JP2005010040A - Sensor sheet for measurement of nip width - Google Patents

Sensor sheet for measurement of nip width Download PDF

Info

Publication number
JP2005010040A
JP2005010040A JP2003175162A JP2003175162A JP2005010040A JP 2005010040 A JP2005010040 A JP 2005010040A JP 2003175162 A JP2003175162 A JP 2003175162A JP 2003175162 A JP2003175162 A JP 2003175162A JP 2005010040 A JP2005010040 A JP 2005010040A
Authority
JP
Japan
Prior art keywords
nip width
electrode
sensor sheet
electrodes
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003175162A
Other languages
Japanese (ja)
Inventor
Masahiro Hatsuda
雅弘 初田
Juichi Ogami
寿一 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2003175162A priority Critical patent/JP2005010040A/en
Publication of JP2005010040A publication Critical patent/JP2005010040A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor sheet for measuring a nip width which measures the nip width with high precision on real time. <P>SOLUTION: On a film member 1, 1st electrodes R with 0.1 to 3mm intervals extending toward perpendicular directions to feeding direction of the film member to a roller are formed, and on the another film member 2, 2nd electrodes C with 2 to 50mm intervals extending in a feeding direction of the film member 2 are formed, wherein between the mutual adjacent electrodes C, C, only the C side of the 2nd electrode is coated with pressure sensitive-conductive ink 20 so as to be a mode of electrically insulated state, and the film members 1, 2, are mutually glued together while holding the pressure sensitive-conductive ink 20 inbetween. The intersection of the 1st electrode R, and the 2nd electrode C via the pressure sensitive-conductive ink 20 is made a pressurization detection cell. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、一対の金属ローラ、一対のゴムローラ、又は金属ローラとゴムローラ相互間に生じるニップ幅を計測するためのニップ幅計測用センサシートに関するものである。
【0002】
【従来の技術】
印刷機やラミネート機、製紙機械、プリンタ等、シート状のものの成形、加工、搬送にはローラが使用されており、その圧力とニップ幅(ローラが接触する幅)の管理は製品の歩留りと性能に重要な要素となっている。
【0003】
これまで、ニップ幅を計測する方法としては、所定の圧力で破裂発色する感圧フィルムを用いる方法と、計測するローラに任意のインクを付着させて紙等を挟んで、転写したインクの幅を読み取る方法があった。
【0004】
しかし、いずれの方法も、接触部分の境界を判断しづらく、読み取りにはメジャー等を使用するなど、煩雑かつ不正確になりがちな作業であった。また、計測した数値をパソコン上で記録、管理、分析するには、読み取った数値を手で入力する手間があった。
【0005】
ところで、現在、わが社が製造販売している圧力分布センサには、図8に示すように、フィルム8,9に印刷形成した行列電極80,90にそれぞれ感圧インク81,91を塗布し、行列電極80,90の対向する感圧インク81,91相互の交差部分の抵抗値を順次操作することで、加圧された位置と大きさを検出するものがある(例えば、特許文献1)。
【0006】
わが社は上記圧力分布センサを使用してニップ幅を測定するためのニップ幅計測用センサシートの開発に取りかかったが、完成には困難を極めていた。
【0007】
【特許文献1】
特許第3336429号公報(特に図2と図7)
【0008】
【発明が解決しようとする課題】
そこで、この発明では、高精度でニップ幅の計測がリアルタイムにできるニップ幅計測用センサシートを提供することを課題とする。
【0009】
【課題を解決するための手段】
(請求項1記載の発明)
この発明のニップ幅計測用センサシートは、一方のフィルム部材にローラへの送り込み方向と直角方向に延びる第1電極を0.1〜3mm間隔で形成し、他方のフィルム部材にローラへの送り込み方向に延びる第2電極を2〜50mm間隔で形成すると共に隣合う第2電極相互間が電気的絶縁状態となる態様で当該第2電極側のみに感圧導電性インクを塗布し、前記感圧導電性インクを挟み込む態様でフィルム部材相互を張り合わせて成り、感圧導電性インクを介した第1・第2電極の交点を加圧検出セルとしてある。
(請求項2記載の発明)
この発明のニップ幅計測用センサシートは、上記請求項1記載の発明に関し、加圧検出セルは、第1・第2電極間に通電し、加圧状態/非加圧状態を加圧検出セルで検出できるようになっている。
(請求項3記載の発明)
この発明のニップ幅計測用センサシートは、上記請求項1又は2記載の発明に関し、第1電極は行電極又は列電極の一方であり、第2電極は行電極又は列電極の一方である。
【0010】
この発明のニップ幅計測用センサシートにおける作用・効果については、発明の実施の形態の欄で明らかにする。
【0011】
【発明の実施の形態】
この発明の実施形態のニップ幅計測用センサシートについて以下に説明する。
〔実施形態1〕
図1はこの発明の実施形態のニップ幅計測用センサシートSをローラRL,RL相互間に挿入する直前の図、図2は前記ニップ幅計測用センサシートSの構成要素を示す平面図、図3は前記ニップ幅計測用センサシートSの分解斜視図、図4は前記ニップ幅計測用センサシートSの加圧検出セルXを示している。
(ニップ幅計測用センサシートSについて)
このニップ幅計測用センサシートSは、図1〜図4に示すように、一方のフィルム部材1にローラRLへの送り込み方向と直角方向に延びる44本の第1電極R1〜R44を0.5mm間隔で印刷形成し、他方のフィルム部材2にローラRLへの送り込み方向に延びる6本の第2電極C1〜C6を7.5mm間隔で印刷形成すると共に隣合う第2電極相互間が絶縁状態である態様で当該第2電極C1〜C6側のみに感圧導電性インク20を塗布し、前記感圧導電性インク20を第1・第2電極R1〜R44,C1〜C6で挟み込む態様でフィルム部材1,2相互を接着剤で張り合わせて成る。
【0012】
ここで、上記した第1・第2電極R1〜R44,C1〜C6は、図1に示すように、導電ライン11,21を介して端子12,22に接続されており、第1電極R1〜R44、導電ライン11及び端子12はフィルム部材1に一体的に、第2電極20、導電ライン21及び端子22はフィルム部材2に一体的に、印刷形成されている。
【0013】
また、図4に示すように、感圧導電性インク20を介した第1・第2電極R1〜R44,C1〜C6の交点を加圧検出セルX(6×44=264個)としてある。
【0014】
フィルム部材1,2は、可撓性を有するポリエステル樹脂等の各種樹脂で構成され、厚みは25μmに設定(10〜200μmの範囲で設定可能)してある。
【0015】
