JP2005008974A - Porcelain enameled material and manufacturing method therefor - Google Patents

Porcelain enameled material and manufacturing method therefor Download PDF

Info

Publication number
JP2005008974A
JP2005008974A JP2003176975A JP2003176975A JP2005008974A JP 2005008974 A JP2005008974 A JP 2005008974A JP 2003176975 A JP2003176975 A JP 2003176975A JP 2003176975 A JP2003176975 A JP 2003176975A JP 2005008974 A JP2005008974 A JP 2005008974A
Authority
JP
Japan
Prior art keywords
glaze
mass
glaze layer
photocatalyst
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003176975A
Other languages
Japanese (ja)
Inventor
Tomoyuki Tawara
知之 田原
Tatsuya Nobusawa
達也 信澤
Hiroshi Nagaishi
博 永石
Michiyoshi Kamoki
理祥 鴨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Metal Products and Engineering Inc
Original Assignee
JFE Steel Corp
JFE Metal Products and Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Metal Products and Engineering Inc filed Critical JFE Steel Corp
Priority to JP2003176975A priority Critical patent/JP2005008974A/en
Publication of JP2005008974A publication Critical patent/JP2005008974A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porcelain enameled material which persistently shows high photocatalytic functions while maintaining the characteristics of porcelain enamel such as gloss, acid resistance and alkali resistance, and to provide a method for easily manufacturing such a porcelain enameled material with a less number of steps. <P>SOLUTION: This porcelain enamelled material has a glaze layer containing the grains of a photocatalyst in both of the inner part and the surface part, formed thereon from slurry containing the grains of the photocatalyst, which are the aggregates of the primary particles having particle sizes of 50 nm or smaller, and have grain sizes of 0.5 μm or larger but smaller than the film thickness of a finally obtained glaze layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、琺瑯特性および光触媒機能の持続性に優れた琺瑯材、およびその製造方法に関する。
【0002】
【従来の技術】
近年、公害対策として、あるいは健康、清潔志向の高まりから、抗菌、消臭、防汚等の機能をもった環境浄化型製品に対する強いニーズがあり、この種の製品に利用する技術として光触媒が注目されている。
光触媒は、吸収した光エネルギーを化学エネルギーに変換する物質であり、その触媒作用は、光エネルギーの吸収により生成する光触媒中の励起電子と正孔とを介して行われる。具体的に、励起電子は酸素を還元してスーパーオキサイドアニオン(・O )を生成し、正孔は水を酸化して水酸ラジカル(・OH)を生成し、これら活性酸素種により、光触媒の表面に接触するかまたは近傍に位置する有機物などを酸化分解する。
【0003】
上記特性を有する光触媒は、具体的に、屋外では、NOなどの窒素酸化物(NO)などの大気汚染物質の駆除処理、都市型汚染の主成分である油分、無機質塵埃、およびカーボンなどに対する耐汚染処理、視認性を確保するための防曇処理などに利用することができる。また屋内では、抗菌、消臭等の衛生処理に利用することができる。
現在実用化されている光触媒は、アナターゼ型またはブルッカイト型の酸化チタンである。また最近、アナターゼ型酸化チタンをベースとして、遷移金属ドープ、窒素ドープあるいは酸素欠損などの手法により、光触媒を可視光に応答させる研究も行われている。
【0004】
上記のような光触媒の酸化チタンを用いた材料を実用化する際には、光触媒を固定するため、通常、光触媒で分解されにくい無機バインダーを用いる。この無機バインダーとして、琺瑯釉薬を使用することが知られている。たとえば、Alめっき鋼板またはオーステナイト系ステンレス鋼板上に、光触媒としてのアナターゼ型酸化チタン粉末と、無機質ガラス粉末(以下、フリットと表記)とを混合したスラリーを塗布し、焼成することによりガラス質被膜(以下、釉薬層と表記)を形成した耐雨筋汚れ付着性琺瑯材の開示がある(たとえば特許文献1〜2など参照)。
【0005】
ここでは、酸化チタンの平均粒子径が20nmに満たないと比表面積が大きくなりすぎ、琺瑯の溶け不足に起因して表面光沢が低下する傾向がみられ、50nmを超える粗粒になると光触媒活性が低下し、十分な耐汚染性が得られないとして、平均粒子径20〜50nmの酸化チタンを、フリット100重量(質量)部に対し、2〜20質量部の量で使用している。
また従来、琺瑯材に意匠性を付与する白色顔料として、フリット100質量部に対して50質量部以下程度の量で、アナターゼ型またはルチル型酸化チタンを含ませた琺瑯材が知られている。
【0006】
また光触媒が表面に露出した構造として、たとえば基材上に釉薬層を形成し、次いで光触媒ゾルを塗布した後、釉薬層を加熱溶融することにより、釉薬層から光触媒の一部を露出させて配置した部材(特許文献3参照)、さらには抗菌剤を含む琺瑯層(釉薬層)の表面に、無機バインダーを含む光触媒ゾルを塗布して焼成し、光触媒層を形成した抗菌性積層体(特許文献4参照)などが提案されている。
【0007】
【特許文献1】
特開平10−330965号公報
【特許文献2】
特開平11−71686号公報
【特許文献3】
特許第2667331号公報
【特許文献4】
特開2000−202939号公報
【0008】
【発明が解決しようとする課題】
上記特許文献1〜2の開示に従い、平均粒子径20〜50nmの光触媒粒子とフリットとを上記量比で混合して釉薬層を形成した場合には、上記のような微細径の光触媒粒子は、焼成時に溶融したフリットの流動を妨げ、連続した釉薬層の形成が阻害されることがわかった。このためこれにより得られる釉薬層は、艶消し状の外観となり、耐酸性、耐アルカリ性に劣る。さらにこれら文献に開示されるように、釉薬層材料にケイ酸カリウムなどの電解質を添加した場合には、焼成時に光触媒粒子とケイ酸カリウムとが反応して、光触媒活性が低下する。
【0009】
また白色顔料として使用される酸化チタンは、結晶子 (以下、一次粒子と表記)の粒子径が約50〜100nmであり、該酸化チタンがアナターゼ型であったとしても、それ自体の光触媒活性は低い。さらに該酸化チタンの凝集粒子は、平均粒子径が0.15〜0.3μmであるため、酸化チタンが釉薬層表面から有効に露出せず、光触媒機能をほとんど発現できない。
【0010】
一方、特許文献3〜4に開示されるような釉薬層上に光触媒粒子を固定する方法は、光触媒粒子を露出させることができるが、光触媒粒子とフリットとの混合物から光触媒釉薬層を形成する方法に比べて本質的に工程数が多く煩雑であり、また光触媒層の形成は実質的にゾルの塗布に限定される。このような光触媒層はサブミクロンオーダーの薄膜であるため、摩耗により、光触媒活性の持続性が低下するという問題がある。さらに最外層に光触媒層を形成しただけの構造では、環境浄化用として使用しうる充分な光触媒作用を得ることは困難である。
【0011】
本発明は、上記のような従来技術に鑑みて、光沢性、耐酸性、耐アルカリ性などの琺瑯特性を保持しつつ、高い光触媒機能を持続的に発現することができる琺瑯材およびこのような琺瑯材を少ない工程数で容易に製造しうる琺瑯材の製造方法を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明者は、光触媒機能を有する琺瑯材に要求される光触媒機能および琺瑯特性の両方を満たす琺瑯材を簡便に得るべく、光触媒粒子の粒子径について一次粒子および凝集粒子(aggregate 、aggromerate 、flocculateを指す。以下、凝集体と表記)の両方に着目して検討したところ、一次粒子径が50nm以下で、粒子径が0.5μm以上の凝集体であり、かつ凝集体の最大粒子径が釉薬層膜厚よりも小さい光触媒粒子を選択すれば、フリットとの混合物スラリーを塗布して釉薬層を焼成するだけで、釉薬層の形成を阻害することなく、かつ該光触媒粒子が釉薬層の内部に分散しているだけでなく表面にも露出して存在する琺瑯材を得ることができ、該琺瑯材は、琺瑯特性を保持したまま、高い光触媒機能を発現し、かつ光触媒機能に持続性があることを見出した。
【0013】
特に、光触媒粒子として酸化チタンを使用する場合、釉薬層に保持された酸化チタンが上記のような一次粒子および凝集体であれば、紫外線の受光によって光触媒機能とともに親水性を示すという本来の特性を発現することも確認できた。
さらに、釉薬層を形成するための焼成前に、光触媒粒子が無機酸化物の被覆層を有していれば、釉薬層中に含まれる電解質などとの反応による光触媒粒子の触媒活性の低下を抑制することができることも見出して、本発明を完成するに至った。
【0014】
したがって本発明では、粒子径50nm以下の一次粒子の凝集体であり、かつ凝集体の粒子径が0.5μm以上である光触媒粒子が、該凝集体の最大粒子径よりも厚い膜厚をもつ釉薬層の内部および表面に存在する釉薬層を、基材上に有する琺瑯材を提供する。
【0015】
また本発明では、上記のような琺瑯材の製造方法として、粒子径50nm以下の一次粒子の凝集体であり、かつ該凝集体の粒子径が0.5μm以上である光触媒粒子と、無機質ガラス粉末とを含む釉薬スラリーを、形成される釉薬層の膜厚が前記凝集体の最大粒子径よりも大きくなる量で基材に塗布し、次いで前記無機質ガラス粉末の軟化温度以上で焼成する、琺瑯材の製造方法を提供する。
【0016】
上記釉薬スラリーに含ませる光触媒粒子が無機酸化物の被覆層を有する態様は好ましい。
この釉薬スラリーは、光触媒粒子をフリット100質量部に対して10〜50質量部の量で含むことが望ましい。
【0017】
【発明の実施の形態】
本発明において、琺瑯材とは、金属基材の表面にガラス質被膜の釉薬層を融着させた材料のことで、基材としては、低炭素鋼板、鋳鉄、ステンレス、銅、アルミニウムなどや、アルミニウムメッキ鋼板、アルミニウム亜鉛合金メッキ鋼板などのメッキ鋼板が用いられる。また基材が低炭素鋼などの場合は、釉薬層と基材表面との間に、基材との反応を促進させて接着を高めるための下塗り釉薬層を有していてもよい。
また基材の形状として、たとえばシート、シート成形品などが挙げられるが、これらに限定されない。また基材の大きさ、厚みも特に限定されない。
【0018】
本発明では、釉薬層を形成するフリットとして、公知のフリットを広く用いることができるが、光触媒の活性を失活しない温度で被膜を形成しうる組成のものが望ましい。たとえば光触媒としてアナターゼ型酸化チタンを使用する場合には、500℃以上の加熱により、ルチル型への結晶転移、釉薬層中の電解質成分などとの反応を生じ、光触媒活性が低下し始めるが、釉薬層の焼成時間は短いため、焼成温度が800℃以下であれば、光触媒活性の失活を回避することができる。このため焼成温度が800℃以下で釉薬層を形成するフリットが好ましく、さらに750℃以下で軟化するフリットが好ましい。なお、フリットの軟化温度は、目開き74μm(メッシュNo.200)の篩下で、目開き44μm(メッシュNo.325)の篩上のフリット粉末を、JIS R2204「耐火れんがの耐火度の試験方法」に準じて、試験コーンに成形し、加熱によって試験コーンの先端が受け台に接触した時の温度を意味する。
【0019】
フリットの主成分に基づいて以下にいくつか組成を例示するが、特にこれらに限定されるものでない。
リン酸塩ガラスをベースにした場合には、軟化温度、化学的耐久性などの観点から、下記組成のフリットが好ましい。
含有率は、通常25〜70質量%、好ましくは30〜65質量%である。
Sbは主に軟化温度と融液粘度を低下させる成分として、通常2〜20質量%、好ましくは2.5〜10質量%の含有率で含ませることができる。
Alは主に化学的耐久性を改善する成分として、通常3〜35質量%、好ましくは5〜30質量%の含有率で含ませることができる。
TiOは主に化学的耐久性を改善する成分として、通常0.5〜5質量%、好ましくは1〜4.5質量%の含有率で含ませることができる。
は主に軟化温度を低下させ、化学的耐久性を改善する成分として、通常0.5〜15質量%、好ましくは1〜10質量%の含有率で含ませることができる。
