JP2005009865A - Shape recognition device for optical member - Google Patents

Shape recognition device for optical member Download PDF

Info

Publication number
JP2005009865A
JP2005009865A JP2003170773A JP2003170773A JP2005009865A JP 2005009865 A JP2005009865 A JP 2005009865A JP 2003170773 A JP2003170773 A JP 2003170773A JP 2003170773 A JP2003170773 A JP 2003170773A JP 2005009865 A JP2005009865 A JP 2005009865A
Authority
JP
Japan
Prior art keywords
optical member
shape recognition
illumination
contour
recognition apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003170773A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ito
芳博 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003170773A priority Critical patent/JP2005009865A/en
Publication of JP2005009865A publication Critical patent/JP2005009865A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Image Input (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape recognition device for an optical member for accurately and reliably recognizing the contour of the optical member from the electronic image of the optical member imaged by a camera. <P>SOLUTION: The shape recognition device 1 recognizes the contour of the optical member 100 as a work, and comprises an optical member retaining mechanism 2 that has a plurality of pinching sections 22 and pinches the end face of the optical member 100 by the pinching sections 22; the camera 3 for imaging the electronic image of the optical member 100 retained by the optical member retaining mechanism 2; an irradiating means 4 for irradiating the optical member 100 with irradiation light from a side opposite to the camera 3 while sandwiching the optical member 100; and an image processing means for recognizing the contour of the optical member 100 by image-processing the electronic image of the optical member 100 imaged by the camera 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光学部材の形状認識装置に関する。
【0002】
【従来の技術】
レンズ等の光学部材の表面に、硬化膜、反射防止膜等の薄膜を形成して、光学部品の性能・機能の向上を図ることが一般に行われている。従来、この薄膜は、コート液を光学部材の表面にスピンコート法やディッピング法によって塗布することにより形成しているが、これらの方法では、大量のコート液を必要とするなどの欠点がある。
【0003】
そこで、光学部材の表面に、インクジェット方式によってコート液を塗布する方法が本願出願人により提案されている(特許文献1参照)。この方法によれば、コート液の使用量を大幅に低減することができ、有益である。
光学部材の表面に、インクジェット方式によってコート液を塗布する場合には、インクジェットヘッドから光学部材の上に選択的に液滴を吐出する必要があるので、光学部材の大きさや形状のデータをインクジェット描画装置に入力する必要がある。そのためには、光学部材を撮像した電子画像を画像処理することによって光学部材の形状を認識することができれば、大きさや形状が異なる各種の光学部材に対応することができ、有利である。
【0004】
しかしながら、光学部材は透明であるので、画像処理による形状認識を行うのは、実際上は困難であった。
また、光学部材を撮像する際には、通常、カメラと中心を合わせるため、光学部材を位置決めする凹部を形成した保持台上に光学部材を設置するが、この保持台の形状は、光学部材の形状に一対一に対応する必要があるので、光学部材の種類ごとに別々の保持台を用意しなければならないという問題もあった。
【0005】
【特許文献1】
特開2001−327908号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、カメラにより撮像された光学部材の電子画像から、光学部材の輪郭を正確かつ確実に認識することができる光学部材の形状認識装置を提供することにある。
【0007】
【課題を解決するための手段】
このような目的は、下記の本発明により達成される。
【0008】
本発明の光学部材の形状認識装置は、ワークとしての光学部材の輪郭を認識する光学部材の形状認識装置であって、
複数の挟持部を有し、該複数の挟持部により光学部材の端面を挟持する光学部材保持機構と、
前記光学部材保持機構に保持された光学部材の電子画像を撮像するカメラと、
前記光学部材を挟んで前記カメラと反対側から照明光を前記光学部材に照射する照明手段と、
前記カメラにより撮像された前記光学部材の電子画像を画像処理することにより、前記光学部材の輪郭を認識する画像処理手段とを備えることを特徴とする。
これにより、カメラにより撮像された光学部材の電子画像から、光学部材の輪郭を正確かつ確実に認識することができる光学部材の形状認識装置を提供することができる。
【0009】
本発明の光学部材の形状認識装置では、前記光学部材保持機構に保持された光学部材を前記カメラの光軸方向に対し垂直な二方向に移動させる光学部材移動機構をさらに備えることが好ましい。
これにより、電子画像において、光学部材の輪郭を全周に渡り均一な明るさで光らせることができるので、輪郭の認識をより正確かつ確実に行うことができる。
【0010】
本発明の光学部材の形状認識装置では、前記照明手段の照明面積を調整する照明面積調整手段をさらに備えることが好ましい。
これにより、光学部材の輪郭の認識をより正確かつ確実に行うことができる。
本発明の光学部材の形状認識装置では、前記照明面積調整手段は、前記照明光を絞る絞りで構成されることが好ましい。
これにより、簡単な構成で、照明面積の調整を行うことができる。
【0011】
本発明の光学部材の形状認識装置では、前記照明面積調整手段は、前記照明手段を前記カメラの光軸方向に移動させる照明手段移動機構で構成されることが好ましい。
これにより、簡単な構成で、照明面積の調整を行うことができる。
本発明の光学部材の形状認識装置では、前記光学部材の形状データに基づいて前記照明面積調整手段の作動を制御する制御手段をさらに備えることが好ましい。
これにより、照明面積の調整を自動的に行うことができるので、オペレーターによる操作が不要となり、迅速に処理することができる。
【0012】
本発明の光学部材の形状認識装置では、前記照明手段の光源が放つ光の光度を調整する照明光度調整手段をさらに備えることが好ましい。
これにより、光学部材の輪郭の認識をより正確かつ確実に行うことができる。
本発明の光学部材の形状認識装置では、前記挟持部は、凹部を有し、該凹部内に前記光学部材の端面が接触することが好ましい。
これにより、光学部材保持機構は、光学部材が厚さ方向にバタついたり位置ずれしたりすることなく、確実に光学部材を保持することができる。また、光学部材を表裏逆さまの状態にしても同様に保持することができる。
【0013】
本発明の光学部材の形状認識装置では、前記凹部は、ほぼV字状をなしていることが好ましい。
これにより、光学部材保持機構は、光学部材が厚さ方向にバタついたり位置ずれしたりすることなく、確実に光学部材を保持することができる。また、光学部材を表裏逆さまの状態にしても同様に保持することができる。
【0014】
本発明の光学部材の形状認識装置では、前記画像処理は、膨張処理と侵食処理とを含むことが好ましい。
これにより、電子画像において光学部材の輪郭が挟持部によって切断されている場合であっても、光学部材の輪郭をより正確かつ確実に認識することができる。
【0015】
本発明の光学部材の形状認識装置では、前記電子画像においては、前記光学部材の輪郭が前記挟持部の個所で切断されており、前記画像処理手段は、前記膨張処理を施すことにより、その切断部分を結合させ、該切断部分が結合した後、前記侵食処理を施すことにより、前記膨張処理によって前記輪郭が拡大した分を元の大きさに縮小させることが好ましい。
