処理手段を切り換えることを特徴とする。
【0008】
また、本発明は、流路切換手段により水質処理手段を切り換えたことを使用者に報知する報知手段を有することを特徴とする。
【0009】
また、本発明は、水質検知手段を、冷却水タンク中の複数の電極棒間に所定時間毎に直流電圧を印加された際の前記電極棒間の通電電流値から算出された冷却水の電気抵抗の時間微分を水質劣化速度として検知することを特徴とする。
【0010】
また、本発明は、水質検知手段が、冷却水タンク中の1本の電極棒と導電性材料で内部を構成した冷却水タンクとの間に所定時間毎に直流電圧を印加された際の電極棒と冷却水タンク内部の導電性材料間の通電電流値から算出された冷却水の電気抵抗の時間微分を水質劣化速度として検知することを特徴とする。
【0011】
また、本発明は、水質検知手段が、冷却水タンク中の1本のイオンが溶出しにくい電極棒と導電性材料で内部を構成した冷却水タンクとの間に所定時間毎に直流電圧を印加された際の電極棒と冷却水タンク内部の導電性材料間の通電電流値から算出された冷却水の電気抵抗の時間微分を水質劣化速度として検知することを特徴とする。
【0012】
また、本発明は、水質検知手段により検知した水質の劣化速度が所定値に到達したとき報知する報知手段をさらに備えることを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明する。
【0014】
(実施の形態1)
図1は本発明の実施の形態1における燃料電池発電装置の構成図である。
【0015】
図1において、図7で示した従来の燃料電池を用いた発電装置と同じ機能を有するものについては、同一符号を付与しており、それらの機能の詳細は、図7のものに準ずるものとして説明を省略する。
【0016】
13は、冷却水の水質を検知する水質検知手段である。14は、水質検知手段13からの水質検知信号を入力し、水質検知手段13により検知した水質劣化速度の算出及びこの水質劣化速度が、所定の寿命限界近傍値に到達したとき、報知手段15によりメンテ報知する水質制御手段である。
【0017】
次に動作、作用について説明する。
【0018】
水質制御手段14は、図2に示すように水質検知手段13により定期的に測定された冷却水タンク5内の所定の計測点間の冷却水の電気抵抗(R)をもとに、単位運転期間(ΔT)当たりの電気抵抗変化値(ΔR)である電気抵抗(R)の時間微分を水質劣化速度として常時監視している。
【0019】
大気開放された凝縮水タンク4内の凝縮水は大気中の汚染物質によって水質が劣化し、また、熱交換器12から冷却水経路10に溶け出す導電性イオンによっても冷却水の水質劣化が発生する。これらの水質劣化に起因する冷却水タンクの水質劣化は、凝縮水タンクの水を水質処理手段8(例えば、イオン除去フィルター)により水質改善し、冷却水タンクに供給することで水質調整され、冷却水の水質は、水供給手段6の出力により水質改善された水の供給量を制御し、所定レベル、すなわち冷却水の電気抵抗を一定に維持する。上記水質劣化速度は、凝縮水タンク4内の凝縮水に混入した大気中の汚染物質の量、また、熱交換器12から冷却水経路10に溶け出す導電性イオンの量によって異なる。この水質劣化速度が所定の水質処理手段8の寿命限界と判断される所定値近傍(図2の冷却水の電気抵抗(R)の時間微分(K)がA−A’からB−B’に変わる値近傍)に達した時点で、水質制御手段14は、水質処理手段8の寿命限界になったと判断し、報知手段15に報知出力する。なお、この寿命限界と判断される所定値は、図2では冷却水の電気抵抗(R)の時間微分(K)が著しい低下局面に移行する所定の範囲C(例えば、A−A’からB−B’までの範囲)中の値として定義される。利用者は、報知手段15の報知出力により、水質処理手段8の交換時期を知り、メンテ対応を行う。
【0020】
よって、水質処理手段8の寿命による冷却水の水質劣化を利用者に、運転に支障が出る前に、報知し、事前にメンテナンスを促すことができる。なお、報知手段15は、スピーカ等の音声、ブザー等の音波発生装置だけでなく、ランプ、LED、液晶等の表示装置を用いて警告、報知する手段を用いることによっても同様の効果を有することはいうまでもない。さらに、メンテナンス会社に、電話回線等を介して自動的に通報する構成にした場合、イオン除去フィルターの交換等のメンテ対応が迅速に、スムーズに行える。
【0021】
(実施の形態2)
本発明の実施の形態2を図3を用いて説明する。
【0022】
図3は本発明の実施の形態2における燃料電池発電装置の構成図である。
【0023】
図3において、図7で示した従来の燃料電池を用いた発電装置と同じ機能を有するものについては、同一符号を付与しており、また、図1で示した実施の形態1の燃料電池を用いた発電装置と同じ機能を有するものについても、同一符号を付与しており、それらの機能の詳細は、図7,1のものに準ずるものとして説明を省略する。
【0024】
16は、冷却水タンク5に供給する水の水質を調整する水質処理手段8(例えば、イオン除去フィルター)の予備セットである。17,18は、水供給路7において分岐し、水質処理手段8、16を有する流路を切り換える流路切換手段としての切替弁であり水質制御手段14からの切換信号により切り換えるよう接続されている。
【0025】
次に動作、作用について説明する。
【0026】
水質制御手段14は、図3に示すように水質検知手段13により定期的に測定された冷却水タンク5内の所定の計測点間の冷却水の電気抵抗をもとに、単位運転期間(ΔT)当たりの電気抵抗変化値(ΔR)である水質劣化速度を常時監視している。また、水質制御手段14は、第1の水質処理手段である水質処理手段8により水質調整するように、流路切換手段として切替弁17を開、切替弁18を閉にして、最初に水供給手段6の出力を制御し、水質処理手段8により水質改善された水の供給を調整し、水質を所定レベル、すなわち冷却水の電気抵抗を一定に維持する。
【0027】
その後、運転時間の経過とともに、大気開放された凝縮水タンク4内の凝縮水は大気中の汚染物質によって水質が劣化し、また、熱交換器12から冷却水経路10に溶け出す導電性イオンによっても冷却水の水質劣化が発生する。この水質劣化を初めにセットされた第1の水質処理手段の水質処理手段8により水質調整しているため、やがて、水質劣化速度が水質処理手段8の寿命限界である所定値近傍(図2の冷却水の電気抵抗の時間微分(K)がA−A’からB−B’に変わる範囲C中の値近傍)に達した時点で、水質制御手段14は、水質処理手段8の寿命が限界になったと判断し、流路切換手段(切替弁)17を閉、切替弁18を開にして、最初の水質処理手段8から予備セットのイオン除去フィルター16に切り換えて、水質を所定レベルすなわち冷却水の電気抵抗程度を一定に維持するよう水供給手段6を制御する。
【0028】
従って、利用者は、最初の水質処理手段8が寿命がきても、水質制御手段14により予め予備セットの16に切り換わることにより、発電を停止させることなく、運転を継続できる。
【0029】
(実施の形態3)
本発明の実施の形態3を図4を用いて説明する。
【0030】
図4は本発明の実施の形態3における燃料電池発電装置の構成図である。
【0031】
図4において、図3で示した実施の形態2の燃料電池を用いた発電装置と同じ機能を有するものについても、同一符号を付与しており、それらの機能の詳細は、図3のものに準ずるものとして説明を省略する。
【0032】
19は、水質制御手段14から水質検知手段13により検知した水質劣化速度が水質処理手段の寿命限界である所定値に到達したときなどに、メンテ報知させる報知手段である。
【0033】
次に動作、作用について説明する。
【0034】
水質制御手段14は、実施の形態2と同様な動作を行い、最初に、水質制御手段14により、切替弁17を開、切替弁18を閉にして、水供給手段6の出力を制御し、水質処理手段8(例えば、イオン除去フィルター)により水質改善された水の供給を調整し、水質を所定レベル、すなわち冷却水の電気抵抗を一定に維持する。
【0035】
その後、運転時間の経過とともに、大気開放された凝縮水タンク4内の凝縮水は大気中の汚染物質によって水質が劣化し、また、熱交換器12から冷却水経路10に溶け出す導電性イオンによっても冷却水の水質劣化が発生する。この水質劣化によりを初めにセットされた第1の水質処理手段8が、やがて、水質処理手段8の寿命限界である所定値近傍に達した時点で、水質制御手段14は、水質処理手段8の寿命が限界になったと判断し、流路切換手段として切替弁17を閉、切替弁18を開にして、最初の水質処理手段8から予備セットの水質処理手段16に切り換えて、水供給手段6の出力を制御することで、水質処理手段8により水質改善された水の供給を調整し、水質を所定レベル、すなわち冷却水の電気抵抗を一定に維持する。
【0036】
さらに、水質制御手段14は、報知手段19を介して、使用者に水質処理手段8の寿命が限界になり、予備セットのイオン除去フィルター16に切り換えたことを報知する。
【0037】
従って、利用者は、最初の水質処理手段8が寿命がきても、水質制御手段14により予備セットのイオン除去フィルター16に切り換わることにより、発電を停止させることなく、運転を継続できるとともに、余裕を持って、報知手段19により最初の水質処理手段8を交換することができる。
【0038】
(実施の形態4)
本発明の実施の形態4を図5を用いて説明する。
【0039】
図5は本発明の実施の形態4における燃料電池発電装置の冷却水タンクにおける水質検知手段の構成図である。
【0040】
図5において、図1及び図3で示した実施の形態1及び2の燃料電池を用いた発電装置と同じ機能を有するものについても、同一符号を付与しており、それらの機能の詳細は、図1及び図3に準ずるものとして説明を省略する。
【0041】
20は、水質検知手段13の、冷却水タンク5に設けられた複数の電極棒であり、21は、複数の電極棒20の1つに所定の直流電圧を印加する電源(例えば、燃料電池)である。22は、電源21を電極棒20に電圧印加のオン/オフをするスイッチである。23は、複数の電極棒20間の冷却水の導電率に対応した電気抵抗、24は冷却水の電気抵抗(R)23と直列に接続された検知抵抗(Rs)であり、検知抵抗24の両端電圧を検知し、水質制御手段14に出力することにより、冷却水の水質劣化検知を行うように接続されている。
【0042】
次に動作、作用について説明する。
【0043】
水質制御手段14は、所定の冷却水の水質検知タイミング、すなわち、所定時間毎(例えば、1日毎に)に所定時間(数秒間)だけ、スイッチ22をオンにして、電極棒20に直流電圧を印加する。冷却水の水質に応じて、水の伝導率が決まり、冷却水の電気抵抗(R)に電流が流れ、検知抵抗(Rs)にも同じ電流が流れる。水質制御手段14は、検知抵抗24に流れる電流に応じた電圧を入力し、冷却水の水質劣化による電圧変化を監視する。その後、運転時間の経過とともに、大気開放された凝縮水タンク4内の凝縮水は大気中の汚染物質によって水質が劣化し、また、熱交換器12から冷却水経路10に溶け出す導電性イオンによっても冷却水の水質劣化が発生する。この水質劣化により、やがて、水質処理手段8の寿命限界である所定値近傍(図2の冷却水の電気抵抗の時間微分(K)がA−A’からB−B’に変わる範囲中の値近傍)に達した時点で、水質制御手段14は、水質処理手段8(例えば、イオン除去フィルター)の寿命が限界近傍値になったと判断し、以下、実施の形態1〜3と同様の動作を行う。
【0044】