【0020】
O(M:Li、Na、K)は主に軟化温度と融液粘度とを低下させる成分として、その選ばれる1種以上の合計含有率で通常5〜25質量%、好ましくは10〜20質量%で含ませることができる。MO(M:Ca、Sr、Ba、Zn)は主に軟化温度を低下させ、化学的耐久性を改善する成分として、その選ばれる1種以上の合計含有率で通常5〜25質量%、好ましくは10〜20質量%で含ませることができる。さらに化学的耐久性を改善する成分として、CuO、WO、SiO、ZrOなどを含ませることもできる。
【0021】
硼珪酸塩ガラスをベースにした場合には、軟化温度、化学的耐久性などの観点から、下記組成のフリットが好ましい。
SiO/Bの質量比は、通常0.5〜5、好ましくは0.8〜3.50 である。さらにSiOとBの合計含有率は、通常30〜60質量%、好ましくは35〜55質量%である。
Alは主に化学的耐久性を改善する成分として、通常0.5〜5質量%、好ましくは1〜4.5質量%の含有率で含ませることができる。
O(M:Li、Na、K)は主に軟化温度と融液粘度とを低下させる成分として、その選ばれる1種以上の合計含有率で通常5〜25質量%、好ましくは10〜25質量%含ませることができる。
MO(M:Ca、Sr、Ba、Zn)は主に軟化温度を低下させ、化学的耐久性を改善する成分として、その選ばれる1種以上の合計含有率で、通常0〜20質量%、好ましくは1〜15質量%で含ませることができる。
は、主に融液粘度とを低下させる成分として、通常0〜10質量%、好ましくは1〜5質量%の含有率で含ませることができる。
【0022】
また乳白成分として、TiOを含ませる場合には、その含有率は、通常10〜25質量%、好ましくは15〜20質量%である。このとき、NaO/Bの質量比は、1以下であり、かつP含有率は1〜10質量%であることが好ましい。
【0023】
本発明において、光触媒粒子は、上記フリットから形成される釉薬層の内部および表面に存在させるために、その一次粒子径および凝集体粒子径が特定のものに限定される。すなわち一次粒子の粒子径は、粒子の光触媒活性を支配する因子の一つであり、量子サイズ効果による大きい酸化・還元力を得るためには50nm以下とする必要がある。またバンドギャップの増大と、電荷分離の効率低下を避けるためには5nm以上であることが望ましい。具体的に一次粒子径は、好ましくは5〜50nm、より好ましくは5〜30nmである。前述したように、従来は平均粒径が20nmに満たないと、比表面積が大きくなりすぎ、琺瑯の溶け不足に起因して表面光沢が低下すると考えられていたが、本発明では、この一次粒子径とともに凝集体粒子径が後述するように特定されることによって、一次粒子径が20nm未満であっても(好ましくは5nm以上あれば)表面光沢を確保することができる。
なお本明細書において、一次粒子径は、X線回折法でScherrer式により算出される値を意味する。
【0024】
凝集体の粒子径は、焼成時の釉薬層の形成、および琺瑯材表面への光触媒粒子の露出を支配する因子である。本発明では、フリット粒子間に介在する、上記一次粒子径を有する凝集体としての光触媒粒子が、溶融したフリットの流動を妨げず、ガラス質被膜の釉薬層を形成し、該釉薬層の表面に露出するためには、凝集体粒子径が0.5μm以上である必要がある。好ましくは1μm以上である。また光触媒粒子が、形成された釉薬層の内部および表面に存在するため、凝集体の最大粒子径は釉薬層の膜厚よりも小さい。このため凝集体の最大粒子径は、釉薬層の所望膜厚によっても異なるが、釉薬層の表面粗度が増大し過ぎるのを避けるためには、凝集体の最大粒子径は、通常100μm以下、好ましくは30μm以下である。
【0025】
なお本明細書において、凝集体の粒子径は、レーザー回折散乱法にて測定されたメディアン径(積算分布の50体積%径)を意味する。最大粒子径は、上記測定において積算篩下で95%の値を意味する。釉薬層中の凝集体の粒子径は、弗酸やアルカリで釉薬層中のガラス質を溶解して光触媒粒子を回収して同様に測定できる。
【0026】
光触媒粒子は、上記のような一次粒子径および凝集体粒子径が限定される以外は、紫外光または可視光の受光により光触媒活性を発現するもの、具体的には受光により活性酸素種を生成する凝集体を広く使用することができる。具体的には、酸化チタン(TiO)、SrTiO、ZnO、SnO、GaP、CdS、CdSe、KNbO17、KTaOなどが挙げられる。これらのうち、現在実用化されているものは、化学的に安定で、かつ紫外光で容易に活性酸素種を生成するアナターゼ型またはブルッカイト型の酸化チタンであり、好ましい。さらに本発明での光触媒粒子は上記粒子径を満たせばよく、遷移金属ドープ、窒素ドープ、酸素欠損、色素増感物質の担持などの方法により、可視応答型に改良された酸化チタンなどであってもよい。
【0027】
ここで、本発明で使用する上記のような粒子径の光触媒粒子の調製方法の一例を以下に示すが、これに限定されるものではない。アナターゼ型酸化チタンの場合には、まず原料の硫酸チタニル(TiOSO)水溶液を、熱水に撹拌しながら注入して加水分解を行い、不溶性の含水酸化チタン(TiO(OH))を沈殿させる。このとき、アナターゼ型酸化チタンの微結晶が生成し、その一次粒子径は約7nmとなる。次いで、沈殿をろ過、洗浄、乾燥し、400〜800℃で焼結して凝集体を得る。なお、焼結温度を800℃以下とするのは、一次粒子径の結晶成長を50nm以下に抑制し、かつ結晶構造がルチル型に転移するのを避けるためである。
上記焼結により得られた凝集体を、乾式または湿式粉砕して、凝集体粒子径を調整する。この際には、アトマイザー、ジェットミルなどの粉砕機を使用して、粒子径0.5μm以上の所望の粒子径に調整することができる。
【0028】
本発明に係る琺瑯材において、釉薬層は、フリット100質量部に対し、上記光触媒粒子を、好ましくは10〜50質量部、より好ましくは15〜30質量部の割合で含有する。
また釉薬層は、フリットおよび光触媒粒子に加え、必要に応じて、顔料、分散剤(懸濁剤)などの他の成分を、本発明の目的を損なわない範囲で含有していてもよい。たとえば止め薬としての塩化カリウム、炭酸カリウムなど、酸化剤としての硝酸ソーダ(ナトリウム)、硝酸ストロンチウムなど、懸濁剤としての粘土、ベントナイトなどを後述する量で含むことができる。
さらに釉薬層は、後述する釉薬層形成プロセスにおいて、光触媒粒子が釉薬層の焼成前に被覆層を有する場合には、該被覆材としての無機酸化物を少量含む。
【0029】
上記のような釉薬層では、その内部に光触媒粒子が存在しているだけでなく、その表面にも光触媒粒子が存在している。この釉薬層の膜厚は、光触媒粒子凝集体の最大粒子径よりも厚いことが必要である。また琺瑯材の用途によっても異なるが、基材の隠蔽性を確保するためには10μm以上であることが好ましく、一方あまり厚いと釉薬層にクラックが入りやすく、さらに基板との接着性も低下するため200μm以下が好ましい。より好ましくは30〜150μmである。
なお、本発明において、釉薬層の膜厚は、琺瑯材の断面を100倍の顕微鏡観察することにより求めた値を意味する。
【0030】
本発明に係る琺瑯材は、上記釉薬層と基材との間に下引き釉薬層を有していてもよい。たとえば基材が低炭素鋼などの金属の場合には、基材との反応を促進し、接着性を高めるための少量の酸化コバルト、酸化マンガン、酸化ニッケルを含むフリットから形成された下引き釉薬層を有することが好ましい。下引き釉薬層を構成するフリットは、上記例示したフリットのうちでも、光触媒粒子を含む釉薬層を形成するためのフリットよりも高い焼成温度を有するものが好ましく、また下引き釉薬層の線膨張係数は、基材のそれよりも小さく、かつ上層の釉薬層のそれよりも大きいものが好ましい。
下引き釉薬層の膜厚は、通常20μm程度以上で、好ましくは30〜150μm程度である。なお下引き釉薬層は、顔料、分散剤などを含有していてもよい。
【0031】
次に、上記のような本発明の琺瑯材の製造方法について説明する。
本発明に係る琺瑯材は、上記のような特定粒子径の光触媒粒子と、リン酸塩系あるいは硼珪酸塩系などの無機質ガラス粉末(フリット)とを含む釉薬スラリーを、最終的に得られる釉薬層の膜厚が光触媒粒子の凝集体の最大粒子径よりも大きくなる量で基材に塗布し、次いでフリットの軟化温度以上で焼成して釉薬層を形成することにより得られる。
【0032】
釉薬スラリーは、前述したフリット、光触媒粒子、および必要に応じて添加される添加剤、着色顔料などの他の成分に水を加えて、たとえばボールミル粉砕などにより混合することにより調製される。この際、光触媒粒子は、フリット100質量部に対し、前述したとおり、通常10〜50質量部、好ましくは15〜30質量部の割合で使用することが望ましい。光触媒粒子の使用量が上記10質量部以上であれば、釉薬層表面に光触媒粒子を効果的に露出させることができ、光触媒活性を発現することができる。また光触媒粒子の使用量が上記50質量部以下であれば、釉薬層が充分形成され、被膜強度、耐久性、光沢度を充分確保することができる。
【0033】
本発明では、釉薬スラリーに使用する光触媒粒子は、無機酸化物で被覆されていることが好ましい。光触媒粒子が無機酸化物の被覆層を有していると、釉薬スラリー中に、塩化カリウム、炭酸カリウムなどの止め薬あるいは硝酸ナトリウム、硝酸ストロンチウムなどの酸化剤などが比較的多く含まれていても、無機酸化物被覆層が、光触媒粒子とこれらの電解質などとの反応を抑制し、光触媒機能の低下を抑制することができる。上記無機酸化物としては、酸化シリコン、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化タングステンなどが好ましいが、特にこれらに制限されない。これら無機酸化物は、通常アモルファス形態のものが使用される。
【0034】
光触媒粒子に対する無機酸化物の使用量は、保護効果を充分発現するためには0.1質量%以上が好ましく、光触媒粒子の活性を妨げないためには10質量%以下であることが好ましい。0.5〜5質量%がより好ましい。
無機酸化物による被覆は、気相法または液相法により形成することができる。このうちでも、より簡便な液相法により形成した被覆であっても、効果を充分に発揮することができる。液相法では、たとえば金属アルコキシドの加水分解法、または尿素均一沈殿法などにより、光触媒粒子の表面に水酸化物を析出させ、必要に応じて洗浄した後、熱処理して酸化物に変換させることができる。
【0035】
釉薬スラリーは、スラリー中のフリット粒子の沈降を抑制するため、粘土、ベントナイトなどの懸濁剤を、フリット100質量部に対し、0.1質量部以上含むことが好ましい。なお懸濁剤の量が10質量部を超えると、釉薬層の光沢、化学的安定性が低下する傾向がある。懸濁剤のより好ましい使用量は、0.5〜5質量部である。
【0036】
釉薬スラリーは、スラリーの止まりのため、塩化カリウム、炭酸カリウムなどの止め薬を、フリット100質量部に対し、0.05質量部以上含むことが好ましい。なお止め薬の量が1質量部を超えると、スラリーの粘度が増大しすぎる傾向がある。止め薬のより好ましい使用量は、0.1〜0.5質量部である。
【0037】
釉薬スラリーは、有機物の炭化による着色、酸化チタンの漂白のため、硝酸ナトリウム、硝酸ストロンチウムなどの酸化剤を、フリット100質量部に対し、0.5質量部以上含むことが好ましい。なお酸化剤の量が5質量部を超えると、釉薬層の化学的安定性の低下を招く傾向がある。酸化剤のより好ましい使用量は、1〜3質量部である。
【0038】
着色顔料は、釉薬層の特性を損なわない範囲で適宜、釉薬スラリー中に含ませることができる。
【0039】
上記で調製された釉薬スラリーは、基材上に塗布する。基材がたとえば低炭素鋼板の場合には、下引き釉薬用フリットのスラリーを塗布し、800〜900℃で焼成することにより形成した下引き釉薬層上に釉薬スラリーを塗布する。またメッキ鋼板の場合には、釉薬スラリーを直接塗布する。
釉薬スラリーは、ディッピング、ロールコーティング、フローコーティング、スプレー、静電吹き付けなどの方法により、基材上に塗布し、フリットの軟化温度以上、好ましくは800℃以下の温度で1〜10分間、より好ましくは500〜750℃の温度で70秒〜5分間焼成する。なお好ましい焼成温度を500℃以上とするのは、この温度未満で焼成しうる無鉛フリットは知られていないためである。また焼成の上限温度は、前述したとおり、光触媒粒子が酸化チタンである場合、釉薬層成分との反応およびルチル型への結晶転移を避けるために800℃としている。また焼成は1分間行えば、基材が充分昇温するが、10分を超えると、光触媒粒子の釉薬層成分との反応およびルチル型への結晶転移が進行して光触媒活性の低下を招きやすい。
【0040】
上記で形成された釉薬層では、光触媒粒子がその内部に存在するだけでなく、外部表面にも存在し、露出している。このような本発明の琺瑯材は、琺瑯材の本来の特性である光沢および耐久性を維持するとともに、オーバーコート法に匹敵する光触媒活性を持続的に発現することができる。
【0041】
【実施例】
次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。実施例および比較例で作製された琺瑯材の光触媒粒子の存在状態の調査法および琺瑯特性(光沢度、耐酸性、耐アルカリ性)と光触媒特性(色素退色率、親水性)の評価法を以下に示す。
【0042】
<光触媒粒子の存在状態>
釉薬層の断面および表面の各400倍、300倍の走査型電子顕微鏡観察とエネルギー分散型X線分析装置による分析を組合わせ、酸化チタン粒子であると確認された部分の釉薬層の内部および琺瑯表面での存在状態を調べた。
【0043】
<光沢度>
光度測定機(日本電色工業(株)製:VG−2000型)を用い、供試材の表面の45°鏡面光沢度を測定した。
【0044】
<耐酸性試験>
JIS R4301(1978)「ほうろう製品の品質基準」に規定されたクエン酸による常温スポット試験(10%クエン酸、15分スポット)に基づき、琺瑯材の光触媒釉薬層の表面侵食度を評価した。同試験法に規定された、AA級、A級、B級、C級、D級の5段階区分で評価した。AA級、A級であれば、耐食性が良好であると判定される。
【0045】
<耐アルカリ性試験>