これにより、電子画像において光学部材の輪郭が挟持部によって切断されている場合であっても、光学部材の輪郭をより正確かつ確実に認識することができる。
【0016】
本発明の光学部材の形状認識装置では、前記画像処理は、オープニング処理をさらに含むことが好ましい。
これにより、光学部材保持機構に影響されることなく、光学部材の輪郭をより正確かつ確実な形状認識を行うことができる。
本発明の光学部材の形状認識装置では、前記画像処理手段が画像処理する過程の電子画像においては、前記光学部材の輪郭と前記光学部材保持機構の輪郭とが結合しており、前記画像処理手段は、前記オープニング処理を施すことにより、前記光学部材の輪郭から前記光学部材保持機構の輪郭を切り離すことが好ましい。
これにより、光学部材保持機構に影響されることなく、光学部材の輪郭をより正確かつ確実な形状認識を行うことができる。
【0017】
【発明の実施の形態】
以下、本発明の光学部材の形状認識装置を添付図面に示す好適な実施形態に基づいて詳細に説明する。
<第1実施形態>
図1は、本発明の光学部材の形状認識装置(以下、単に「形状認識装置」と言う)の第1実施形態を示す斜視図、図2は、図1に示す形状認識装置における光学部材保持機構が光学部材を保持した状態を示す図、図3は、図1に示す形状認識装置のブロック図、図4は、図1に示す形状認識装置によって光学部材の形状認識を行う際の工程図、図5ないし図8は、それぞれ、図1に示す形状認識装置における画像処理の過程の電子画像を示す図である。なお、以下では、説明の都合上、図1中の上側を「上」、下側を「下」と言う。また、図5ないし図8中のハッチング領域は、画像中の暗いところを示すものである。
【0018】
図1に示す形状認識装置1は、ワークとしての光学部材100の電子画像を撮像してその電子画像を画像処理することにより、光学部材100の輪郭を認識する装置である。この形状認識装置1によって認識された光学部材100の輪郭データは、例えば、光学部材100を加工する加工装置での加工を制御するのに利用することができる。この加工装置としては、特に限定されないが、例えば光学部材100の表面にコート液(硬化膜や反射防止膜等の薄膜を形成するためのコート液)を塗布する産業用インクジェット描画装置等が挙げられる。なお、光学部材100の種類は、特に限定されず、レンズ、光学フィルター、プリズムなどいかなるものでもよい。
【0019】
図1に示すように、形状認識装置1は、光学部材保持機構2と、光学部材100の電子画像を撮像するカメラ3と、光学部材100を照明する照明手段4と、光学部材100を移動させる光学部材移動機構5とを有している。
光学部材保持機構2は、複数(図示では3本)のアーム21と、各アーム21の先端部に設けられた挟持部22とを有している。
【0020】
光学部材保持機構2は、この3つの挟持部22によって光学部材100の端面101を挟持することにより、光学部材100を保持する。この光学部材保持機構2は、各アーム21の位置を調整して各挟持部22間の間隔を調節することにより、光学部材100の形状や大きさに合わせてこれを保持することができる。よって、形状や大きさの異なる光学部材100ごとに別個の光学部材保持機構2を用意する必要がなく、有利である。
【0021】
図2に示すように、各挟持部22は、ほぼV字状の凹部221を有しており、各挟持部22が光学部材100を挟持した状態では、この凹部221内に光学部材100の端面101が接触する。これにより、光学部材100が図2中の上下方向にバタついたり位置ずれしたりすることなく、確実に光学部材100を保持することができる。また、光学部材100を図2と上下(表裏)逆さまの状態にしても同様に保持することができる。よって、光学部材100の裏面にコート液を塗布する場合にも容易に対応することができる。
【0022】
図1に示すように、光学部材保持機構2に保持された光学部材100の上側には、カメラ3が支持台11を介して支持・固定されている。カメラ3は、例えばCCD(Charge Coupled Device)等の固体撮像素子を内蔵した本体31と、カメラレンズ32とを有しており、光学部材保持機構2に保持された光学部材100の電子画像を撮像する。
【0023】
光学部材保持機構2に保持された光学部材100の下側には、光源41を有する照明手段4がカメラ3の光軸33と同心的に設置されている。この照明手段4は、光学部材100を挟んでカメラ3と反対側から照明光を光学部材100に照射する。照明手段4からの照明光は、拡散光でも平行光でもよい。光源41の種類としては、特に限定されず、例えば、平面蛍光灯、ハロゲンランプ、高輝度LEDなどを用いることができる。照明手段4には、照明面積(光学部材100の面上における照明光の投射面積)を調整する照明面積調整手段として、照明光を絞る絞り42が設置されている。
【0024】
本発明では、照明手段4を上述のように配置したことにより、カメラ3で光学部材100を撮像したとき、光学部材100の端面101に照明光が反射し、光学部材100の輪郭が明るく浮かび上がるので、光学部材100の形状認識を正確かつ確実に行うことができる。
これに対し、本発明と異なり、照明光を光学部材100に対して順方向から(カメラ3と同じ側から)照射する場合には、光学部材100が透明であることから、撮像した電子画像における輪郭がはっきりと写らず、画像処理による形状認識が困難となったり、正確な形状を認識できない。
【0025】
光学部材保持機構2は、光学部材移動機構5を介して支持されており、移動可能になっている。光学部材移動機構5は、光学部材保持機構2に保持された光学部材100をカメラ3の光軸33方向に対し垂直なx軸方向およびY軸方向に移動させることができるようになっている。これにより、光学部材100の中心がカメラ3の光軸33に一致するように正確に位置調整することができる。
本実施形態の光学部材移動機構5は、さらに、光学部材100を光軸33と平行なz軸方向に移動させることと、y軸回りに回転移動(θ方向回転)させることができるようになっている。
【0026】
図3に示すように、形状認識装置1は、さらに、画像処理手段6と、絞り駆動機構7と、照明光度調整手段8と、制御手段9と、ディスプレイ12とを有している。
画像処理手段6は、カメラ3により撮像された光学部材100の電子画像を後述のように画像処理することにより、光学部材100の輪郭を認識する。
【0027】
絞り駆動機構7は、例えばサーボモータ等のアクチュエータにより、絞り42を駆動して開閉させるものである。
照明光度調整手段8は、光源41への印加電圧を調整することなどにより、光源41が放つ光の光度を調整するものである。
ディスプレイ12は、例えばCRT(Cathode−Ray Tube)、液晶ディスプレイなどで構成されており、例えば操作画面、データ入力画面などを表示する。ディスプレイ12には、この他にも、カメラ3により撮像された光学部材100の画像や、画像処理途中段階での処理状況の表示や、最終的に認識された光学部材100の輪郭を表示することができる。
【0028】
制御手段9は、光学部材移動機構5、画像処理手段6、絞り駆動機構7、照明光度調整手段8およびディスプレイ12をそれぞれ制御する。この制御手段9は、CPU(Central Processing Unit)91と、記憶部(記憶手段)92とを有している。記憶部92は、CPU91に読み取り可能な記憶媒体(記録媒体)を有しており、この記憶媒体は、磁気的、光学的記録媒体、もしくは半導体メモリ等で構成されている。
【0029】
以下、このような形状認識装置1によって光学部材100の形状認識を行う際の各工程について、図4を参照しつつ説明する。
まず、対象となる光学部材100を光学部材保持機構2にセットする(ステップS01)。また、光学部材100の形状データ(寸法、厚さ、凸レンズか凹レンズかなど)を制御手段9に入力する。そして、光学部材移動機構5を作動して、光学部材100の中心をカメラ3の光軸33に一致させる。これにより、光学部材100の輪郭の認識をより正確かつ確実に行うことができる。なお、このときの光学部材移動機構5の作動は、入力された前記形状データ等に基づいて制御手段9が自動で制御してもよく、また、オペレーターが手動で制御してもよい。
【0030】
次いで、カメラ3により、光学部材100を予備撮像する(ステップS02)。カメラ3により撮像された電子画像においては、前述したように端面101に照明光が反射して光学部材100の画像処理前の輪郭201(以下、「処理前輪郭201」と言う)が明るく写るとともに、中央部分202には、照明手段4の光源41が明るく写っている(図5参照)。
【0031】
前述したように、光学部材移動機構5の作動によって、光学部材100の中心をカメラ3の光軸33に一致させたことにより、処理前輪郭201は、その全周に渡り均一な明るさで光るので、その形状認識をより正確かつ確実に行うことができる。ただし、処理前輪郭201は、挟持部22の個所では、照明光が当たらないことにより、切断されている。
【0032】
制御手段9は、光学部材100の形状データに基づいて、絞り駆動機構7を介して絞り42の開き具合を調整し、照明面積を調節する(ステップS03)。電子画像においては、光学部材100の端面101の厚さによって処理前輪郭201の明るさが大きく異なるが(端面101が厚い場合には明るく、薄い場合には暗い)、この照明面積の調整により、電子画像における処理前輪郭201の明るさを適度な明るさに自動的に調整することができる。また、光学部材100の特性(凸レンズか凹レンズか)によって中央部分202の写る大きさが変わってくるので、この照明面積の調整により、中央部分202の写る大きさを適度な大きさ(処理前輪郭201に重ならないような大きさ)に調整することができる。
次いで、制御手段9は、光学部材100の形状データに基づいて、照明光度調整手段8を介して照明手段4の光源41の光度を調整する(ステップS04)。これにより、電子画像における処理前輪郭201の明るさをより適度な明るさに自動的に調整することができる。