従って、電気脱イオン装置等の交流電圧を印加する構成に比べて、簡単な制御構成となり、かつ連続通電でなく、1日に1回数秒間程度のみ、直流電圧を印加するので、冷却水が電気分解することもない。そして、利用者にとって、水質処理手段8の寿命による冷却水の水質劣化を簡単で、安価な構成で検知することにより、運転に支障が出る前に、事前にメンテナンスを行うことができる利便性の良い燃料電池発電装置となる。
【0045】
(実施の形態5)
本発明の実施の形態5を図6を用いて説明する。
【0046】
図6は本発明の実施の形態5における燃料電池発電装置の冷却水タンクにおける水質検知手段の構成図である。
【0047】
図6において、図5で示した実施の形態4の燃料電池を用いた発電装置と同じ機能を有するものについても、同一符号を付与しており、それらの機能の詳細は、図5のものに準ずるものとして説明を省略する。
【0048】
26は、水質検知手段13の、冷却水タンク5に設けられた1本の電極棒であり、26は、冷却水タンク5に電極棒25を取り付けるパッキン等の取り付け部材であり、冷却水タンク5内部に導電性材料でコーティングされた導電性電極部27と絶縁されて取り付けられている。
【0049】
従って、冷却水の導電率に対応した電気抵抗23は、電極棒25と導電性電極部27間の冷却水の電気抵抗(R)となる。
【0050】
次に動作、作用について説明する。
【0051】
水質制御手段14は、所定の冷却水の水質検知タイミング、すなわち、所定時間毎(例えば、1日毎に)に所定時間(数秒間)だけ、スイッチ22をオンにして、電極棒25に直流電圧を印加する。冷却水の水質に応じて、水の伝導率が決まり、電極棒25から冷却水タンク5内面の導電性電極部27へ冷却水の電気抵抗(R)に電流が流れ、検知抵抗(Rs)にも同じ電流が流れる。水質制御手段14は、検知抵抗24に流れる電流に応じた電圧を入力し、冷却水の水質劣化による電圧変化を監視する。
【0052】
その後、運転時間の経過とともに、大気開放された凝縮水タンク4内の凝縮水は大気中の汚染物質によって水質が劣化し、また、熱交換器12から冷却水経路10に溶け出す導電性イオンによっても冷却水の水質劣化が発生する。この水質劣化により、やがて、水質処理手段8の寿命限界である所定値近傍(図2の冷却水の電気抵抗の時間微分(K)がA−A’からB−B’に変わる範囲C中の値近傍)に達した時点で、水質制御手段14は、水質処理手段8(例えば、イオン除去フィルター)の寿命が限界になったと判断し、以下、実施の形態1〜3と同様の動作を行う。
【0053】
従って、電気脱イオン装置等の交流電圧を印加する構成に比べて、簡単な制御構成となり、かつ連続通電でなく、1日に1回数秒間程度のみ、直流電圧を印加するので、冷却水が電気分解することもない。そして、利用者にとって、水質処理手段8の寿命による冷却水の水質劣化を簡単で、さらに安価な構成で検知することにより、運転に支障が出る前に、事前にメンテナンスを行うことができる利便性の良い燃料電池発電装置となる。
【0054】
(実施の形態6)
本発明の実施の形態6を図6を用いて説明する。
【0055】
図6は本発明の実施の形態5における燃料電池発電装置の冷却水タンクにおける水質検知手段の構成図であり、図6において、25の冷却水タンク5に設けられた1本の電極棒をイオンが溶出しにくい材料で作られた電極棒であり、例えばカーボンからなるカーボン電極としたものや、表面を白金でコーティングした電極などである。そのほかパッキン26や、導電性電極部27は、実施の形態5と同様である。
【0056】
次に動作、作用について説明する。
【0057】
水質制御手段14は、実施の形態5と同様な動作、作用を行う。但し、電極棒25は、イオンが溶出しにくい材料で作られた電極棒であるため、電極棒自身からイオンが溶出することによる冷却水の水質劣化はなくなる。
【0058】
従って、利用者にとって、水質処理手段8の寿命による冷却水の水質劣化を簡単で、さらに安価で水質検知手段として最適な構成材料な構成で検知することにより、運転に支障が出る前に、事前にメンテナンスを行うことができる利便性の良い燃料電池発電装置となる。
【0059】
なお、上記実施の形態では、電極棒25のみイオンが溶出しにくい材料で構成しているが、冷却水タンク内部の導線性材料も同様な材料で構成するとさらに効果が増大することは言うまでもない。
【0060】
【発明の効果】
以上の説明から明らかなように、本発明の燃料電池発電装置によれば、次の効果が得られる。
【0061】
水質処理手段の寿命による冷却水の水質劣化を利用者に運転に支障が出る前に、事前に寿命を予測し、また、水質処理手段の寿命限界と判断した際に、報知することで、事前にメンテナンスを促すことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における燃料電池発電装置のブロック構成図
【図2】本発明の冷却水タンク内の冷却水の電気抵抗(R)と運転時間(T)との関係図
【図3】本発明の実施の形態2における燃料電池発電装置のブロック構成図
【図4】本発明の実施の形態3における燃料電池発電装置のブロック構成図
【図5】本発明の実施の形態4における燃料電池発電装置の冷却水タンクにおける水質検知手段の構成図
【図6】本発明の実施の形態5における燃料電池発電装置の冷却水タンクにおける水質検知手段の構成図
【図7】従来例の燃料電池発電装置のブロック構成図
【符号の説明】
1 燃料電池
2,3 凝縮手段
4 凝縮タンク
5 冷却水タンク
6 水供給手段
7 水供給路
8 水質処理手段
9 水排出路
13 水質検知手段
15 報知手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power generation apparatus that detects water quality deterioration of cooling water of a fuel cell.