第1・第2電極R1〜R44,C1〜C6、導電ライン12,22、端子13,23は、導電性インクにより形成してあり、この導電性インクは具体的には各種レジン(例えばポリエステルレジン)に銀の粉末を練り込んで成る所謂銀インクとしてある。なお、銀インクによる印刷形成の厚みは10μmに設定(5〜20μmの範囲で設定可能)してある。
【0016】
感圧導電性インク20は、レジンに半導体粒子と導体粒子を含むインクにより構成されている。なお、感圧導電性インク20による印刷形成の厚みは10μmに設定(5〜50μmの範囲で設定可能)に設定してある。
【0017】
したがって、このニップ幅計測用センサシートSにおけるニップ幅検出部の厚みは、80μm程度になっている。
(パーソナルコンピュータによるニップ幅計測用センサシートSからの出力の読み取り回路等)
ニップ幅計測用センサシートSからの出力を読み取るための回路は、図7に示すように、コネクタCT及びインターフェイス回路IFを介してコンピュータCPと接続されている。
▲1▼先ず、上記したニップ幅計測用センサシートSからの出力を読み取るときには、図1や図7に示す如く前記読取り回路に具備させたコネクタCTをニップ幅計測用センサシートSの端子12,22に接続する。
▲2▼インターフェイス回路IFからのクロック信号によって行カウンター70はカウントを「1」だけ増加すると、行カウンタ70のカウントと対応してマルチプレクサ71のスイッチが切り替わる。したがって、印加電圧(−V)は、増幅器73(この増幅器73の入力側は抵抗72により接地電位に保たれている)を介して行電極R1〜R44へと順に印加される。
▲3▼行電極R1への電圧の印加から次の行電極R2への電圧の印加までの間に、列カウンター77からの出力によりマルチプレクサ76のスイッチが切り替わり、列電極C1〜C6の順にスキャンされる。このスキャンは各行電極R1〜R44において行われる。
▲4▼ここで、感圧部Xに圧力が加わると、スイッチ60が閉状態になって列電極C1〜C6に順に電流が流れ、それぞれの列の抵抗74及び増幅器75で反転増幅される。反転増幅された出力電圧は列のマルチプレクサ76により順次、レジスタ78に送られデジタル信号としてインターフェイス回路IFに送られ、さらにコンピュータCPに転送される。
▲5▼ なお、上記したコンピュータCP、インターフェイス回路IF及び出力の読取り回路の基本的動作は公知である(特表昭62−502665 号に開示されている)ので詳述しない。
(ニップ幅計測用センサシートSを使用した場合の優れた点について)
▲1▼これまで感圧フィルム等で間接的にしか見ることができなかったローラRLの当たり幅(ニップ幅)をリアルタイムに直接確認、順次に計測できる。精度については、フィルム部材1にはローラRLへの送り込み方向と直角方向に延びる44本の第1電極R1〜R44を0.5mm間隔で印刷形成してあるから、0.5mm程度の高精度で認識できる。
▲2▼ニップ幅計測用センサシートSは表面がポリエステル樹脂等の樹脂で形成されているので、繰り返しての使用が可能となり、大幅なランニングコストの低減が可能である。
▲3▼採取したデータはデジタル値としてコンピュータCP上に転送できるので、管理、解析が容易である。
〔実施形態2〕
上記した実施形態1のニップ幅計測用センサシートSでは、行電極の層幅(mm)は分解能(ピッチ)×電極数=0.5×44=22mmにしかならないので、大きなニップ幅を計測する際には、幅が狭く使いづらい。
【0018】
そこで、この実施形態2では、図5に示すように、平面視で上下2段に6個の列電極C1〜C6,C7〜C12を配置し、行電極R1〜R44を2回取り回して行電極の総幅を実施形態1の2倍程度に増やしたものである。
【0019】
この実施形態2のニップ幅計測用センサシートSでは、広いニップ幅であっても高精度でニップ幅の計測がリアルタイムにでき、実施形態1の欄で記載した他の作用・効果をも有している。
〔実施形態3〕
この実施形態3では、図6に示すように、平面視で上下8段に6個の列電極C1〜C6,C7〜C12,C13〜C18,C19〜C24,C25〜C30,C31〜C36,C37〜C42,C43〜C48を配置し、行電極R1〜R44を8回取り回して行電極の総幅を実施形態1の8倍程度に増やしたものである。
【0020】
この実施形態3のニップ幅計測用センサシートSでは、ローラRL,RLの回転させながらローラRL,RL相互間に挿入することで、ローラ全周のニップ幅を計測でき、その他、実施形態1の欄で記載した他の作用・効果をも有している。
〔他の実施形態〕
ニップ幅の計測精度を変えるため、上記した実施形態にかえて、第1電極を0.1〜3mm(好ましくは0.1〜1mm、更に好ましくは0.1〜0.5mm)間隔で印刷形成することができる。
【0021】
また、上記した実施形態では、第2電極を7.5mm間隔で印刷形成したものであるが、これに変えて、第2電極を2〜50mm間隔で印刷形成することができる。
【0022】
第1・2電極は、インクジェット、エッチングの方法で形成するようにしてもよい。
【0023】
【発明の効果】
この発明は上記のような構成であるから次の効果を有する。
【0024】
発明の実施の形態の欄に記載した内容から、高精度でニップ幅の計測がリアルタイムにできるニップ幅計測用センサシートを提供できた。
【図面の簡単な説明】
【図1】この発明の実施形態1のニップ幅計測用センサシートをローラ相互間に挿入する直前の図。
【図2】前記ニップ幅計測用センサシートの構成要素を示す平面図。
【図3】前記ニップ幅計測用センサシートの分解斜視図。
【図4】前記ニップ幅計測用センサシートの加圧検出セルを示している平面図。
【図5】この発明の実施形態2のニップ幅計測用センサシートの構成要素を示す平面図。
【図6】この発明の実施形態3のニップ幅計測用センサシートをローラ相互間に挿入する直前の図。
【図7】前記ニップ幅計測用センサシートの出力読取り回路の説明図。
【図8】先行技術のニップ幅計測用センサシートの分解斜視図。
【符号の説明】
RL ローラ
R 第1電極
C 第2電極
1 フィルム部材
2 フィルム部材
11 導電ライン
12 端子
20 感圧導電性インク
21 導電ライン
22 端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pair of metal rollers, a pair of rubber rollers, or a sensor sheet for measuring a nip width for measuring a nip width generated between the metal roller and the rubber roller.
[0002]
[Prior art]
Rollers are used for forming, processing, and conveying sheet-like products such as printing machines, laminating machines, papermaking machines, printers, etc., and managing the pressure and nip width (width that the rollers come in contact with) is the product yield and performance. It has become an important element.
[0003]
Up to now, the nip width is measured by using a pressure-sensitive film that bursts at a predetermined pressure, or by attaching arbitrary ink to the roller to be measured and sandwiching paper or the like to determine the width of the transferred ink. There was a way to read.
[0004]
However, both methods are difficult and difficult to determine the boundary of the contact portion, and are difficult and inaccurate, such as using a measure for reading. Also, in order to record, manage, and analyze the measured values on a personal computer, it is time-consuming to input the read values manually.
[0005]
By the way, as shown in FIG. 8, the pressure distribution sensors currently manufactured and sold by our company apply pressure-sensitive inks 81 and 91 to the matrix electrodes 80 and 90 printed on the films 8 and 9, respectively. There is one that detects the pressed position and size by sequentially operating the resistance values of the intersecting portions of the pressure sensitive inks 81 and 91 facing each other of the matrix electrodes 80 and 90 (for example, Patent Document 1).
[0006]
Our company started developing a sensor sheet for measuring the nip width to measure the nip width using the pressure distribution sensor, but it was extremely difficult to complete.
[0007]
[Patent Document 1]
Japanese Patent No. 3336429 (especially FIGS. 2 and 7)
[0008]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a sensor sheet for nip width measurement that can measure the nip width with high accuracy in real time.
[0009]
[Means for Solving the Problems]
(Invention of Claim 1)
In the sensor sheet for measuring the nip width according to the present invention, the first electrode extending in a direction perpendicular to the feeding direction to the roller is formed on one film member at intervals of 0.1 to 3 mm, and the feeding direction to the roller is formed on the other film member. The pressure sensitive conductive ink is applied only to the second electrode side in such a manner that the second electrodes extending in the direction of 2 to 50 mm are formed at intervals of 2 to 50 mm and the adjacent second electrodes are electrically insulated from each other. The film member is bonded to each other in such a manner as to sandwich the property ink, and the intersection of the first and second electrodes through the pressure-sensitive conductive ink is used as a pressure detection cell.
(Invention of Claim 2)
The sensor sheet for nip width measurement according to the present invention relates to the invention according to claim 1, wherein the pressure detection cell is energized between the first and second electrodes, and the pressure detection cell is in a pressurized state / non-pressurized state. Can be detected.
(Invention of Claim 3)
The sensor sheet for nip width measurement according to the present invention relates to the invention according to claim 1 or 2, wherein the first electrode is one of a row electrode or a column electrode, and the second electrode is one of a row electrode or a column electrode.
[0010]
The actions and effects of the sensor sheet for nip width measurement according to the present invention will be clarified in the column of the embodiment of the present invention.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A nip width measurement sensor sheet according to an embodiment of the present invention will be described below.
Embodiment 1
FIG. 1 is a view immediately before a sensor sheet S for nip width measurement according to an embodiment of the present invention is inserted between rollers RL and RL. FIG. 2 is a plan view showing components of the sensor sheet S for nip width measurement. 3 is an exploded perspective view of the sensor sheet S for nip width measurement, and FIG. 4 shows a pressure detection cell X of the sensor sheet S for nip width measurement.
(About sensor sheet S for nip width measurement)
As shown in FIGS. 1 to 4, the nip width measurement sensor sheet S includes 44 first electrodes R <b> 1 to R <b> 44 extending in a direction perpendicular to the feeding direction to the roller RL on one film member 1. 6 second electrodes C1 to C6 extending in the feeding direction to the roller RL are printed and formed on the other film member 2 at intervals of 7.5 mm, and the adjacent second electrodes are insulated from each other. In one aspect, the pressure sensitive conductive ink 20 is applied only to the second electrodes C1 to C6 side, and the pressure sensitive conductive ink 20 is sandwiched between the first and second electrodes R1 to R44 and C1 to C6. 1, 2 are bonded together with an adhesive.
[0012]
Here, the first and second electrodes R1 to R44 and C1 to C6 described above are connected to the terminals 12 and 22 via the conductive lines 11 and 21, as shown in FIG. R44, the conductive line 11 and the terminal 12 are printed and formed integrally with the film member 1, and the second electrode 20, the conductive line 21 and the terminal 22 are printed and formed integrally with the film member 2.
[0013]
Further, as shown in FIG. 4, the intersections of the first and second electrodes R1 to R44 and C1 to C6 through the pressure-sensitive conductive ink 20 are set as the pressure detection cells X (6 × 44 = 264).
[0014]
The film members 1 and 2 are made of various resins such as a polyester resin having flexibility, and the thickness is set to 25 μm (can be set in a range of 10 to 200 μm).
[0015]
The first and second electrodes R1 to R44, C1 to C6, the conductive lines 12 and 22, and the terminals 13 and 23 are made of conductive ink, and the conductive ink is specifically made of various resins (for example, polyester resin). ) Is a so-called silver ink in which silver powder is kneaded. In addition, the thickness of the print formation by silver ink is set to 10 μm (can be set in the range of 5 to 20 μm).
[0016]
The pressure-sensitive conductive ink 20 is composed of an ink containing semiconductor particles and conductor particles in a resin. In addition, the thickness of the print formation by the pressure-sensitive conductive ink 20 is set to 10 μm (can be set in the range of 5 to 50 μm).
[0017]
Therefore, the thickness of the nip width detecting portion in the nip width measuring sensor sheet S is about 80 μm.
(A circuit for reading output from the sensor sheet S for nip width measurement by a personal computer)
The circuit for reading the output from the sensor sheet S for measuring the nip width is connected to the computer CP via the connector CT and the interface circuit IF as shown in FIG.
(1) First, when reading the output from the sensor sheet S for measuring the nip width, the connector CT provided in the reading circuit is connected to the terminals 12 of the sensor sheet S for measuring the nip width as shown in FIGS. 22 is connected.
(2) When the row counter 70 increases the count by “1” by the clock signal from the interface circuit IF, the switch of the multiplexer 71 is switched corresponding to the count of the row counter 70. Therefore, the applied voltage (−V) is sequentially applied to the row electrodes R1 to R44 via the amplifier 73 (the input side of the amplifier 73 is kept at the ground potential by the resistor 72).
(3) Between the application of the voltage to the row electrode R1 and the application of the voltage to the next row electrode R2, the switch of the multiplexer 76 is switched by the output from the column counter 77, and the column electrodes C1 to C6 are scanned in this order. The This scan is performed at each of the row electrodes R1 to R44.
{Circle around (4)} When a pressure is applied to the pressure sensing part X, the switch 60 is closed and a current flows in sequence to the column electrodes C1 to C6, and is inverted and amplified by the resistors 74 and the amplifiers 75 of the respective columns. The inverted and amplified output voltage is sequentially sent to the register 78 by the column multiplexer 76, sent to the interface circuit IF as a digital signal, and further transferred to the computer CP.
(5) The basic operation of the computer CP, the interface circuit IF, and the output reading circuit described above is well known (disclosed in Japanese Patent Publication No. 62-502665) and will not be described in detail.
(Excellent points when using sensor sheet S for nip width measurement)
(1) The hitting width (nip width) of the roller RL, which could only be seen indirectly with a pressure-sensitive film or the like, can be directly confirmed in real time and sequentially measured. As for accuracy, since the 44 first electrodes R1 to R44 extending in the direction perpendicular to the feeding direction to the roller RL are printed on the film member 1 at intervals of 0.5 mm, the accuracy is about 0.5 mm. Can be recognized.
(2) Since the surface of the sensor sheet S for measuring the nip width is formed of a resin such as polyester resin, it can be used repeatedly, and the running cost can be greatly reduced.
(3) Since the collected data can be transferred as a digital value on the computer CP, management and analysis are easy.
[Embodiment 2]
In the sensor sheet S for nip width measurement according to Embodiment 1 described above, the layer width (mm) of the row electrodes is only resolution (pitch) × number of electrodes = 0.5 × 44 = 22 mm, and thus a large nip width is measured. In some cases, the width is narrow and difficult to use.
[0018]
Therefore, in the second embodiment, as shown in FIG. 5, six column electrodes C1 to C6 and C7 to C12 are arranged in two upper and lower stages in a plan view, and the row electrodes R1 to R44 are routed twice to form the row electrodes. Is increased to about twice that of the first embodiment.
[0019]
The sensor sheet S for nip width measurement according to the second embodiment can measure the nip width with high accuracy in real time even with a wide nip width, and has other functions and effects described in the column of the first embodiment. ing.
[Embodiment 3]
In the third embodiment, as shown in FIG. 6, six column electrodes C1 to C6, C7 to C12, C13 to C18, C19 to C24, C25 to C30, C31 to C36, and C37 are arranged in eight stages in plan view. -C42, C43-C48 are arranged, the row electrodes R1-R44 are routed eight times, and the total width of the row electrodes is increased to about eight times that of the first embodiment.
[0020]
In the sensor sheet S for measuring the nip width of the third embodiment, the nip width of the entire circumference of the roller can be measured by inserting the roller RL and RL between the rollers RL and RL while rotating the rollers RL and RL. It has other functions and effects described in the column.
[Other Embodiments]
In order to change the measurement accuracy of the nip width, the first electrode is printed at intervals of 0.1 to 3 mm (preferably 0.1 to 1 mm, more preferably 0.1 to 0.5 mm) instead of the above-described embodiment. can do.
[0021]
In the above-described embodiment, the second electrodes are printed and formed at intervals of 7.5 mm. Alternatively, the second electrodes can be printed and formed at intervals of 2 to 50 mm.
[0022]
The first and second electrodes may be formed by ink jet or etching methods.
[0023]
【The invention's effect】
Since the present invention is configured as described above, it has the following effects.
[0024]
From the contents described in the column of the embodiment of the invention, a sensor sheet for nip width measurement capable of measuring the nip width with high accuracy in real time could be provided.
[Brief description of the drawings]
FIG. 1 is a view just before a nip width measurement sensor sheet according to Embodiment 1 of the present invention is inserted between rollers.
FIG. 2 is a plan view showing components of the sensor sheet for nip width measurement.
FIG. 3 is an exploded perspective view of the sensor sheet for measuring the nip width.
FIG. 4 is a plan view showing a pressure detection cell of the sensor sheet for measuring the nip width.
FIG. 5 is a plan view showing components of a nip width measurement sensor sheet according to Embodiment 2 of the present invention.
FIG. 6 is a view immediately before inserting a sensor sheet for nip width measurement according to Embodiment 3 of the present invention between rollers.
FIG. 7 is an explanatory diagram of an output reading circuit of the nip width measurement sensor sheet.
FIG. 8 is an exploded perspective view of a sensor sheet for nip width measurement according to the prior art.
[Explanation of symbols]
RL roller R first electrode C second electrode 1 film member 2 film member 11 conductive line 12 terminal 20 pressure-sensitive conductive ink 21 conductive line 22 terminal

Claims (3)

一方のフィルム部材にローラへの送り込み方向と直角方向に延びる第1電極を0.1〜3mm間隔で形成し、他方のフィルム部材にローラへの送り込み方向に延びる第2電極を2〜50mm間隔で形成すると共に隣合う第2電極相互間が電気的絶縁状態となる態様で当該第2電極側のみに感圧導電性インクを塗布し、前記感圧導電性インクを挟み込む態様でフィルム部材相互を張り合わせて成り、感圧導電性インクを介した第1・第2電極の交点を加圧検出セルとしてあるニップ幅計測用センサシート。The first electrode extending in the direction perpendicular to the feeding direction to the roller is formed on one film member at intervals of 0.1 to 3 mm, and the second electrode extending in the feeding direction to the roller is formed on the other film member at intervals of 2 to 50 mm. The pressure sensitive conductive ink is applied only to the second electrode side so that the adjacent second electrodes are electrically insulated from each other, and the film members are bonded together in such a manner that the pressure sensitive conductive ink is sandwiched between them. A nip width measurement sensor sheet in which the intersection of the first and second electrodes via the pressure-sensitive conductive ink is used as a pressure detection cell. 加圧検出セルは、第1・第2電極間に通電し、加圧状態/非加圧状態を加圧検出セルで検出できるようになっていることを特徴とする請求項1記載のニップ幅計測用センサシート。2. The nip width according to claim 1, wherein the pressure detection cell is configured such that a pressure state / non-pressure state can be detected by the pressure detection cell by energizing between the first and second electrodes. Sensor sheet for measurement. 第1電極は行電極又は列電極の一方であり、第2電極は行電極又は列電極の一方であることを特徴とする請求項1又は2記載のニップ幅計測用センサシート。The sensor sheet for nip width measurement according to claim 1 or 2, wherein the first electrode is one of a row electrode or a column electrode, and the second electrode is one of a row electrode or a column electrode.
JP2003175162A 2003-06-19 2003-06-19 Sensor sheet for measurement of nip width Pending JP2005010040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175162A JP2005010040A (en) 2003-06-19 2003-06-19 Sensor sheet for measurement of nip width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175162A JP2005010040A (en) 2003-06-19 2003-06-19 Sensor sheet for measurement of nip width

Publications (1)

Publication Number Publication Date
JP2005010040A true JP2005010040A (en) 2005-01-13

Family

ID=34098447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175162A Pending JP2005010040A (en) 2003-06-19 2003-06-19 Sensor sheet for measurement of nip width

Country Status (1)

Country Link
JP (1) JP2005010040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2012104A2 (en) * 2001-09-24 2009-01-07 RNG I Lund AB Roller nip gauge
US20160334296A1 (en) * 2014-01-20 2016-11-17 Nip Control Ab Calibration unit for a roller nip gauge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2012104A2 (en) * 2001-09-24 2009-01-07 RNG I Lund AB Roller nip gauge
EP2012104A3 (en) * 2001-09-24 2010-01-20 RNG I Lund AB Roller nip gauge
US20160334296A1 (en) * 2014-01-20 2016-11-17 Nip Control Ab Calibration unit for a roller nip gauge
US9983086B2 (en) * 2014-01-20 2018-05-29 Nip Control Ab Calibration unit for a roller nip gauge

Similar Documents

Publication Publication Date Title
US7772960B2 (en) Pre-loaded force sensing resistor and method
US5079949A (en) Surface pressure distribution detecting element
JP3713595B2 (en) Tongue pressure measurement system
US7258026B2 (en) Sensor with a plurality of sensor elements arranged with respect to a substrate
JPS63276117A (en) Graphic input tablet
WO2012013785A1 (en) Pressure sensitive transducer assembly and control method for a system including such an assembly
JP2002048658A (en) Pressure distribution detecting device
CN103946698B (en) Interdigitated array and manufacture method
US6225814B1 (en) Contact width sensors
US5821433A (en) Thin tactile sensors for nip width measurement
CN113970393A (en) Pressure sensing device, circuit, weighing device and pressure distribution detection system
CN107346188B (en) Pressure sensing module, terminal, image display method and device
JP2005010040A (en) Sensor sheet for measurement of nip width
JP3089455B2 (en) Pressure distribution sensor
JP3338983B2 (en) Pressure sensitive distribution sensor sheet and disconnection detection method thereof
US20080314654A1 (en) Position Transducer
JPH04221727A (en) Pressure sensor and nip width measuring device using it
US20230008926A1 (en) Sensor
EP3781909B1 (en) High-resistance sensor and method for using same
US4825017A (en) Coordinates input device
LU102398B1 (en) Sensor device
CN218156599U (en) Wheatstone bridge pressure detection component and electronic equipment
CN218156598U (en) Wheatstone bridge pressure detection component and electronic equipment
JPH0113124B2 (en)
JP4258494B2 (en) Wiring branch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Effective date: 20080605

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081010