JIS R4301(1978)「ほうろう製品の品質基準」に規定された炭酸ナトリウムによる常温スポット試験(10%炭酸ナトリウム、15分スポット)に基づき、琺瑯材の光触媒釉薬層の表面侵食度を評価した。同試験法に規定された、AA級、A級、B級、C級、D級の5段階区分で評価した。AA級、A級であれば、耐アルカリ性が良好であると判定される。
【0046】
<色素退色試験>
ローダミンB(赤色素)の0.05質量%溶液を、供試材表面に吹き付け、乾燥した後、供試材の表面をブラックライト(UV−A強度:3mW/cm)で4時間照射して、JIS Z8729「物体色の表示方法」に準拠してa値 (赤味)の変化を色差計(日本電色工業(株)製:SQ−2000型)を用いて測定した。色素退色率は下記式により算出した。色素退色率が80%以上であれば、良好であると判断される。
【数1】

Figure 2005008974
【0047】
<親水性>
供試材を上記ブラックライトで8時間照射した後、マイクロシリンジを使用してイオン交換水を20μL滴下し、供試材上の水滴を画像処理式接触計(協和界面科学(株) 製CA−Xを用いて、水の接触角を3点法にて測定した。接触角が10°以下であれば、親水性が良好であると判断される。
【0048】
<アナターゼ型酸化チタン粉末の調製>
硫酸チタニル(化学式:TiOSO)500gを、5kgの水に溶解し、100℃で2時間、撹拌しながら加水分解して、不溶性の含水酸化チタン(化学式:TiO(OH))を生成させた。次いで、この含水酸化チタンをろ過、洗浄し、500℃、600℃、650℃または800℃の各温度で1時間焼成してアナターゼ型酸化チタンの焼成体を得た。各焼成温度で得られた焼成体は、それぞれ一次粒子径12nm(500℃)、19nm(600℃)、28nm(650℃)、90nm(800℃)の一次粒子が凝集した凝集体であった。
【0049】
上記で得られた凝集体を、粉砕方法(アトマイザーまたはジェットミル)および篩(目開き74μmまたは38μm)を変えて粒度調整した。
(1)一次粒子径19nmの凝集体を、アトマイザーにより粉砕(粗)した。目開き74μm(メッシュNo. 200)の篩下で得られた粉末凝集体の粒子径は、26μm(最大粒子径70μm)であった。
(2)一次粒子径12nm、19nm、28nmの各凝集体を、アトマイザーにより粉砕(細)した。
目開き74μmの篩下で得られた粉末凝集体の粒子径は12μm(最大粒子径70μm)であった。
(3)一次粒子径90nmの凝集体をアトマイザーにより粉砕(細)した。目開き74μmの篩下で得られた粉末凝集体の粒子径は15μm(最大粒子径70μm)に調整した。
(4)一次粒子径19nmの凝集体のアトマイザー細粉砕物またはジェットミル微粉砕物について、それぞれ目開き38μm(メッシュNo. 390)の篩下、分級した。
アトマイザー細粉砕物の目開き38μmの篩下、粉末凝集体の粒子径は10μm(最大粒子径35μm)であり、ジェットミル微粉砕物の目開き38μmの篩下、粉末凝集体の粒子径は0.9μm(最大粒子径20μm)であった。ジェットミルによる粉砕では、凝集体は微粉砕されるため、篩目開き(38μm)よりはるかに小さい最大粒子径の微粉末で得られる。
上記で適用した焼成温度、凝集体の一次粒子径、粒度調整した凝集体の粒子径および最大粒子径を表1に示す。
【0050】
【表1】
Figure 2005008974
【0051】
(実施例1)
下記組成のフリット100質量部に対し、光触媒として、上記(2)で調製した一次粒子径19nm、凝集体粒子径12μm、最大粒子径70μmのアナターゼ型酸化チタン粉末を25質量部、粘土11号を5質量部、塩化カリウムを0.2質量部、水を50質量部の量比で混合し、ボールミルにて粉砕・混合して釉薬スラリーを調製した。
フリット組成:P=38質量%、Sb=10質量%、B=5質量%、Al=27質量%、MO(M:Li、Na、K)=18質量%、TiO=2質量%。
【0052】
下引き釉薬層(日本フェロー社製下引き用汎用フリット03−1386、100μm)を被覆した板厚1.6mmの低炭素鋼板に、上記スラリーを、スプレーで塗布し、700℃で4分間焼成し、琺瑯材を作製した。ここで形成された光触媒釉薬層の膜厚は100μmであった。この琺瑯材の光触媒粒子の存在状態、琺瑯特性、光触媒特性を前記方法で評価した。結果を表2に示す。
【0053】
(実施例2)
光触媒として、上記(2)で調製した一次粒子径12nm、凝集体粒子径12μm、最大粒子径70μmのアナターゼ型酸化チタン粉末を用いたこと以外は、実施例1と同様にして厚み100μmの光触媒釉薬層を有する琺瑯材を作製した。評価結果を表2に示す。
【0054】
(実施例3)
光触媒として、上記(2)で調製した一次粒子径28nm、凝集体粒子径12μm、最大粒子径70μmのアナターゼ型酸化チタン粉末を用いたこと以外は、実施例1と同様にして厚み100μmの光触媒釉薬層を有する琺瑯材を作製した。評価結果を表2に示す。
【0055】
(比較例1)
光触媒として、一次粒子径7nm、凝集体粒子径0.03μm、最大粒子径0.1μmのアナターゼ型酸化チタン(石原産業社製:ST−01)を用いたこと以外は、実施例1と同様にして、厚み100μmの光触媒釉薬層を有する琺瑯材を作製した。評価結果を表2に示す。
【0056】
(比較例2)
光触媒として、一次粒子径50nm、凝集体粒子径0.2μm、最大粒子径1.0μmのアナターゼ型酸化チタン(石原産業社製:ST−41)を用いたこと以外は、実施例1と同様にして、厚み100μmの光触媒釉薬層を有する琺瑯材を作製した。評価結果を表2に示す。
【0057】
(比較例3)
光触媒として、上記(3)で調製した一次粒子径90nm、凝集体粒子径15μm、最大粒子径70μmのアナターゼ型酸化チタンを用いたこと以外は、実施例1と同様にして、厚み100μmの光触媒釉薬層を有する琺瑯材を作製した。評価結果を表2に示す。
【0058】
【表2】
Figure 2005008974
【0059】
表2に示されるように、実施例1〜3の琺瑯材は、光触媒活性および親水性に優れており、光沢度、耐酸性および耐アルカリ性のいずれの琺瑯特性も問題がない。一方、比較例1はフリットの凝集体粒子径が小さすぎるために溶融・流動不足となり、釉薬層の形成が不充分となるため、光沢度および化学的耐久性が低下している。なお比較例1で発現する光触媒活性は、フリットの溶け不足により釉薬層中に埋没しなかった光触媒粒子による。
比較例2では、フリットの溶け不足はないが、凝集体粒子径が小さく、光触媒粒子が釉薬層表面に有効に露出せず、充分な光触媒機能が得られなかった。比較例3では、光触媒粒子が釉薬層表面に露出するが、一次粒子径が大きすぎるために光触媒粒子自体の活性が低く、充分な光触媒機能が得られなかった。
【0060】
(実施例4)
以下のようにして、アナターゼ型酸化チタンにアモルファス酸化チタンを被覆した。
チタンイソプロポキシドをアンモニア水中に加えて、水酸化物として沈殿させ、ろ過、洗浄した後、過酸化水素水と混合してゾル溶液を調製した。次いで、このゾル溶液中に、実施例1で使用したアナターゼ型酸化チタン粉末をアモルファス酸化チタンが1質量%となるように投入し、溶媒を乾燥した後、200℃で加熱した。
上記で得られたアモルファス酸化チタン被覆アナターゼ型酸化チタン粉末を光触媒として使用する以外は、実施例1と同様にして、厚み100μmの光触媒釉薬層を有する琺瑯材を作製した。評価結果を表3に示す。
【0061】
(実施例5)
光触媒の使用量を15質量部とした以外は、実施例4と同様にして、厚み100μmの光触媒釉薬層を有する琺瑯材を作製した。評価結果を表3に示す。
【0062】
(実施例6)
上記(4)においてジェットミル粉砕で調製した一次粒子径19nm、凝集体粒子径0.9μm、最大粒子径20μmのアナターゼ型酸化チタン粉末を使用した以外は、実施例4と同様にして、厚み100μmの光触媒釉薬層を有する琺瑯材を作製した。評価結果を表3に示す。
【0063】
(実施例7)
上記(1)で調製した一次粒子径19nm、凝集体粒子径26μm、最大粒子径70μmのアナターゼ型酸化チタン粉末を使用した以外は、実施例4と同様にして、厚み110μmの光触媒釉薬層を有する琺瑯材を作製した。評価結果を表3に示す。
【0064】
(実施例8)
下記組成のフリット100質量部に対し、光触媒として、上記(4)においてアトマイザー粉砕で調製した一次粒子径19nm、凝集体粒子径10μm、最大粒子径35μmのアナターゼ型酸化チタン粉末に、実施例4と同様にアモルファス酸化チタン被覆したアナターゼ型酸化チタンを15質量部、硝酸ナトリウムを2質量部、白色顔料として、ルチル型酸化チタン(石原産業製:CR−58)を10質量部、水を60質量部の量比で混合し、ボールミルにて粉砕・混合して釉薬スラリーを調製した。
フリット組成:P=58質量%、Sb=5質量%、B=1質量%、Al=5質量%、MO(M:Ca、Sr、Ba、Zn)=10質量%、MO(M=Li、Na、K)=17質量%、TiO=3質量%、SiO=1質量%。
【0065】
上記で得られたスラリーを、板厚0.5mmの55%アルミニウム−亜鉛合金メッキ鋼板に、スプレーで塗布し、530℃で5分焼成し、琺瑯材を作製した。ここで形成された光触媒釉薬層の膜厚は40μmであった。この琺瑯材の琺瑯特性、光触媒特性を前記方法で評価した。結果を表3に示す。
【0066】
(実施例9)
以下のようにして、アナターゼ型酸化チタンにアモルファス酸化アルミニウム(アルミナ)を被覆した。
アセト酢酸エチルを溶解させたイソプロパノール中に、アルミニウムsec−イソプロポキシドを加え、そこに水/イソプロパノール混合溶液を滴下してゾル溶液を調製した。次いで、このゾル溶液中に、実施例1で使用したアナターゼ型酸化チタンをアモルファスアルミナが1質量%となるように投入し、溶媒を乾燥した後、200℃で加熱した。
上記で得られたアルミナ被覆アナターゼ型酸化チタンを光触媒として使用する以外は、実施例8と同様にして、厚み40μmの光触媒釉薬層を有する琺瑯材を作製した。評価結果を表3に示す。
【0067】
【表3】
Figure 2005008974
【0068】
表3に示されるように、実施例4〜9はいずれも、光触媒活性および親水性に優れており、光沢度、耐酸性、耐アルカリ性のいずれの琺瑯特性も問題がない。特に釉薬層の電解質含量が高い場合を想定して硝酸ナトリウムを多量に添加した態様の実施例8〜9でも、光触媒粒子との反応を抑制することができ、光触媒機能が低下しないことが確認できた。
【0069】
【発明の効果】
本発明に係る琺瑯材は、容易に製造できる上、光触媒粒子が釉薬層の内部および表面の両方に存在するため、釉薬層が琺瑯特性を維持しつつ、有効的に光触媒機能を発現し、かつ持続性が高い。また光触媒が酸化チタンの場合には、光触媒機能とともに親水性を有効的に発現する。
このような琺瑯材は、高い環境浄化能力を持続的に示すことができ、その琺瑯特性を活かして、有機物の分解による抗菌、消臭、防汚機能を有する化粧材などとして好適である。また屋外での厳しい環境下でも使用可能であり、たとえば道路に直面したガードレール、遮音壁および防護壁などに設置して利用することもできる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a soot material excellent in soot characteristics and sustainability of a photocatalytic function, and a method for producing the same.
[0002]
[Prior art]
In recent years, there has been a strong need for environmental purification products with antibacterial, deodorant, antifouling, etc. functions as a countermeasure against pollution, or due to increased health and cleanliness, and photocatalysts are attracting attention as a technology used for this type of product. Has been.
A photocatalyst is a substance that converts absorbed light energy into chemical energy, and its catalytic action is carried out via excited electrons and holes in the photocatalyst generated by absorption of light energy. Specifically, the excited electrons reduce oxygen to form a superoxide anion (.O2 The holes oxidize water to generate hydroxyl radicals (.OH), and these active oxygen species oxidize and decompose organic substances that are in contact with or close to the surface of the photocatalyst.
[0003]
Specifically, the photocatalyst having the above characteristics is a nitrogen oxide such as NO (NOx) And the like, antifouling treatment for oil, inorganic dust, and carbon, which are main components of urban pollution, and antifogging treatment for ensuring visibility. In addition, it can be used indoors for sanitary treatment such as antibacterial and deodorant.
The photocatalyst currently in practical use is anatase type or brookite type titanium oxide. Recently, research on making photocatalysts responsive to visible light based on anatase-type titanium oxide using techniques such as transition metal doping, nitrogen doping, or oxygen deficiency has also been conducted.
[0004]
When a material using titanium oxide as a photocatalyst as described above is put to practical use, an inorganic binder that is hardly decomposed by the photocatalyst is usually used to fix the photocatalyst. It is known to use a glaze as this inorganic binder. For example, a slurry containing a mixture of anatase-type titanium oxide powder as a photocatalyst and an inorganic glass powder (hereinafter referred to as frit) is applied onto an Al-plated steel plate or an austenitic stainless steel plate and fired to produce a glassy coating ( Hereinafter, there is a disclosure of a rain-resistant stain adhering glaze formed with a glaze layer (see, for example, Patent Documents 1 and 2).
[0005]
Here, when the average particle diameter of titanium oxide is less than 20 nm, the specific surface area becomes too large, and the surface gloss tends to decrease due to insufficient melting of the soot, and when the coarse particle exceeds 50 nm, the photocatalytic activity is increased. The titanium oxide having an average particle diameter of 20 to 50 nm is used in an amount of 2 to 20 parts by mass with respect to 100 parts by weight (mass) of frit, because it is lowered and sufficient contamination resistance cannot be obtained.
Conventionally, as a white pigment for imparting design properties to a glaze, a glaze containing anatase type or rutile type titanium oxide in an amount of about 50 parts by mass or less with respect to 100 parts by mass of a frit is known.
[0006]
Also, as a structure where the photocatalyst is exposed on the surface, for example, a glaze layer is formed on the substrate, and after applying the photocatalyst sol, the glaze layer is heated and melted to expose a part of the photocatalyst from the glaze layer. An antibacterial laminate (Patent Document 3) in which a photocatalyst layer is formed by applying a photocatalyst sol containing an inorganic binder to the surface of the member (see Patent Document 3) and further the surface of the glaze layer (glaze layer) containing the antibacterial agent 4) is proposed.
[0007]
[Patent Document 1]
JP-A-10-330965
[Patent Document 2]
Japanese Patent Laid-Open No. 11-71686
[Patent Document 3]
Japanese Patent No. 2667331
[Patent Document 4]
JP 2000-202939 A
[0008]
[Problems to be solved by the invention]
When the glaze layer is formed by mixing the photocatalyst particles having an average particle diameter of 20 to 50 nm and the frit in the above quantitative ratio in accordance with the disclosure of the above-mentioned Patent Documents 1 and 2, the photocatalyst particles having a fine diameter as described above are: It was found that the frit melted during firing was prevented from flowing and the formation of a continuous glaze layer was inhibited. For this reason, the glaze layer obtained by this has a matte appearance and is inferior in acid resistance and alkali resistance. Further, as disclosed in these documents, when an electrolyte such as potassium silicate is added to the glaze layer material, the photocatalyst particles react with the potassium silicate at the time of firing, and the photocatalytic activity decreases.
[0009]
Titanium oxide used as a white pigment has a crystallite (hereinafter referred to as primary particle) particle size of about 50 to 100 nm, and even if the titanium oxide is anatase type, its own photocatalytic activity is Low. Furthermore, since the titanium oxide aggregated particles have an average particle diameter of 0.15 to 0.3 μm, the titanium oxide is not effectively exposed from the surface of the glaze layer and hardly exhibits a photocatalytic function.
[0010]
On the other hand, the method of fixing the photocatalyst particles on the glaze layer as disclosed in Patent Documents 3 to 4 can expose the photocatalyst particles, but the method of forming the photocatalyst glaze layer from the mixture of photocatalyst particles and frit In comparison with the above, the number of steps is essentially complicated and the formation of the photocatalyst layer is substantially limited to sol application. Since such a photocatalytic layer is a submicron order thin film, there is a problem that the durability of the photocatalytic activity is reduced due to wear. Furthermore, with a structure in which a photocatalyst layer is only formed on the outermost layer, it is difficult to obtain a sufficient photocatalytic action that can be used for environmental purification.
[0011]
In view of the prior art as described above, the present invention provides a soot material capable of continuously exhibiting a high photocatalytic function while maintaining soot characteristics such as gloss, acid resistance, and alkali resistance, and such soot. An object of the present invention is to provide a method for producing a straw material that can easily produce a material with a small number of steps.
[0012]
[Means for Solving the Problems]
The present inventor has obtained primary particles and aggregated particles (aggregate, agglomerate, flocculate) with respect to the particle diameter of the photocatalyst particles in order to easily obtain a glaze that satisfies both the photocatalytic function and the glaze characteristics required for a glaze material having a photocatalytic function. In the following, the investigation was conducted with a focus on both of the above, and it was found that the primary particle size was 50 nm or less and the particle size was 0.5 μm or more, and the maximum particle size of the aggregate was the glaze layer. If photocatalyst particles smaller than the film thickness are selected, it is possible to disperse the photocatalyst particles inside the glaze layer by simply applying a mixture slurry with frit and firing the glaze layer without inhibiting the formation of the glaze layer. It is possible to obtain a soot that is exposed not only on the surface but also on the surface, and this soot has a high photocatalytic function while maintaining the soot characteristics. Expressed, and found that there is a persistent photocatalytic function.