[0002]
[Prior art]
Conventionally, this type of fuel cell power generator is generally shown in FIG. As shown in FIG. 7, this apparatus includes a fuel side condenser 2 that cools exhaust fuel gas discharged from the fuel cell 1 and condenses water vapor contained therein, and cools exhaust air discharged from the fuel cell 1. An air side condenser 3 for condensing water vapor, a condensed water tank 4 for storing water condensed by the fuel side condenser 2 and the air side condenser 3, and water supply means 6 for sending the condensed water to the cooling water tank 5 ( For example, a water supply path 7 provided with a pump) is provided. The water supply path 7 is provided with an ion removal filter as water quality treatment means 8 for adjusting the condensed water to a predetermined water quality. Further, a water discharge path 9 for discharging excess cooling water inside the cooling water tank 5 is provided. Further, cooling water is supplied from the cooling water tank 5 to the fuel cell 1 by the cooling water pump 11 through the cooling water channel 10, and the cooling water passing through the fuel cell 1 radiates the cooling water by the heat exchanger 12. Alternatively, a cooling water circulation system is configured in which the exhaust heat is recovered by an exhaust heat recovery means (not shown) such as a hot water storage tank and the like, cooled and then returned to the cooling water tank 5. At this time, there is a problem that conductive ions are dissolved in the cooling water from the heat exchanger 12 that cools the cooling water, and if the conductive ions increase, there is a problem that the power generation amount is reduced due to a short circuit in the fuel cell 1. In order to remove conductive ions from the water, water whose water quality is adjusted is supplied to the cooling water tank 5 through the water supply path 7. Accordingly, the excess cooling water is discharged through the water discharge passage 9 and collected in the condensed water tank 4. The water supplied to the cooling water tank 5 has better water quality than the discharged water. Therefore, the quality of the cooling water is improved (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-141095
[Problems to be solved by the invention]
The fuel cell power generator shown in the above conventional example has an increase in the pressure of the cooling water system (cooling water channel 10, cooling water tank 5) due to an increase in the temperature of the cooling water during system operation, and a pressure decrease when the cooling water temperature decreases when the system operation stops In order to avoid such pressure fluctuations due to temperature changes, the condensed water tank 4 is opened to the atmosphere, and pressure fluctuations are eliminated in the path of the cooling water tank 5, the water discharge path 9, and the condensed water tank 4. For this reason, the pollutant in air | atmosphere penetrate | invades into the condensed water in the condensed water tank open | released by air | atmosphere, and, thereby, the water quality of the cooling water using condensed water and condensed water deteriorates. In addition, the amount and degree of conductive ions that dissolve from the heat exchanger 12 to the cooling water path 10 are not uniform, and there are variations depending on products.
[0005]
In consideration of the problems of the conventional fuel cell power generation apparatus, the present invention detects and uses cooling water quality deterioration with a simple and inexpensive configuration without using an expensive apparatus such as an electrodeionization apparatus. It is an object of the present invention to provide a fuel cell power generator capable of prompting maintenance before a person has trouble in driving.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a fuel cell device according to the present invention includes a fuel cell that generates power using fuel gas and an oxidant gas, a cooling water tank that stores cooling water that cools the fuel cell, and a discharge from the fuel cell. Condensation means for cooling the moisture generated from the power generation reaction in the generated fuel gas and oxidant gas and / or the moisture in the combustion exhaust gas discharged from the reformer supplying the fuel gas to condense the contained water vapor, and condensation Condensed water tank that stores condensed water condensed by the means, a water supply path that has water supply means for supplying water from the condensed water tank to the cooling water tank, and the quality of the water supplied to the cooling water tank is adjusted to the water supply path Water quality treatment means for detecting the water quality of the cooling water, and when the water quality degradation rate detected by the water quality detection means has reached a predetermined value, the water quality treatment means is determined to be the life limit. Characterized by comprising a water quality control means for.
[0007]
In the present invention, the water supply path includes a plurality of branched flow paths each having a plurality of water quality treatment means and a flow path switching means for switching the flow paths, and is detected by the water quality detection means. When the water quality deterioration rate reaches a predetermined value, the water quality treatment means is switched by the flow path switching means.
[0008]
In addition, the present invention is characterized by having a notifying means for notifying a user that the water quality treatment means has been switched by the flow path switching means.
[0009]
Further, the present invention provides a water quality detection means for cooling water electricity calculated from an energization current value between the electrode rods when a DC voltage is applied between the plurality of electrode rods in the cooling water tank every predetermined time. It is characterized by detecting the time derivative of resistance as a water quality deterioration rate.
[0010]
Further, the present invention provides an electrode when the water quality detecting means is applied with a DC voltage every predetermined time between one electrode rod in the cooling water tank and a cooling water tank having an interior made of a conductive material. It is characterized in that the time differential of the electrical resistance of the cooling water calculated from the current value between the rod and the conductive material inside the cooling water tank is detected as the water quality deterioration rate.
[0011]
Further, according to the present invention, the water quality detection means applies a DC voltage between the electrode rod in which one ion in the cooling water tank is difficult to elute and the cooling water tank composed of a conductive material every predetermined time. The time differential of the electrical resistance of the cooling water calculated from the current value between the electrode rod and the conductive material inside the cooling water tank is detected as the water quality deterioration rate.
[0012]
The present invention is further characterized by further comprising a notifying means for notifying when the water quality deterioration rate detected by the water quality detecting means reaches a predetermined value.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
(Embodiment 1)
FIG. 1 is a configuration diagram of a fuel cell power generator according to Embodiment 1 of the present invention.
[0015]
1, those having the same functions as those of the power generation apparatus using the conventional fuel cell shown in FIG. 7 are given the same reference numerals, and the details of those functions are the same as those in FIG. Description is omitted.
[0016]
Reference numeral 13 denotes water quality detection means for detecting the quality of the cooling water. 14 receives a water quality detection signal from the water quality detection means 13, calculates the water quality deterioration rate detected by the water quality detection means 13, and when the water quality deterioration speed reaches a predetermined near life limit value, the notification means 15 It is a water quality control means for performing maintenance notification.
[0017]
Next, the operation and action will be described.
[0018]
As shown in FIG. 2, the water quality control means 14 performs unit operation based on the electrical resistance (R) of the cooling water between predetermined measurement points in the cooling water tank 5 that is periodically measured by the water quality detection means 13. The time derivative of the electrical resistance (R), which is the electrical resistance change value (ΔR) per period (ΔT), is constantly monitored as the water quality deterioration rate.
