JP2005008648A - Method for producing non-gel-like epoxy resin composition - Google Patents

Method for producing non-gel-like epoxy resin composition Download PDF

Info

Publication number
JP2005008648A
JP2005008648A JP2003143293A JP2003143293A JP2005008648A JP 2005008648 A JP2005008648 A JP 2005008648A JP 2003143293 A JP2003143293 A JP 2003143293A JP 2003143293 A JP2003143293 A JP 2003143293A JP 2005008648 A JP2005008648 A JP 2005008648A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
curing agent
boric acid
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003143293A
Other languages
Japanese (ja)
Other versions
JP4490653B2 (en
Inventor
Akira Obayashi
明 王林
Kazutoshi Haraguchi
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2003143293A priority Critical patent/JP4490653B2/en
Publication of JP2005008648A publication Critical patent/JP2005008648A/en
Application granted granted Critical
Publication of JP4490653B2 publication Critical patent/JP4490653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an epoxy resin composition affording a heat-resistant cured product having a high glass transition temperature and even excellent transparency and to provide a method for producing a one-pack type curable epoxy resin composition not only affording the heat-resistant cured product having the high glass transition temperature but also having excellent preservation stability. <P>SOLUTION: A resin material comprises (A) an epoxy resin, (B) a curing agent for the epoxy resin and (C) at least one kind of a boric acid compound represented by the general formula: B(OR)n(OH)3-n (wherein, n is an integer of 0-3; Rs are each an alkyl group of a CmH2m+1; and m is an integer of 1-10) and its partial polycondensate and the content of the boron is 0.5-10 mass% based on the component (A). The resin material is uniformly dissolved in a solvent. The method for producing a non-gel-like epoxy resin composition comprises heat-treating the resin material and reacting the component B with the component C without making the resultant material gel in a solution state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は高いガラス転移温度を有する耐熱性硬化物が得られる非ゲル状エポキシ樹脂組成物の製造方法に関する。
【0002】
【従来の技術】
エポキシ樹脂は、その高い反応性と優れた樹脂特性から、積層板、封止材料、塗料、防食プライマー、接着材料、成形材料及び土木材料などの広い分野で用いられている。近年、電子機器の高周波数化に伴う発熱や鉛フリーはんだ対応などの問題から、積層板、封止材料、接着剤、塗料、バインダーなどに用いる材料として、高いガラス転移温度、難熱分解性、低線膨張性などを有する耐熱性エポキシ樹脂の開発が求められている。
【0003】
ホウ酸またはホウ酸エステルを用いて、エポキシ樹脂の硬化促進剤または硬化性の制御に関する研究は古くから検討され、数多くの報告例がある。即ち、ホウ酸やホウ酸エステルを樹脂成分に対するホウ素含有量で0.35質量%以下で添加し、ゲル化時間を調整しており、樹脂硬化物の耐熱性の向上についてはまったく関心がない(例えば、特許文献1参照)。
【0004】
エポキシ樹脂硬化物の耐熱性を改良した例として、エポキシ樹脂と硬化剤の溶液にホウ酸化合物1〜10phrを単に添加する方法が提案されている(例えば、特許文献2参照)。しかし、このようにホウ酸化合物を単純に混合した組成物では、硬化剤とホウ酸化合物とが反応せずに溶剤除去によりホウ酸化合物が析出してしまい、得られた硬化物は不透明で脆い材料となってしまう。従ってこの方法によっては実質上ホウ酸化合物を含む均一透明なエポキシ樹脂硬化物が得られず、硬化物の耐熱性の向上が不十分であった。
【0005】
また、エポキシ樹脂とホウ酸エステル化合物の溶液に、その溶剤に溶解しないシアノグアニジンと変性脂肪族ポリアミンを分散させて得られる潜在性硬化型エポキシ樹脂組成物が報告されている(例えば、特許文献3参照)。しかしながら、この場合も硬化剤として用いられるホウ酸エステル化合物の使用量がエポキシ樹脂との配合比により制限されるので、得られた硬化物中のホウ素含有量は低く、充分な耐熱性は得られていない。
【0006】
【特許文献1】特開2000−309626号公報
【特許文献2】特表平10−507481号公報
【特許文献3】特開平10−25334公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、高いガラス転移温度を有し、透明性にも優れる耐熱性硬化物が得られるエポキシ樹脂組成物の製造方法を提供することにある。
本発明の他の目的は、高いガラス転移温度を有する耐熱性硬化物を得られるだけでなく、優れた保存安定性を有する1液硬化性エポキシ樹脂組成物の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、上記の目的を達成すべく研究を行った結果、エポキシ樹脂溶液の中に、ホウ酸またはホウ酸エステルと窒素含有エポキシ樹脂硬化剤と低級アルコールとを添加し、溶液状態での加熱処理を行うことにより、ホウ酸またはホウ酸エステルとエポキシ樹脂硬化剤とが、場合によってはホウ酸またはホウ酸エステルとアミン変性エポキシ樹脂とが効果的に反応し、得られる硬化物のガラス転移温度の向上が極めて大であることを見出し、本発明を完成した。
【0009】
即ち、本発明は、(A)エポキシ樹脂と、(B)エポキシ樹脂硬化剤と、(C)一般式B(OR)n(OH)3−n (式中、nは0〜3までの整数、RはCmH2m+1のアルキル基、mは1〜10の整数である)で表されるホウ酸化合物およびその部分重縮合物の少なくとも一種とを含有し、且つホウ素の含有量が(A)成分に対して0.5〜10質量%であって、溶媒に均一に溶解した樹脂材料を加熱処理し、該B成分と該C成分とを反応させ、且つ溶液状態でゲル化させないことを特徴とする高いガラス転移温度を有する非ゲル状エポキシ樹脂組成物の製造方法を提供する。
【0010】
また、本発明は、上記のエポキシ樹脂組成物にエポキシ樹脂硬化剤(B)として3級アミン、ジシアンジアミド、イミタゾール化合物などの窒素含有高温硬化タイプ硬化剤または潜在性硬化剤を用いることで、高いガラス転移温度を有する耐熱性硬化物を得られるだけでなく、優れた保存安定性を有する1液硬化性エポキシ樹脂組成物の製造方法をも提供する。
【0011】
【発明の実施の形態】
本発明では、(A)エポキシ樹脂、(B)エポキシ樹脂硬化剤(以下、単に硬化剤という)および(C)一般式B(OR)n(OH)3−n (式中、nは0〜3までの整数、RはCmH2m+1のアルキル基、mは1〜10の整数である)で表されるホウ酸化合物およびその部分重縮合物の少なくとも一種(以下、単にホウ酸系化合物という)の特定な量を溶媒に均一に溶解する。
【0012】
本発明で用いるエポキシ樹脂(A)としては、1分子内に平均2個以上のエポキシ基を有する慣用のエポキシ樹脂であり、その種類は特に限定されない。例えば、次に掲げる各種のエポキシ樹脂を単独又は2種以上組み合わせて使用できる。
【0013】
(1) フェノール系グリシジルエーテル型エポキシ樹脂:
ビスフェノールーA、ビスフェノールーF、テトラブロモビスフェノールーA、テトラフェニロールエタン、フェニールノボラック、クレゾールノボラックなどのフェノール化合物とエピクロルヒドリンとの反応により得られるフェノール系グリシジルエーテル型エポキシ樹脂。
