JP2005010338A - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
JP2005010338A
JP2005010338A JP2003173072A JP2003173072A JP2005010338A JP 2005010338 A JP2005010338 A JP 2005010338A JP 2003173072 A JP2003173072 A JP 2003173072A JP 2003173072 A JP2003173072 A JP 2003173072A JP 2005010338 A JP2005010338 A JP 2005010338A
Authority
JP
Japan
Prior art keywords
substrate
film
optical element
distortion
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003173072A
Other languages
Japanese (ja)
Inventor
Hirotaka Fukushima
浩孝 福島
Ryuji Hiroo
竜二 枇榔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003173072A priority Critical patent/JP2005010338A/en
Publication of JP2005010338A publication Critical patent/JP2005010338A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element using a substrate which is minimal in the shape change due to the internal stresses of films and is not symmetrical with respect to the front and the rear. <P>SOLUTION: The distortion of the substrate is corrected by laminating the thin films having the suitable stresses and film unevenness. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜を利用した光学素子に関するものである。
【0002】
【従来の技術】
一般に真空蒸着法やスパッタリング法などによって薄膜を基板上に積層することで多くの光学素子が形成されている。例えば、基板片面に屈折率の高い膜と低い膜を交互に数十層積層することでミラーが形成されている。このように形成されたミラーは様々な製品に利用され、例えば半導体露光装置や液晶プロジェクター等に搭載されている。
【0003】
しかし薄膜によっては強い内部応力を持つものがあり、その内部応力によって基板の歪みが発生する場合がある。時としてこの基板の歪みが、その光学素子により実現される光学特性に大きく影響することがある。例えば、半導体露光装置では近年露光光の短波長化が進められており、その波長は真空紫外域にまでに達するようになった。そのためミラー等の光学素子の形状には高い面精度が要求されるようになり、薄膜の内部応力による基板の歪みが問題視されている。
【0004】
このような基板歪みの解消方法としては、まず薄膜の内部応力発生の抑制が挙げられる。しかし、光学素子として所望の光学特性を得る上で、膜材料や成膜プロセス、基板材料等において様々な制約が生じることが多く、薄膜の内部応力の発生を十分に抑えるには困難な点が多い。例えば、膜と基板の熱膨張係数の差が大きい場合では、基板を加熱して成膜すると膜の内部応力が非常に大きくなってしまう。よって、できる限り基板加熱は、避けたいところである。しかし真空蒸着法のような蒸着粒子のエネルギーが比較的小さい場合、成膜時の基板加熱は良好な膜特性を得るためには必須となる。
【0005】
また薄膜の内部応力を制御する以外では、基板裏面に別の薄膜を成膜して、その内部応力で反ってしまった基板を反り戻すという方法がある(例えば、特許文献1、特許文献2参照。)。この方法は基板の歪みを気にすることなく、良好な膜特性を得ることに専念できるため、非常に有効であると考えられる。
【0006】
【特許文献1】
特公昭62−18881号公報
【特許文献2】
特開平7−209516号公報
【0007】
【発明が解決しようとする課題】
然しながら、ただ基板裏面に歪み補正用の薄膜を積層するだけでは、基板歪みの解消ができない場合が多い。基板が表裏対称でない場合である。
【0008】
【課題を解決するための手段】
そこで、表裏対称でない基板を用いた光学素子においては、積層される面内において適当な膜ムラを持った薄膜を基板他面に積層することで、基板歪みを補正する(請求項1、2)。
【0009】
以上、本発明を整理して要約すれば以下の構成に集約できる。
【0010】
(1)単層または、屈折率の異なる2種類以上の膜からなる多層膜が積層された表裏対称でない基板と、これら単層または多層膜の内部応力により生じた基板歪みを補正することを目的とする前記基板他面に積層された薄膜から形成されていることを特徴とする光学素子。
【0011】
(2)前記(1)における基板歪みを補正することを目的とした薄膜が、積層される基板面内において適当な膜ムラを持つことを特徴とする光学素子。
【0012】
(3)前記(1)における基板の線熱膨張係数が0.6・10/℃以下であることを特徴とする光学素子。
【0013】
<作用>
本発明は、基板が表裏対称でない基板と所望の光学特性を持つ薄膜と、基板歪みを補正するための適当な膜ムラを持つ薄膜から構成された光学素子である。本光学素子は、基板が表裏対象でない基板を用いた光学素子であっても膜材料、成膜プロセス、基板材料に制約を掛けることなく基板の歪みを小さくすることが可能であり、その結果光学素子として所望の光学特性を容易に得ることができる。
【0014】
また特に真空蒸着法に代表されるような、成膜時に基板の加熱が必要であり、基板が合成石英等に代表される線熱膨張係数が0.6・10/℃以下である膨張率が小さいものを用いた場合は、膜と基板との間に生じる熱応力が大きくなり、成膜後の基板歪みが大きくなるが、本発明を用いることで容易に基板歪みが小さい所望の光学特性を有する光学素子が得られる。
【0015】
【発明の実施の形態】
以下、ミラーを例として、本発明の光学素子の実施形態を示す。言うにおよばず、本発明はこの例に限らない。
【0016】
図1に本発明ミラーの成膜装置である真空蒸着装置を示す。本発明は、真空蒸着法に限らず、スパッタリング法、IAD法、IBS法等が使用可能である。
【0017】
まず、基板8として、光学研磨したゼロ膨張結晶化ガラスを回転式ドーム7に載置する。そして、抵抗加熱蒸発源4が所有する複数の抵抗加熱ボード12にそれぞれMgF2,GdF3を載置する。その後、排気口14よりドライポンプ、メカニカルブースター、ターボ分子ポンプ、クライオポンプにより真空容器1内を10−5Pa台まで排気する。そしてシースヒーター11により、基板8を200℃まで加熱し、24時間程度保持する。これは、基板8の温度安定と共に、加熱し続けることで、真空容器1内の水分排気を容易にするためである。抵抗加熱蒸発源4および抵抗加熱ボード12により、MgF2を蒸着発させて基板8にMgF2を積層させる。この時、水晶振動式膜厚モニター9により基板8に積層されるMgF2の膜厚が光学的膜厚でλ/4になるように制御する。次にMgF2と同様にGdF3を基板8上に積層する。このときのGdF3膜厚が光学的膜厚でλ/4になるように制御する。このようなMgF2とGdF3の膜を基板へ交互に積層することでミラーを形成する。
【0018】
ミラー形成後に基板の形状を干渉計により把握する。そしてその形状から、基板裏面にどの程度の内部応力を持った膜をどの様なパターンの膜ムラで成膜すれば、基板の歪みが解消され、基板形状が元にもどるか予想する。そしてその補正用膜を形成するのに必要なシャッター10の形状、または基板へのマスキングをシミュレーションから決定する。シャッター10を成膜装置に設置し、ドーム7を20rpmで回転させながら基板裏面に基板歪み補正用の膜を成膜する。その後再び干渉計により基板形状を把握して、歪みの補正が完全でなければ、再び補正用の膜を形成することを繰り返す。
【0019】
以下、実施例を挙げ、本実施形態に形成されたミラーの具体例を示す。
【0020】
<実施例1>
図2に示すような上下非対称な基板に高屈折率膜をGdF3、低屈折率膜をMgF2として、それぞれ光学的膜厚λ/4分、交互に合わせて36層積層することからミラーでは、λ=243nmで、基板はショット社のzerodur基板(線熱膨張係数0.05・10/℃)を用いた場合、最大1/84λの歪みが生じる結果となった。しかし基板裏面にマスクを用い、MgF2膜が補正用膜として形成されているものは、薄膜形成後の元の基板形状に対する歪み量が最大λ/200に抑えられた。
【0021】
【発明の効果】
以上のように、本発明により、表裏対称でない基板であっても、歪みが補正され、所望の光学素子が容易に実現できる。
【図面の簡単な説明】
【図1】本発明ミラーの成膜装置である真空蒸着装置を示す図
【図2】実施例1で用いた基板を示す概略断面図
【符号の説明】
1 真空槽(真空容器)
2 メインバルブ
3 蒸発源(電子銃)
4 蒸発源(抵抗加熱)
5 膜ムラ用マスク
6 ガス導入口
7 ドーム
8 基板
9 水晶振動式膜厚モニター
10 シャッター
11 ヒーター
12 抵抗加熱ボード
13 電子銃用ハースライナー
14 排気口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical element using a thin film.
[0002]
[Prior art]
In general, many optical elements are formed by laminating a thin film on a substrate by a vacuum deposition method or a sputtering method. For example, the mirror is formed by alternately laminating several tens of layers of a high refractive index film and a low refractive film on one surface of the substrate. The mirror formed in this way is used in various products, and is mounted on, for example, a semiconductor exposure apparatus or a liquid crystal projector.
[0003]
However, some thin films have strong internal stress, and the internal stress may cause distortion of the substrate. Sometimes the distortion of the substrate can greatly affect the optical properties achieved by the optical element. For example, in semiconductor exposure apparatuses, the wavelength of exposure light has been shortened in recent years, and the wavelength has reached the vacuum ultraviolet region. Therefore, high surface accuracy is required for the shape of an optical element such as a mirror, and distortion of the substrate due to internal stress of the thin film is regarded as a problem.
[0004]
As a method for eliminating such substrate distortion, first, suppression of the generation of internal stress in the thin film can be mentioned. However, in order to obtain desired optical characteristics as an optical element, various restrictions often occur in film materials, film forming processes, substrate materials, etc., and it is difficult to sufficiently suppress the generation of internal stress in a thin film. Many. For example, when the difference between the thermal expansion coefficients of the film and the substrate is large, the internal stress of the film becomes very large when the film is formed by heating the substrate. Therefore, it is desirable to avoid substrate heating as much as possible. However, when the energy of the deposited particles is relatively small as in the vacuum deposition method, substrate heating during film formation is essential to obtain good film characteristics.
[0005]
In addition to controlling the internal stress of the thin film, there is a method in which another thin film is formed on the back surface of the substrate and the substrate warped by the internal stress is warped back (for example, see Patent Document 1 and Patent Document 2). .) This method is considered to be very effective because it can concentrate on obtaining good film characteristics without worrying about the distortion of the substrate.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 62-18881 [Patent Document 2]
JP-A-7-209516 [0007]
[Problems to be solved by the invention]
However, in many cases, it is not possible to eliminate substrate distortion by simply laminating a distortion correction thin film on the back surface of the substrate. This is a case where the substrate is not symmetrical.
[0008]
[Means for Solving the Problems]
Therefore, in an optical element using a substrate that is not symmetrical with respect to the front and back, the substrate distortion is corrected by laminating a thin film having an appropriate film unevenness in the laminated surface on the other surface of the substrate. .
[0009]
As described above, if the present invention is organized and summarized, it can be integrated into the following configurations.
[0010]
(1) The purpose is to correct a substrate that is not symmetrical with a single layer or a multilayer film composed of two or more kinds of films having different refractive indexes and substrate distortion caused by internal stress of these single layer or multilayer film. An optical element comprising: a thin film laminated on the other surface of the substrate.
[0011]
(2) The optical element characterized in that the thin film intended to correct the substrate distortion in (1) has an appropriate film unevenness in the surface of the substrate to be laminated.
[0012]
(3) The optical element, wherein the linear thermal expansion coefficient of the substrate in (1) is 0.6 · 10 8 / ° C. or less.
[0013]
<Action>
The present invention is an optical element composed of a substrate in which the substrate is not symmetrical, a thin film having desired optical characteristics, and a thin film having an appropriate film unevenness for correcting substrate distortion. This optical element can reduce the distortion of the substrate without restricting the film material, film formation process, and substrate material even if the substrate is an optical element using a substrate whose front and back are not targets. Desired optical characteristics as an element can be easily obtained.
[0014]