[0019]
Condensed water in the condensed water tank 4 opened to the atmosphere is deteriorated in water quality due to pollutants in the atmosphere, and cooling water quality deterioration is also caused by conductive ions that are dissolved from the heat exchanger 12 into the cooling water path 10. To do. The water quality deterioration of the cooling water tank due to these water quality deteriorations is adjusted by supplying water to the cooling water tank by improving the water quality of the water in the condensed water tank by the water quality treatment means 8 (for example, ion removal filter), and cooling The water quality is controlled by the amount of water whose quality has been improved by the output of the water supply means 6, and the electric resistance of the cooling water is kept constant. The water quality deterioration rate varies depending on the amount of pollutants in the atmosphere mixed into the condensed water in the condensed water tank 4 and the amount of conductive ions that dissolve from the heat exchanger 12 into the cooling water path 10. In the vicinity of a predetermined value at which this water quality deterioration rate is determined as the life limit of the predetermined water quality treatment means 8 (the time differential (K) of the electrical resistance (R) of the cooling water in FIG. 2 is changed from AA ′ to BB ′. The water quality control means 14 determines that the life limit of the water quality treatment means 8 has been reached, and outputs a notification to the notification means 15 at the point in time when the value reaches the changing value vicinity. Note that the predetermined value determined as the life limit is a predetermined range C (for example, from AA ′ to B in which the time differentiation (K) of the electrical resistance (R) of the cooling water in FIG. In the range up to -B '). The user knows the replacement time of the water quality treatment means 8 from the notification output of the notification means 15 and performs maintenance.
[0020]
Therefore, the water quality deterioration due to the life of the water quality treatment means 8 can be notified to the user before the operation is disturbed, and maintenance can be promoted in advance. Note that the notification means 15 has the same effect not only by using a sound generator such as a speaker or a sound wave generator such as a buzzer but also a warning and notification means using a display device such as a lamp, LED, or liquid crystal. Needless to say. Furthermore, when the maintenance company is automatically notified via a telephone line or the like, maintenance such as replacement of the ion removal filter can be performed quickly and smoothly.
[0021]
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIG.
[0022]
FIG. 3 is a configuration diagram of the fuel cell power generator according to Embodiment 2 of the present invention.
[0023]
3, components having the same functions as those of the power generation apparatus using the conventional fuel cell shown in FIG. 7 are given the same reference numerals, and the fuel cell of the first embodiment shown in FIG. Components having the same functions as those of the power generation apparatus used are given the same reference numerals, and the details of those functions are the same as those in FIGS.
[0024]
Reference numeral 16 denotes a preliminary set of water quality processing means 8 (for example, an ion removal filter) that adjusts the quality of water supplied to the cooling water tank 5. Reference numerals 17 and 18 are switching valves as flow path switching means for branching in the water supply path 7 and switching the flow path having the water quality treatment means 8 and 16, and are connected to be switched by a switching signal from the water quality control means 14. .
[0025]
Next, the operation and action will be described.
[0026]
As shown in FIG. 3, the water quality control means 14 is based on the electric resistance of the cooling water between the predetermined measurement points in the cooling water tank 5 periodically measured by the water quality detection means 13, and the unit operation period (ΔT ) The water quality deterioration rate, which is the electrical resistance change value (ΔR) per unit, is constantly monitored. Further, the water quality control means 14 opens the switching valve 17 as the flow path switching means and closes the switching valve 18 so that the water quality is adjusted by the water quality processing means 8 which is the first water quality processing means. The output of the means 6 is controlled, the supply of water whose water quality has been improved by the water quality treatment means 8 is adjusted, and the water quality is maintained at a predetermined level, that is, the electric resistance of the cooling water is kept constant.
[0027]
Thereafter, as the operation time elapses, the condensed water in the condensed water tank 4 opened to the atmosphere is deteriorated in water quality due to pollutants in the atmosphere, and the conductive ions dissolved into the cooling water path 10 from the heat exchanger 12 However, water quality deterioration will occur. Since the water quality is adjusted by the water quality treatment means 8 of the first water quality treatment means set at the beginning, the water quality degradation rate will eventually reach a predetermined value that is the life limit of the water quality treatment means 8 (see FIG. 2). When the time differential (K) of the electrical resistance of the cooling water reaches a value in the range C where AA ′ changes to BB ′), the water quality control means 14 has a limited life span of the water quality treatment means 8. Then, the flow path switching means (switching valve) 17 is closed, the switching valve 18 is opened, and the first water quality treatment means 8 is switched to the pre-set ion removal filter 16 to change the water quality to a predetermined level, that is, cooling. The water supply means 6 is controlled so as to keep the electrical resistance of water constant.
[0028]
Therefore, the user can continue the operation without stopping the power generation by switching to the preliminary set 16 by the water quality control means 14 in advance even if the first water quality treatment means 8 has reached the end of its life.
[0029]
(Embodiment 3)
Embodiment 3 of the present invention will be described with reference to FIG.
[0030]
FIG. 4 is a configuration diagram of a fuel cell power generator according to Embodiment 3 of the present invention.
[0031]
4, components having the same functions as those of the power generation apparatus using the fuel cell of Embodiment 2 shown in FIG. 3 are given the same reference numerals, and the details of those functions are the same as those in FIG. The description will be omitted as equivalent.
[0032]
Reference numeral 19 is an informing means for informing maintenance when the water quality deterioration rate detected by the water quality detecting means 13 from the water quality control means 14 reaches a predetermined value which is the life limit of the water quality processing means.
[0033]
Next, the operation and action will be described.
[0034]
The water quality control means 14 performs the same operation as in the second embodiment. First, the water quality control means 14 opens the switching valve 17 and closes the switching valve 18 to control the output of the water supply means 6. The supply of water whose water quality is improved by the water quality treatment means 8 (for example, ion removal filter) is adjusted, and the water quality is maintained at a predetermined level, that is, the electric resistance of the cooling water is kept constant.