【0033】
本実施形態では、以上のような照明面積(絞り)調整および照明光度調整を行うことにより、光学部材100の輪郭をより正確かつ確実に認識することができる。照明光度調整は、例えば光学部材100の大きさ・形状が一定で端面101の厚さのみが異なる光学部材100の形状を認識するような場合に特に有効である。また、光学部材100の特性(凸レンズか凹レンズか)により、ある範囲にしか照明面積を広げられない場合、照明光度の調整によって処理前輪郭201の明るさを調整することにより、より正確で安定した光学部材100の外形を取得することができる。
なお、本実施形態では、照明面積(絞り)調整および照明光度調整を自動的に行うように構成しているが、これに限らず、オペレーターがディスプレイ12に表示した予備撮像画像を見ながら手動によって照明面積(絞り)調整および照明光度調整を行うようにしてもよい。
【0034】
次いで、カメラ3により、光学部材100を本撮像し(ステップS05)、その画像データを画像処理手段6が備える記憶部61に取り込み(ステップS06)、画像処理手段6による画像処理を開始する。
画像処理手段6は、まず、以下のようにして、縁(輪郭部)と中心(中央部)の検出を行う(ステップS07)。本実施形態では、光学部材100の電子画像は、図5に示すように撮影(撮像)される。すなわち、照明手段4の光源41が光学部材100の中央部(中央部分202)を通して撮影される他に、光学部材100の輪郭部(処理前輪郭201)が明るく浮かび上がる。ただし、この輪郭部は、光学部保持機構2の挟持部22の影になってその領域が分断されたり、挟持部22やアーム21の一部もしくは全部の反射部分と一体化している可能性を含むものである。
【0035】
また、光学部材100の輪郭部の明るさは光学部材100の端面の厚さに依存する傾向があり、特にその厚さが薄い場合には通常の明るい部分を検出する処理では検出不可能な場合がある。このような場合には、元画像を一定の範囲で平均化した画像を作成し、この画像と元画像を比較することにより微妙な明るさの輪郭部を検出することが有効な手段となる。
【0036】
次いで、画像処理手段6は、ステップS07で検出された光学部材100の輪郭部を含む領域の膨張処理を行う(ステップS08)。これにより、図6に示すように、処理前輪郭201が膨張されるので、挟持部22によって切断された切断部分が結合し、全周がつながった膨張後輪郭203が生成される。本発明では、この膨張処理を行うことにより、処理前輪郭201が切断されている場合であっても、光学部材100の輪郭をより正確かつ確実に認識することができる。
【0037】
次いで、画像処理手段6は、膨張後輪郭203の領域の中埋め処理(ステップS09)を行った後、前記膨張処理と同じサイズで、侵食処理(収縮処理)を行う(ステップS10)。これにより、膨張後輪郭203は、前記膨張処理によって拡大した分を元の大きさに縮小させられ、侵食後輪郭204が生成される(図7参照)。この侵食後輪郭204には、3組のアーム21および挟持部22に相当する3つの光学部材保持機構相当部分(光学部材保持機構2の輪郭)205が結合している。
【0038】
次いで、画像処理手段6は、オープニング処理を行う(ステップS11)。このオープニング処理は、侵食後輪郭204内の領域の中で一定形状のもの(図示では円206)が移動可能な部分だけを取り出す処理である。このオープニング処理により、光学部材保持機構相当部分205が除去され、画像処理を終えた処理後輪郭207が生成される(図8参照)。この処理後輪郭207は、光学部材100の実際の輪郭に正確に一致している。このように、オープニング処理を施すことにより、光学部材保持機構2の影響を確実に排除することができ、より正確かつ確実な形状認識を行うことができる。認識された処理後輪郭207のデータは、画像処理手段6の記憶部61や制御手段9の記憶部92に格納される(ステップS12)。
【0039】
以上のようにして、本発明の形状認識装置1では、通常は形状認識が困難な透明の光学部材100の輪郭を正確かつ確実に認識することができ、また、光学部材保持機構2による影響も受けることなく、上記効果を達成することができる。よって、形状認識装置1によって得られた光学部材100の輪郭データをインクジェット描画装置に入力して利用することにより、光学部材(レンズ)に保護用コーティング材を塗布するのみならず、例えばサングラス用レンズに着色材を均一にあるいはグラデーションをかけて塗布したり、光学部材(レンズ)の一部に数字やマークを印刷するような場合に、特に有効である。
【0040】
<第2実施形態>
図9は、本発明の形状認識装置の第2実施形態を示す斜視図である。以下、この図を参照して本発明の形状認識装置の第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
本実施形態の形状認識装置1’は、照明面積調整手段の構成が異なること以外は前記第1実施形態と同様である。
【0041】
形状認識装置1’は、照明面積調整手段として、照明手段4をカメラ3の光軸33方向に移動(昇降)させる照明手段移動機構13を備えている。この形状認識装置1’では、前記の絞り42の調整に代えて、照明手段移動機構13を作動して照明手段4を昇降させ、光学部材100と照明手段4との距離を変更することにより、照明面積を調整することができる。
【0042】
以上、本発明の光学部材の形状認識装置を図示の実施形態について説明したが、本発明は、これに限定されるものではなく、光学部材の形状認識装置を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
また、本発明の光学部材の形状認識装置は、前記各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。
【図面の簡単な説明】
【図1】本発明の光学部材の形状認識装置の第1実施形態を示す斜視図。
【図2】光学部材保持機構が光学部材を保持した状態を示す図。
【図3】図1に示す形状認識装置のブロック図。
【図4】光学部材の形状認識を行う際の工程図。
【図5】画像処理の過程の電子画像を示す図。
【図6】画像処理の過程の電子画像を示す図。
【図7】画像処理の過程の電子画像を示す図。
【図8】画像処理の過程の電子画像を示す図。
【図9】本発明の形状認識装置の第2実施形態を示す斜視図。
【符号の説明】
1、1’……光学部材の形状認識装置 2……光学部材保持機構 21……アーム 22……挟持部 221……凹部 3……カメラ 31……本体 32……カメラレンズ 33……光軸 4……照明手段 41……光源 42……絞り5……光学部材移動機構 6……画像処理手段 61……記憶部 7……絞り駆動機構 8……照明光度調整手段 9……制御手段 91……CPU 92……記憶部 11……支持台 12……ディスプレイ 13……照明手段移動機構100……光学部材 101……端面 201……処理前輪郭 202……中央部分 203……膨張後輪郭 204……侵食後輪郭 205……光学部材保持機構相当部分 206……円 207……処理後輪郭 S01〜S12……ステップ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical member shape recognition apparatus.
[0002]
[Prior art]
In general, a thin film such as a cured film or an antireflection film is formed on the surface of an optical member such as a lens to improve the performance and function of the optical component. Conventionally, this thin film is formed by applying a coating solution onto the surface of an optical member by a spin coating method or a dipping method. However, these methods have drawbacks such as requiring a large amount of coating solution.
[0003]
Therefore, the applicant of the present application has proposed a method of applying a coating liquid to the surface of the optical member by an ink jet method (see Patent Document 1). According to this method, the amount of the coating liquid used can be greatly reduced, which is beneficial.
When coating liquid is applied to the surface of the optical member by the ink jet method, it is necessary to selectively eject droplets from the ink jet head onto the optical member. Must be entered into the device. For this purpose, if the shape of the optical member can be recognized by performing image processing on an electronic image obtained by imaging the optical member, it is possible to cope with various optical members having different sizes and shapes.
[0004]
However, since the optical member is transparent, it is practically difficult to perform shape recognition by image processing.
Further, when imaging an optical member, the optical member is usually installed on a holding table on which a recess for positioning the optical member is formed in order to align the center with the camera. Since it is necessary to correspond to the shape on a one-to-one basis, there is also a problem that a separate holding stand must be prepared for each type of optical member.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-327908
[Problems to be solved by the invention]
The objective of this invention is providing the shape recognition apparatus of the optical member which can recognize the outline of an optical member correctly and reliably from the electronic image of the optical member imaged with the camera.
[0007]
[Means for Solving the Problems]
Such an object is achieved by the present invention described below.
[0008]
An optical member shape recognition device of the present invention is an optical member shape recognition device for recognizing the contour of an optical member as a workpiece,
An optical member holding mechanism having a plurality of holding portions, and holding the end face of the optical member by the plurality of holding portions;
A camera that captures an electronic image of the optical member held by the optical member holding mechanism;
Illumination means for irradiating the optical member with illumination light from the side opposite to the camera across the optical member;
And image processing means for recognizing an outline of the optical member by performing image processing on an electronic image of the optical member captured by the camera.
Accordingly, it is possible to provide an optical member shape recognition device capable of accurately and reliably recognizing the contour of the optical member from the electronic image of the optical member captured by the camera.
[0009]
The optical member shape recognition device of the present invention preferably further includes an optical member moving mechanism that moves the optical member held by the optical member holding mechanism in two directions perpendicular to the optical axis direction of the camera.
Thereby, in the electronic image, the contour of the optical member can be illuminated with uniform brightness over the entire circumference, so that the contour can be recognized more accurately and reliably.
[0010]
In the optical member shape recognition apparatus of the present invention, it is preferable that the optical member shape recognition device further includes an illumination area adjustment unit that adjusts an illumination area of the illumination unit.
Thereby, the outline of the optical member can be recognized more accurately and reliably.
In the optical member shape recognition apparatus of the present invention, it is preferable that the illumination area adjusting means is constituted by a stop for restricting the illumination light.
Thereby, the illumination area can be adjusted with a simple configuration.
[0011]
In the optical member shape recognition apparatus according to the present invention, it is preferable that the illumination area adjusting unit includes an illumination unit moving mechanism that moves the illumination unit in the optical axis direction of the camera.
Thereby, the illumination area can be adjusted with a simple configuration.
In the optical member shape recognition apparatus of the present invention, it is preferable that the optical member shape recognition apparatus further includes a control unit that controls the operation of the illumination area adjusting unit based on the shape data of the optical member.
Thereby, since adjustment of an illumination area can be performed automatically, the operation by an operator becomes unnecessary and it can process rapidly.
[0012]
In the optical member shape recognition apparatus of the present invention, it is preferable that the optical member shape recognition device further includes an illumination intensity adjustment unit that adjusts the intensity of light emitted from the light source of the illumination unit.
Thereby, the outline of the optical member can be recognized more accurately and reliably.