[0013]
In particular, when titanium oxide is used as the photocatalyst particles, if the titanium oxide retained in the glaze layer is the primary particles and aggregates as described above, the original property of exhibiting hydrophilicity along with the photocatalytic function by receiving ultraviolet light is exhibited. It was also confirmed that it was expressed.
Furthermore, if the photocatalyst particles have an inorganic oxide coating layer before firing to form the glaze layer, the reduction in the catalytic activity of the photocatalyst particles due to the reaction with the electrolyte contained in the glaze layer is suppressed. It has been found that this can be done, and the present invention has been completed.
[0014]
Therefore, in the present invention, the photocatalyst particles which are aggregates of primary particles having a particle diameter of 50 nm or less and whose aggregate particle diameter is 0.5 μm or more have a film thickness thicker than the maximum particle diameter of the aggregates. Provided is a glaze having a glaze layer present on the interior and surface of the layer on the substrate.
[0015]
Moreover, in the present invention, as a method for producing the brazing material as described above, a photocatalyst particle that is an aggregate of primary particles having a particle diameter of 50 nm or less and the particle diameter of the aggregate is 0.5 μm or more, and an inorganic glass powder The glaze slurry containing the glaze slurry is applied to the substrate in such an amount that the thickness of the glaze layer to be formed is larger than the maximum particle size of the aggregate, and then fired at a temperature equal to or higher than the softening temperature of the inorganic glass powder. A manufacturing method is provided.
[0016]
An embodiment in which the photocatalyst particles included in the glaze slurry have an inorganic oxide coating layer is preferable.
This glaze slurry desirably contains the photocatalyst particles in an amount of 10 to 50 parts by mass with respect to 100 parts by mass of the frit.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the glaze is a material obtained by fusing a glaze layer of a vitreous film on the surface of a metal substrate, and as a substrate, a low carbon steel plate, cast iron, stainless steel, copper, aluminum, etc. Plated steel sheets such as aluminum plated steel sheets and aluminum zinc alloy plated steel sheets are used. When the substrate is low carbon steel or the like, an undercoat glaze layer may be provided between the glaze layer and the substrate surface to promote the reaction with the substrate and enhance adhesion.
Examples of the shape of the substrate include, but are not limited to, a sheet and a sheet molded product. Further, the size and thickness of the substrate are not particularly limited.
[0018]
In the present invention, a known frit can be widely used as the frit for forming the glaze layer, but a composition capable of forming a film at a temperature at which the activity of the photocatalyst is not deactivated is desirable. For example, when anatase-type titanium oxide is used as a photocatalyst, heating to 500 ° C. or higher causes a crystal transition to a rutile type, reaction with an electrolyte component in the glaze layer, and the photocatalytic activity starts to decrease. Since the firing time of the layer is short, deactivation of photocatalytic activity can be avoided if the firing temperature is 800 ° C. or lower. Therefore, a frit that forms a glaze layer at a baking temperature of 800 ° C. or lower is preferable, and a frit that softens at a temperature of 750 ° C. or lower is preferable. Note that the softening temperature of the frit is JIS R2204 “Testing method for the fire resistance of refractory bricks” by using a frit powder on a sieve having an aperture of 74 μm (mesh No. 200) and an aperture of 44 μm (mesh No. 325). The temperature when the tip of the test cone is brought into contact with the cradle by heating after being molded into a test cone.
[0019]
Some compositions are exemplified below based on the main components of the frit, but are not particularly limited thereto.
When the phosphate glass is used as a base, a frit having the following composition is preferable from the viewpoints of softening temperature, chemical durability, and the like.
P2O5Content rate is 25-70 mass% normally, Preferably it is 30-65 mass%.
Sb2O3Can be contained in a content of usually 2 to 20% by mass, preferably 2.5 to 10% by mass, as a component for lowering the softening temperature and melt viscosity.
Al2O3Can be contained in a content of usually 3 to 35% by mass, preferably 5 to 30% by mass, mainly as a component for improving chemical durability.
TiO2Can be contained in a content of usually 0.5 to 5% by mass, preferably 1 to 4.5% by mass, mainly as a component for improving chemical durability.
B2O3As a component that mainly lowers the softening temperature and improves the chemical durability, it can be contained in a content of usually 0.5 to 15% by mass, preferably 1 to 10% by mass.
[0020]
M2O (M: Li, Na, K) is mainly a component that lowers the softening temperature and the melt viscosity, and is usually 5 to 25% by mass, preferably 10 to 20% by mass, with a total content of one or more selected. % Can be included. MO (M: Ca, Sr, Ba, Zn) is a component that mainly lowers the softening temperature and improves the chemical durability. Usually, the total content of at least one selected from 5 to 25% by mass, preferably May be included at 10 to 20% by mass. In addition, CuO, WO as ingredients to improve chemical durability3, SiO2, ZrO2Etc. can also be included.
[0021]
When a borosilicate glass is used as a base, a frit having the following composition is preferable from the viewpoint of softening temperature, chemical durability, and the like.
SiO2/ B2O3The mass ratio is generally 0.5 to 5, preferably 0.8 to 3.50. Furthermore, SiO2And B2O3The total content of is usually 30 to 60% by mass, preferably 35 to 55% by mass.
Al2O3Can be contained in a content of usually 0.5 to 5% by mass, preferably 1 to 4.5% by mass, mainly as a component for improving chemical durability.
M2O (M: Li, Na, K) is mainly a component that lowers the softening temperature and the melt viscosity, and is usually 5 to 25% by mass, preferably 10 to 25% by mass, with a total content of one or more selected. % Can be included.
MO (M: Ca, Sr, Ba, Zn) is a component that mainly lowers the softening temperature and improves chemical durability, and is a total content of one or more selected, usually 0 to 20% by mass, Preferably, it can be contained at 1 to 15% by mass.
V2O5Can be contained in a content of usually 0 to 10% by mass, preferably 1 to 5% by mass, as a component mainly for decreasing the melt viscosity.
[0022]
As a milky white component, TiO2Is contained, the content is usually 10 to 25% by mass, preferably 15 to 20% by mass. At this time, Na2O / B2O3The mass ratio of is less than 1 and P2O5The content is preferably 1 to 10% by mass.
[0023]
In the present invention, since the photocatalyst particles are present inside and on the surface of the glaze layer formed from the frit, the primary particle diameter and the aggregate particle diameter are limited to specific ones. That is, the particle diameter of the primary particles is one of the factors governing the photocatalytic activity of the particles, and it is necessary to set the particle diameter to 50 nm or less in order to obtain a large oxidation / reduction power due to the quantum size effect. Moreover, in order to avoid an increase in band gap and a decrease in charge separation efficiency, the thickness is desirably 5 nm or more. Specifically, the primary particle size is preferably 5 to 50 nm, more preferably 5 to 30 nm. As described above, conventionally, when the average particle size is less than 20 nm, the specific surface area is too large, and it was considered that the surface gloss was lowered due to insufficient melting of the wrinkles. By specifying the aggregate particle diameter together with the diameter as described later, surface gloss can be secured even if the primary particle diameter is less than 20 nm (preferably 5 nm or more).
In the present specification, the primary particle diameter means a value calculated by the Scherrer equation by the X-ray diffraction method.
[0024]
The particle diameter of the aggregate is a factor that governs the formation of the glaze layer during firing and the exposure of the photocatalyst particles to the surface of the glaze. In the present invention, the photocatalyst particles as aggregates having the primary particle diameter interposed between the frit particles form a glaze layer of a glassy film without hindering the flow of the molten frit, and are formed on the surface of the glaze layer. In order to be exposed, the aggregate particle size needs to be 0.5 μm or more. Preferably it is 1 micrometer or more. In addition, since the photocatalyst particles are present inside and on the surface of the formed glaze layer, the maximum particle diameter of the aggregate is smaller than the film thickness of the glaze layer. Therefore, the maximum particle size of the aggregate varies depending on the desired film thickness of the glaze layer, but in order to avoid an excessive increase in the surface roughness of the glaze layer, the maximum particle size of the aggregate is usually 100 μm or less, Preferably it is 30 micrometers or less.
[0025]
In the present specification, the particle diameter of the aggregate means a median diameter (50 volume% diameter of integrated distribution) measured by a laser diffraction scattering method. The maximum particle diameter means a value of 95% under the integrated sieve in the above measurement. The particle size of the aggregates in the glaze layer can be measured in the same manner by dissolving the vitreous in the glaze layer with hydrofluoric acid or alkali and collecting the photocatalyst particles.
[0026]
The photocatalyst particles express the photocatalytic activity by receiving ultraviolet light or visible light except that the primary particle diameter and aggregate particle diameter are limited as described above, specifically, generate active oxygen species by receiving light. Aggregates can be widely used. Specifically, titanium oxide (TiO2), SrTiO3ZnO, SnO2, GaP, CdS, CdSe, K4NbO17, KTaO3Etc. Among these, what is currently in practical use is anatase type or brookite type titanium oxide which is chemically stable and easily generates reactive oxygen species with ultraviolet light, and is preferable. Furthermore, the photocatalyst particles in the present invention only need to satisfy the above-mentioned particle diameter, and are titanium oxide and the like improved to a visible response type by a method such as transition metal dope, nitrogen dope, oxygen deficiency, and dye sensitizer loading. Also good.
[0027]
Here, although an example of the preparation method of the photocatalyst particle | grains of the above particle diameters used by this invention is shown below, it is not limited to this. In the case of anatase-type titanium oxide, the starting material is titanyl sulfate (TiOSO).4) Hydrolysis is performed by injecting the aqueous solution into hot water with stirring, and insoluble hydrous titanium oxide (TiO (OH))2). At this time, microcrystals of anatase-type titanium oxide are generated, and the primary particle diameter is about 7 nm. Next, the precipitate is filtered, washed, dried, and sintered at 400 to 800 ° C. to obtain an aggregate. The reason why the sintering temperature is set to 800 ° C. or lower is to suppress the crystal growth of the primary particle size to 50 nm or less and to prevent the crystal structure from changing to the rutile type.
The aggregate obtained by the above sintering is dry or wet pulverized to adjust the aggregate particle size. In this case, a desired particle diameter of 0.5 μm or more can be adjusted using a pulverizer such as an atomizer or a jet mill.
[0028]
In the glaze according to the present invention, the glaze layer contains the photocatalyst particles in a proportion of preferably 10 to 50 parts by mass, more preferably 15 to 30 parts by mass with respect to 100 parts by mass of the frit.
Further, the glaze layer may contain other components such as a pigment and a dispersant (suspension) in addition to the frit and the photocatalyst particles as long as they do not impair the object of the present invention. For example, potassium chloride or potassium carbonate as a stop agent, sodium nitrate (sodium) as an oxidizing agent, strontium nitrate, clay as a suspending agent, bentonite, or the like can be included in the amounts described below.
Furthermore, the glaze layer contains a small amount of an inorganic oxide as the coating material when the photocatalyst particles have a coating layer before firing the glaze layer in the glaze layer forming process described later.
[0029]
In the glaze layer as described above, not only the photocatalyst particles are present inside, but also the photocatalyst particles are present on the surface thereof. The film thickness of this glaze layer needs to be larger than the maximum particle diameter of the photocatalyst particle aggregate. Further, although it varies depending on the use of the glaze, it is preferably 10 μm or more in order to ensure the concealability of the base material. On the other hand, if it is too thick, the glaze layer is likely to crack, and the adhesion to the substrate also decreases. Therefore, 200 μm or less is preferable. More preferably, it is 30-150 micrometers.
In addition, in this invention, the film thickness of a glaze layer means the value calculated | required by observing the cross section of a glaze material 100 times with a microscope.
[0030]
The glaze according to the present invention may have an undercoat glaze layer between the glaze layer and the substrate. For example, if the substrate is a metal such as low carbon steel, a subbing glaze formed from a frit containing a small amount of cobalt oxide, manganese oxide, nickel oxide to promote reaction with the substrate and enhance adhesion It is preferable to have a layer. The frit constituting the subtractive glaze layer is preferably one having a higher firing temperature than the frit for forming the glaze layer containing photocatalyst particles among the above-exemplified frits, and the linear expansion coefficient of the subtractive glaze layer Is preferably smaller than that of the base material and larger than that of the upper glaze layer.
The film thickness of the undercoat glaze layer is usually about 20 μm or more, preferably about 30 to 150 μm. The undercoat glaze layer may contain a pigment, a dispersant and the like.
[0031]
Next, the manufacturing method of the above-mentioned saddle material of this invention is demonstrated.
The glaze according to the present invention is a glaze finally obtained from a glaze slurry containing photocatalyst particles having a specific particle diameter as described above and inorganic glass powder (frit) such as phosphate or borosilicate. It is obtained by coating the base material in such an amount that the film thickness of the layer is larger than the maximum particle diameter of the aggregate of photocatalyst particles, and then baking at or above the frit softening temperature to form a glaze layer.
[0032]
The glaze slurry is prepared by adding water to the above-described frit, photocatalyst particles, and other components such as additives and coloring pigments as necessary, and mixing by, for example, ball milling. At this time, the photocatalyst particles are desirably used in a proportion of usually 10 to 50 parts by mass, preferably 15 to 30 parts by mass as described above with respect to 100 parts by mass of the frit. When the amount of the photocatalyst particles used is 10 parts by mass or more, the photocatalyst particles can be effectively exposed on the surface of the glaze layer, and the photocatalytic activity can be expressed. Moreover, if the usage-amount of photocatalyst particle is 50 mass parts or less, a glaze layer is fully formed and film strength, durability, and glossiness can fully be ensured.
[0033]
In the present invention, the photocatalyst particles used for the glaze slurry are preferably coated with an inorganic oxide. When the photocatalyst particles have an inorganic oxide coating layer, the glaze slurry may contain a relatively large amount of a stop agent such as potassium chloride or potassium carbonate or an oxidizing agent such as sodium nitrate or strontium nitrate. In addition, the inorganic oxide coating layer can suppress the reaction between the photocatalyst particles and these electrolytes, and can suppress the decrease in the photocatalytic function. As the inorganic oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, niobium oxide, tungsten oxide and the like are preferable, but not particularly limited thereto. These inorganic oxides are usually used in an amorphous form.
[0034]
The amount of the inorganic oxide used with respect to the photocatalyst particles is preferably 0.1% by mass or more in order to sufficiently exhibit the protective effect, and is preferably 10% by mass or less in order not to hinder the activity of the photocatalyst particles. 0.5-5 mass% is more preferable.
The coating with the inorganic oxide can be formed by a gas phase method or a liquid phase method. Among these, even a coating formed by a simpler liquid phase method can sufficiently exhibit the effect. In the liquid phase method, for example, a hydroxide is precipitated on the surface of the photocatalyst particles by, for example, a metal alkoxide hydrolysis method or a urea uniform precipitation method, and after washing as necessary, heat treatment is performed to convert it into an oxide. Can do.
[0035]
The glaze slurry preferably contains 0.1 part by mass or more of a suspending agent such as clay or bentonite with respect to 100 parts by mass of the frit in order to suppress sedimentation of the frit particles in the slurry. When the amount of the suspending agent exceeds 10 parts by mass, the gloss and chemical stability of the glaze layer tend to decrease. The more preferable usage-amount of a suspending agent is 0.5-5 mass parts.
[0036]
The glaze slurry preferably contains 0.05 parts by mass or more of a stopping agent such as potassium chloride or potassium carbonate with respect to 100 parts by mass of the frit in order to stop the slurry. In addition, when the amount of the stopping agent exceeds 1 part by mass, the viscosity of the slurry tends to increase too much. The more preferable usage-amount of a stopper is 0.1-0.5 mass part.
[0037]
The glaze slurry preferably contains an oxidizing agent such as sodium nitrate or strontium nitrate in an amount of 0.5 parts by mass or more with respect to 100 parts by mass of frit for coloring by carbonization of organic matter and bleaching of titanium oxide. In addition, when the quantity of an oxidizing agent exceeds 5 mass parts, there exists a tendency which causes the fall of the chemical stability of a glaze layer. The more preferable usage-amount of an oxidizing agent is 1-3 mass parts.
[0038]
The color pigment can be appropriately contained in the glaze slurry as long as the characteristics of the glaze layer are not impaired.
[0039]
The glaze slurry prepared above is applied onto a substrate. In the case where the substrate is, for example, a low carbon steel plate, the glaze slurry is applied onto the undercoat glaze layer formed by applying a slurry of the undercoat glaze frit and firing at 800 to 900 ° C. In the case of a plated steel plate, the glaze slurry is directly applied.
The glaze slurry is applied onto the substrate by a method such as dipping, roll coating, flow coating, spraying, electrostatic spraying, etc., and more preferably at a temperature not lower than the softening temperature of the frit, preferably not higher than 800 ° C., for 1 to 10 minutes. Is fired at a temperature of 500 to 750 ° C. for 70 seconds to 5 minutes. The reason why the preferable firing temperature is 500 ° C. or higher is that no lead-free frit that can be fired at a temperature lower than this temperature is known. In addition, as described above, when the photocatalyst particles are titanium oxide, the upper limit temperature for firing is set to 800 ° C. in order to avoid reaction with the glaze layer components and crystal transition to the rutile type. In addition, if the calcination is performed for 1 minute, the temperature of the substrate is sufficiently increased, but if it exceeds 10 minutes, the reaction with the glaze layer component of the photocatalyst particles and the crystal transition to the rutile type proceed and the photocatalytic activity tends to decrease. .
[0040]
In the glaze layer formed as described above, not only the photocatalyst particles are present inside but also on the outer surface and exposed. Such a brazing material of the present invention can maintain the gloss and durability, which are the original characteristics of the brazing material, and can continuously develop a photocatalytic activity comparable to the overcoat method.
[0041]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. The investigation method of the state of the photocatalyst particles of the glaze materials prepared in Examples and Comparative Examples and the evaluation method of the glaze characteristics (glossiness, acid resistance, alkali resistance) and photocatalytic characteristics (dye fading rate, hydrophilicity) are as follows: Show.
[0042]
<Presence of photocatalyst particles>
The cross-section and surface of the glaze layer are each 400 times and 300 times combined with scanning electron microscope observation and analysis by an energy dispersive X-ray analyzer, and the inside of the glaze layer that has been confirmed to be titanium oxide particles and the glaze The existence state on the surface was examined.
[0043]
<Glossiness>
Using a photometer (Nippon Denshoku Industries Co., Ltd .: VG-2000 type), the 45 ° specular gloss of the surface of the test material was measured.
[0044]
<Acid resistance test>
Based on the room temperature spot test (10% citric acid, 15 minutes spot) with citric acid specified in JIS R4301 (1978) “enamel product quality standard”, the surface erosion degree of the photocatalytic glaze layer of the glaze was evaluated. Evaluation was made according to five grades of AA class, A class, B class, C class, and D class defined in the test method. If it is AA class and A class, it will determine with corrosion resistance being favorable.
[0045]
<Alkali resistance test>
The surface erosion degree of the photocatalytic glaze layer of the glaze was evaluated based on a normal temperature spot test (10% sodium carbonate, 15 minutes spot) with sodium carbonate defined in JIS R4301 (1978) “enamel product quality standards”. Evaluation was made according to five grades of AA class, A class, B class, C class, and D class defined in the test method. If it is AA class and A class, it is determined that the alkali resistance is good.
[0046]
<Dye fading test>
A 0.05 mass% solution of rhodamine B (red pigment) was sprayed on the surface of the test material and dried, and then the surface of the test material was black light (UV-A intensity: 3 mW / cm).2) For 4 hours, and using a color difference meter (Nippon Denshoku Industries Co., Ltd. product: SQ-2000 type) to change the a value (redness) in accordance with JIS Z8729 “Object Color Display Method”. It was measured. The dye fading rate was calculated by the following formula. If the dye fading rate is 80% or more, it is judged to be good.
[Expression 1]
Figure 2005008974
[0047]
<Hydrophilicity>
After irradiating the test material with the above black light for 8 hours, 20 μL of ion-exchanged water was dropped using a microsyringe, and the water droplet on the test material was image-processed contact meter (Kyowa Interface Science Co., Ltd. CA- The contact angle of water was measured by a three-point method using X. If the contact angle is 10 ° or less, it is determined that the hydrophilicity is good.
[0048]
<Preparation of anatase-type titanium oxide powder>
Titanyl sulfate (chemical formula: TiOSO4) 500 g was dissolved in 5 kg of water and hydrolyzed with stirring at 100 ° C. for 2 hours to produce insoluble hydrous titanium oxide (chemical formula: TiO (OH)2) Was generated. Next, this hydrous titanium oxide was filtered and washed, and calcined at each temperature of 500 ° C., 600 ° C., 650 ° C. or 800 ° C. for 1 hour to obtain a calcined product of anatase type titanium oxide. The fired bodies obtained at the respective firing temperatures were aggregates obtained by agglomerating primary particles having primary particle sizes of 12 nm (500 ° C.), 19 nm (600 ° C.), 28 nm (650 ° C.), and 90 nm (800 ° C.).
[0049]
The aggregate obtained above was adjusted in particle size by changing the pulverization method (atomizer or jet mill) and sieve (opening 74 μm or 38 μm).
(1) Aggregates having a primary particle diameter of 19 nm were pulverized (coarsed) with an atomizer. The particle diameter of the powder aggregate obtained by sieving with an aperture of 74 μm (mesh No. 200) was 26 μm (maximum particle diameter 70 μm).
(2) Aggregates having primary particle sizes of 12 nm, 19 nm, and 28 nm were pulverized (fine) with an atomizer.
The particle diameter of the powder aggregate obtained under a sieve having an opening of 74 μm was 12 μm (maximum particle diameter 70 μm).
(3) Aggregates having a primary particle diameter of 90 nm were pulverized (fine) with an atomizer. The particle size of the powder aggregate obtained under a sieve having an aperture of 74 μm was adjusted to 15 μm (maximum particle size of 70 μm).
(4) The atomizer finely pulverized product or jet mill pulverized product of aggregates having a primary particle diameter of 19 nm was classified under a sieve having an opening of 38 μm (mesh No. 390).
The atomizer finely pulverized product has a sieve size of 38 μm and the particle size of the powder aggregate is 10 μm (maximum particle size 35 μm). The jet mill finely pulverized product has a sieve size of 38 μm and the particle size of the powder aggregate is 0. 0.9 μm (maximum particle size 20 μm). In the pulverization with a jet mill, the agglomerates are finely pulverized, so that fine particles having a maximum particle size far smaller than the sieve opening (38 μm) can be obtained.
Table 1 shows the firing temperature, the primary particle diameter of the aggregate, the particle diameter of the aggregate whose particle size was adjusted, and the maximum particle diameter.
[0050]
[Table 1]
Figure 2005008974
[0051]
(Example 1)
For 100 parts by mass of frit having the following composition, 25 parts by mass of anatase-type titanium oxide powder having a primary particle diameter of 19 nm, an aggregate particle diameter of 12 μm, and a maximum particle diameter of 70 μm prepared in the above (2) was used as a photocatalyst. 5 parts by mass, 0.2 parts by mass of potassium chloride and 50 parts by mass of water were mixed, and pulverized and mixed in a ball mill to prepare a glaze slurry.
Frit composition: P2O5= 38% by mass, Sb2O5= 10% by mass, B2O3= 5% by mass, Al2O3= 27% by mass, M2O (M: Li, Na, K) = 18% by mass, TiO2= 2% by weight.
[0052]
The above slurry is applied to a low carbon steel plate having a thickness of 1.6 mm coated with an undercoat glaze layer (Nippon Fellow general purpose frit 03-1386, 100 μm) and sprayed at 700 ° C. for 4 minutes. A firewood was produced. The film thickness of the photocatalyst glaze layer formed here was 100 μm. The presence state, soot characteristics, and photocatalytic characteristics of the photocatalyst particles of this soot were evaluated by the above methods. The results are shown in Table 2.
[0053]
(Example 2)
A photocatalytic glaze having a thickness of 100 μm was used in the same manner as in Example 1 except that the anatase-type titanium oxide powder having a primary particle diameter of 12 nm, an aggregate particle diameter of 12 μm, and a maximum particle diameter of 70 μm prepared in the above (2) was used as the photocatalyst. A brazing material having a layer was produced. The evaluation results are shown in Table 2.
[0054]
(Example 3)
A photocatalytic glaze having a thickness of 100 μm was used in the same manner as in Example 1 except that the anatase-type titanium oxide powder having a primary particle size of 28 nm, an aggregate particle size of 12 μm, and a maximum particle size of 70 μm prepared in the above (2) was used as the photocatalyst. A brazing material having a layer was produced. The evaluation results are shown in Table 2.
[0055]
(Comparative Example 1)
As in Example 1, except that anatase-type titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: ST-01) having a primary particle size of 7 nm, an aggregate particle size of 0.03 μm, and a maximum particle size of 0.1 μm was used as the photocatalyst. Thus, a glaze having a photocatalytic glaze layer having a thickness of 100 μm was produced. The evaluation results are shown in Table 2.
[0056]
(Comparative Example 2)
As in Example 1, except that anatase-type titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: ST-41) having a primary particle size of 50 nm, an aggregate particle size of 0.2 μm, and a maximum particle size of 1.0 μm was used as the photocatalyst. Thus, a glaze having a photocatalytic glaze layer having a thickness of 100 μm was produced. The evaluation results are shown in Table 2.
[0057]
(Comparative Example 3)
A photocatalytic glaze having a thickness of 100 μm was used in the same manner as in Example 1 except that the anatase-type titanium oxide having a primary particle diameter of 90 nm, an aggregate particle diameter of 15 μm, and a maximum particle diameter of 70 μm prepared in the above (3) was used as the photocatalyst. A brazing material having a layer was produced. The evaluation results are shown in Table 2.
[0058]
[Table 2]
Figure 2005008974
[0059]
As shown in Table 2, the brazing materials of Examples 1 to 3 are excellent in photocatalytic activity and hydrophilicity, and have no problem with any wrinkling characteristics of glossiness, acid resistance, and alkali resistance. On the other hand, in Comparative Example 1, since the aggregate particle size of the frit is too small, melting and flow are insufficient, and the formation of the glaze layer is insufficient, so that the glossiness and chemical durability are lowered. The photocatalytic activity expressed in Comparative Example 1 is due to the photocatalytic particles that were not buried in the glaze layer due to insufficient melting of the frit.
In Comparative Example 2, there was no shortage of frit melting, but the aggregate particle size was small, the photocatalyst particles were not effectively exposed on the surface of the glaze layer, and a sufficient photocatalytic function could not be obtained. In Comparative Example 3, the photocatalyst particles were exposed on the surface of the glaze layer, but because the primary particle diameter was too large, the activity of the photocatalyst particles themselves was low and a sufficient photocatalytic function could not be obtained.
[0060]
Example 4
Anatase titanium oxide was coated with amorphous titanium oxide as follows.
Titanium isopropoxide was added to ammonia water to precipitate it as a hydroxide, filtered and washed, and then mixed with hydrogen peroxide to prepare a sol solution. Next, the anatase-type titanium oxide powder used in Example 1 was put into this sol solution so that the amorphous titanium oxide was 1% by mass, and the solvent was dried, followed by heating at 200 ° C.
A glaze having a photocatalytic glaze layer having a thickness of 100 μm was produced in the same manner as in Example 1 except that the amorphous titanium oxide-coated anatase-type titanium oxide powder obtained above was used as a photocatalyst. The evaluation results are shown in Table 3.
[0061]
(Example 5)
A glaze having a photocatalyst glaze layer having a thickness of 100 μm was produced in the same manner as in Example 4 except that the amount of the photocatalyst used was 15 parts by mass. The evaluation results are shown in Table 3.
[0062]
(Example 6)
A thickness of 100 μm was obtained in the same manner as in Example 4 except that the anatase-type titanium oxide powder having a primary particle size of 19 nm, an aggregate particle size of 0.9 μm, and a maximum particle size of 20 μm prepared by jet milling in the above (4) was used. A glaze having a photocatalytic glaze layer was prepared. The evaluation results are shown in Table 3.
[0063]
(Example 7)
A photocatalytic glaze layer having a thickness of 110 μm is prepared in the same manner as in Example 4 except that the anatase-type titanium oxide powder having a primary particle diameter of 19 nm, an aggregate particle diameter of 26 μm, and a maximum particle diameter of 70 μm prepared in (1) above is used. A firewood was produced. The evaluation results are shown in Table 3.
[0064]
(Example 8)
As a photocatalyst with respect to 100 parts by mass of frit having the following composition, anatase-type titanium oxide powder having a primary particle diameter of 19 nm, an aggregate particle diameter of 10 μm, and a maximum particle diameter of 35 μm prepared by atomizer pulverization in (4) above was used. Similarly, 15 parts by mass of anatase type titanium oxide coated with amorphous titanium oxide, 2 parts by mass of sodium nitrate, white pigment, 10 parts by mass of rutile type titanium oxide (manufactured by Ishihara Sangyo: CR-58), and 60 parts by mass of water The glaze slurry was prepared by pulverizing and mixing with a ball mill.
Frit composition: P2O5= 58 mass%, Sb2O5= 5% by mass, B2O3= 1% by mass, Al2O3= 5% by mass, MO (M: Ca, Sr, Ba, Zn) = 10% by mass, M2O (M = Li, Na, K) = 17% by mass, TiO2= 3% by mass, SiO2= 1% by mass.
[0065]
The slurry obtained above was applied to a 55% aluminum-zinc alloy-plated steel sheet having a thickness of 0.5 mm by spraying and fired at 530 ° C. for 5 minutes to produce a brazing material. The film thickness of the photocatalyst glaze layer formed here was 40 μm. The soot material and the photocatalytic property of this soot were evaluated by the above methods. The results are shown in Table 3.
[0066]
Example 9
Anatase type titanium oxide was coated with amorphous aluminum oxide (alumina) as follows.
Aluminum sec-isopropoxide was added to isopropanol in which ethyl acetoacetate was dissolved, and a water / isopropanol mixed solution was dropped therein to prepare a sol solution. Next, the anatase-type titanium oxide used in Example 1 was put into this sol solution so that amorphous alumina was 1% by mass, the solvent was dried, and then heated at 200 ° C.
A glaze having a photocatalytic glaze layer having a thickness of 40 μm was produced in the same manner as in Example 8 except that the alumina-coated anatase-type titanium oxide obtained above was used as a photocatalyst. The evaluation results are shown in Table 3.
[0067]
[Table 3]
Figure 2005008974
[0068]
As shown in Table 3, all of Examples 4 to 9 are excellent in photocatalytic activity and hydrophilicity, and there is no problem with any wrinkle characteristics of glossiness, acid resistance, and alkali resistance. Particularly in Examples 8 to 9 in which a large amount of sodium nitrate was added assuming that the electrolyte content of the glaze layer was high, it was possible to confirm that the reaction with the photocatalyst particles could be suppressed and the photocatalytic function was not deteriorated. It was.
[0069]
【The invention's effect】
The glaze according to the present invention can be easily produced, and the photocatalyst particles are present both inside and on the surface of the glaze layer, so that the glaze layer effectively exhibits the photocatalytic function while maintaining the glaze characteristics, and Sustainability is high. Moreover, when a photocatalyst is a titanium oxide, hydrophilicity is effectively expressed with a photocatalytic function.
Such a glaze material can exhibit high environmental purification ability continuously, and is suitable as a cosmetic material having antibacterial, deodorant, and antifouling functions by decomposing organic substances by taking advantage of its glaze characteristics. It can also be used in harsh outdoor environments. For example, it can be used by installing it on guardrails, sound insulation walls, protective walls, etc. facing the road.

Claims (3)

粒子径50nm以下の一次粒子の凝集体であり、かつ該凝集体の粒子径が0.5μm以上である光触媒粒子が、該凝集体の最大粒子径よりも厚い膜厚をもつ釉薬層の内部および表面に存在する釉薬層を、基材上に有する琺瑯材。The photocatalyst particles which are aggregates of primary particles having a particle diameter of 50 nm or less and whose aggregate has a particle diameter of 0.5 μm or more are formed inside the glaze layer having a thickness larger than the maximum particle diameter of the aggregates and The glaze which has the glaze layer which exists in the surface on a base material. 粒子径50nm以下の一次粒子の凝集体であり、かつ該凝集体の粒子径が0.5μm以上である光触媒粒子と、無機質ガラス粉末とを含む釉薬スラリーを、形成される釉薬層の膜厚が前記凝集体の最大粒子径よりも大きくなる量で基材に塗布し、次いで前記無機質ガラス粉末の軟化温度以上で焼成する琺瑯材の製造方法。The thickness of the glaze layer formed from the glaze slurry, which is an aggregate of primary particles having a particle diameter of 50 nm or less and the photocatalyst particles having a particle diameter of 0.5 μm or more and the inorganic glass powder, is formed. A method for producing a brazing material, which is applied to a base material in an amount larger than the maximum particle size of the aggregate and then fired at a temperature equal to or higher than the softening temperature of the inorganic glass powder. 前記釉薬スラリーに含ませる光触媒粒子が無機酸化物の被覆層を有する請求項2に記載の琺瑯材の製造方法。The method for producing a glaze according to claim 2, wherein the photocatalyst particles contained in the glaze slurry have a coating layer of an inorganic oxide.
JP2003176975A 2003-06-20 2003-06-20 Porcelain enameled material and manufacturing method therefor Pending JP2005008974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176975A JP2005008974A (en) 2003-06-20 2003-06-20 Porcelain enameled material and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176975A JP2005008974A (en) 2003-06-20 2003-06-20 Porcelain enameled material and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005008974A true JP2005008974A (en) 2005-01-13

Family

ID=34099698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176975A Pending JP2005008974A (en) 2003-06-20 2003-06-20 Porcelain enameled material and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005008974A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120655A (en) * 2006-11-15 2008-05-29 Tohoku Univ Glass, crystallized glass, producing method of crystallized glass and photocatalyst member
WO2010041760A1 (en) * 2008-10-10 2010-04-15 株式会社オハラ Glass ceramics and process for production thereof, process for producing sintered glass ceramics, process for producing complex, molded article having photocatalytic function, and hydrophilic molded article
JP2010089471A (en) * 2008-10-10 2010-04-22 Ohara Inc Method for manufacturing composite, photocatalytic functional member, and hydrophilic member
WO2011108472A1 (en) * 2010-03-01 2011-09-09 株式会社 オハラ Glass for glaze, glaze, and photocatalyst member
WO2012133523A1 (en) * 2011-03-30 2012-10-04 Toto株式会社 Sanitary ware
KR101437219B1 (en) 2012-05-10 2014-09-03 엘지전자 주식회사 Composition for enamel, preparation method of composition for enamel, and cooking appliance
JP2014161786A (en) * 2013-02-25 2014-09-08 Nissan Motor Co Ltd Catalyst particle and method for producing the same
KR101476500B1 (en) * 2012-05-10 2014-12-24 엘지전자 주식회사 Composition for enamel, preparation method of composition for enamel, and cooking appliance
KR101476501B1 (en) * 2012-05-10 2014-12-24 엘지전자 주식회사 Composition for enamel, preparation method of composition for enamel, and cooking appliance
US9296643B2 (en) 2012-05-10 2016-03-29 Lg Electronics Inc. Enamel composition, preparation method thereof, and cooking appliance including the same
KR101842222B1 (en) 2013-03-21 2018-03-27 엘지전자 주식회사 Composition for enamel, preparation method of composition for enamel, and cooking appliance
KR102057233B1 (en) 2018-12-18 2019-12-26 주식회사 코펙 Enamel composition for preventing corrosion and anti-fouling of an element of a gas gas heater and a gas air heater for a heat exchanger and enamel coating method thereof
CN111116044A (en) * 2018-10-31 2020-05-08 Lg电子株式会社 Enamel composition and method for preparing same
CN112919806A (en) * 2021-04-09 2021-06-08 江西省萍乡市华东出口电瓷有限公司 High-voltage-resistant porcelain insulator glaze
US11274060B2 (en) 2019-02-22 2022-03-15 Lg Electronics Inc. Enamel composition, method for preparing enamel composition, and cooking appliance
US11292743B2 (en) 2018-11-09 2022-04-05 Lg Electronics Inc. Enamel composition, method of preparing same, and cooking appliance
US11396472B2 (en) 2019-02-22 2022-07-26 Lg Electronics Inc. Enamel composition, method for preparing enamel composition, and cooking appliance
US11401201B2 (en) 2019-02-22 2022-08-02 Lg Electronics Inc. Enamel composition, method for preparing enamel composition, and cooking appliance
US11479500B2 (en) 2019-02-22 2022-10-25 Lg Electronics Inc. Enamel composition, method for preparing enamel composition, and cooking appliance
CN116023030A (en) * 2022-12-26 2023-04-28 德化县宏鹏瓷业发展有限公司 High-whiteness ceramic glaze and method for preparing ceramic product by using same
US11773007B2 (en) 2019-02-22 2023-10-03 Lg Electronics Inc. Enamel composition, method for preparing enamel composition, and cooking appliance
US11780766B2 (en) 2019-02-22 2023-10-10 Lg Electronics Inc. Enamel composition, method for preparing enamel composition, and cooking appliance

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120655A (en) * 2006-11-15 2008-05-29 Tohoku Univ Glass, crystallized glass, producing method of crystallized glass and photocatalyst member
CN102177102B (en) * 2008-10-10 2014-11-05 株式会社小原 Glass ceramics and process for production thereof, process for producing sintered glass ceramics, process for producing complex, molded article having photocatalytic function, and hydrophilic molded article
WO2010041760A1 (en) * 2008-10-10 2010-04-15 株式会社オハラ Glass ceramics and process for production thereof, process for producing sintered glass ceramics, process for producing complex, molded article having photocatalytic function, and hydrophilic molded article
JP2010089471A (en) * 2008-10-10 2010-04-22 Ohara Inc Method for manufacturing composite, photocatalytic functional member, and hydrophilic member
CN102177102A (en) * 2008-10-10 2011-09-07 株式会社小原 Glass ceramics and process for production thereof, process for producing sintered glass ceramics, process for producing complex, molded article having photocatalytic function, and hydrophilic molded article
WO2011108472A1 (en) * 2010-03-01 2011-09-09 株式会社 オハラ Glass for glaze, glaze, and photocatalyst member
JP5820799B2 (en) * 2010-03-01 2015-11-24 株式会社オハラ Glaze glass, glaze, and photocatalyst member
WO2012133523A1 (en) * 2011-03-30 2012-10-04 Toto株式会社 Sanitary ware
CN103429555A (en) * 2011-03-30 2013-12-04 Toto株式会社 Sanitary ware
US9296642B2 (en) 2012-05-10 2016-03-29 Lg Electronics Inc. Enamel composition, preparation method thereof, and cooking appliance including the same
KR101476500B1 (en) * 2012-05-10 2014-12-24 엘지전자 주식회사 Composition for enamel, preparation method of composition for enamel, and cooking appliance
KR101476501B1 (en) * 2012-05-10 2014-12-24 엘지전자 주식회사 Composition for enamel, preparation method of composition for enamel, and cooking appliance
US9296643B2 (en) 2012-05-10 2016-03-29 Lg Electronics Inc. Enamel composition, preparation method thereof, and cooking appliance including the same
KR101437219B1 (en) 2012-05-10 2014-09-03 엘지전자 주식회사 Composition for enamel, preparation method of composition for enamel, and cooking appliance
US9302932B2 (en) 2012-05-10 2016-04-05 Lg Electronics Inc. Glass composition, preparation method thereof, and cooking appliance including the same
JP2014161786A (en) * 2013-02-25 2014-09-08 Nissan Motor Co Ltd Catalyst particle and method for producing the same
KR101842222B1 (en) 2013-03-21 2018-03-27 엘지전자 주식회사 Composition for enamel, preparation method of composition for enamel, and cooking appliance
US11261124B2 (en) 2018-10-31 2022-03-01 Lg Electronics Inc. Enamel composition and method of preparing the same
CN111116044A (en) * 2018-10-31 2020-05-08 Lg电子株式会社 Enamel composition and method for preparing same
US11292743B2 (en) 2018-11-09 2022-04-05 Lg Electronics Inc. Enamel composition, method of preparing same, and cooking appliance
KR102057233B1 (en) 2018-12-18 2019-12-26 주식회사 코펙 Enamel composition for preventing corrosion and anti-fouling of an element of a gas gas heater and a gas air heater for a heat exchanger and enamel coating method thereof
US11274060B2 (en) 2019-02-22 2022-03-15 Lg Electronics Inc. Enamel composition, method for preparing enamel composition, and cooking appliance
US11396472B2 (en) 2019-02-22 2022-07-26 Lg Electronics Inc. Enamel composition, method for preparing enamel composition, and cooking appliance
US11401201B2 (en) 2019-02-22 2022-08-02 Lg Electronics Inc. Enamel composition, method for preparing enamel composition, and cooking appliance
US11479500B2 (en) 2019-02-22 2022-10-25 Lg Electronics Inc. Enamel composition, method for preparing enamel composition, and cooking appliance
US11773007B2 (en) 2019-02-22 2023-10-03 Lg Electronics Inc. Enamel composition, method for preparing enamel composition, and cooking appliance
US11780766B2 (en) 2019-02-22 2023-10-10 Lg Electronics Inc. Enamel composition, method for preparing enamel composition, and cooking appliance
CN112919806A (en) * 2021-04-09 2021-06-08 江西省萍乡市华东出口电瓷有限公司 High-voltage-resistant porcelain insulator glaze
CN112919806B (en) * 2021-04-09 2022-04-22 江西省萍乡市华东出口电瓷有限公司 High-voltage-resistant porcelain insulator glaze
CN116023030A (en) * 2022-12-26 2023-04-28 德化县宏鹏瓷业发展有限公司 High-whiteness ceramic glaze and method for preparing ceramic product by using same

Similar Documents

Publication Publication Date Title
JP2005008974A (en) Porcelain enameled material and manufacturing method therefor
US7754648B2 (en) Photocatalytic hydrophilifiable material
JP5118489B2 (en) Method for preparing a dispersion of TiO2 in the form of nanoparticles and the functionalization of the surface by applying the dispersion obtained by this method and the TiO2 dispersion
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
TWI234576B (en) Super-hydrophilic photocatalytic coating film forming liquid, and structure having the coating film and method of manufacturing the structure
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
US8486433B2 (en) Antibacterial deodorant
WO2011108472A1 (en) Glass for glaze, glaze, and photocatalyst member
JP5711744B2 (en) INORGANIC MATERIAL HAVING PHOTOCATALYST LAYER, PROCESS FOR PRODUCING THE SAME, AND PHOTOCATALYST COATING LIQUID FOR INORGANIC MATERIAL
EP1053788A1 (en) Photocatalyst composition, substance containing photocatalyst, and material functioning as photocatalyst and process for producing the same
CN103079700B (en) Tungsten oxide photocatalyst and method for producing the same
JP4619601B2 (en) PHOTOCATALYTIC COATING COMPOSITION AND PRODUCT HAVING PHOTOCATALYTIC THIN FILM
CN109789396A (en) Visible light responsive photocatalytic titanium oxide microparticle mixture, its dispersion liquid, the manufacturing method of dispersion liquid, photocatalyst film and surface have photocatalyst film component
JP3818811B2 (en) Photocatalytic filter for air purification
CN110354844A (en) Photocatalyst material
Gao et al. Optical property and thermal performance of hollow glass microsphere/BiOBr1-xIx composites as a novel colored near infrared reflective pigment
JP4011705B2 (en) Photocatalyst compound, photocatalyst-containing material, photocatalyst function material and method for producing the same
JP4849778B2 (en) Antibacterial deodorant and method for producing the same
JP2011168466A (en) Composite, photocatalytic functional member and hydrophilic member
JP5552378B2 (en) Visible light responsive photocatalyst-containing interior coating composition and coating film containing the same
JP5809795B2 (en) Titanium dioxide-containing composite particles
JPH09225303A (en) Photocatalyst composition, its manufacture, and substrate with photocatalyst composition
JP4964331B2 (en) Method for producing antibacterial deodorant
JP2000014755A (en) Metal plate having photocatalytic function
JP4751805B2 (en) Method for producing composition containing low-order titanium oxide particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217