[0035]
Thereafter, as the operation time elapses, the condensed water in the condensed water tank 4 opened to the atmosphere is deteriorated in water quality due to pollutants in the atmosphere, and the conductive ions dissolved into the cooling water path 10 from the heat exchanger 12 However, water quality deterioration will occur. When the first water quality treatment means 8 set first due to this water quality deterioration eventually reaches the vicinity of a predetermined value which is the life limit of the water quality treatment means 8, the water quality control means 14 It is determined that the service life has reached the limit, the switching valve 17 is closed as the flow path switching means, the switching valve 18 is opened, and the water supply means 6 is switched from the first water quality treatment means 8 to the preliminary water quality treatment means 16. By controlling the output, the supply of water whose water quality has been improved by the water quality treatment means 8 is adjusted, and the water quality is maintained at a predetermined level, that is, the electric resistance of the cooling water is kept constant.
[0036]
Furthermore, the water quality control means 14 informs the user via the notification means 19 that the life of the water quality treatment means 8 has reached its limit and has been switched to the pre-set ion removal filter 16.
[0037]
Therefore, the user can continue the operation without stopping the power generation by switching to the ion removal filter 16 of the preliminary set by the water quality control means 14 even if the first water quality treatment means 8 has reached the end of its life. The first water quality treatment means 8 can be replaced by the notification means 19.
[0038]
(Embodiment 4)
Embodiment 4 of the present invention will be described with reference to FIG.
[0039]
FIG. 5 is a configuration diagram of water quality detection means in the cooling water tank of the fuel cell power generator according to Embodiment 4 of the present invention.
[0040]
In FIG. 5, those having the same functions as those of the power generation apparatus using the fuel cell of Embodiments 1 and 2 shown in FIGS. 1 and 3 are given the same reference numerals, and the details of those functions are as follows. The description will be omitted because it conforms to FIGS.
[0041]
Reference numeral 20 denotes a plurality of electrode bars provided in the cooling water tank 5 of the water quality detection means 13, and reference numeral 21 denotes a power source (for example, a fuel cell) that applies a predetermined DC voltage to one of the plurality of electrode bars 20. It is. A switch 22 turns on / off the voltage application of the power source 21 to the electrode rod 20. 23 is an electrical resistance corresponding to the conductivity of the cooling water between the plurality of electrode rods 20, and 24 is a detection resistance (Rs) connected in series with the electrical resistance (R) 23 of the cooling water. By detecting the voltage at both ends and outputting it to the water quality control means 14, it is connected so as to detect the water quality deterioration of the cooling water.
[0042]
Next, the operation and action will be described.
[0043]
The water quality control means 14 turns on the switch 22 for a predetermined time (several seconds) at a predetermined cooling water quality detection timing, that is, every predetermined time (for example, every day), and applies a DC voltage to the electrode rod 20. Apply. The conductivity of water is determined according to the water quality of the cooling water, a current flows through the electrical resistance (R) of the cooling water, and the same current also flows through the detection resistance (Rs). The water quality control means 14 inputs a voltage corresponding to the current flowing through the detection resistor 24 and monitors the voltage change due to the water quality deterioration of the cooling water. Thereafter, as the operation time elapses, the condensed water in the condensed water tank 4 opened to the atmosphere is deteriorated in water quality due to pollutants in the atmosphere, and the conductive ions dissolved into the cooling water path 10 from the heat exchanger 12 However, water quality deterioration will occur. Due to this water quality deterioration, in the vicinity of a predetermined value which is the life limit of the water quality treatment means 8 (a value in a range where the time differential (K) of the electrical resistance of the cooling water in FIG. 2 changes from AA ′ to BB ′. The water quality control means 14 determines that the life of the water quality treatment means 8 (for example, the ion removal filter) has reached the limit value, and thereafter performs the same operation as in the first to third embodiments. Do.
[0044]
Therefore, compared to a configuration in which an AC voltage is applied, such as an electrodeionization device, the control configuration is simple, and since the DC voltage is applied only for about one second per day rather than continuous energization, the cooling water is electrically There is no disassembly. For the user, it is possible to perform maintenance in advance before troubles occur in operation by detecting deterioration of the quality of the cooling water due to the life of the water quality treatment means 8 with a simple and inexpensive configuration. It becomes a good fuel cell power generator.
[0045]
(Embodiment 5)
A fifth embodiment of the present invention will be described with reference to FIG.
[0046]
FIG. 6 is a configuration diagram of water quality detection means in the cooling water tank of the fuel cell power generator according to Embodiment 5 of the present invention.
[0047]
6, those having the same functions as those of the power generation apparatus using the fuel cell of Embodiment 4 shown in FIG. 5 are given the same reference numerals, and the details of those functions are the same as those in FIG. The description will be omitted as equivalent.
[0048]
Reference numeral 26 denotes one electrode rod provided in the cooling water tank 5 of the water quality detection means 13. Reference numeral 26 denotes an attachment member such as a packing for attaching the electrode rod 25 to the cooling water tank 5. It is insulated and attached to the conductive electrode portion 27 coated with a conductive material inside.
[0049]
Therefore, the electrical resistance 23 corresponding to the conductivity of the cooling water is the electrical resistance (R) of the cooling water between the electrode rod 25 and the conductive electrode portion 27.
[0050]
Next, the operation and action will be described.
[0051]
The water quality control means 14 turns on the switch 22 for a predetermined time (several seconds) at a predetermined cooling water quality detection timing, that is, every predetermined time (for example, every day), and applies a DC voltage to the electrode rod 25. Apply. The conductivity of the water is determined according to the quality of the cooling water, and an electric current flows from the electrode rod 25 to the conductive electrode portion 27 on the inner surface of the cooling water tank 5 through the electric resistance (R) of the cooling water, resulting in a detection resistance (Rs). The same current flows. The water quality control means 14 inputs a voltage corresponding to the current flowing through the detection resistor 24 and monitors the voltage change due to the water quality deterioration of the cooling water.
[0052]
Thereafter, as the operation time elapses, the condensed water in the condensed water tank 4 opened to the atmosphere is deteriorated in water quality due to pollutants in the atmosphere, and the conductive ions dissolved into the cooling water path 10 from the heat exchanger 12 However, water quality deterioration will occur. Due to this water quality deterioration, in the vicinity of a predetermined value which is the life limit of the water quality treatment means 8 (in the range C in which the time differential (K) of the electrical resistance of the cooling water in FIG. 2 changes from AA ′ to BB ′. The water quality control means 14 determines that the life of the water quality treatment means 8 (for example, ion removal filter) has reached its limit, and thereafter performs the same operation as in the first to third embodiments. .
[0053]
Therefore, compared to a configuration in which an AC voltage is applied, such as an electrodeionization device, the control configuration is simple, and since the DC voltage is applied only for about one second per day rather than continuous energization, the cooling water is electrically There is no disassembly. For the user, the convenience of being able to perform maintenance in advance before troubles occur by detecting the deterioration of the quality of the cooling water due to the life of the water quality treatment means 8 with a simple and inexpensive configuration. It becomes a good fuel cell power generator.
[0054]
(Embodiment 6)
A sixth embodiment of the present invention will be described with reference to FIG.
[0055]
FIG. 6 is a configuration diagram of the water quality detection means in the cooling water tank of the fuel cell power generator according to Embodiment 5 of the present invention. In FIG. 6, one electrode rod provided in 25 cooling water tanks 5 is ionized. Is an electrode rod made of a material that hardly dissolves, for example, a carbon electrode made of carbon or an electrode whose surface is coated with platinum. In addition, the packing 26 and the conductive electrode portion 27 are the same as those in the fifth embodiment.
[0056]
Next, the operation and action will be described.
[0057]
The water quality control means 14 performs the same operation and action as in the fifth embodiment. However, since the electrode rod 25 is an electrode rod made of a material that does not easily elute ions, there is no deterioration in cooling water quality due to ions eluting from the electrode rod itself.
[0058]
Therefore, it is easy for the user to detect the deterioration of the cooling water quality due to the life of the water quality treatment means 8 in a simple, inexpensive and optimal construction material configuration as a water quality detection means before the operation is disturbed. Therefore, the fuel cell power generator can be easily maintained.
[0059]
In the above embodiment, only the electrode rod 25 is made of a material that does not easily elute ions, but it goes without saying that the effect is further increased if the conductive material inside the cooling water tank is made of the same material.
[0060]
【The invention's effect】
As is clear from the above description, according to the fuel cell power generator of the present invention, the following effects can be obtained.
[0061]
By predicting the life in advance before the user is impeded by the deterioration of the cooling water quality due to the life of the water quality treatment means, and informing them when the life limit of the water quality treatment means is judged, Can prompt maintenance.
[Brief description of the drawings]
FIG. 1 is a block configuration diagram of a fuel cell power generator according to Embodiment 1 of the present invention. FIG. 2 is a relationship diagram between electrical resistance (R) of cooling water and operating time (T) in a cooling water tank of the present invention. FIG. 3 is a block configuration diagram of a fuel cell power generation device according to a second embodiment of the present invention. FIG. 4 is a block configuration diagram of a fuel cell power generation device according to a third embodiment of the present invention. FIG. 6 is a block diagram of the water quality detection means in the cooling water tank of the fuel cell power generator in FIG. 6. FIG. 7 is a block diagram of the water quality detection means in the cooling water tank of the fuel cell power generator in Embodiment 5 of the present invention. Block diagram of the fuel cell power generator in Japan 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Fuel cell 2, 3 Condensing means 4 Condensation tank 5 Cooling water tank 6 Water supply means 7 Water supply path 8 Water quality treatment means 9 Water discharge path 13 Water quality detection means 15 Notification means

Claims (7)

燃料ガス及び酸化剤ガスを用いて発電を行なう燃料電池と、前記燃料電池を冷却する冷却水を貯える冷却水タンクと、前記燃料電池から排出される燃料ガス及び酸化剤ガス中の水分および/または燃料ガスを供給する改質器より排出される燃焼排ガス中の水分を冷却し含有水蒸気を凝縮させる凝縮手段と、前記凝縮手段で凝縮した凝縮水を貯える凝縮水タンクと、前記凝縮水タンクより前記冷却水タンクに水を供給する水供給手段を有する水供給路と、前記冷却水タンク内部の余剰冷却水を前記凝縮水タンクに排出する水排出路と、前記水供給路に水の水質を調整する水質処理手段と、前記冷却水の水質を検知する水質検知手段と、前記水質検知手段により検知した水質の劣化速度が所定値に到達したとき前記水質処理手段の寿命限界であると判断する水質制御手段とを具備する燃料電池発電装置。A fuel cell that generates power using fuel gas and oxidant gas; a cooling water tank that stores cooling water that cools the fuel cell; moisture in the fuel gas and oxidant gas discharged from the fuel cell; and / or Condensing means for cooling the moisture in the combustion exhaust gas discharged from the reformer supplying the fuel gas and condensing the contained water vapor, a condensed water tank for storing condensed water condensed by the condensing means, and the condensed water tank A water supply path having water supply means for supplying water to the cooling water tank, a water discharge path for discharging excess cooling water inside the cooling water tank to the condensed water tank, and adjusting water quality in the water supply path The water quality treatment means, the water quality detection means for detecting the water quality of the cooling water, and the life limit of the water quality treatment means when the water quality degradation rate detected by the water quality detection means reaches a predetermined value. Fuel cell power plant comprising a water quality control means for determining. 前記水供給路は、ぞれぞれ水質処理手段を有する複数の分岐した流路と、前記流路を切り換える流路切換手段とを具備し、水質劣化速度が所定値に到達したとき、前記流路切換手段により水質処理手段を切り換えることを特徴とする請求項1記載の燃料電池発電装置。The water supply path includes a plurality of branched flow paths each having a water quality treatment means and a flow path switching means for switching the flow paths, and when the water quality deterioration rate reaches a predetermined value, 2. The fuel cell power generator according to claim 1, wherein the water quality treatment means is switched by the path switching means. 前記流路切換手段により水質処理手段を切り換えたことを使用者に報知する報知手段を有することを特徴とする請求項2項記載の燃料電池発電装置。3. The fuel cell power generator according to claim 2, further comprising a notifying means for notifying a user that the water quality processing means has been switched by the flow path switching means. 前記水質検知手段は、冷却水タンク中の複数の電極棒間に所定時間毎に直流電圧を印加された際の前記電極棒間の通電電流値から算出された冷却水の電気抵抗の時間微分を水質劣化速度として検知することを特徴とする請求項1〜3のいずれかに記載の燃料電池発電装置。The water quality detection means calculates the time differential of the electrical resistance of the cooling water calculated from the current value between the electrode rods when a DC voltage is applied between the plurality of electrode rods in the cooling water tank every predetermined time. The fuel cell power generation device according to claim 1, wherein the fuel cell power generation device is detected as a water quality deterioration rate. 前記水質検知手段は、冷却水タンク中の1本の電極棒と導電性材料で内部を構成した冷却水タンクとの間に所定時間毎に直流電圧を印加された際の電極棒と冷却水タンク内部の導電性材料間の通電電流値から算出された冷却水の電気抵抗の時間微分を水質劣化速度として検知することを特徴とする請求項1〜3のいずれかに記載の燃料電池発電装置。The water quality detecting means includes an electrode rod and a cooling water tank when a DC voltage is applied every predetermined time between one electrode rod in the cooling water tank and a cooling water tank constituted by an electrically conductive material. The fuel cell power generation device according to any one of claims 1 to 3, wherein a time derivative of the electrical resistance of the cooling water calculated from an energization current value between internal conductive materials is detected as a water quality deterioration rate. 前記水質検知手段は、冷却水タンク中の1本のイオンが溶出しにくい電極棒と導電性材料で内部を構成した冷却水タンクとの間に所定時間毎に直流電圧を印加された際の電極棒と冷却水タンク内部の導電性材料間の通電電流値から算出された冷却水の電気抵抗の時間微分を水質劣化速度として検知することを特徴とする請求項1〜3のいずれかに記載の燃料電池発電装置。The water quality detecting means is an electrode when a DC voltage is applied every predetermined time between an electrode rod in which one ion in the cooling water tank is difficult to elute and a cooling water tank constituted by an electrically conductive material. The time differential of the electrical resistance of the cooling water calculated from the electric current value between the rod and the conductive material inside the cooling water tank is detected as a water quality deterioration rate. Fuel cell power generator. 水質検知手段により検知した水質の劣化速度が所定値に到達したとき報知する報知手段をさらに備えることを特徴とする請求項1記載の燃料電池発電装置。2. The fuel cell power generator according to claim 1, further comprising notification means for notifying when the water quality deterioration rate detected by the water quality detection means reaches a predetermined value.
JP2003173175A 2003-06-18 2003-06-18 Fuel cell power generator Pending JP2005011619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003173175A JP2005011619A (en) 2003-06-18 2003-06-18 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003173175A JP2005011619A (en) 2003-06-18 2003-06-18 Fuel cell power generator

Publications (1)

Publication Number Publication Date
JP2005011619A true JP2005011619A (en) 2005-01-13

Family

ID=34097074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173175A Pending JP2005011619A (en) 2003-06-18 2003-06-18 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP2005011619A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088053A1 (en) * 2005-02-18 2006-08-24 Matsushita Electric Industrial Co., Ltd. Fuel cell system and method of operating the same
JP2009199759A (en) * 2008-02-19 2009-09-03 Aisin Seiki Co Ltd Water purifying system for fuel cell
US8053131B2 (en) 2008-08-14 2011-11-08 Hyundai Motor Company Apparatus and method for determining deterioration of a fuel cell and method for preventing deterioration of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088053A1 (en) * 2005-02-18 2006-08-24 Matsushita Electric Industrial Co., Ltd. Fuel cell system and method of operating the same
CN100448085C (en) * 2005-02-18 2008-12-31 松下电器产业株式会社 Fuel cell system and method of operating the same
JP4971130B2 (en) * 2005-02-18 2012-07-11 パナソニック株式会社 Fuel cell system and operation method thereof
US8445158B2 (en) 2005-02-18 2013-05-21 Panasonic Corporation Fuel cell system and operation method thereof
JP2009199759A (en) * 2008-02-19 2009-09-03 Aisin Seiki Co Ltd Water purifying system for fuel cell
US8053131B2 (en) 2008-08-14 2011-11-08 Hyundai Motor Company Apparatus and method for determining deterioration of a fuel cell and method for preventing deterioration of the same

Similar Documents

Publication Publication Date Title
US7981555B2 (en) Method of operating a fuel cell system
EP1299309B1 (en) Improved electrodeionization system
JP5103015B2 (en) Method for maintaining performance in electrolyzed functional water generator
US9099700B2 (en) Fuel cell system and warming up completion determining method for the same
TWI511618B (en) Induction heating roller device
KR930007818A (en) Control device of continuous electrolytic ionized water generator
RU2010137848A (en) FAST SIGNATED HEATING OF A FLUID
US20080286613A1 (en) Fuel cell system
CN110828865A (en) Fuel cell thermal management system and method
JP2005011619A (en) Fuel cell power generator
JP2004502282A (en) Polymer electrolyte membrane fuel cell, fuel cell system and method of operation
EP2233441A1 (en) Electrolysis water generator
JP5915691B2 (en) Fuel cell system
JP2009070576A (en) Fuel cell system and deterioration detection device
JP2008243431A (en) Liquid circulation system
JP5332089B2 (en) FUEL CELL SYSTEM AND METHOD FOR STOPPING FUEL CELL SYSTEM
JP2006086014A (en) Fuel cell system
CN102397009A (en) Water drinker with filter material and filter material cleaning method
WO2018074417A1 (en) Hydrogen water server
JP2010251103A (en) Fuel cell system
WO2008007740A1 (en) Fuel cell system
JP2004020145A (en) Water heater
JP2008243565A (en) Gas measurement method for fuel cell, gas measurement device for fuel cell, and fuel cell system
JP2001327968A (en) Electrolytic water generating device
JP2004122038A (en) Water cooling apparatus having water quality control unit