In the optical member shape recognition device of the present invention, it is preferable that the clamping portion has a concave portion, and an end surface of the optical member is in contact with the concave portion.
As a result, the optical member holding mechanism can reliably hold the optical member without the optical member fluttering or being displaced in the thickness direction. Further, even when the optical member is turned upside down, it can be similarly held.
[0013]
In the optical member shape recognition device of the present invention, it is preferable that the concave portion is substantially V-shaped.
As a result, the optical member holding mechanism can reliably hold the optical member without the optical member fluttering or being displaced in the thickness direction. Further, even when the optical member is turned upside down, it can be similarly held.
[0014]
In the optical member shape recognition apparatus of the present invention, it is preferable that the image processing includes expansion processing and erosion processing.
Thereby, even if it is a case where the outline of an optical member is cut | disconnected by the clamping part in an electronic image, the outline of an optical member can be recognized more correctly and reliably.
[0015]
In the optical member shape recognition device of the present invention, in the electronic image, the contour of the optical member is cut at the location of the clamping portion, and the image processing means cuts the cut by performing the expansion process. It is preferable that after the portions are joined and the cut portions are joined, the erosion treatment is performed to reduce the size of the expanded outline by the expansion treatment to the original size.
Thereby, even if it is a case where the outline of an optical member is cut | disconnected by the clamping part in an electronic image, the outline of an optical member can be recognized more correctly and reliably.
[0016]
In the optical member shape recognition apparatus of the present invention, it is preferable that the image processing further includes an opening process.
Thereby, the shape of the optical member can be more accurately and reliably recognized without being affected by the optical member holding mechanism.
In the optical member shape recognition device of the present invention, in the electronic image in the process of image processing by the image processing means, the contour of the optical member and the contour of the optical member holding mechanism are combined, and the image processing means It is preferable to separate the contour of the optical member holding mechanism from the contour of the optical member by performing the opening process.
Thereby, the shape of the optical member can be more accurately and reliably recognized without being affected by the optical member holding mechanism.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS The optical member shape recognition apparatus of the present invention will be described below in detail based on preferred embodiments shown in the accompanying drawings.
<First Embodiment>
FIG. 1 is a perspective view showing a first embodiment of an optical member shape recognition device (hereinafter simply referred to as “shape recognition device”) according to the present invention, and FIG. 2 is an optical member holding device in the shape recognition device shown in FIG. FIG. 3 is a block diagram of the shape recognition device shown in FIG. 1, and FIG. 4 is a process diagram when the shape recognition device shown in FIG. 1 performs shape recognition of the optical member. 5 to 8 are diagrams showing electronic images in the process of image processing in the shape recognition apparatus shown in FIG. In the following, for convenience of explanation, the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”. The hatched areas in FIGS. 5 to 8 indicate dark places in the image.
[0018]
The shape recognition apparatus 1 shown in FIG. 1 is an apparatus that recognizes the contour of the optical member 100 by taking an electronic image of the optical member 100 as a workpiece and performing image processing on the electronic image. The contour data of the optical member 100 recognized by the shape recognition device 1 can be used, for example, to control processing in a processing device that processes the optical member 100. Although it does not specifically limit as this processing apparatus, For example, the industrial inkjet drawing apparatus etc. which apply | coat a coating liquid (Coating liquid for forming thin films, such as a cured film and an antireflection film), on the surface of the optical member 100 are mentioned. . Note that the type of the optical member 100 is not particularly limited, and any member such as a lens, an optical filter, and a prism may be used.
[0019]
As illustrated in FIG. 1, the shape recognition device 1 moves the optical member holding mechanism 2, the camera 3 that captures an electronic image of the optical member 100, the illumination unit 4 that illuminates the optical member 100, and the optical member 100. And an optical member moving mechanism 5.
The optical member holding mechanism 2 has a plurality (three in the drawing) of arms 21 and a clamping portion 22 provided at the tip of each arm 21.
[0020]
The optical member holding mechanism 2 holds the optical member 100 by holding the end surface 101 of the optical member 100 by the three holding portions 22. The optical member holding mechanism 2 can hold the optical member 100 according to the shape and size of the optical member 100 by adjusting the position of each arm 21 and adjusting the interval between the holding portions 22. Therefore, it is not necessary to prepare a separate optical member holding mechanism 2 for each optical member 100 having a different shape and size, which is advantageous.
[0021]
As shown in FIG. 2, each clamping part 22 has a substantially V-shaped recess 221, and in a state where each clamping part 22 clamps the optical member 100, the end surface of the optical member 100 is in the recess 221. 101 contacts. Thereby, the optical member 100 can be reliably held without the optical member 100 fluttering or being displaced in the vertical direction in FIG. Further, even when the optical member 100 is turned upside down (front and back) with respect to FIG. Therefore, it is possible to easily cope with the case where the coating liquid is applied to the back surface of the optical member 100.
[0022]
As shown in FIG. 1, the camera 3 is supported and fixed on the upper side of the optical member 100 held by the optical member holding mechanism 2 via a support base 11. The camera 3 includes a main body 31 incorporating a solid-state imaging device such as a CCD (Charge Coupled Device), and a camera lens 32, and takes an electronic image of the optical member 100 held by the optical member holding mechanism 2. To do.
[0023]
On the lower side of the optical member 100 held by the optical member holding mechanism 2, the illumination means 4 having the light source 41 is installed concentrically with the optical axis 33 of the camera 3. The illumination unit 4 irradiates the optical member 100 with illumination light from the side opposite to the camera 3 with the optical member 100 interposed therebetween. The illumination light from the illumination means 4 may be diffused light or parallel light. The type of the light source 41 is not particularly limited, and for example, a flat fluorescent lamp, a halogen lamp, a high brightness LED, or the like can be used. The illumination means 4 is provided with a stop 42 for restricting illumination light as illumination area adjustment means for adjusting the illumination area (projection area of illumination light on the surface of the optical member 100).
[0024]
In the present invention, since the illumination unit 4 is arranged as described above, when the optical member 100 is imaged by the camera 3, the illumination light is reflected on the end surface 101 of the optical member 100, and the outline of the optical member 100 rises brightly. Therefore, the shape recognition of the optical member 100 can be performed accurately and reliably.
On the other hand, unlike the present invention, when the illumination light is irradiated onto the optical member 100 from the forward direction (from the same side as the camera 3), the optical member 100 is transparent, The outline is not clearly visible, and it is difficult to recognize the shape by image processing, or an accurate shape cannot be recognized.
[0025]
The optical member holding mechanism 2 is supported via an optical member moving mechanism 5 and is movable. The optical member moving mechanism 5 can move the optical member 100 held by the optical member holding mechanism 2 in the x-axis direction and the Y-axis direction perpendicular to the optical axis 33 direction of the camera 3. Thereby, the position of the optical member 100 can be accurately adjusted so that the center of the optical member 100 coincides with the optical axis 33 of the camera 3.
The optical member moving mechanism 5 according to the present embodiment can further move the optical member 100 in the z-axis direction parallel to the optical axis 33 and rotate and move around the y-axis (rotation in the θ direction). ing.
[0026]
As shown in FIG. 3, the shape recognition device 1 further includes an image processing unit 6, an aperture driving mechanism 7, an illumination intensity adjustment unit 8, a control unit 9, and a display 12.
The image processing means 6 recognizes the contour of the optical member 100 by performing image processing on the electronic image of the optical member 100 captured by the camera 3 as described later.
[0027]
The aperture driving mechanism 7 is for opening and closing the aperture 42 by driving an aperture 42 by an actuator such as a servo motor.
The illumination light intensity adjusting means 8 adjusts the light intensity of the light emitted from the light source 41 by adjusting the voltage applied to the light source 41.
The display 12 includes, for example, a CRT (Cathode-Ray Tube), a liquid crystal display, and the like, and displays, for example, an operation screen, a data input screen, and the like. In addition to this, the display 12 displays an image of the optical member 100 picked up by the camera 3, a display of a processing status in the middle of image processing, and a contour of the optical member 100 finally recognized. Can do.
[0028]
The control unit 9 controls the optical member moving mechanism 5, the image processing unit 6, the aperture driving mechanism 7, the illumination intensity adjustment unit 8, and the display 12. The control unit 9 includes a CPU (Central Processing Unit) 91 and a storage unit (storage unit) 92. The storage unit 92 has a storage medium (recording medium) that can be read by the CPU 91, and the storage medium is configured by a magnetic or optical recording medium, a semiconductor memory, or the like.
[0029]
Hereafter, each process at the time of shape recognition of the optical member 100 by such a shape recognition apparatus 1 is demonstrated, referring FIG.
First, the target optical member 100 is set in the optical member holding mechanism 2 (step S01). Further, the shape data (dimension, thickness, convex lens or concave lens, etc.) of the optical member 100 is input to the control means 9. Then, the optical member moving mechanism 5 is operated to make the center of the optical member 100 coincide with the optical axis 33 of the camera 3. Thereby, the outline of the optical member 100 can be recognized more accurately and reliably. The operation of the optical member moving mechanism 5 at this time may be automatically controlled by the control means 9 based on the input shape data or the like, or may be manually controlled by the operator.
[0030]
Next, preliminary imaging of the optical member 100 is performed by the camera 3 (step S02). In the electronic image picked up by the camera 3, the illumination light is reflected on the end face 101 as described above, and the contour 201 of the optical member 100 before image processing (hereinafter referred to as “pre-processing contour 201”) appears bright. In the central portion 202, the light source 41 of the illumination means 4 is brightly reflected (see FIG. 5).
[0031]
As described above, by operating the optical member moving mechanism 5, the center of the optical member 100 is made to coincide with the optical axis 33 of the camera 3, so that the pre-processing outline 201 shines with uniform brightness over the entire circumference. Therefore, the shape recognition can be performed more accurately and reliably. However, the pre-processing outline 201 is cut off at the portion of the sandwiching portion 22 because the illumination light does not strike.
[0032]
Based on the shape data of the optical member 100, the control means 9 adjusts the opening degree of the diaphragm 42 via the diaphragm drive mechanism 7 and adjusts the illumination area (step S03). In the electronic image, the brightness of the pre-processing outline 201 varies greatly depending on the thickness of the end surface 101 of the optical member 100 (bright when the end surface 101 is thick and dark when thin), but by adjusting the illumination area, The brightness of the pre-processing outline 201 in the electronic image can be automatically adjusted to an appropriate brightness. Further, since the size of the central portion 202 varies depending on the characteristics of the optical member 100 (whether it is a convex lens or a concave lens), the size of the central portion 202 is appropriately adjusted (contour before processing) by adjusting the illumination area. It is possible to adjust the size so that it does not overlap with 201.
Next, the control means 9 adjusts the light intensity of the light source 41 of the illumination means 4 via the illumination light intensity adjustment means 8 based on the shape data of the optical member 100 (step S04). Thereby, the brightness of the pre-processing outline 201 in the electronic image can be automatically adjusted to a more appropriate brightness.
[0033]
In this embodiment, the outline of the optical member 100 can be recognized more accurately and reliably by performing the illumination area (aperture) adjustment and the illumination intensity adjustment as described above. The illumination intensity adjustment is particularly effective when, for example, the shape of the optical member 100 in which the size and shape of the optical member 100 are constant and only the thickness of the end face 101 is recognized is recognized. In addition, when the illumination area can be expanded only within a certain range due to the characteristics of the optical member 100 (whether it is a convex lens or a concave lens), the brightness of the pre-processing contour 201 is adjusted by adjusting the illumination luminous intensity, so that the more accurate and stable The outer shape of the optical member 100 can be acquired.
In this embodiment, the illumination area (aperture) adjustment and illumination light intensity adjustment are automatically performed. However, the present invention is not limited to this, and the operator manually adjusts the preliminary captured image displayed on the display 12. You may make it perform illumination area (aperture) adjustment and illumination luminous intensity adjustment.
[0034]
Next, the optical image of the optical member 100 is captured by the camera 3 (step S05), the image data is taken into the storage unit 61 provided in the image processing means 6 (step S06), and image processing by the image processing means 6 is started.
First, the image processing means 6 detects the edge (outline portion) and the center (center portion) as follows (step S07). In the present embodiment, an electronic image of the optical member 100 is taken (captured) as shown in FIG. That is, the light source 41 of the illumination unit 4 is photographed through the central portion (central portion 202) of the optical member 100, and the contour portion (pre-processing contour 201) of the optical member 100 appears brightly. However, there is a possibility that this contour portion is shaded by the holding portion 22 of the optical portion holding mechanism 2 and the region is divided or integrated with a part or all of the reflection portions of the holding portion 22 and the arm 21. Is included.
[0035]
In addition, the brightness of the contour portion of the optical member 100 tends to depend on the thickness of the end face of the optical member 100. In particular, when the thickness is small, the brightness cannot be detected by a normal process for detecting a bright part. There is. In such a case, it is effective to create an image obtained by averaging the original image in a certain range, and to detect a subtle edge portion by comparing this image with the original image.
[0036]
Next, the image processing means 6 performs an expansion process on the region including the contour portion of the optical member 100 detected in step S07 (step S08). As a result, as shown in FIG. 6, the pre-processing contour 201 is expanded, so that the cut portions cut by the sandwiching portion 22 are joined, and a post-expansion contour 203 is generated in which the entire circumference is connected. In the present invention, by performing this expansion processing, the contour of the optical member 100 can be recognized more accurately and reliably even when the pre-processing contour 201 is cut.
[0037]
Next, the image processing means 6 performs the filling process (step S09) of the region of the post-expansion contour 203, and then performs the erosion process (shrinkage process) with the same size as the expansion process (step S10). Thereby, the post-expansion contour 203 is reduced to the original size by the enlargement by the expansion processing, and the post-erosion contour 204 is generated (see FIG. 7). To this post-erosion outline 204, three optical member holding mechanism equivalent portions (contours of the optical member holding mechanism 2) 205 corresponding to the three sets of arms 21 and the holding portion 22 are coupled.
[0038]
Next, the image processing means 6 performs an opening process (step S11). This opening process is a process of taking out only a portion where a certain shape (circle 206 in the figure) is movable in the region in the contour 204 after erosion. By this opening process, the optical member holding mechanism equivalent part 205 is removed, and a post-process outline 207 is generated after the image process (see FIG. 8). This processed contour 207 exactly matches the actual contour of the optical member 100. Thus, by performing the opening process, the influence of the optical member holding mechanism 2 can be surely eliminated, and more accurate and reliable shape recognition can be performed. The recognized data of the processed contour 207 is stored in the storage unit 61 of the image processing unit 6 or the storage unit 92 of the control unit 9 (step S12).
[0039]
As described above, the shape recognition apparatus 1 of the present invention can accurately and reliably recognize the outline of the transparent optical member 100 that is usually difficult to recognize the shape, and is also affected by the optical member holding mechanism 2. The above effects can be achieved without receiving them. Therefore, by inputting the contour data of the optical member 100 obtained by the shape recognition device 1 to the ink jet drawing device and using it, not only the protective coating material is applied to the optical member (lens) but also, for example, a lens for sunglasses This is particularly effective when the colorant is applied uniformly or with gradation, or when numbers or marks are printed on a part of the optical member (lens).
[0040]
Second Embodiment
FIG. 9 is a perspective view showing a second embodiment of the shape recognition apparatus of the present invention. Hereinafter, the second embodiment of the shape recognition device of the present invention will be described with reference to this figure, but the description will focus on differences from the above-described embodiment, and the description of the same matters will be omitted.
The shape recognition apparatus 1 ′ of this embodiment is the same as that of the first embodiment except that the configuration of the illumination area adjustment unit is different.
[0041]
The shape recognition device 1 ′ includes an illumination means moving mechanism 13 that moves (lifts) the illumination means 4 in the direction of the optical axis 33 of the camera 3 as illumination area adjustment means. In this shape recognition apparatus 1 ′, instead of adjusting the diaphragm 42, the illumination means moving mechanism 13 is operated to raise and lower the illumination means 4, and the distance between the optical member 100 and the illumination means 4 is changed. The illumination area can be adjusted.
[0042]
The optical member shape recognition apparatus of the present invention has been described above with reference to the illustrated embodiment. However, the present invention is not limited to this, and each part constituting the optical member shape recognition apparatus has the same function. It can be replaced with any configuration that can be exhibited. Moreover, arbitrary components may be added.
Further, the optical member shape recognition device of the present invention may be a combination of any two or more configurations (features) of the above embodiments.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of an optical member shape recognition apparatus of the present invention.
FIG. 2 is a diagram illustrating a state in which an optical member holding mechanism holds an optical member.
FIG. 3 is a block diagram of the shape recognition apparatus shown in FIG.
FIG. 4 is a process diagram when performing shape recognition of an optical member.
FIG. 5 is a diagram showing an electronic image in the course of image processing.
FIG. 6 is a diagram showing an electronic image in the course of image processing.
FIG. 7 is a diagram showing an electronic image in the course of image processing.
FIG. 8 is a diagram showing an electronic image in the course of image processing.
FIG. 9 is a perspective view showing a second embodiment of the shape recognition apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1 '... Optical member shape recognition device 2 ... Optical member holding mechanism 21 ... Arm 22 ... Clamping part 221 ... Recessed part 3 ... Camera 31 ... Main body 32 ... Camera lens 33 ... Optical axis 4. Illuminating means 41 ... Light source 42 ... Aperture 5 ... Optical member moving mechanism 6 ... Image processing means 61 ... Storage section 7 ... Aperture drive mechanism 8 ... Illumination intensity adjustment means 9 ... Control means 91 …… CPU 92 …… Storage unit 11 …… Support base 12 …… Display 13 …… Illuminating means moving mechanism 100 …… Optical member 101 …… End face 201 …… Pre-processing contour 202 …… Center portion 203 …… Expanded contour 204 …… Contour after erosion 205 …… Optical member holding mechanism equivalent portion 206 …… Circle 207 …… Contour after processing S01 to S12 …… Step

Claims (13)

ワークとしての光学部材の輪郭を認識する光学部材の形状認識装置であって、
複数の挟持部を有し、該複数の挟持部により光学部材の端面を挟持する光学部材保持機構と、
前記光学部材保持機構に保持された光学部材の電子画像を撮像するカメラと、
前記光学部材を挟んで前記カメラと反対側から照明光を前記光学部材に照射する照明手段と、
前記カメラにより撮像された前記光学部材の電子画像を画像処理することにより、前記光学部材の輪郭を認識する画像処理手段とを備えることを特徴とする光学部材の形状認識装置。
An optical member shape recognition device for recognizing the contour of an optical member as a workpiece,
An optical member holding mechanism having a plurality of holding portions, and holding the end face of the optical member by the plurality of holding portions;
A camera that captures an electronic image of the optical member held by the optical member holding mechanism;
Illumination means for irradiating the optical member with illumination light from the side opposite to the camera across the optical member;
An optical member shape recognition apparatus comprising: an image processing unit that recognizes an outline of the optical member by performing image processing on an electronic image of the optical member captured by the camera.
前記光学部材保持機構に保持された光学部材を前記カメラの光軸方向に対し垂直な二方向に移動させる光学部材移動機構をさらに備える請求項1に記載の光学部材の形状認識装置。The optical member shape recognition apparatus according to claim 1, further comprising an optical member moving mechanism that moves the optical member held by the optical member holding mechanism in two directions perpendicular to an optical axis direction of the camera. 前記照明手段の照明面積を調整する照明面積調整手段をさらに備える請求項1または2に記載の光学部材の形状認識装置。The optical member shape recognition apparatus according to claim 1, further comprising an illumination area adjustment unit that adjusts an illumination area of the illumination unit. 前記照明面積調整手段は、前記照明光を絞る絞りで構成される請求項3に記載の光学部材の形状認識装置。The optical member shape recognition apparatus according to claim 3, wherein the illumination area adjustment unit is configured by a diaphragm that restricts the illumination light. 前記照明面積調整手段は、前記照明手段を前記カメラの光軸方向に移動させる照明手段移動機構で構成される請求項3に記載の光学部材の形状認識装置。The optical member shape recognition apparatus according to claim 3, wherein the illumination area adjusting unit includes an illumination unit moving mechanism that moves the illumination unit in an optical axis direction of the camera. 前記光学部材の形状データに基づいて前記照明面積調整手段の作動を制御する制御手段をさらに備える請求項3ないし5のいずれかに記載の光学部材の形状認識装置。6. The optical member shape recognition apparatus according to claim 3, further comprising a control unit that controls the operation of the illumination area adjusting unit based on the shape data of the optical member. 前記照明手段の光源が放つ光の光度を調整する照明光度調整手段をさらに備える請求項1ないし6のいずれかに記載の光学部材の形状認識装置。The shape recognition apparatus for an optical member according to any one of claims 1 to 6, further comprising illumination intensity adjustment means for adjusting the intensity of light emitted from the light source of the illumination means. 前記挟持部は、凹部を有し、該凹部内に前記光学部材の端面が接触する請求項1ないし7のいずれかに記載の光学部材の形状認識装置。The optical member shape recognition device according to claim 1, wherein the holding portion has a concave portion, and an end surface of the optical member is in contact with the concave portion. 前記凹部は、ほぼV字状をなしている請求項8に記載の光学部材の形状認識装置。9. The optical member shape recognition apparatus according to claim 8, wherein the concave portion is substantially V-shaped. 前記画像処理は、膨張処理と侵食処理とを含む請求項1ないし9のいずれかに記載の光学部材の形状認識装置。The optical member shape recognition apparatus according to claim 1, wherein the image processing includes expansion processing and erosion processing. 前記電子画像においては、前記光学部材の輪郭が前記挟持部の個所で切断されており、前記画像処理手段は、前記膨張処理を施すことにより、その切断部分を結合させ、該切断部分が結合した後、前記侵食処理を施すことにより、前記膨張処理によって前記輪郭が拡大した分を元の大きさに縮小させる請求項10に記載の光学部材の形状認識装置。In the electronic image, the contour of the optical member is cut at the location of the clamping portion, and the image processing means combines the cut portions by applying the expansion process, and the cut portions are connected. 11. The optical member shape recognition apparatus according to claim 10, wherein the erosion process is performed to reduce the size of the contour expanded by the expansion process to an original size. 前記画像処理は、オープニング処理をさらに含む請求項1ないし11のいずれかに記載の光学部材の形状認識装置。12. The optical member shape recognition apparatus according to claim 1, wherein the image processing further includes an opening process. 前記画像処理手段が画像処理する過程の電子画像においては、前記光学部材の輪郭と前記光学部材保持機構の輪郭とが結合しており、前記画像処理手段は、前記オープニング処理を施すことにより、前記光学部材の輪郭から前記光学部材保持機構の輪郭を切り離す請求項12に記載の光学部材の形状認識装置。In the electronic image in the process of image processing by the image processing means, the contour of the optical member and the contour of the optical member holding mechanism are combined, and the image processing means performs the opening process, thereby The shape recognition device for an optical member according to claim 12, wherein the contour of the optical member holding mechanism is separated from the contour of the optical member.
JP2003170773A 2003-06-16 2003-06-16 Shape recognition device for optical member Pending JP2005009865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003170773A JP2005009865A (en) 2003-06-16 2003-06-16 Shape recognition device for optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003170773A JP2005009865A (en) 2003-06-16 2003-06-16 Shape recognition device for optical member

Publications (1)

Publication Number Publication Date
JP2005009865A true JP2005009865A (en) 2005-01-13

Family

ID=34095484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003170773A Pending JP2005009865A (en) 2003-06-16 2003-06-16 Shape recognition device for optical member

Country Status (1)

Country Link
JP (1) JP2005009865A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026213A (en) * 2005-07-19 2007-02-01 Nikon Corp Imaging device
JP2012103110A (en) * 2010-11-10 2012-05-31 Olympus Corp Edge detection method and edge detector
CN111571276A (en) * 2020-05-08 2020-08-25 东莞市固达机械制造有限公司 Numerical control machine tool capable of identifying workpiece and automatically inputting technological parameters and machining method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026213A (en) * 2005-07-19 2007-02-01 Nikon Corp Imaging device
JP4670521B2 (en) * 2005-07-19 2011-04-13 株式会社ニコン Imaging device
JP2012103110A (en) * 2010-11-10 2012-05-31 Olympus Corp Edge detection method and edge detector
CN111571276A (en) * 2020-05-08 2020-08-25 东莞市固达机械制造有限公司 Numerical control machine tool capable of identifying workpiece and automatically inputting technological parameters and machining method thereof
CN111571276B (en) * 2020-05-08 2021-10-08 东莞市固达机械制造有限公司 Numerical control machine tool capable of identifying workpiece and automatically inputting technological parameters and machining method thereof

Similar Documents

Publication Publication Date Title
JPWO2006118152A1 (en) Appearance inspection apparatus, appearance inspection method, and peripheral edge inspection unit that can be attached to appearance inspection apparatus
JPH08327554A (en) Lighting system
JP2991593B2 (en) Semiconductor wafer shape recognition device for dicing machine
JP2011047948A (en) Cutting plane inspection device of glass substrate
JP2969403B2 (en) Bonding wire inspection device
JP2981942B2 (en) Bonding wire inspection method
US10302575B2 (en) Intraocular lens inspection
JP2008528078A (en) Focus device for ophthalmic equipment, in particular fundus camera, and use thereof
JPH05160231A (en) Bonding wire inspecting apparatus
JP2005009865A (en) Shape recognition device for optical member
JP2006226748A (en) Imaging recognition device of transparent body
JP2006520462A (en) Method for parallax free centering of optical element and apparatus for performing the method
KR101870088B1 (en) Camera module pre-active aligning method
JP5397889B2 (en) Cup mounting device
JP2014121727A (en) Laser machining apparatus
JP5930284B2 (en) Illumination apparatus, imaging apparatus, screen printing apparatus, alignment method, and substrate manufacturing method
JP4761289B2 (en) Marking apparatus and marking method
CN213544424U (en) Inspection equipment
JP2021086121A (en) Image capture device and surface inspection device
JP2001356007A (en) Method and apparatus for recognizing image as well as positioning device
CN213121656U (en) Appearance inspection device and appearance inspection system
JPH09318551A (en) Apparatus for picking up image of tubular inner surface
JP2000099625A (en) Character recognizing device
CN210172799U (en) Camera high accuracy laser micromachining device
FR2461481A1 (en) Camera for iris diagnostic photography - produces composite picture of iris and topography to permit diagnostic interpretation