Further, in particular, the substrate needs to be heated at the time of film formation as typified by a vacuum deposition method, and the coefficient of linear thermal expansion represented by synthetic quartz or the like is 0.6 · 10 8 / ° C. or less. When a material with a small thickness is used, the thermal stress generated between the film and the substrate increases, and the substrate distortion after film formation increases. However, desired optical characteristics can be easily reduced by using the present invention. An optical element having the following can be obtained.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the optical element of the present invention will be described using a mirror as an example. Needless to say, the present invention is not limited to this example.
[0016]
FIG. 1 shows a vacuum deposition apparatus which is a film forming apparatus for a mirror of the present invention. The present invention is not limited to the vacuum vapor deposition method, and a sputtering method, an IAD method, an IBS method, or the like can be used.
[0017]
First, optically polished zero-expansion crystallized glass is placed on the rotary dome 7 as the substrate 8. Then, MgF2 and GdF3 are placed on the plurality of resistance heating boards 12 owned by the resistance heating evaporation source 4, respectively. Then, the inside of the vacuum vessel 1 is exhausted from the exhaust port 14 to the 10 −5 Pa level by a dry pump, mechanical booster, turbo molecular pump, or cryopump. Then, the substrate 8 is heated to 200 ° C. by the sheath heater 11 and held for about 24 hours. This is for facilitating the exhaustion of moisture in the vacuum vessel 1 by keeping the temperature of the substrate 8 stable and continuing to heat it. MgF 2 is vapor-deposited by the resistance heating evaporation source 4 and the resistance heating board 12, and MgF 2 is laminated on the substrate 8. At this time, the crystal vibration type film thickness monitor 9 controls the film thickness of MgF 2 laminated on the substrate 8 so that the optical film thickness becomes λ / 4. Next, GdF3 is laminated on the substrate 8 in the same manner as MgF2. The GdF3 film thickness at this time is controlled to be λ / 4 in terms of optical film thickness. A mirror is formed by alternately laminating such MgF2 and GdF3 films on a substrate.
[0018]
After the mirror is formed, the shape of the substrate is grasped by an interferometer. Based on the shape, it can be predicted that if a film having a certain degree of internal stress is formed on the back surface of the substrate with any pattern of film unevenness, the distortion of the substrate is eliminated and the substrate shape is restored. Then, the shape of the shutter 10 necessary for forming the correction film or the masking to the substrate is determined from the simulation. The shutter 10 is installed in a film forming apparatus, and a film for correcting substrate distortion is formed on the back surface of the substrate while rotating the dome 7 at 20 rpm. Thereafter, the substrate shape is again grasped by the interferometer, and if the correction of the distortion is not complete, the formation of the correction film is repeated again.
[0019]
Hereinafter, an example is given and the specific example of the mirror formed in this embodiment is shown.
[0020]
<Example 1>
As shown in FIG. 2, a high refractive index film is GdF3 and a low refractive index film is MgF2 on an asymmetrical substrate as shown in FIG. = 243 nm, and when using a Shotur zerodur substrate (linear thermal expansion coefficient 0.05 · 10 8 / ° C.), a maximum distortion of 1 / 84λ was generated. However, in the case where a mask is used on the back surface of the substrate and the MgF 2 film is formed as a correction film, the distortion amount with respect to the original substrate shape after the thin film formation is suppressed to a maximum of λ / 200.
[0021]
【The invention's effect】
As described above, according to the present invention, even if the substrate is not front / back symmetrical, distortion is corrected and a desired optical element can be easily realized.
[Brief description of the drawings]
FIG. 1 is a view showing a vacuum vapor deposition apparatus which is a film forming apparatus for a mirror of the present invention. FIG. 2 is a schematic sectional view showing a substrate used in Example 1.
1 Vacuum chamber (vacuum container)
2 Main valve 3 Evaporation source (electron gun)
4 Evaporation source (resistance heating)
5 Mask for film unevenness 6 Gas introduction port 7 Dome 8 Substrate 9 Crystal vibration type film thickness monitor 10 Shutter 11 Heater 12 Resistance heating board 13 Hearth liner 14 for electron gun Exhaust port

Claims (3)

単層または、屈折率の異なる2種類以上の膜からなる多層膜が積層された表裏対称でない基板と、これら単層または多層膜の内部応力により生じた基板歪みを補正することを目的とする前記基板他面に積層された薄膜から形成されていることを特徴とする光学素子。An object of the present invention is to correct a substrate distortion caused by an internal stress of a single layer or a multilayer film, and a non-symmetrical substrate in which a single layer or a multilayer film composed of two or more kinds of films having different refractive indexes is laminated. An optical element formed from a thin film laminated on the other surface of the substrate. 請求項1における基板歪みを補正することを目的とした薄膜が、積層される基板面内において適当な膜ムラを持つことを特徴とする光学素子。The optical element according to claim 1, wherein the thin film intended to correct the substrate distortion has an appropriate film unevenness in the surface of the substrate to be laminated. 請求項1における基板の線熱膨張係数が0.6・10/℃以下であることを特徴とする光学素子。2. The optical element according to claim 1, wherein the substrate has a linear thermal expansion coefficient of 0.6 · 10 8 / ° C. or less.
JP2003173072A 2003-06-18 2003-06-18 Optical element Withdrawn JP2005010338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003173072A JP2005010338A (en) 2003-06-18 2003-06-18 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003173072A JP2005010338A (en) 2003-06-18 2003-06-18 Optical element

Publications (1)

Publication Number Publication Date
JP2005010338A true JP2005010338A (en) 2005-01-13

Family

ID=34097003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173072A Withdrawn JP2005010338A (en) 2003-06-18 2003-06-18 Optical element

Country Status (1)

Country Link
JP (1) JP2005010338A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006363A1 (en) * 2004-07-09 2006-01-19 Daishinku Corporation Optical filter and method of manufacturing optical filter
JP2006178261A (en) * 2004-12-24 2006-07-06 Seiko Epson Corp Dielectric multilayer film filter and optical member
JP2006349775A (en) * 2005-06-13 2006-12-28 Seiko Epson Corp Optical element and optical apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006363A1 (en) * 2004-07-09 2006-01-19 Daishinku Corporation Optical filter and method of manufacturing optical filter
JPWO2006006363A1 (en) * 2004-07-09 2008-04-24 株式会社大真空 Optical filter and optical filter manufacturing method
JP4692486B2 (en) * 2004-07-09 2011-06-01 株式会社大真空 Optical filter and optical filter manufacturing method
JP2006178261A (en) * 2004-12-24 2006-07-06 Seiko Epson Corp Dielectric multilayer film filter and optical member
JP2006349775A (en) * 2005-06-13 2006-12-28 Seiko Epson Corp Optical element and optical apparatus

Similar Documents

Publication Publication Date Title
JP3808917B2 (en) Thin film manufacturing method and thin film
JPH08220304A (en) Optical product, exposure device or optical system using same, and production thereof
TW202132901A (en) Extreme ultraviolet mask blank hard mask materials
JP2005010338A (en) Optical element
JP2007063574A (en) Method for forming multilayer film and film-forming apparatus
JP2011150154A (en) Thin film and method of forming thin film
JP2011118043A (en) Method for manufacturing optical element
JP2009258406A (en) Dielectric multilayer film mirror and method of manufacturing the same
JP2002055212A (en) Prism and optical device using the same
JP2003221663A (en) Film-forming method and method for forming optical element
JP3608504B2 (en) Manufacturing method of optical component for infrared laser
US11249386B2 (en) Extreme ultraviolet mask with backside coating
JP6122045B2 (en) Waveplate manufacturing method
JPH0665738A (en) Device for film formation and method therefor
JP4793011B2 (en) Antireflection film forming method
JP3497236B2 (en) Anti-reflection coating for high precision optical components
JP2009272618A (en) Multilayer film reflector
TW202111420A (en) Extreme ultraviolet mask absorber materials
JPH11223707A (en) Optical member and its production
JP2003149404A (en) Optical thin film, its manufacturing method, optical element using optical thin film, optical system, and image pickup device, recording device and exposure device provided with optical system
TWI835896B (en) Extreme ultraviolet mask with backside coating
JP2005241740A (en) Manufacturing method for antireflection film
US20090166185A1 (en) Ion assisted deposition method for forming multilayer film
JP4556763B2 (en) Method for producing fluorine-based optical polymer film and reflection mirror for ultraviolet region
MacKay et al. Laser damage threshold results for sputtered coatings produced using different deposition technologies

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905