【0014】
(2) アルコール系グリシジルエーテル型エポキシ樹脂:
(a) ビスフェノールーA、ビスフェノールーF、テトラブロモビスフェノールーA、テトラフェニロールエタンなどのフェノール化合物とアルキレンオキサイドとの付加反応により得られるポリオール、又は水添ビスフェノールAなどのポリオールと、(b) エピクロルヒドリンとの反応により得られるアルコール系グリシジルエーテル型エポキシ樹脂。
【0015】
(3) グリシジルエステル型エポキシ樹脂:
ヘキサヒドロフタル酸ジグリシジルエステル、ダイマー酸グリシジルエステル等のジグリシジルエステル型エポキシ樹脂。
【0016】
(4) グリシジルアミン型エポキシ樹脂:
1,3−ジグリシジルヒダントイン、トリグリシジルイソシアヌレート、テトラグリシジルジアミノジフェニルメタン、トリグリシジルーパラアミノフェノール等のグリシジルアミン型エポキシ樹脂。
【0017】
(5) 混合型エポキシ樹脂:
アミノフェノール又はオキシ安息香酸とエピクロルヒドリンとの反応により得られるエポキシ樹脂、シクロペタジエンやジシクロペンタジエン骨格を有する脂環式型エポキシ樹脂、臭素化エポキシ樹脂等の混合型エポキシ樹脂。
【0018】
エポキシ樹脂組成物の硬化物が充分高いガラス転移温度と優れた耐熱性を獲得する為には、エポキシ樹脂のエポキシ基当量は好ましくは2000以下、より好ましくは1000以下、特に好ましくは500以下である。
【0019】
また、本発明ではアミン変性エポキシ樹脂が好適に用いられる。具体例として、上記のエポキシ樹脂とポリアミンとを反応させて得られる非ゲル状のアミン変性エポキシ樹脂が挙げられる。エポキシ樹脂組成物溶液の増粘、ゲル化を防ぐため、ポリアミンの使用量はエポキシ当量比20%以下にすることが好ましい。
【0020】
本発明で使用するアミン変性エポキシ樹脂の反応原料となるポリアミンは、エポキシ樹脂用アミン系硬化剤として慣用されているポリアミンが使用しやすい。例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N−アミノエチルピペラジン、イソホロンジアミン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン又はメタンジアミン等の脂肪族ポリアミン; テトラエチレンペンタミンを脂肪酸や安息香酸で変性した脂肪族ポリアミン等が使用できる。
【0021】
本発明で使用するホウ酸系化合物(C)としては以下の一般式(1)で表されるホウ酸、ホウ酸エステルおよびその部分重縮合物が用いられる。ホウ酸としては、例えばオルトホウ酸、メタホウ酸、四ホウ酸及びこれらの混合物が用いられる。また、ホウ酸エステルとしては、一般式(1)で表されるホウ酸エステルやそれらの部分加水分解物や部分重縮合物が用いられる。この他、ホウ酸トリクレジル、ボロキシン、ホウ酸無水物等も用いることができる。これらの中ではホウ酸が最も好ましく用いられる。
【0022】
一般式(1)
B(OR)n(OH)3−n
(式中、nは0〜3までの整数、RはCmH2m+1のアルキル基であり、mは1〜10の整数を表す)
なお、前記の部分重縮合物は、一般式(1)で表されるホウ酸エステルを、水、溶媒、及び必要により酸又は塩基触媒と共に混合攪拌する方法によって得ることができる。
【0023】
ホウ酸エステルの具体例としては、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリブチル等が挙げられる。これらのホウ酸及びホウ酸エステルは、単独又は2種以上組み合わせて使用できる。
【0024】
本発明のエポキシ樹脂組成物の製造方法において用いるホウ酸系化合物(C)の量はエポキシ樹脂硬化物のガラス転移温度を高めるために極めて重要である。即ち、本発明におけるホウ酸系化合物(C)の含有量については、用いたホウ酸系化合物中に含まれるホウ素量をエポキシ樹脂(A)に対する質量%で規定される。例えばエポキシ樹脂100gに対してB(OH)を100g用いた場合にはホウ素含有量は17.5質量%である。尚、かかるホウ素含有量については、原料仕込み時に計算することができるが、硬化後の生成物を焼成して得られるBから算出することもでき、その際他のホウ素化合物、例えば炭化ホウ素や窒化ホウ素などが検出される場合にはその分も算入される。
【0025】
エポキシ樹脂に対するホウ素の含有量は、0.5〜10質量%、好ましくは1〜6質量%、特に好ましくは1.5〜4.5質量%である。含有量が0.5質量%未満の場合、得られる硬化物の耐熱性が不十分であり、10質量%を越えると、硬化物が不均一になり、脆い。また、得られる硬化物に高い透明性を与える観点からは、ホウ素の含有量は6質量%以下が好ましく、4.5質量%以下がより好ましい。
【0026】
本発明で用いる硬化剤(B)としては、アミン系硬化剤、ジシアンジアミド、イミダゾール化合物、フェノールノボラック樹脂、酸無水物が用いられる。特に好ましくはアミン系硬化物、ジシアンジアミド、イミダゾール化合物などの窒素含有硬化剤である。アミン系硬化剤としては、市販されているポリアミン、2級アミン及び3級アミンが用いられる。
【0027】
ポリアミンの具体例としては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N−アミノエチルピペラジン、イソホロンジアミン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン又はメタンジアミン等の脂肪族ポリアミン; テトラエチレンペンタミンを脂肪酸や安息香酸で変性した脂肪族ポリアミン;メタフェニレンジアミン、メタキシレンジアミン等芳香族ポリアミン等が挙げられる。
【0028】
2級アミンとしては、ピペリジン、N−メチルピペラジン、ヒドロキシエチルピペラジン、ピロリジン等が用いられる。
【0029】
また、本発明の保存安定性に優れたエポキシ樹脂組成物の製造においては、3級アミン、ジシアンジアミド、イミダゾール化合物が好適に用いられる。
【0030】
3級アミンの具体例としては、ベンジルジメチルアミン(BDMA)、2−(ジメチルアミノメチル)フェノール(DMP−10)、2,4,6−トリス(ジメチルアミノメチル)フェノール(DMP−30)等が挙げられる。
【0031】
イミダゾール化合物としては、2−エチル−4−メチルイミダゾール(2E4MZ)、2−メチルイミダゾール(2MZ)、2−フェニルイミダゾール(2PZ)等が挙げられる。
【0032】
また、本発明でアミン変性エポキシ樹脂を用いた場合、フェノールノボラック樹脂硬化剤や酸無水物硬化剤なども使用できる。
【0033】
本発明で用いるエポキシ樹脂硬化剤の使用量は、併用するホウ酸系化合物の添加量によって異なり、通常用いられる硬化剤量に限定されることなく、より広範囲で使用することが可能である。一般的には、エポキシ樹脂に対して、0.5〜120phr配合することが好ましい。具体例としては、ポリアミンを用いる場合、エポキシ樹脂中のエポキシ基1当量当たり硬化剤中の活性水素が0.3〜3.0当量、より好ましくは0.4〜2.0当量、特に好ましくは0.5〜1.5当量となるように配合して用いられる。また、2級アミンを用いる場合は、エポキシ樹脂に対して、3〜25phr、より好ましくは4〜20phr、特に好ましくは5〜15phrが用いられる。また、3級アミンを用いる場合は、エポキシ樹脂中のエポキシ基1当量に対して3〜40モル%、より好ましくは4〜30モル%、特に好ましくは5〜20モル%が用いられる。また、イミダゾール化合物の場合は、エポキシ樹脂に対して、1〜15phr配合することが好ましく、より好ましくは1.5〜10phrであり、特に好ましくは2〜8phrである。
【0034】
更に、得られる硬化物のガラス転移温度を効果的に高める観点から、エポキシ樹脂硬化剤の使用量とホウ酸化合物の使用量の量比は硬化剤の種類によって異なるが、好ましくは硬化剤中に含まれるアミン基またはアミノ基一個当たり、ホウ酸化合物1〜5分子の割合で用いられる。
【0035】
本発明におけるエポキシ樹脂組成物の製造過程で、有機溶媒を用いることが必須である。有機溶媒としては、エポキシ樹脂、硬化剤及びホウ酸系化合物を均一に溶解できる有機溶媒であることが必要である。例えば、メタノール、エタノール、プロパノールなどの炭素数1〜6程度の低級アルコール、アセトン、メチルエチルケトン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルセルソルブなどが挙げられ、これらは単独または二種以上を混合して用いられる。
【0036】
また本発明において、エポキシ樹脂組成物溶液にホウ酸系化合物と硬化剤とを反応して生成したホウ素化合物が析出しないため、有機溶媒として低級アルコールを含むことが特に有効であり、硬化剤の種類によっては必須となる場合もある。ここで低級アルコールとしては炭素数1〜6程度のもので、好ましくはメタノール、エタノール、プロパノール、イソプロパノールである。
【0037】
実質的にはエポキシ樹脂と溶媒とからなる溶液と、ホウ酸系化合物と溶媒とからなる溶液とを混合し、更にその中にホウ酸系化合物と反応する硬化剤を添加して得られる均一な溶液とするのが好ましい。この場合、エポキシ樹脂の溶媒とホウ酸系化合物の溶媒は、エポキシ樹脂およびホウ酸系化合物の両者を溶解するものであって、且つ硬化剤をも溶解するものであれば一種類でも差し支えないが、両溶媒が異なっていてもブレンドした場合に相溶し、且つ硬化剤を溶解するような溶媒が好ましい。
【0038】
本発明の製造法に於いて、エポキシ樹脂、硬化剤およびホウ酸系化合物を上記の溶液状態で加熱処理を行うことは均一透明なエポキシ樹脂組成物を得るために極めて重要である。溶液状態での加熱処理とは、実質的に溶媒を除去することなく、即ちクローズドシステムで加熱し、しかも樹脂がゲル化しないように行うことを云う。それを行うことにより、ホウ酸系化合物と硬化剤とが反応し、生成したホウ素化合物がエポキシ樹脂溶液中に分子レベルで均一に相溶する。得られた溶液を脱溶剤して得られる組成物はホウ素化合物の凝集がなく均一透明となる。これに対して溶液状態での加熱処理がない場合は、脱溶剤と共にホウ酸系化合物が析出してしまい、得られる硬化物は不透明で脆い材料となる。
【0039】
溶液状態での加熱処理の条件は、用いる硬化剤とホウ酸系化合物との反応の容易さ及び状況により生成したホウ素化合物とエポキシ樹脂との反応の容易さにより異なる。基本的には加熱処理の下限及び上限としては、その後の脱溶剤によりホウ素化合物が析出しなくなる範囲(下限)、且つ溶液がゲル化しない範囲(上限)で加熱処理を行うことが重要である。加熱処理を過度に行った場合、組成物が増粘またはゲル化してしまい、実用性の観点から好ましくない。
【0040】
溶液状態での加熱処理温度は、具体的には硬化剤としてポリアミン及び2級アミンを用いた場合、25〜100℃、より好ましくは30〜90℃、特に好ましくは40〜80℃で行える。加熱処理時間は加熱処理温度により異なるが、0.1〜40時間が好ましく、より好ましくは0.2〜30時間、特に好ましくは0.3〜20時間である。
【0041】
また、3級アミン、イミダゾール化合物及びジシアンジアミドを用いた場合は、溶液状態での加熱処理温度は30〜150℃が好ましく、より好ましくは40〜130℃であり、特に好ましくは50〜110℃である。加熱処理時間は加熱処理温度により異なるが、0.3〜50時間が好ましく、より好ましくは0.5〜40時間、特に好ましくは1〜25時間である。
【0042】
本発明で得られるエポキシ樹脂組成物から、硬化反応を進めないようにして溶媒を除去することにより、無溶媒のエポキシ樹脂組成物が製造できる。脱溶媒温度は用いる硬化剤により異なるが、100℃以下が好ましく、より好ましくは80℃以下、特に好ましくは60℃以下である。
【0043】
本発明のエポキシ樹脂組成物の製造方法により得られる硬化物は、ホウ酸とホウ酸エステルのいずれも含まない以外は同じ組成のエポキシ樹脂の硬化物よりもガラス転移温度が50〜200℃高い硬化物が得られる。
【0044】
また、本発明のエポキシ樹脂組成物の製造方法により得られる硬化物は、ホウ酸とホウ酸エステルのいずれも含まない以外は同じ組成のエポキシ樹脂の硬化物とほぼ同等の透明性を有する硬化物が得られる。
【0045】
さらに本発明の製造方法により得られる保存安定な1液硬化性エポキシ樹脂組成物は、高いガラス転移温度を有する硬化物を与える他に、製品の使用利便性を有し、且つ製品の長期保存も可能である。
【0046】
【実施例】
本発明を実施例によって更に具体的に説明する。また、以下の実施例において、光透過率は日本電色工業株式会社製NDH−300Aを用いて、厚さ300μmのフィルムの平行透過率を測定した。ガラス転移温度及び貯蔵弾性率(E’)は、固体動的粘弾性測定装置(セイコー電子工業株式会社製DMA−200)を用い、測定周波数1Hz、升温速度2℃/分で測定した。なお、ガラス転移温度(Tg)はtanδピーク温度(tanδmax)とした。
【0047】
(実施例1)
ビスフェノールA型エポキシ樹脂エピクロン850(大日本インキ化学工業株式会社製、エポキシ当量 190g/eq) 100gと、MEK(メチルエチルケトン、和光純薬工業株式会社製、試薬特級)100gと、メタノール(和光純薬工業株式会社製、試薬特級)80gとを混合し、攪拌しながら、ホウ酸(和光純薬工業株式会社製、試薬特級)16.1gを徐々に添加した。続いて、約30分攪拌して、均一透明な溶液を得た。
続いて、硬化剤としてジエチレントリアミンDETA(和光純薬工業株式会社製、試薬特級) 5.5g (エポキシ当量比 50%)を上記の溶液に加え、攪拌混合した後、60℃で1時間の溶液状態での加熱処理を行い、エポキシ樹脂組成物溶液を得た。続いて該溶液を清浄なアルミ箔上に塗布し、12時間、溶媒キャストを行った後、50℃、60℃、70℃、80℃、90℃で各1時間乾燥し、更に、150℃、180℃で各2時間の熱処理を行い、該エポキシ樹脂組成物の硬化物を得た。得られた硬化物を空気雰囲気中1000℃で2時間焼成したところ、黒色の灰分7gが得られた。
【0048】
上記の硬化物は透明性に優れ、可視光域での光透過率は90.9%(100μm厚み換算)であった。また、クラックやしわ、気泡なども無く、良好な表面形態を示した。これに対して、溶液状態での加熱処理を行わない以外は実施例1と同様にして同じ組成のエポキシ樹脂硬化物を調製した比較例1では、得られた硬化物は不透明で、光透過率は8%であった。また、溶液状態での加熱処理は不充分な場合(比較例2)、得られた硬化物は発泡してしまった。いずれの場合、硬化物が脆いため、動的粘弾性の測定はできなかった。
【0049】
実施例1で得られた厚み300μmの硬化フィルムを用いて動的粘弾性測定(周波数1Hz)を行った。得られた貯蔵弾性率(E’)とtanδとの関係を図1に示す。図1の縦軸は貯蔵弾性率(E’)を横軸は温度(℃)である。なお、図1にはホウ酸を含まない以外は同じエポキシ樹脂組成の硬化物である比較例4の結果も併せて示す。比較例4では、tanδのピーク温度(Tg)が82.1℃であるのに対し、実施例1のエポキシ樹脂に対するホウ素含有量として2.8質量%を含む硬化物では288.4℃であった。ホウ素化合物の導入によりエポキシ樹脂硬化物の耐熱性が大きく向上していることがわかる。また、ホウ酸を少量(ホウ素含有量で0.35質量%)含む比較例3では、tanδのピーク温度(Tg)が余り向上せず、硬化物の耐熱性は不十分であった。
【0050】
【表1】

Figure 2005008648
【0051】
(実施例2と3、及び比較例4〜6)
表2に示すように、実施例2と3は、実施例1と同様にして得たエポキシ樹脂とホウ酸との透明溶液にそれぞれ脂肪族ポリアミン エピクロンB−053 (大日本インキ化学工業株式会社製、活性水素当量 77g/eq) 20.5g (エポキシ当量比50%)、2級アミン ピペリジン(和光純薬工業株式会社製、試薬特級)7g (7phr)を加え、攪拌混合した後、表2に示した条件で溶液状態での加熱処理を行い、エポキシ樹脂組成物を得た。続いて実施例1と同様にその硬化物を作成した。また、比較例4〜6はホウ酸を含まない及び溶液状態での加熱処理を行わない以外は実施例と同様にしてエポキシ樹脂硬化物を作成した。ホウ酸を含まない比較例4〜6のエポキシ樹脂硬化物のTgに比べ、実施例1〜3で得られたエポキシ樹脂硬化物のTgが極めて高いことが明らかである。また、実施例1〜3で得たエポキシ樹脂組成物の硬化物の光透過率は、ホウ酸を含まない比較例4〜6で得たエポキシ樹脂組成物の硬化物の光透過率とほぼ同等である。
【0052】
【表2】
Figure 2005008648
【0053】
【表3】
Figure 2005008648
【0054】
(実施例4と5、及び比較例7と8)
実施例4と5はローブロムビスフェノールA型エポキシ樹脂 エピクロン1121N−80M (大日本インキ化学工業株式会社製、エポキシ当量 493g/eq、固形分80%)を用いた以外は実施例1と同様にしてエポキシ樹脂とホウ酸との透明溶液を調製した。続いて得られた溶液にそれぞれの硬化剤ジエチレントリアミンDETA、エピクロンB−053を加え、表4に示した条件で実施例1と同様にエポキシ樹脂組成物及びその硬化物を作成した。また、ホウ酸を含まない以外は実施例4と5と同一の組成のエポキシ樹脂組成物である比較例7と8の硬化物をも作成した。得られた硬化物の評価結果を表に示す。
【0055】
【表4】
Figure 2005008648
【0056】
【表5】
Figure 2005008648
【0057】
(実施例6〜8)
エピクロン850 100gと、エピクロンB−053 6.1g(エポキシ当量比15%)と、MEK 100gとを混合し80℃にて1時間攪拌した。続いて、ホウ酸16.1g、メタノール100gをアミン変性エポキシ樹脂溶液に添加し、約30分攪拌して均一透明な溶液を得た。この溶液は50℃にて二ヶ月以上保存したところ、増粘、ゲル化せず、優れた貯蔵安定性を示した。
続いて、硬化剤として、実施例6ではジエチレントリアミンDETA 3.8g(エポキシ当量比35%)、実施例7ではエピクロンB−053 14.2g(エポキシ当量比35%)、実施例8ではピペリジン7g(7phr)をそれぞれ上記の透明溶液に加え、攪拌混合した後、表6に示した条件で溶液状態での加熱処理を行い、エポキシ樹脂組成物を得た。続いて実施例1と同様にしてその硬化物を作成した。得られた硬化物はいずれも優れた透明性と高いガラス転移温度(Tg)を示した。
【0058】
【表6】
Figure 2005008648
【0059】
(実施例9と比較例9)
メタノール30gを用いた以外は実施例6と同様にしてアミン変性エポキシ樹脂とホウ酸との透明溶液を調製した。続いて、硬化剤フェノールノボラック樹脂TD2090−60M(大日本インキ化学工業株式会社製、活性水素当量 105g/eq、固形分60%) 78g (エポキシ当量比85%)を加え、攪拌によりエポキシ樹脂組成物を得た。続いて実施例1と同様にしてその硬化物を作成した。また、比較例9はホウ酸を含まない以外は実施例9とほぼ同様にしてエポキシ樹脂組成物の硬化物を作成した。ホウ酸を含まない比較例9のエポキシ樹脂組成物の硬化物のTgに比べ、実施例9で得られたエポキシ樹脂組成物の硬化物がより高いTgを示した。
【0060】
【表7】
Figure 2005008648
【0061】
(実施例10〜12と比較例10〜12)
エピクロン850 100gと、エピクロンB−053 6.1g(エポキシ当量15%)と、MEK 100gとを混合し80℃にて1時間攪拌した。続いて、ホウ酸16.1gと所定量のメタノールをアミン変性エポキシ樹脂溶液に添加し、ホウ酸を溶解するまで約30分攪拌した。続いて潜在性硬化剤として、実施例10では2−エチル−4−メチルイミタゾール2E4MZ(和光純薬工業株式会社製、試薬特級) 2g(2phr)、実施例11ではベンジルジメチルアミンBDMA(和光純薬工業株式会社製、試薬特級) 3.6g(5mol%)、実施例12ではジシアンジアミドDICY(和光純薬工業株式会社製、試薬特級) 3.9g(エポキシ当量比35%)と2−エチル−4−メチルイミタゾール2E4MZ 0.2gをそれぞれアミン変性エポキシ樹脂溶液に加え、攪拌混合した後、表8に示した条件で溶液状態での加熱処理を行い、保存安定性に優れた1液硬化性エポキシ樹脂組成物を得た。この組成物は50℃にて二ヶ月以上保存したところ、増粘、ゲル化せず、優れた貯蔵安定性を示した。続いて上記の組成物を用いて実施例1と同様にしてその硬化物を作成した。また、比較例10〜12はホウ酸を含まない及び溶液状態での加熱処理を行わない以外は実施例10〜12と同様にしてエポキシ樹脂組成物の硬化物を作成した。ホウ酸を含まない比較例10〜12のエポキシ樹脂組成物の硬化物のTgに比べ、実施例10〜12で得られたエポキシ樹脂組成物の硬化物のTgが大幅に向上した。
【0062】
【表8】
Figure 2005008648
【0063】
【表9】
Figure 2005008648
【0064】
(実施例13と14)
実施例13と14は、ポリアミンを用いない及び有機溶剤MEKの変わりにN,N−ジメチルホルムアミドDMFを使用した以外は実施例10と11と同様にして表10に示した条件で保存安定性に優れた1液硬化性エポキシ樹脂組成物及びその硬化物を調製した。得られた硬化物はいずれも均一透明で、クラック、しわ等のない良好な形態を有しており、ホウ酸を含まない以外は同じ組成のエポキシ樹脂組成物の硬化物と比較して、格段に高いガラス転移温度(Tg)を示した。
【0065】
【表10】
Figure 2005008648
【0066】
【発明の効果】
本発明は、得られる硬化物が従来のようなホウ酸系化合物を含まない、またはその含有量が少ないエポキシ樹脂の硬化物よりもガラス転移温度が50〜200℃高く、透明性にも優れたものであり、硬化前の1液硬化性エポキシ樹脂組成物が保存安定性が高いため長期保存も可能で、使用利便性を有している。
【0067】
【図面の簡単な説明】
【図1】実施例1及び比較例1で得られたエポキシ樹脂硬化物の貯蔵弾性率(E’)とtanδの温度分散を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a non-gelled epoxy resin composition from which a heat-resistant cured product having a high glass transition temperature is obtained.
[0002]
[Prior art]
Epoxy resins are used in a wide range of fields such as laminates, sealing materials, paints, anticorrosion primers, adhesive materials, molding materials and civil engineering materials because of their high reactivity and excellent resin properties. In recent years, due to problems such as heat generation and lead-free soldering due to higher frequency of electronic equipment, as a material used for laminates, sealing materials, adhesives, paints, binders, etc., high glass transition temperature, poor thermal decomposition, Development of a heat-resistant epoxy resin having low linear expansion is required.
[0003]
Studies on the curing accelerator or curing control of epoxy resins using boric acid or boric acid esters have been studied for a long time, and there are many reports. That is, boric acid or boric acid ester is added at a boron content of 0.35% by mass or less with respect to the resin component to adjust the gelation time, and there is no interest in improving the heat resistance of the resin cured product ( For example, see Patent Document 1).
[0004]
As an example of improving the heat resistance of a cured epoxy resin, a method of simply adding 1 to 10 phr of a boric acid compound to a solution of an epoxy resin and a curing agent has been proposed (for example, see Patent Document 2). However, in the composition in which the boric acid compound is simply mixed as described above, the boric acid compound is precipitated by removing the solvent without the reaction between the curing agent and the boric acid compound, and the obtained cured product is opaque and brittle. It becomes a material. Therefore, a uniform transparent epoxy resin cured product substantially containing a boric acid compound could not be obtained by this method, and the heat resistance of the cured product was insufficiently improved.
[0005]
In addition, a latent curable epoxy resin composition obtained by dispersing cyanoguanidine and a modified aliphatic polyamine not dissolved in a solvent in a solution of an epoxy resin and a boric acid ester compound has been reported (for example, Patent Document 3). reference). However, in this case as well, since the amount of the boric acid ester compound used as the curing agent is limited by the compounding ratio with the epoxy resin, the boron content in the obtained cured product is low and sufficient heat resistance is obtained. Not.
[0006]
[Patent Document 1] Japanese Unexamined Patent Publication No. 2000-309626
[Patent Document 2] Japanese Patent Publication No. 10-507481
[Patent Document 3] Japanese Patent Laid-Open No. 10-25334
[0007]
[Problems to be solved by the invention]
The objective of this invention is providing the manufacturing method of the epoxy resin composition from which the heat resistant hardened | cured material which has a high glass transition temperature and is excellent also in transparency is obtained.
Another object of the present invention is to provide a method for producing a one-part curable epoxy resin composition that not only provides a heat-resistant cured product having a high glass transition temperature, but also has excellent storage stability.
[0008]
[Means for Solving the Problems]
As a result of conducting research to achieve the above object, the present inventors added boric acid or a boric acid ester, a nitrogen-containing epoxy resin curing agent, and a lower alcohol to the epoxy resin solution, and in a solution state. By carrying out the heat treatment, boric acid or a boric acid ester and an epoxy resin curing agent, in some cases, boric acid or a boric acid ester and an amine-modified epoxy resin effectively react, and the resulting cured glass is obtained. The present inventors have found that the improvement of the transition temperature is extremely large and completed the present invention.
[0009]
That is, the present invention comprises (A) an epoxy resin, (B) an epoxy resin curing agent, and (C) a general formula B (OR) n (OH) 3-n (wherein n is an integer from 0 to 3). , R is an alkyl group of CmH2m + 1, m is an integer of 1 to 10), and at least one of its partial polycondensates, and the content of boron in the component (A) On the other hand, it is 0.5 to 10% by mass, the resin material uniformly dissolved in the solvent is heat-treated, the B component and the C component are reacted, and the solution is not gelled. A method for producing a non-gelled epoxy resin composition having a high glass transition temperature is provided.
[0010]
In addition, the present invention uses a high-temperature curing type curing agent or a latent curing agent such as tertiary amine, dicyandiamide, and imitazole compound as an epoxy resin curing agent (B) in the above epoxy resin composition, thereby increasing the glass In addition to obtaining a heat-resistant cured product having a transition temperature, a method for producing a one-part curable epoxy resin composition having excellent storage stability is also provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, (A) an epoxy resin, (B) an epoxy resin curing agent (hereinafter simply referred to as a curing agent) and (C) a general formula B (OR) n (OH) 3-n (wherein n is 0 to 0). Identification of a boric acid compound represented by an integer up to 3, R is an alkyl group of CmH2m + 1, and m is an integer of 1 to 10) and a partial polycondensate thereof (hereinafter simply referred to as a boric acid compound) Dissolve uniformly in a solvent.
[0012]
The epoxy resin (A) used in the present invention is a conventional epoxy resin having an average of two or more epoxy groups in one molecule, and the kind thereof is not particularly limited. For example, the following various epoxy resins can be used alone or in combination of two or more.
[0013]
(1) Phenolic glycidyl ether type epoxy resin:
A phenolic glycidyl ether type epoxy resin obtained by reaction of a phenolic compound such as bisphenol-A, bisphenol-F, tetrabromobisphenol-A, tetraphenylolethane, phenyl novolak, cresol novolak, and epichlorohydrin.
[0014]
(2) Alcohol-based glycidyl ether type epoxy resin:
(A) a polyol obtained by an addition reaction between a phenol compound such as bisphenol-A, bisphenol-F, tetrabromobisphenol-A, tetraphenylolethane and alkylene oxide, or a polyol such as hydrogenated bisphenol A; and (b) Alcohol glycidyl ether type epoxy resin obtained by reaction with epichlorohydrin.
[0015]
(3) Glycidyl ester type epoxy resin:
Diglycidyl ester type epoxy resins such as hexahydrophthalic acid diglycidyl ester and dimer acid glycidyl ester.
[0016]
(4) Glycidylamine type epoxy resin:
Glycidylamine type epoxy resins such as 1,3-diglycidylhydantoin, triglycidyl isocyanurate, tetraglycidyldiaminodiphenylmethane, triglycidyl loopaaminophenol and the like.
[0017]
(5) Mixed epoxy resin:
Mixed epoxy resins such as epoxy resins obtained by reaction of aminophenol or oxybenzoic acid and epichlorohydrin, cycloaliphatic epoxy resins having a cyclopetadiene or dicyclopentadiene skeleton, and brominated epoxy resins.
[0018]
In order for the cured product of the epoxy resin composition to obtain a sufficiently high glass transition temperature and excellent heat resistance, the epoxy group equivalent of the epoxy resin is preferably 2000 or less, more preferably 1000 or less, and particularly preferably 500 or less. .
[0019]
In the present invention, an amine-modified epoxy resin is preferably used. As a specific example, a non-gel-like amine-modified epoxy resin obtained by reacting the above-mentioned epoxy resin with a polyamine can be mentioned. In order to prevent thickening and gelation of the epoxy resin composition solution, the polyamine is preferably used in an epoxy equivalent ratio of 20% or less.
[0020]
As the polyamine which is a reaction raw material for the amine-modified epoxy resin used in the present invention, a polyamine which is commonly used as an amine-based curing agent for an epoxy resin can be easily used. For example, aliphatic polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiperazine, isophoronediamine, bis (4-amino-3-methylcyclohexyl) methane or methanediamine; For example, an aliphatic polyamine obtained by modifying min with a fatty acid or benzoic acid can be used.
[0021]
As the boric acid compound (C) used in the present invention, boric acid, boric acid ester and partial polycondensate thereof represented by the following general formula (1) are used. Examples of boric acid include orthoboric acid, metaboric acid, tetraboric acid, and mixtures thereof. Moreover, as boric acid ester, the boric acid ester represented by General formula (1), those partial hydrolysates, and partial polycondensate are used. In addition, tricresyl borate, boroxine, boric anhydride and the like can also be used. Of these, boric acid is most preferably used.
[0022]
General formula (1)
B (OR) n (OH) 3-n
(In the formula, n is an integer of 0 to 3, R is an alkyl group of CmH2m + 1, and m represents an integer of 1 to 10)
In addition, the said partial polycondensate can be obtained by the method of mixing and stirring the boric acid ester represented by General formula (1) with water, a solvent, and the acid or base catalyst as needed.
[0023]
Specific examples of the borate ester include trimethyl borate, triethyl borate, tripropyl borate, tributyl borate and the like. These boric acid and boric acid ester can be used individually or in combination of 2 or more types.
[0024]
The amount of the boric acid compound (C) used in the method for producing an epoxy resin composition of the present invention is extremely important for increasing the glass transition temperature of the cured epoxy resin. That is, regarding the content of the boric acid compound (C) in the present invention, the amount of boron contained in the boric acid compound used is defined by mass% with respect to the epoxy resin (A). For example, for 100 g of epoxy resin, B (OH) 3 When 100 g is used, the boron content is 17.5% by mass. In addition, about this boron content, although it can be calculated at the time of raw material preparation, B obtained by baking the product after hardening 2 O 3 In this case, when other boron compounds such as boron carbide and boron nitride are detected, the corresponding amount is also included.
[0025]
The boron content with respect to the epoxy resin is 0.5 to 10% by mass, preferably 1 to 6% by mass, and particularly preferably 1.5 to 4.5% by mass. When the content is less than 0.5% by mass, the obtained cured product has insufficient heat resistance. When the content exceeds 10% by mass, the cured product becomes non-uniform and brittle. Moreover, from a viewpoint of giving high transparency to the hardened | cured material obtained, 6 mass% or less is preferable and, as for content of boron, 4.5 mass% or less is more preferable.
[0026]
As the curing agent (B) used in the present invention, an amine curing agent, dicyandiamide, an imidazole compound, a phenol novolak resin, and an acid anhydride are used. Particularly preferred are nitrogen-containing curing agents such as amine-based cured products, dicyandiamide, and imidazole compounds. As the amine curing agent, commercially available polyamines, secondary amines and tertiary amines are used.
[0027]
Specific examples of polyamines include aliphatics such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiperazine, isophoronediamine, bis (4-amino-3-methylcyclohexyl) methane or methanediamine. Polyamines; aliphatic polyamines obtained by modifying tetraethylenepentamine with fatty acids or benzoic acid; aromatic polyamines such as metaphenylenediamine and metaxylenediamine.
[0028]
As the secondary amine, piperidine, N-methylpiperazine, hydroxyethylpiperazine, pyrrolidine or the like is used.
[0029]
Further, in the production of the epoxy resin composition having excellent storage stability of the present invention, tertiary amine, dicyandiamide, and imidazole compound are preferably used.
[0030]
Specific examples of the tertiary amine include benzyldimethylamine (BDMA), 2- (dimethylaminomethyl) phenol (DMP-10), 2,4,6-tris (dimethylaminomethyl) phenol (DMP-30), and the like. Can be mentioned.
[0031]
Examples of the imidazole compound include 2-ethyl-4-methylimidazole (2E4MZ), 2-methylimidazole (2MZ), 2-phenylimidazole (2PZ), and the like.
[0032]
In addition, when an amine-modified epoxy resin is used in the present invention, a phenol novolac resin curing agent or an acid anhydride curing agent can also be used.
[0033]
The amount of the epoxy resin curing agent used in the present invention varies depending on the amount of the boric acid compound to be used together, and is not limited to the amount of the curing agent that is usually used, and can be used in a wider range. Generally, it is preferable to mix 0.5 to 120 phr with respect to the epoxy resin. As a specific example, when a polyamine is used, the active hydrogen in the curing agent per equivalent of epoxy group in the epoxy resin is 0.3 to 3.0 equivalent, more preferably 0.4 to 2.0 equivalent, particularly preferably. It is used by blending so as to be 0.5 to 1.5 equivalents. Moreover, when using a secondary amine, 3-25 phr with respect to an epoxy resin, More preferably, 4-20 phr is used, Most preferably, 5-15 phr is used. Moreover, when using tertiary amine, 3-40 mol% with respect to 1 equivalent of epoxy groups in an epoxy resin, More preferably, 4-30 mol%, Most preferably, 5-20 mol% is used. Moreover, in the case of an imidazole compound, it is preferable to mix | blend 1-15 phr with respect to an epoxy resin, More preferably, it is 1.5-10 phr, Most preferably, it is 2-8 phr.
[0034]
Furthermore, from the viewpoint of effectively increasing the glass transition temperature of the resulting cured product, the amount ratio of the amount of the epoxy resin curing agent and the amount of the boric acid compound varies depending on the type of the curing agent, but preferably in the curing agent. It is used at a ratio of 1 to 5 molecules of boric acid compound per amine group or amino group contained.
[0035]
In the production process of the epoxy resin composition in the present invention, it is essential to use an organic solvent. The organic solvent must be an organic solvent that can uniformly dissolve the epoxy resin, the curing agent, and the boric acid compound. For example, lower alcohols having about 1 to 6 carbon atoms such as methanol, ethanol, propanol, acetone, methyl ethyl ketone, tetrahydrofuran, dimethylformamide, dimethylacetamide, methyl ethyl cellosolve, etc., may be used alone or in combination of two or more. Used.
[0036]
In the present invention, since a boron compound produced by reacting a boric acid compound and a curing agent does not precipitate in the epoxy resin composition solution, it is particularly effective to contain a lower alcohol as the organic solvent. Some may be required. Here, the lower alcohol has about 1 to 6 carbon atoms and is preferably methanol, ethanol, propanol or isopropanol.
[0037]
A substantially uniform solution obtained by mixing a solution comprising an epoxy resin and a solvent and a solution comprising a boric acid compound and a solvent, and further adding a curing agent that reacts with the boric acid compound therein. A solution is preferred. In this case, the solvent for the epoxy resin and the solvent for the boric acid compound may be one kind as long as it dissolves both the epoxy resin and the boric acid compound and also dissolves the curing agent. Even if the two solvents are different, a solvent that is compatible when blended and that dissolves the curing agent is preferable.
[0038]
In the production method of the present invention, it is extremely important to heat-treat the epoxy resin, the curing agent and the boric acid compound in the above solution state in order to obtain a uniform transparent epoxy resin composition. The heat treatment in a solution state means that the solvent is not substantially removed, that is, heated in a closed system and the resin is not gelled. By doing so, the boric acid compound reacts with the curing agent, and the produced boron compound is uniformly compatible at the molecular level in the epoxy resin solution. The composition obtained by removing the solvent from the obtained solution is uniformly transparent without aggregation of boron compounds. On the other hand, when there is no heat treatment in a solution state, the boric acid compound is precipitated together with the solvent removal, and the resulting cured product becomes an opaque and brittle material.
[0039]
The conditions of the heat treatment in a solution state differ depending on the ease of reaction between the curing agent used and the boric acid compound and the ease of reaction between the boron compound produced and the epoxy resin. Basically, as the lower limit and upper limit of the heat treatment, it is important to perform the heat treatment within a range (lower limit) in which the boron compound is not precipitated by subsequent solvent removal and in a range (upper limit) where the solution does not gel. If the heat treatment is performed excessively, the composition thickens or gels, which is not preferable from the viewpoint of practicality.
[0040]
Specifically, the heat treatment temperature in the solution state may be 25 to 100 ° C., more preferably 30 to 90 ° C., particularly preferably 40 to 80 ° C. when polyamine and secondary amine are used as the curing agent. Although heat processing time changes with heat processing temperature, 0.1 to 40 hours are preferable, More preferably, it is 0.2 to 30 hours, Especially preferably, it is 0.3 to 20 hours.
[0041]
When a tertiary amine, imidazole compound and dicyandiamide are used, the heat treatment temperature in the solution state is preferably 30 to 150 ° C, more preferably 40 to 130 ° C, and particularly preferably 50 to 110 ° C. . Although heat processing time changes with heat processing temperature, 0.3-50 hours are preferable, More preferably, it is 0.5-40 hours, Most preferably, it is 1-25 hours.
[0042]
By removing the solvent from the epoxy resin composition obtained in the present invention without proceeding the curing reaction, a solventless epoxy resin composition can be produced. Although the solvent removal temperature varies depending on the curing agent used, it is preferably 100 ° C. or less, more preferably 80 ° C. or less, and particularly preferably 60 ° C. or less.
[0043]
The cured product obtained by the method for producing an epoxy resin composition of the present invention has a glass transition temperature higher by 50 to 200 ° C. than a cured product of an epoxy resin having the same composition except that neither boric acid nor boric acid ester is contained. Things are obtained.
[0044]
Further, the cured product obtained by the method for producing an epoxy resin composition of the present invention is a cured product having substantially the same transparency as the cured product of the epoxy resin having the same composition except that neither boric acid nor boric acid ester is contained. Is obtained.
[0045]
Furthermore, the storage-stable one-component curable epoxy resin composition obtained by the production method of the present invention provides a cured product having a high glass transition temperature, has convenience in use of the product, and can be stored for a long period of time. Is possible.
[0046]
【Example】
The present invention will be described more specifically with reference to examples. Moreover, in the following Examples, the light transmittance measured the parallel transmittance of the 300-micrometer-thick film using NDH-300A by Nippon Denshoku Industries Co., Ltd. The glass transition temperature and the storage elastic modulus (E ′) were measured using a solid dynamic viscoelasticity measuring apparatus (DMA-200 manufactured by Seiko Denshi Kogyo Co., Ltd.) at a measurement frequency of 1 Hz and a soaking temperature of 2 ° C./min. The glass transition temperature (Tg) was tan δ peak temperature (tan δ max).
[0047]
(Example 1)
100 g of bisphenol A-type epoxy resin Epicron 850 (Dainippon Ink Chemical Co., Ltd., epoxy equivalent 190 g / eq), 100 g of MEK (methyl ethyl ketone, Wako Pure Chemical Industries, reagent special grade), and methanol (Wako Pure Chemical Industries) 16.1 g of boric acid (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade) was gradually added with mixing with 80 g of the product, special grade reagent made by Co., Ltd. Subsequently, the mixture was stirred for about 30 minutes to obtain a uniform transparent solution.
Subsequently, 5.5 g (epoxy equivalent ratio 50%) of diethylenetriamine DETA (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing agent was added to the above solution, and after stirring and mixing, the solution state at 60 ° C. for 1 hour Then, an epoxy resin composition solution was obtained. Subsequently, the solution was applied onto a clean aluminum foil, subjected to solvent casting for 12 hours, dried at 50 ° C., 60 ° C., 70 ° C., 80 ° C., and 90 ° C. for 1 hour each, and then 150 ° C., Heat treatment was performed at 180 ° C. for 2 hours each to obtain a cured product of the epoxy resin composition. When the obtained cured product was baked at 1000 ° C. for 2 hours in an air atmosphere, 7 g of black ash was obtained.
[0048]
Said hardened | cured material was excellent in transparency, and the light transmittance in visible region was 90.9% (100 micrometers thickness conversion). Moreover, there were no cracks, wrinkles, bubbles, etc., and a good surface morphology was shown. On the other hand, in the comparative example 1 which prepared the epoxy resin hardened | cured material of the same composition similarly to Example 1 except not heat-processing in a solution state, the obtained hardened | cured material is opaque and light transmittance Was 8%. Moreover, when the heat processing in a solution state were inadequate (comparative example 2), the obtained hardened | cured material had foamed. In any case, since the cured product was brittle, the dynamic viscoelasticity could not be measured.
[0049]
Dynamic viscoelasticity measurement (frequency: 1 Hz) was performed using the cured film having a thickness of 300 μm obtained in Example 1. The relationship between the obtained storage elastic modulus (E ′) and tan δ is shown in FIG. The vertical axis in FIG. 1 is the storage elastic modulus (E ′), and the horizontal axis is the temperature (° C.). In addition, in FIG. 1, the result of the comparative example 4 which is a hardened | cured material of the same epoxy resin composition except not containing a boric acid is also shown collectively. In Comparative Example 4, the peak temperature (Tg) of tan δ is 82.1 ° C., whereas the cured product containing 2.8% by mass of boron with respect to the epoxy resin of Example 1 has a temperature of 288.4 ° C. It was. It can be seen that the heat resistance of the cured epoxy resin is greatly improved by the introduction of the boron compound. Further, in Comparative Example 3 containing a small amount of boric acid (boron content: 0.35% by mass), the peak temperature (Tg) of tan δ was not improved so much and the heat resistance of the cured product was insufficient.
[0050]
[Table 1]
Figure 2005008648
[0051]
(Examples 2 and 3 and Comparative Examples 4 to 6)
As shown in Table 2, in Examples 2 and 3, aliphatic polyamine Epicron B-053 (Dainippon Ink Chemical Industries, Ltd. , Active hydrogen equivalent 77 g / eq) 20.5 g (epoxy equivalent ratio 50%), secondary amine piperidine (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade) 7 g (7 phr) was added and mixed with stirring. A heat treatment in a solution state was performed under the indicated conditions to obtain an epoxy resin composition. Subsequently, the cured product was prepared in the same manner as in Example 1. Moreover, the comparative examples 4-6 produced the epoxy resin hardened | cured material similarly to the Example except not containing a boric acid and not performing the heat processing in a solution state. It is clear that the Tg of the cured epoxy resin obtained in Examples 1 to 3 is extremely higher than the Tg of the cured epoxy resin of Comparative Examples 4 to 6 not containing boric acid. Moreover, the light transmittance of the hardened | cured material of the epoxy resin composition obtained in Examples 1-3 is substantially equivalent to the light transmittance of the hardened | cured material of the epoxy resin composition obtained in Comparative Examples 4-6 which does not contain boric acid. It is.
[0052]
[Table 2]
Figure 2005008648
[0053]
[Table 3]
Figure 2005008648
[0054]
(Examples 4 and 5 and Comparative Examples 7 and 8)
Examples 4 and 5 were the same as Example 1 except that Loebrombisphenol A type epoxy resin Epicron 1121N-80M (manufactured by Dainippon Ink & Chemicals, Inc., epoxy equivalent 493 g / eq, solid content 80%) was used. A clear solution of epoxy resin and boric acid was prepared. Then, each hardening | curing agent diethylenetriamine DETA and epicron B-053 were added to the obtained solution, and the epoxy resin composition and its hardened | cured material were created similarly to Example 1 on the conditions shown in Table 4. Moreover, the hardened | cured material of the comparative examples 7 and 8 which is an epoxy resin composition of the same composition as Example 4 and 5 except not containing boric acid was also created. The evaluation results of the obtained cured product are shown in the table.
[0055]
[Table 4]
Figure 2005008648
[0056]
[Table 5]
Figure 2005008648
[0057]
(Examples 6 to 8)
Epicron 850 100g, Epicron B-053 6.1g (epoxy equivalent ratio 15%), and MEK 100g were mixed, and it stirred at 80 degreeC for 1 hour. Subsequently, 16.1 g of boric acid and 100 g of methanol were added to the amine-modified epoxy resin solution and stirred for about 30 minutes to obtain a uniform transparent solution. When this solution was stored at 50 ° C. for 2 months or more, it did not thicken or gel, and showed excellent storage stability.
Subsequently, as a curing agent, diethylenetriamine DETA 3.8 g (epoxy equivalent ratio 35%) in Example 6, epiclone B-053 14.2 g (epoxy equivalent ratio 35%) in Example 7, and piperidine 7 g in Example 8 ( 7 phr) was added to each of the above-mentioned transparent solutions and mixed with stirring, followed by heat treatment in the solution state under the conditions shown in Table 6 to obtain an epoxy resin composition. Subsequently, the cured product was prepared in the same manner as in Example 1. All of the obtained cured products exhibited excellent transparency and a high glass transition temperature (Tg).
[0058]
[Table 6]
Figure 2005008648
[0059]
(Example 9 and Comparative Example 9)
A transparent solution of an amine-modified epoxy resin and boric acid was prepared in the same manner as in Example 6 except that 30 g of methanol was used. Subsequently, 78 g (epoxy equivalent ratio 85%) of a curing agent phenol novolac resin TD2090-60M (Dainippon Ink Chemical Co., Ltd., active hydrogen equivalent 105 g / eq, solid content 60%) was added, and the epoxy resin composition was stirred. Got. Subsequently, the cured product was prepared in the same manner as in Example 1. Moreover, the comparative example 9 produced the hardened | cured material of the epoxy resin composition like the Example 9 except not containing a boric acid. Compared with the Tg of the cured product of the epoxy resin composition of Comparative Example 9 containing no boric acid, the cured product of the epoxy resin composition obtained in Example 9 exhibited a higher Tg.
[0060]
[Table 7]
Figure 2005008648
[0061]
(Examples 10-12 and Comparative Examples 10-12)
Epicron 850 100g, Epicron B-053 6.1g (epoxy equivalent 15%), and MEK 100g were mixed, and it stirred at 80 degreeC for 1 hour. Subsequently, 16.1 g of boric acid and a predetermined amount of methanol were added to the amine-modified epoxy resin solution and stirred for about 30 minutes until the boric acid was dissolved. Subsequently, as a latent curing agent, in Example 10, 2-ethyl-4-methylimitazole 2E4MZ (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade) 2 g (2 phr), in Example 11, benzyldimethylamine BDMA (Japanese Kogure Pharmaceutical Co., Ltd., reagent grade) 3.6 g (5 mol%), in Example 12, dicyandiamide DICY (Wako Pure Chemical Industries, reagent grade) 3.9 g (epoxy equivalent ratio 35%) and 2-ethyl One solution having excellent storage stability after adding 0.2 g of -4-methylimitazole 2E4MZ to the amine-modified epoxy resin solution and stirring and mixing, followed by heat treatment in the solution state under the conditions shown in Table 8 A curable epoxy resin composition was obtained. When this composition was stored at 50 ° C. for 2 months or longer, it did not thicken or gel, and showed excellent storage stability. Subsequently, a cured product was prepared in the same manner as in Example 1 using the above composition. Moreover, the comparative examples 10-12 produced the hardened | cured material of the epoxy resin composition like Example 10-12 except not containing a boric acid and not performing the heat processing in a solution state. Compared with Tg of the hardened | cured material of the epoxy resin composition of Comparative Examples 10-12 which does not contain boric acid, Tg of the hardened | cured material of the epoxy resin composition obtained in Examples 10-12 improved significantly.
[0062]
[Table 8]
Figure 2005008648
[0063]
[Table 9]
Figure 2005008648
[0064]
(Examples 13 and 14)
In Examples 13 and 14, the storage stability was improved under the conditions shown in Table 10 in the same manner as in Examples 10 and 11, except that no polyamine was used and N, N-dimethylformamide DMF was used instead of the organic solvent MEK. An excellent one-part curable epoxy resin composition and a cured product thereof were prepared. All of the obtained cured products are uniform and transparent and have a good form free from cracks, wrinkles, etc., compared with a cured product of an epoxy resin composition having the same composition except that it does not contain boric acid. Showed a high glass transition temperature (Tg).
[0065]
[Table 10]
Figure 2005008648
[0066]
【The invention's effect】
In the present invention, the obtained cured product does not contain a boric acid-based compound as in the prior art, or has a glass transition temperature 50 to 200 ° C. higher than that of a cured product of an epoxy resin with a low content, and excellent transparency. Since the one-part curable epoxy resin composition before curing has high storage stability, it can be stored for a long period of time and is convenient to use.
[0067]
[Brief description of the drawings]
1 is a graph showing storage elastic modulus (E ′) and temperature dispersion of tan δ of cured epoxy resins obtained in Example 1 and Comparative Example 1. FIG.

Claims (7)

(A)エポキシ樹脂と、(B)エポキシ樹脂硬化剤と、(C)一般式B(OR)n(OH)3−n (式中、nは0〜3までの整数、RはCmH2m+1のアルキル基、mは1〜10の整数である)で表されるホウ酸化合物およびその部分重縮合物の少なくとも一種とを含有し、且つホウ素の含有量が(A)成分に対して0.5〜10質量%であって、溶媒に均一に溶解した樹脂材料を加熱処理し、該B成分と該C成分とを反応させ、且つ溶液状態でゲル化させないことを特徴とする非ゲル状エポキシ樹脂組成物の製造方法。(A) epoxy resin, (B) epoxy resin curing agent, and (C) general formula B (OR) n (OH) 3-n, where n is an integer from 0 to 3, and R is an alkyl of CmH2m + 1 Group, m is an integer of 1 to 10) and at least one of its partial polycondensates, and the boron content is 0.5 to A non-gelled epoxy resin composition characterized by being 10% by mass and heat-treating a resin material uniformly dissolved in a solvent, causing the B component and the C component to react and not gelling in a solution state Manufacturing method. 前記溶媒が低級アルコールを含むものであることを特徴とする請求項1に記載の非ゲル状エポキシ樹脂組成物の製造方法。The method for producing a non-gelled epoxy resin composition according to claim 1, wherein the solvent contains a lower alcohol. 前記エポキシ樹脂が、エポキシ樹脂とエポキシ当量比20%以下のポリアミンとを反応させて得られるアミン変性エポキシ樹脂である請求項1または2に記載の非ゲル状エポキシ樹脂組成物の製造方法。The method for producing a non-gelled epoxy resin composition according to claim 1 or 2, wherein the epoxy resin is an amine-modified epoxy resin obtained by reacting an epoxy resin with a polyamine having an epoxy equivalent ratio of 20% or less. 前記エポキシ樹脂硬化剤が窒素含有エポキシ樹脂硬化剤であり、すなわち、アミン系硬化剤、ジシアンジアミド、イミダゾール化合物から選ばれる一種以上の硬化剤である請求項1乃至3のいずれかに記載の非ゲル状エポキシ樹脂組成物の製造方法。The non-gelled form according to any one of claims 1 to 3, wherein the epoxy resin curing agent is a nitrogen-containing epoxy resin curing agent, that is, one or more curing agents selected from amine-based curing agents, dicyandiamide, and imidazole compounds. A method for producing an epoxy resin composition. 前記エポキシ樹脂硬化剤が、3級アミン、ジシアンジアミド、イミダゾール化合物から選ばれる一種以上の硬化剤であり、保存安定性に優れていることを特徴とする請求項1乃至4のいずれかに記載の非ゲル状エポキシ樹脂組成物の製造方法。The non-epoxy resin curing agent according to any one of claims 1 to 4, wherein the epoxy resin curing agent is one or more curing agents selected from tertiary amines, dicyandiamides, and imidazole compounds, and is excellent in storage stability. A method for producing a gel-like epoxy resin composition. 前記樹脂材料が、(A)エポキシ樹脂と溶媒とからなる溶液と、(C)一般式B(OR)n(OH)3−n (式中、nは0〜3までの整数、RはCmH2m+1のアルキル基、mは1〜10の整数である)で表されるホウ酸化合物およびその部分重縮合物の少なくとも一種と溶媒とからなる溶液とを均一に混合した後、その中に(B)エポキシ樹脂硬化剤を添加して均一に溶解してなる請求項1乃至5のいずれかに記載の非ゲル状エポキシ樹脂組成物の製造方法。The resin material is (A) a solution composed of an epoxy resin and a solvent, (C) a general formula B (OR) n (OH) 3-n (wherein n is an integer from 0 to 3, and R is CmH2m + 1) And a solution comprising at least one of a boric acid compound and a partial polycondensate thereof and a solvent are uniformly mixed, and then (B) The method for producing a non-gelled epoxy resin composition according to any one of claims 1 to 5, wherein an epoxy resin curing agent is added and uniformly dissolved. 請求項1乃至6のいずれかで得られる非ゲル状エポキシ樹脂組成物を硬化反応を進めないように100℃以下の低温で乾燥し、溶媒を除去することを特徴とするエポキシ樹脂組成物の製造方法。The non-gelled epoxy resin composition obtained in any one of claims 1 to 6 is dried at a low temperature of 100 ° C or lower so as not to proceed with the curing reaction, and the solvent is removed, thereby producing an epoxy resin composition Method.
JP2003143293A 2003-04-22 2003-05-21 Method for producing non-gel epoxy resin composition Expired - Fee Related JP4490653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143293A JP4490653B2 (en) 2003-04-22 2003-05-21 Method for producing non-gel epoxy resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003116904 2003-04-22
JP2003143293A JP4490653B2 (en) 2003-04-22 2003-05-21 Method for producing non-gel epoxy resin composition

Publications (2)

Publication Number Publication Date
JP2005008648A true JP2005008648A (en) 2005-01-13
JP4490653B2 JP4490653B2 (en) 2010-06-30

Family

ID=34106261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143293A Expired - Fee Related JP4490653B2 (en) 2003-04-22 2003-05-21 Method for producing non-gel epoxy resin composition

Country Status (1)

Country Link
JP (1) JP4490653B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504569A (en) * 1993-11-02 1997-05-06 ザ ダウ ケミカル カンパニー Curing-retarded epoxy resin composition and laminate prepared from the composition
JPH09296024A (en) * 1996-05-02 1997-11-18 Yokohama Rubber Co Ltd:The Epoxy resin composition
JPH1025334A (en) * 1996-07-09 1998-01-27 Shinko Kagaku Kogyo Kk Latent curable resin composition and latent curable adhesive sheet formed therefrom
JP2002338787A (en) * 2001-05-15 2002-11-27 Kawamura Inst Of Chem Res Epoxy resin composition and its cured product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504569A (en) * 1993-11-02 1997-05-06 ザ ダウ ケミカル カンパニー Curing-retarded epoxy resin composition and laminate prepared from the composition
JPH09296024A (en) * 1996-05-02 1997-11-18 Yokohama Rubber Co Ltd:The Epoxy resin composition
JPH1025334A (en) * 1996-07-09 1998-01-27 Shinko Kagaku Kogyo Kk Latent curable resin composition and latent curable adhesive sheet formed therefrom
JP2002338787A (en) * 2001-05-15 2002-11-27 Kawamura Inst Of Chem Res Epoxy resin composition and its cured product

Also Published As

Publication number Publication date
JP4490653B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
US8691920B2 (en) Thermosettable composition containing a half ester of a cycloaliphatic diol and a thermoset product therefrom
JP2006188707A (en) Curable composition
JP3201730B2 (en) Reactive accelerators for epoxy resins cured with amines.
JP4636593B2 (en) Thermosetting epoxy resin composition
JP2000248053A (en) Liquid epoxy resin composition
JP3924875B2 (en) Liquid epoxy resin composition
JPH09268224A (en) Epoxy resin composition
JP4490653B2 (en) Method for producing non-gel epoxy resin composition
JPH04356523A (en) Latent curing agent for epoxy resin
CN112812721B (en) Curable epoxy resin composition
JP4863434B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPWO2008035515A1 (en) Liquid epoxy resin composition and cured epoxy resin
EP3500627A1 (en) Adducts and uses thereof
EP1652869A1 (en) Epoxy resin composition and method for producing heat-resistant laminate sheet
JPH11209459A (en) Epoxy resin curing agent, resin composition, preparation of cured product and cured product
JP2001114866A (en) Epoxy compound
JP2016222777A (en) Polyester modified epoxy resin and adhesive
JP2005036080A (en) Method for producing nongelled epoxy resin composition
JP4435342B2 (en) Epoxy resin composition and epoxy resin composition for semiconductor encapsulation
JP2000226441A (en) Liquid epoxy resin composition
JP4565489B2 (en) Curing agent for epoxy resin, epoxy resin composition, and cured product thereof
JP2005350552A (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
JP4558359B2 (en) Epoxy resin composition and copper-clad laminate using the same
JPS6136855B2 (en)
JP5132036B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees