JP2005009948A - Atomic emission spectrometer for surface microregion - Google Patents

Atomic emission spectrometer for surface microregion Download PDF

Info

Publication number
JP2005009948A
JP2005009948A JP2003172836A JP2003172836A JP2005009948A JP 2005009948 A JP2005009948 A JP 2005009948A JP 2003172836 A JP2003172836 A JP 2003172836A JP 2003172836 A JP2003172836 A JP 2003172836A JP 2005009948 A JP2005009948 A JP 2005009948A
Authority
JP
Japan
Prior art keywords
sample
probe
laser
atomic emission
emission spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003172836A
Other languages
Japanese (ja)
Other versions
JP3866225B2 (en
Inventor
Masanori Fujinami
眞紀 藤浪
Shiro Sawada
嗣郎 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003172836A priority Critical patent/JP3866225B2/en
Publication of JP2005009948A publication Critical patent/JP2005009948A/en
Application granted granted Critical
Publication of JP3866225B2 publication Critical patent/JP3866225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an atomic emission spectrometer for a surface microregion capable of qualitatively and quantitatively analyzing elements, with a spatial resolution of a diameter of several nms and a depth of several nms. <P>SOLUTION: This atomic emission spectrometer for the surface microregion is constituted so that a probe 1, having a noble metal provided to the tip thereof, is allowed to approach the vicinity of the surface of a sample 6 to simultaneously irradiate the probe 1 and the surface of the sample 6, with a pulse laser 9 with a pico second, such as a pico second pulse Nd-YAG laser (355 nm, 266 nm) or a femto second pulse regenerative amplified Ti-sapphire laser (800 nm) and the sample atoms of the surface micro region are ablated, to perform not only qualitative analysis from the emission energy from excited atoms or ions, but also quantitative analysis from the emission quantity thereof. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、試料の表面にパルスレーザーを照射し、蒸発した原子や分子からの発光スペクトルを測定する装置に関するものであり、特に、試料表面のnmレベルの微小領域に存在する原子や分子の発光分析に関するものである。
【0002】
【従来の技術】
従来、固体表面の物質を構成する原子・分子発光スペクトルを測定し、元素分析を行う方法として、レーザーアブレーションICP発光分析やグロー放電発光分析法などがある。
【0003】
これらはレーザーやプラズマを試料に照射して、その物理的効果や化学的効果により構成原子や分子を表面から蒸発させ、その一部が励起して基底状態に緩和した際に発生する発光を分光器・高感度検出器により測定するものである。
【0004】
その場合、レーザーやプラズマを集光したり、収束しても、その直径がμm程度の大きさをもつため、これに対応して得られる情報の空間分解能は直径μmの領域となる。
【0005】
さらに、空間分解能を向上させるために、パルスレーザーと近接場光学顕微鏡を組み合わせた手法が開発されている。
【0006】
例えば、先端径が100nmφ程度である光ファイバーにナノ秒パルス窒素レーザー(355nm)を導入する。
【0007】
光ファイバー先端は光の波長よりも短い開口径をもつため、光は伝播せず開口径程度の広がりをもつ近接場光に変換される。
【0008】
その結果、100nmφ程度の領域にのみ近接場光が照射されることになり、試料表面の照射領域のみが蒸発・励起され、それらの原子発光スペクトルが得られることになる。
【0009】
その結果、直径約100nm、深さ数十nmの空間分解能での元素の定性定量分析が達成されている。
【0010】
【発明が解決しようとする課題】
上記したような従来の、直径数百nmの空間分解能をもつ元素分析法においては、パルスレーザー励起を用いた微粒子脱離後の原子発光を実現しているが、レーザー照射に光ファイバーを用いている限り、空間分解能の向上には限界がある。例えば、光ファイバー先端は開口径を100nmとし、光の漏れがないようにAlなどの金属で光遮蔽が施されているが、一般的に微粒子蒸発に必要なエネルギー閾値以上の光を導入するとこの光遮蔽金属が融解し、開口径を維持できなくなるので、入射光パワーに制限がある。
【0011】
従って、試料(原子や分子)を蒸発させるために入射光パワーを増大すると、空間分解能を向上できないといった問題がある。
【0012】
また、同様の問題から100nm以下の開口径の光ファイバーを用いることができず、それ以上の空間分解能の向上も実現が困難である。
【0013】
そこで、本発明は、上記状況に鑑みて、直径数nm、深さ数nmの空間分解能で元素の定性定量分析を行うことができる表面微小領域原子発光分析装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕表面微小領域原子発光分析装置において、貴金属材料からなる先端を針状にした探針と、この探針の先端を試料の表面に近づける探針制御部と、前記探針および試料表面に同時に照射されるピコ秒以下のパルスレーザーとを備え、前記ピコ秒以下のパルスレーザーの照射により前記試料の表面かつ微小領域の試料原子をアブレーションさせ、励起した原子やイオンからの発光のエネルギーから定性分析、その発光量から定量分析することを特徴とする。
【0015】
〔2〕上記〔1〕記載の表面微小領域原子発光分析装置において、前記探針の先端の貴金属が金、銀であることを特徴とする。
【0016】
〔3〕上記〔1〕記載の表面微小領域原子発光分析装置において、前記ピコ秒以下のパルスレーザーが、ピコ秒パルスNd−YAGレーザー(355nm、266nm)やフェムト秒パルス再生増幅Tiサファイアレーザー(800nm)であることを特徴とする。
【0017】
上記したように、本発明によれば、試料表面には、原子間力顕微鏡や走査型トンネル顕微鏡のような探針が試料表面極近傍まで近づき、探針と試料に同時にピコ秒以下のパルスレーザーを照射する。その際に光と探針の間で電場増強などの相互作用が誘起され、表面原子が蒸発励起される。その際に励起原子からの原子スペクトルの発光がおこり、それを分光検出することにより定性・定量分析が可能となる。蒸発励起される領域は直径数nm、深さ数nmとなることから、微小領域表面元素の分析が達成される。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0019】
図1は本発明の実施例を示す表面微小領域原子発光分析装置の構成図である。
【0020】
この図において、1は探針、2はカンチレバー、3はレーザー照射部、4はレーザー光、5は4分割フォトディテクター、6は試料、7は試料載置台、8は励起用パルスレーザー照射部(励起源として再生増幅フェムト秒レーザー;フェムト秒パルス再生増幅Tiサファイアレーザー)、9は励起用パルスレーザー、10はフォーカスレンズ、11は対物レンズ、12は発光スペクトル計測部(分光検出システム)である。
【0021】
このように、表面微小領域原子発光分析装置は、原子間力を利用した探針制御部(図示なし)、励起用パルスレーザー照射部8、発光スペクトル計測部12からなる。探針制御部により、金や銀などの材料からなる先端を針状にした探針1を保有するカンチレバー2により、探針1を試料6直上数nm近傍まで近接させる。
【0022】
探針1を近接させる方法としては、ここでは光てこ方式を用い、カンチレバー2にレーザー光4を照射し、試料6表面で反射した光を4分割フォトディテクター5で検出し、その反射位置から原子間力を見積もり、試料6から探針1までの距離を制御する。
【0023】
試料6に探針1を近づけた状態で、励起源である再生増幅フェムト秒レーザー8からの励起用パルスレーザー9をフォーカスレンズ10を通して探針(その先端)1と試料6表面に直径数μmで照射する。
【0024】
励起用パルスレーザー9と探針1の相互作用により試料6表面から発生した超微粒子からの原子発光を対物レンズ11で集光し、分光検出システム12に導入し、発光スペクトルを測定する。
【0025】
これにより、測定された発光波長から元素種の同定、発光量(光強度)から定量分析が可能となる。
【0026】
本発明の装置においては、微粒子蒸発に、探針1とピコ秒以下の励起用パルスレーザー9の間に発生する電場増強効果を利用することから、その相互作用が及ぶ領域である数nm以下の空間分解能、数nm以下の深さの分解能で、表面の原子を蒸発・励起することが可能である。
【0027】
適用例としては、図2にPdCu合金微粒子を吸着させたけい素表面の原子間力顕微鏡像を示す。図2(a)ではけい素表面に10nm径のPdCu合金微粒子が吸着している状態が原子間力顕微鏡像として観察されている。本装置によりその一部を蒸発させた結果、その部分がクレーター状に削り取られていることが原子間力顕微鏡像として図2(b)に示されている。
【0028】
この図から、10nmφ程度の領域のみの蒸発を実現していることが分かる。
【0029】
また、図2(b)のクレーター部からPdCu合金微粒子を蒸発させたときの発光スペクトルが図3に示されている。この図3において、横軸は波長(nm)、縦軸は光強度(相対単位)である。
【0030】
この図から明らかなように、波長283.3nmのパラジウムと、327.4nmの銅による原子スペクトルが検出され、けい素による発光は観察されていない。
【0031】
また、励起用レーザー9をピコ秒パルスNd−YAGレーザー(355nm、266nm)にしても同様の結果が得られる。
【0032】
以上の結果は、本装置により、数nmφの空間分解能で試料表面に存在する原子の発光分光分析が達成されていることを示している。
【0033】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0034】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
【0035】
(A)表面構成物質の蒸発に光と貴金属からなる探針との間の電場増強効果を用いることから励起蒸発領域を数nmに制限し、数nmの空間分解能での元素の同定および定量分析が可能となる。
【0036】
(B)数nmの空間分解能で原子の発光スペクトルが得られることから、原子同定・定量が可能である。また、走査型プローブ顕微鏡や近接場光学顕微鏡では困難であった原子同定といった問題を解決できる。
【0037】
(C)電界などを用いないことから非電導体への適用を可能とした。これらの特徴により、金属表面の吸着原子の同定はもちろんのこと、半導体表面吸着原子の同定、さらには生体細胞膜の局所に存在する原子の同定やその挙動解明に資することができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す表面微小領域原子発光分析装置の構成図である。
【図2】PdCu合金微粒子を吸着させたけい素表面の原子間力顕微鏡像を示す図である。
【図3】図2のクレーター部を形成した際に発生した原子発光スペクトルである。
【符号の説明】
1 探針
2 カンチレバー
3 レーザー照射部(レーザー光源)
4 レーザー光
5 4分割フォトディテクター
6 試料
7 試料載置台
8 励起用パルスレーザー照射部
9 励起用パルスレーザー
10 フォーカスレンズ
11 対物レンズ
12 発光スペクトル計測部(分光検出システム)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for irradiating a sample surface with a pulse laser and measuring an emission spectrum from evaporated atoms and molecules, and in particular, emits light from atoms and molecules present in a minute region of nm level on the sample surface. It is about analysis.
[0002]
[Prior art]
Conventionally, there are laser ablation ICP emission analysis, glow discharge emission analysis, and the like as methods for measuring an atomic / molecular emission spectrum constituting a substance on a solid surface and performing elemental analysis.
[0003]
These materials irradiate a sample with laser or plasma, evaporate constituent atoms and molecules from the surface due to their physical and chemical effects, and spectroscopically analyze the light emitted when some of them are excited and relaxed to the ground state. Measure with a detector / high sensitivity detector.
[0004]
In this case, even if the laser or plasma is condensed or converged, the diameter thereof is about μm, so that the spatial resolution of information obtained corresponding to this is an area having a diameter of μm.
[0005]
Furthermore, in order to improve the spatial resolution, a technique combining a pulse laser and a near-field optical microscope has been developed.
[0006]
For example, a nanosecond pulse nitrogen laser (355 nm) is introduced into an optical fiber having a tip diameter of about 100 nmφ.
[0007]
Since the tip of the optical fiber has an aperture diameter shorter than the wavelength of the light, the light does not propagate and is converted to near-field light having a spread of about the aperture diameter.
[0008]
As a result, the near-field light is irradiated only to the region of about 100 nmφ, and only the irradiated region on the sample surface is evaporated and excited, and an atomic emission spectrum thereof is obtained.
[0009]
As a result, qualitative quantitative analysis of elements with a spatial resolution of about 100 nm in diameter and several tens of nm in depth has been achieved.
[0010]
[Problems to be solved by the invention]
In the conventional elemental analysis method having a spatial resolution of several hundreds of nanometers in diameter as described above, atomic emission after fine particle detachment using pulsed laser excitation is realized, but an optical fiber is used for laser irradiation. As long as there is a limit to improving the spatial resolution. For example, the optical fiber tip has an opening diameter of 100 nm and is shielded from light by a metal such as Al so that light does not leak. Generally, this light is introduced when light exceeding the energy threshold necessary for fine particle evaporation is introduced. Since the shielding metal melts and the aperture diameter cannot be maintained, the incident light power is limited.
[0011]
Therefore, if the incident light power is increased to evaporate the sample (atom or molecule), there is a problem that the spatial resolution cannot be improved.
[0012]
Further, due to the same problem, an optical fiber having an aperture diameter of 100 nm or less cannot be used, and it is difficult to realize further improvement in spatial resolution.
[0013]
Therefore, in view of the above situation, an object of the present invention is to provide a surface microregion atomic emission spectrometer capable of performing qualitative quantitative analysis of elements with a spatial resolution of several nm in diameter and several nm in depth.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[1] In a surface micro-area atomic emission spectrometer, a probe made of a noble metal material with a needle-like tip, a probe control unit that brings the tip of the probe closer to the surface of the sample, and the probe and the sample surface Qualitatively based on the energy of light emitted from excited atoms and ions by ablating the sample atoms in the surface and micro area of the sample by irradiation with the pulsed laser of less than picoseconds. It is characterized by quantitative analysis from the analysis and the amount of luminescence.
[0015]
[2] The surface microregion atomic emission spectrometer according to [1] above, wherein the noble metal at the tip of the probe is gold or silver.
[0016]
[3] In the surface microregion atomic emission spectrometer according to the above [1], the pulse laser of picosecond or less is a picosecond pulse Nd-YAG laser (355 nm, 266 nm) or a femtosecond pulse reproduction amplified Ti sapphire laser (800 nm). ).
[0017]
As described above, according to the present invention, a probe such as an atomic force microscope or a scanning tunneling microscope approaches the sample surface near the sample surface, and a pulse laser of picosecond or less is simultaneously applied to the probe and the sample. Irradiate. At that time, an interaction such as an electric field enhancement is induced between the light and the probe, and the surface atoms are evaporated and excited. At that time, emission of an atomic spectrum from the excited atom occurs, and qualitative and quantitative analysis becomes possible by spectral detection. Since the region excited by evaporation has a diameter of several nm and a depth of several nm, analysis of surface elements in a micro region is achieved.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0019]
FIG. 1 is a configuration diagram of a surface microregion atomic emission spectrometer showing an embodiment of the present invention.
[0020]
In this figure, 1 is a probe, 2 is a cantilever, 3 is a laser irradiation unit, 4 is a laser beam, 5 is a quadrant photodetector, 6 is a sample, 7 is a sample mounting table, and 8 is an excitation pulse laser irradiation unit ( Reproduction amplification femtosecond laser; femtosecond pulse regeneration amplification Ti sapphire laser), 9 is an excitation pulse laser, 10 is a focus lens, 11 is an objective lens, and 12 is an emission spectrum measurement unit (spectral detection system).
[0021]
As described above, the surface micro-region atomic emission spectrometer includes the probe control unit (not shown) using the atomic force, the excitation pulse laser irradiation unit 8, and the emission spectrum measurement unit 12. The probe control unit brings the probe 1 close to the vicinity of several nanometers just above the sample 6 by the cantilever 2 that holds the probe 1 having a needle-like tip made of a material such as gold or silver.
[0022]
Here, as a method of bringing the probe 1 close, an optical lever method is used, the cantilever 2 is irradiated with the laser beam 4, the light reflected on the surface of the sample 6 is detected by the four-divided photodetector 5, and the atom is detected from the reflection position. The force is estimated and the distance from the sample 6 to the probe 1 is controlled.
[0023]
With the probe 1 close to the sample 6, an excitation pulse laser 9 from a regenerative amplification femtosecond laser 8, which is an excitation source, passes through a focus lens 10 and has a diameter of several μm on the surface of the probe (tip) 1 and the sample 6. Irradiate.
[0024]
Atomic emission from ultrafine particles generated from the surface of the sample 6 due to the interaction between the excitation pulse laser 9 and the probe 1 is collected by the objective lens 11 and introduced into the spectroscopic detection system 12 to measure the emission spectrum.
[0025]
As a result, the element type can be identified from the measured emission wavelength, and the quantitative analysis can be performed from the light emission amount (light intensity).
[0026]
In the apparatus of the present invention, since the electric field enhancement effect generated between the probe 1 and the excitation pulse laser 9 of picosecond or less is used for fine particle evaporation, the interaction is several nanometers or less. It is possible to evaporate and excite atoms on the surface with a spatial resolution and a resolution of a depth of several nanometers or less.
[0027]
As an application example, FIG. 2 shows an atomic force microscope image of the silicon surface on which PdCu alloy fine particles are adsorbed. In FIG. 2A, the state in which PdCu alloy fine particles having a diameter of 10 nm are adsorbed on the silicon surface is observed as an atomic force microscope image. FIG. 2 (b) shows an atomic force microscope image showing that a part of the apparatus is evaporated in a crater as a result of evaporation.
[0028]
From this figure, it can be seen that evaporation only in the region of about 10 nmφ is realized.
[0029]
Also, FIG. 3 shows an emission spectrum when the PdCu alloy fine particles are evaporated from the crater portion of FIG. In FIG. 3, the horizontal axis represents wavelength (nm) and the vertical axis represents light intensity (relative unit).
[0030]
As is apparent from this figure, an atomic spectrum of palladium with a wavelength of 283.3 nm and copper of 327.4 nm was detected, and no light emission by silicon was observed.
[0031]
The same result can be obtained even if the excitation laser 9 is a picosecond pulse Nd-YAG laser (355 nm, 266 nm).
[0032]
The above results indicate that the present apparatus has achieved emission spectroscopic analysis of atoms existing on the sample surface with a spatial resolution of several nmφ.
[0033]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
[0034]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
[0035]
(A) Since the electric field enhancement effect between light and a noble metal probe is used for evaporation of the surface constituent material, the excitation evaporation region is limited to several nm, and element identification and quantitative analysis with a spatial resolution of several nm Is possible.
[0036]
(B) Since an atomic emission spectrum can be obtained with a spatial resolution of several nm, atomic identification and quantification are possible. In addition, it is possible to solve the problem of atom identification, which is difficult with a scanning probe microscope or a near-field optical microscope.
[0037]
(C) Since an electric field or the like is not used, it can be applied to a non-conductor. These characteristics can contribute not only to the identification of adsorbed atoms on the metal surface, but also to the identification of atoms adsorbed on the semiconductor surface, as well as the identification of atoms existing locally in the biological cell membrane and the elucidation of their behavior.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a surface microregion atomic emission spectrometer showing an embodiment of the present invention.
FIG. 2 is a diagram showing an atomic force microscope image of a silicon surface on which PdCu alloy fine particles are adsorbed.
FIG. 3 is an atomic emission spectrum generated when the crater portion of FIG. 2 is formed.
[Explanation of symbols]
1 Probe 2 Cantilever 3 Laser irradiation part (laser light source)
Reference Signs List 4 Laser beam 5 Quadrant photo detector 6 Sample 7 Sample mounting table 8 Excitation pulse laser irradiation unit 9 Excitation pulse laser 10 Focus lens 11 Objective lens 12 Emission spectrum measurement unit (spectral detection system)

Claims (3)

(a)貴金属材料からなる先端を針状にした探針と、
(b)該探針の先端を試料の表面に近づける探針制御部と、
(c)前記探針および試料表面に同時に照射されるピコ秒以下のパルスレーザーとを備え、
(d)前記ピコ秒以下のパルスレーザーの照射により前記試料の表面かつ微小領域の試料原子をアブレーションさせ、励起した原子やイオンからの発光のエネルギーから定性分析、その発光量から定量分析することを特徴とする表面微小領域原子発光分析装置。
(A) a probe having a needle-like tip made of a noble metal material;
(B) a probe control unit that brings the tip of the probe close to the surface of the sample;
(C) a pulse laser of picosecond or less that is simultaneously irradiated onto the probe and the sample surface;
(D) ablating the sample atoms on the surface of the sample and in a minute region by irradiation with the pulse laser of the picosecond or less, and qualitative analysis from the energy of emission from the excited atoms and ions, and quantitative analysis from the amount of emission Characteristic surface micro-area atomic emission spectrometer.
請求項1記載の表面微小領域原子発光分析装置において、前記探針の先端の貴金属が金、銀であることを特徴とする表面微小領域原子発光分析装置。2. The surface microregion atomic emission spectrometer according to claim 1, wherein the noble metal at the tip of the probe is gold or silver. 請求項1記載の表面微小領域原子発光分析装置において、前記ピコ秒以下のパルスレーザーが、ピコ秒パルスNd−YAGレーザー(355nm、266nm)やフェムト秒パルス再生増幅Tiサファイアレーザー(800nm)であることを特徴とする表面微小領域原子発光分析装置。2. The surface microregion atomic emission spectrometer according to claim 1, wherein the picosecond pulse laser is a picosecond pulse Nd-YAG laser (355 nm, 266 nm) or a femtosecond pulse reproduction amplified Ti sapphire laser (800 nm). Surface micro-area atomic emission spectrometer characterized by
JP2003172836A 2003-06-18 2003-06-18 Surface micro-area atomic emission spectrometer Expired - Fee Related JP3866225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172836A JP3866225B2 (en) 2003-06-18 2003-06-18 Surface micro-area atomic emission spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172836A JP3866225B2 (en) 2003-06-18 2003-06-18 Surface micro-area atomic emission spectrometer

Publications (2)

Publication Number Publication Date
JP2005009948A true JP2005009948A (en) 2005-01-13
JP3866225B2 JP3866225B2 (en) 2007-01-10

Family

ID=34096823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172836A Expired - Fee Related JP3866225B2 (en) 2003-06-18 2003-06-18 Surface micro-area atomic emission spectrometer

Country Status (1)

Country Link
JP (1) JP3866225B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034840A1 (en) * 2005-09-20 2007-03-29 Central Research Institute Of Electric Power Industry Fine particle component measuring method and fine particle component measuring instrument
JP2017535753A (en) * 2014-10-01 2017-11-30 ヴェリリー ライフ サイエンシズ エルエルシー System and method for fluorescence-based laser ablation
KR102619577B1 (en) * 2022-12-22 2023-12-29 포항공과대학교 산학협력단 An analysis method of tip-enhanced spectroscopy, and a tip-enhanced spectroscopy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034840A1 (en) * 2005-09-20 2007-03-29 Central Research Institute Of Electric Power Industry Fine particle component measuring method and fine particle component measuring instrument
JP2007085790A (en) * 2005-09-20 2007-04-05 Central Res Inst Of Electric Power Ind Particle component measuring method and particle component measuring device
US7764373B2 (en) 2005-09-20 2010-07-27 Central Research Institute Of Electric Power Industry Fine particle constituent measuring method and fine-particle constituent measuring apparatus
JP2017535753A (en) * 2014-10-01 2017-11-30 ヴェリリー ライフ サイエンシズ エルエルシー System and method for fluorescence-based laser ablation
KR102619577B1 (en) * 2022-12-22 2023-12-29 포항공과대학교 산학협력단 An analysis method of tip-enhanced spectroscopy, and a tip-enhanced spectroscopy

Also Published As

Publication number Publication date
JP3866225B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP6116529B2 (en) Charged particle microscope with Raman spectroscopy
JP6134975B2 (en) Measuring device, measuring apparatus and method
US5583634A (en) Process for elementary analysis by optical emission spectrometry on plasma produced by a laser in the presence of argon
US8675193B2 (en) Near-field material processing system
JP2005534041A (en) A method for local high-resolution surface mass spectroscopic characterization using scanning probe technology
Faye et al. Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy
Zorba et al. Optical far-and near-field femtosecond laser ablation of Si for nanoscale chemical analysis
WO2006103937A1 (en) Scanning probe microscope system
JP2017207492A5 (en)
JP3866225B2 (en) Surface micro-area atomic emission spectrometer
WO2013080505A1 (en) Sensing device and sensing method using same
Fang et al. Sample presentation considerations in laser-induced breakdown spectroscopy in aqueous solution
JP2020204594A (en) Photothermal conversion spectroscope and minute amount of specimen detection method
JP5980653B2 (en) Deposit analysis method and deposit analysis apparatus
Samek et al. Sampling of material using femtosecond pulses
Brajdic et al. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes
JP2015176848A (en) Sputter neutral particle mass spectroscope
JP2004151004A (en) Film thickness measuring method for groove sidewall and its device
JP3660938B2 (en) Component analysis method using laser
JP3591231B2 (en) Auger electron spectroscopy
JP6027459B2 (en) Deposit analyzer
JPS599850B2 (en) X
Choi et al. Detection of lead in soil with excimer laser fragmentation fluorescence spectroscopy
JP2018054353A (en) Near-field microscope
JP3005625B2 (en) Optical property evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041110

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060821

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20061004

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees