JP2005008481A - Arsine purification method and apparatus - Google Patents

Arsine purification method and apparatus Download PDF

Info

Publication number
JP2005008481A
JP2005008481A JP2003174194A JP2003174194A JP2005008481A JP 2005008481 A JP2005008481 A JP 2005008481A JP 2003174194 A JP2003174194 A JP 2003174194A JP 2003174194 A JP2003174194 A JP 2003174194A JP 2005008481 A JP2005008481 A JP 2005008481A
Authority
JP
Japan
Prior art keywords
arsine
treatment
raw material
components
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003174194A
Other languages
Japanese (ja)
Other versions
JP3848638B2 (en
Inventor
Tetsuya Seki
哲也 関
Makoto Uchino
誠 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Toyo Sanso Co Ltd
Original Assignee
Taiyo Toyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Toyo Sanso Co Ltd filed Critical Taiyo Toyo Sanso Co Ltd
Priority to JP2003174194A priority Critical patent/JP3848638B2/en
Publication of JP2005008481A publication Critical patent/JP2005008481A/en
Application granted granted Critical
Publication of JP3848638B2 publication Critical patent/JP3848638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purification apparatus for obtaining high purity arsine suitably used as a raw material for manufacturing a compound semiconductor, a doping gas for an N-type semiconductor or the like. <P>SOLUTION: The arsine purification apparatus 1 is provided with a reaction column 32 for immobilizing and removing an acidic component contained in a raw material arsine 21 by the contact of the arsine 21 with an alkaline reaction agent 31, an adsorption column 42 for removing an easily adsorptive component contained in the primarily treated arsine 21a passed through the reaction column 32 by the contact of the arsine 21a with an adsorbent 41 and a distillation tower 51 for removing a low boiling point component contained in the secondarily treated arsine 21b passed through the adsorption column 42 by distilling and separating the arsine 21b. The arsine purification apparatus 1 is constituted so that the raw material arsine 21 is successively passed through the reaction column 32, the adsorption column 42 and the distillation tower 51 to obtain the high purity purified arsine 21c. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化合物半導体(GaAs、AlxGa1−xAs、InxGa1−xAs等)の製造原料やN型半導体用ドーピングガス等として使用されるアルシン(三水素化砒素(AsH))を精製する方法及び装置に関するものであり、アルシンの製造過程(合成過程)やガスシリンダー充填過程等において混入される複数種の不純成分を除去して高純度のアルシンを得ることができる精製方法及び精製装置に関するものである。
【0002】
【従来の技術】
工業用高純度ガスは、各種の産業や研究用等幅広い分野で利用されているが、産業の高度化にともなって使用されるガスの純度もますます高いものが要求されてきている。特に半導体製造プロセスにおいては使用するガス中の不純物が半導体素子の性能や歩留まりに悪影響を及ぼすことから、高性能及び高機能化が進むのに伴い要求されるガス中の不純物の規制値も極低濃度化するとともに、分析値を明示して保証が求められる不純物の種類も増加している。こうした要求に伴い必然的にこれらの不純物を除去するための精製技術の開発が不可欠になってきている。
【0003】
而して、アルシンは、その主たる用途の一つとして、超高速半導体素子,発光素子等の材料として極めて有用なIII−V族化合物半導体の化学気相蒸着法(CVD)等による製造用の原料ガス及びN型半導体用ドーピングガス等として用いられているが、アルシンの製造過程(合成過程)等において、これらのデバイスの性能に悪影響を及ぼす不純成分(含酸素化合物である一酸化炭素,酸素,二酸化炭素,水、炭化水素であるメタン,エタン,エチレン、IV族化合物であるシラン,ゲルマン及び硫黄化合物である硫化水素,硫化カルボニル等)が不可避的に混入,含有されることがある。
【0004】
したがって、化合物半導体の製造原料やN型半導体用ドーピングガス等としては、これらの不純成分を含有しない高純度のアルシンを使用する必要があり、従来からも、モレキュラーシーブ等の吸着剤を使用してアルシンに含まれる不純成分を物理的に吸着除去するようにしたアルシンの精製方法が提案されている。
【0005】
【発明が解決しようとする課題】
しかし、このような吸着剤を使用したアルシンの精製方法によっては、アルシンに含まれる複数種の不純成分のうち易吸着成分を除去できるにすぎず、易吸着成分以外の不純成分については効果的に除去することが困難であり、高純度の精製アルシンを得ることはできない。このため、易吸着成分を含めた不純成分を高度に除去することができ、高純度のアルシンを得る精製方法の開発が強く要請されている。
【0006】
本発明は、かかる実情に鑑みてなされたもので、化合物半導体を製造するための原料やN型半導体用ドーピングガス等のような高純度が要求される用途に適した純度までアルシンに含まれる複数種の不純成分を同時に且つ一括して除去することができるアルシンの精製方法を提供すると共に、かかる方法を好適に実施できるアルシンの精製装置を提供するものである。
【0007】
【課題を解決するための手段】
本発明者は、種々の実験,研究を行なうことにより、アルシンの製造過程(合成過程)やガスシリンダー充填過程等において不可避的に混入される複数種の不純成分が、その性質上、三種のグループ、つまり硫化水素,硫化カルボニル等の酸性成分グループと水(水分)等の易吸着成分グループとアルシンより沸点の低い一酸化炭素,酸素,メタン等の炭化水素,モノシラン,ゲルマン等の低沸点成分グループとに分けることができること、各成分グループに属する不純成分は、それが複数種である場合にも、同一の処理を施すことによって除去できること、及び一つの成分グループに属する不純成分の処理によっては他の不純成分が副生してアルシンの再汚染が生じる場合があるものの、このように副生した不純成分は他の二つの成分グループの少なくとも一方に属することを究明し、かかる究明事項に基づいて、更に実験,研究を行うことにより、三種の成分グループを夫々異なる処理によって除去させる場合において、これら三種の処理を特定の順序で行うことにより、最終的にアルシンの再汚染を生じることなく、すべての不純成分が除去された高純度のアルシンが得られるとの結論に達し、上記の目的を達成すべく、次のように構成されるアルシンの精製方法及びその装置を提案するものである。
【0008】
すなわち、第一に、本発明は、原料アルシンをアルカリ性反応剤と接触させることにより当該アルシンに含まれる酸性成分を固定化して除去する一次処理と、一次処理されたアルシンを吸着剤と接触させることにより当該アルシンに含まれる易吸着成分を除去する二次処理と、二次処理されたアルシンを蒸留分離することにより当該アルシンに含まれる低沸点成分を除去する三次処理と、からなる一連の精製処理により、高純度のアルシンを得るようにしたことを特徴とするアルシンの精製方法を提案する。かかる精製方法の好ましい実施の形態にあっては、一次処理が、反応剤として酸化カルシウム又は水酸化カルシウムを主成分とするアルカリ組成物を使用するものであり、二次処理が、原料アルシンに含まれる易吸着成分及び/又は一次処理で副生する易吸着成分を吸着除去するものであり、三次処理が、原料アルシンに含まれており且つ一次処理及び二次処理で除去されない低沸点成分及び/又は一次処理で副生し且つ二次処理で除去されない低沸点成分を除去するものである。
【0009】
第二に、本発明は、原料アルシンをアルカリ性反応剤と接触させることにより当該アルシンに含まれる酸性成分を固定化して除去する一次処理装置と、一次処理装置を通過したアルシンを吸着剤と接触させることにより当該アルシンに含まれる易吸着成分を除去する二次処理装置と、二次処理装置を通過したアルシンを蒸留分離することにより当該アルシンに含まれる低沸点成分を除去する三次処理装置と、を具備して、原料アルシンを一次処理装置、二次処理装置及び三次処理装置を順次通過させることにより高純度のアルシンを得るように構成したことを特徴とするアルシンの精製装置を提案する。かかる精製装置の好ましい実施の形態にあっては、一次処理装置が、反応剤として酸化カルシウム又は水酸化カルシウムを主成分とするアルカリ組成物を充填した反応筒で構成されており、二次処理装置が、原料アルシンに含まれており且つ一次処理装置において除去されない易吸着成分及び/又は一次処理装置において副生する易吸着成分を除去するものであって、吸着剤を充填した吸着筒で構成されており、三次処理装置が、原料アルシンに含まれており且つ一次処理装置及び二次処理装置において除去されない低沸点成分及び/又は一次処理装置において副生し且つ二次処理装置において除去されない低沸点成分を除去するものであって、蒸留塔を具備する蒸留装置である。
【0010】
而して、本発明の精製方法又は精製装置によれば、原料アルシンに含まれる不純成分は、それが如何に多種であっても、その全てが上記した三つの成分グループの少なくとも一つに属することから、アルカリ性反応剤との反応により酸性成分グループに属する不純成分(酸性成分)を除去するアルカリ性反応剤との反応による一次処理(一次処理装置による処理)を行った上、吸着剤により易吸着成分に属する不純成分(易吸着成分)を吸着除去する二次処理(二次処理装置による処理)を行い、更にアルシンより低沸点である低沸点成分グループに属する不純成分(低沸点成分)を蒸留分離する三次処理(三次処理装置による処理)を行うことにより、原料アルシンに含まれる不純成分を全て効果的に除去することができる。また、酸性成分や易吸着成分にはアルシンより高沸点のものがあり、かかる高沸点不純成分を三次処理した場合、高沸点不純成分が蒸留時に液化アルシン側に残留することになるが、三次処理を酸性成分,易吸着成分を除去する一次処理及び二次処理の後に行うことから、このような問題を生じることなく、不純成分の除去を効果的に行うことができる。また、アルカリ性反応剤との反応により酸性成分を反応剤に捕捉,除去する一次処理においては、吸着処理である二次処理や蒸留分離処理である三次処理と異なって、反応剤との反応により反応剤に捕捉されない副生物が生じることがあるが、かかる副生物は易吸着成分グループ及び/又は低沸点成分グループに属するものであることから、一次処理の後に二次処理及び三次処理を行うことにより、かかる副生物を二次処理又は三次処理によって原料アルシンに含まれていた易吸着成分又は低沸点成分と共に除去することができ、アルシンの再汚染を生じることがない。このように、本発明の精製方法又は精製装置によれば、原料アルシンに一次処理、二次処理及び三次処理を順次連続して施すことにより、原料アルシンに含まれる不純成分を、一次処理において副生する不純成分も含めて、一括して除去することができ、高純度のアルシンを得ることができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図1に基づいて具体的に説明する。
【0012】
図1は本発明の実施の形態を示す系統図であり、この実施の形態における本発明のアルシンの精製装置1は、図1に示す如く、原料アルシン21を貯蔵する原料ボンベ2と、原料アルシン21に一次処理を施す一次処理装置3と、一次処理装置3を通過したアルシン(一次処理アルシン)21aに二次処理を施す二次処理装置4と、二次処理装置4を通過したアルシン(二次処理アルシン)21bに三次処理を施す三次処理装置5とを具備してなる。
【0013】
一次処理装置3は、図1に示す如く、適宜のアルカリ性反応剤31を充填した反応筒32で構成されている。反応筒32の入口部は第一供給路33を介して原料ボンベ2に接続されていて、第一供給路33に設けた調整弁34を調整することにより、所定量の原料アルシン21が反応筒32に供給されるようになっている。反応筒32に供給された原料アルシン21は、反応剤31と接触しつつ反応筒32を通過し、この間において、原料アルシン21に含まれる不純成分(以下「原料不純成分」という)のうち酸性成分が除去(一次処理)される。酸性成分を除去された一次処理アルシン21aは、反応筒32の出口部から第二供給路43へと排出される。反応剤31としては、一般に、酸化ナトリウム(NaO),酸化マグネシウム(MgO),酸化バリウム(BaO),酸化カルシウム(CaO),水酸化カルシウム(Ca(OH))等やこれを主成分とするアルカリ性多孔物が使用されるが、特に、取り扱いが比較的簡便であり且つ市場価格が比較的安価である等の理由から、酸化カルシウム又は水酸化カルシウムを主成分(少なくとも50mass%以上含有する)とするアルカリ性多孔物が最適である。この例では、反応剤31として、関東化学株式会社製のソーダライム(酸化カルシム:約96mass%と水酸化ナトリウム:残部(約4mass%)とからなるソーダ石灰である)が使用されている。
【0014】
二次処理装置4は、図1に示す如く、適宜の吸着剤41を充填した吸着筒42で構成されている。吸着筒42の入口部は第二供給路43を介して反応筒32の出口部に接続されていて、反応筒32を通過した一次処理アルシン21aが吸着筒42に供給されるようになっている。吸着筒42に供給された一次処理アルシン21aは、吸着剤41と接触しつつ吸着筒42を通過し、この間において、一次アルシン21aに含まれる不純成分(以下「一次処理後不純成分」という)のうち易吸着成分が除去(二次処理)される。易吸着成分を除去された二次次処理アルシン21bは、吸着筒42の出口部から第三供給路55へと排出される。吸着剤41としては、モレキュラーシーブ等の一般的な物理吸着型のものを任意に使用することができ、例えば、モレキュラーシーブ3A,モレキュラーシーブ4A,シリカゲル,活性アルミナ,シリカアルミナ等を使用することができる。この例では、吸着剤41として、ユニオン昭和株式会社製のモレキュラーシーブ4Aを使用している。
【0015】
三次処理装置5は、図1に示す如く、充填式蒸留塔51、冷却手段52aを備えた予冷器52、加熱手段53aを備えたリボイラ53及び冷却手段54aを備えたコンデンサ54等からなる公知の連続蒸留装置であり、例えば約0℃で連続的に蒸留操作を行いうるものである。吸着筒42の出口部から排出された二次処理アルシン21bは、第三供給路55からこれに設けた予冷器52により所定温度に予冷された上で蒸留塔51に供給される。蒸留塔51に供給された二次処理アルシン21bは、蒸留塔51においてアルシンとこれより沸点の低い不純成分(低沸点成分)とに蒸留分離され、その分離液(缶出液)つまり低沸点成分を分離除去されたアルシン(精製アルシン)21cは蒸留塔51の底部からリボイラ53を経て精製アルシン取出路56へと回収され、その分離ガスつまり二次処理アルシン21bから分離除去された低沸点成分21dは蒸留塔51の頂部からコンデンサ54を経て排気路57へと排出される。なお、精製アルシン取出路56及び排気路57には夫々調整弁58,59が設けられており、排気路57の下流端には排ガス処理装置(除害装置)が設けられている。
【0016】
本発明のアルシンの精製方法は、上記精製装置1を使用して、次のように実施される。
【0017】
まず、原料アルシン21を原料ボンベ2から反応筒32に供給して、原料アルシン21に反応剤31との接触による一次処理を施すことにより、原料アルシン21に含まれる不純成分(原料不純成分)のうち酸性成分を固定化して除去する。すなわち、原料アルシン21に含まれる酸性成分は二酸化炭素,硫化水素,硫化カルボニル等であるが、これら酸性成分は反応剤31と反応して、反応剤31に捕捉され原料アルシン21から除去される。例えば、反応剤31として酸化カルシウム又は水酸化カルシウムを主成分とするアルカリ性多孔物を使用した場合において、二酸化炭素,硫化水素,硫化カルボニルは反応剤31と(1)〜(6)のように反応して、生成物として反応剤31に捕捉され、除去される。例えば、カルボニル化合物については、(5)(6)に示す如く、反応剤31との反応によりCaCO及びCaSが生成するが、かかる生成物は反応剤31に捕捉される。
【0018】
(1)CaO+CO→CaCO
(2)Ca(OH)+CO→CaCO+H
(3)CaO+HS→CaS+H
(4)Ca(OH)+HS→CaS+2H
(5)2CaO+COS→CaS+CaCO
(6)2Ca(OH)+COS→CaS+CaCO+2H
【0019】
但し、一次処理においては、酸性成分と反応剤31との反応によって反応剤31に捕捉されない一種又は複数種の生成物(副生物)が生じることがあり、これらは一次処理アルシン21aに不純成分として混入する。例えば、(2)〜(4)(6)に示す如く、反応剤1との反応により水(水分)が副生する。また、カルボニル化合物については、(5)(6)の反応式には現れないが、後述する実験1の結果からも明らかなように、反応剤31との接触による分解反応によって一酸化炭素が副生する。このような水,一酸化炭素等の副生物は、反応剤31に捕捉されることなく、一次処理アルシン21aに新たに発生(副生)した不純成分(以下「副生不純成分」という)として混入することになる。なお、(2)〜(4)(6)の反応において副生する水の一部は、脱水機能を有する反応剤31(例えば、ソーダライム)を使用した場合、その脱水機能により除去されることがある。
【0020】
次に、一次処理により酸性成分を除去された一次処理アルシン21aを、反応筒32から吸着筒42に供給して、一次処理アルシン21aに吸着剤41との接触による二次処理を施すことにより、一次処理アルシン21aに含まれる一次処理後不純成分のうち易吸着成分を吸着除去する。すなわち、一次処理アルシン21aは吸着筒42に供給され、これを通過するが、この間において吸着剤41と接触して、一次処理後不純成分のうち二酸化炭素,水等の易吸着成分が吸着剤41により物理的に吸着除去される。ところで、一次処理後不純成分は、(a)原料不純成分のうち一次処理によっては除去し得なかった酸性成分以外の不純成分(以下「一次処理後原料不純成分」という)からなるものと、(b)一次処理において副生した副生不純成分からなるものと、(c)一次処理後原料不純成分及び副生不純成分の両方からなるものと、に大別されるが、(a)〜(c)の何れである場合にも、一次処理に引き続いて二次処理を施すことによって、酸性成分及び易吸着成分を含まないアルシン、つまりアルシンとこれより低沸点の不純成分(一次処理及び二次処理によって除去されない除去低沸点成分)とからなる二次処理アルシン21bが得られる。このように、二次処理装置4ないし二次処理は、原料不純成分としての易吸着成分のみならず、一次処理装置3ないし一次処理において副生する副生不純成分としての易吸着成分をも吸着除去するものであり、この点で、両処理装置3,4ないし両処理(一次処理及び二次処理)は、不純成分の除去を行う上で、相互補完の効果を奏するものである。なお、一次処理後不純成分が(a)〜(c)の何れとなるかは、原料アルシン21の性状(原料不純成分の種類)及び使用する反応剤21の性状等の精製条件によって異なる。
【0021】
そして、吸着筒42を通過した二次処理アルシン21bを、予冷器52により所定温度に予冷した上で蒸留塔51に供給して、当該アルシン21bに三次処理を施すことにより、低沸点成分を蒸留分離して、不純成分を含まない高純度の精製アルシン21cを得る。すなわち、二次処理アルシン21bを吸着筒42から蒸留塔51に連続的に供給し、約0℃で蒸留操作を行うことにより、蒸留塔55の底部から缶出液として精製アルシン21cが得られる。原料不純成分及び副生不純成分のうち、沸点がアルシン(−62.5℃)より低い低沸点成分であって、一次処理及び二次処理によっては除去されない低沸点成分としては、水素(―252.8℃),窒素(−195.8℃),一酸化炭素(―191.5℃),アルゴン(−185.9℃),酸素(−183℃),メタン(−161.5℃),モノシラン(−111.4℃),エチレン(−103.7℃),エタン(―88.7℃),ゲルマン(−88.5℃),ホスフィン(−87.8℃)等があり、これらは蒸留分離である三次処理によって除去される。ところで、二次処理アルシン21bに含まれる低沸点成分は、(d)原料アルシン21に含まれていた原料不純成分のうち、一次処理及び二次処理によっては除去されなかったもの、(e)原料アルシン21には含まれていなかったが、一次処理において反応剤31との反応により副生した副生不純成分のうち、二次処理によっては除去されなかったもの、及び(f)上記した(d)(e)の両者を含むもの、の何れかであるが、何れの場合にも、アルシンより低沸点であることから、三次処理により分離除去され、高純度の精製アルシン21cを得ることができる。このように、三次処理装置5ないし三次処理は、原料不純成分としての低沸点成分のみならず、一次処理装置3ないし一次処理において副生し且つ二次処理装置4ないし二次処理によっては除去できない副生不純成分としての低沸点成分をも除去するものであり、この点で、一次及び二次処理装置3,4ないし一次及び二次処理と三次処理装置5ないし三次処理とは、不純成分の除去を行う上で、相互補完の効果を奏するものである。なお、いうまでもないが、原料不純成分のうちアルシンより沸点の高い不純成分(例えば、硫化水素(−60.2℃),硫化カルボニル(−50.2℃)等)は、蒸留時に液化アルシン側に残留するので,単蒸留法単独処理ではアルシンと蒸留分離することができない。
【0022】
このように、原料アルシン21に一次処理、二次処理及び三次処理を順次連続して施すことにより、当該アルシン21に含まれている複数種の不純成分(原料不純物)を同時に一括して除去することができ、また一次処理において副生不純成分が生じた場合にもこれをも除去することができ、不純成分を含まない高純度の精製アルシン21cを得ることができる。
【0023】
ところで、副生不純成分の発生並びに一次及び二次処理の相互補完効果を確認すべく、次のような実験1を行った。すなわち、この実験1では、上記した反応筒32(反応剤31として、関東化学株式会社製ソーダライムを使用)の出口部と吸着筒42(吸着剤41として、ユニオン昭和株式会社製モレキュラーシーブ4Aを使用)の入口部とを直結した実験装置を使用して、10ppmの硫化水素(HS)及び20ppmの硫化カルボニル(COS)のみを含むアルシン(以下「通気前ガス」という)を反応筒32の入口部から供給して両筒32,42に通気させ、吸着筒42の出口部からの流出ガス(以下「通気後ガス」という)を容器に回収して、通気後ガスに含まれるアルシン以外の成分を分析した。その結果は、表1に示す通りであった。なお、硫化水素及び硫化カルボニルの分析は通気後ガスをアルカリ水溶液に通気し、溶液中にバブリング捕集して、溶液中の硫黄分をICP発光分光法により測定することにより行い、この値を硫化水素ガス濃度に換算した。また、水分濃度は水晶発振式水分計で測定し、一酸化炭素濃度はガスクロマトグラフ法により測定した。
【0024】
【表1】

Figure 2005008481
【0025】
表1から、通気後ガスにおける硫化水素,硫化カルボニル,水分の濃度は各分析計の検出限界値以下であり、通気前ガスに含まれていない一酸化炭素が通気後ガスには含まれていることが確認された。したがって、反応剤31による一次処理によって硫化水素が除去され、このとき副生する水分が吸着剤41による二次処理によって除去されることが理解される。また、一次処理によって硫化カルボニルが除去され反応剤31に固定化されると共に硫化カルボニルは副反応を生じて一酸化炭素を副生することが理解される。すなわち、一酸化炭素は炭素を含む化合物であり、通気前ガスに含まれた成分のうち炭素を含む化合物は硫化カルボニルのみであるから、一酸化炭素は硫化カルボニルが分解して副生したと考えられる。
【0026】
また、三次処理により、副生不純成分を含めてアルシンよりも低沸点の不純成分(低沸点成分)が除去されることを確認すべく、次のような実験2を行った。すなわち、この実験2では、上記した充填式蒸留塔51を備えた連続蒸留装置5を使用し、不純成分として0.07ppmのエタン及び0.005ppmのゲルマンを含むアルシンを蒸留塔51に供給して約0℃で連続蒸留操作を行い、蒸留塔51の底部から得られた缶出液を容器に回収した。そして、缶出液に含まれる不純成分の分析を行った。その結果は表2に示す通りであり、エタン及びゲルマンの何れについても、蒸留後の濃度は検出限界値以下であった。なお、エタン濃度はガスクロマトグラフ法により、ゲルマン濃度はガスクロマトグラフ−質量分析法により分析した。
【0027】
【表2】
Figure 2005008481
【0028】
ところで、蒸留操作における二成分間の分離の難易を示す指標としては、通常、比揮発度が用いられるが、比揮発度の大きい成分の組み合わせになる程、分離は容易であり、比揮発度の小さい組み合わせになる程、分離は困難である。一方、アルシンよりも沸点の低い原料不純成分及び副生不純成分であって、一次処理及び二次処理によっては除去し得ないもの(反応剤31と反応せず且つ吸着剤41に吸着されないもの)としては、上記した窒素,一酸化炭素,酸素,メタン,モノシラン,エチレン,エタン,ゲルマン等があるが、これらのうち、アルシンに対する比揮発度はエタン及びゲルマンが最小である。
【0029】
したがって、表2から、蒸留分離処理たる三次処理によってエタン及びゲルマンの除去が効果的に行なわれることが確認されるが、この点から、エタン,ゲルマンよりアルシンに対する比揮発度が大きい窒素等の低沸点成分については、三次処理によって更に効果的に除去されることが理解される。
【0030】
なお、本発明の精留方法及び精留装置は、上記した実施の形態に限定されるものでなく、本発明の基本原理を逸脱しない範囲において適宜に改良,変更することができる。例えば、三次処理を行う三次処理装置5としては、二次処理アルシン21bに含まれるアルシンとその他の成分(アルシンより低沸点の不純成分(低沸点成分))との間の気液平衡関係に従って生じる気相と液相の組成の差を用いて成分分離を行う機能を備えるものである限りにおいて、原料アルシン21ないし二次処理アルシン21bに含まれる除去対象成分(不純成分)の種類に応じて公知の蒸留装置を任意に使用することができ、単蒸留,精留又は回分式,連続式といった蒸留装置の形式,構成は問わない。
【0031】
【実施例】
実施例として、上記した精製装置1を使用して原料アルシン21の精製処理(一次処理、二次処理及び三次処理)を行い、最終的に蒸留塔51から得られた缶出液たる精製アルシン21cを容器に回収した。そして、原料アルシン21及び精製アルシン21cに含まれる不純成分について分析した。この分析は、原料不純物成分として代表的な窒素,酸素,一酸化炭素,二酸化炭素,メタン,エチレン,エタン,モノシラン,ゲルマン,水分,硫化水素及び硫化カルボニルについて行なった。その結果は表1に示す通りであった。なお、原料アルシン21としては市販のアルシンガスを使用し、反応剤31及び吸着剤41としてはソーダライム(関東化学株式会社製)及びモレキュラーシーブ4A(ユニオン昭和株式会社製)を使用した。また、充填式蒸留塔51を備えた連続蒸留装置5については、約0℃で蒸留操作を行った。また、硫化水素及び硫化カルボニルの分析並びに水分濃度については、実験1と同様にして行った。また、窒素,一酸化炭素,酸素,二酸化炭素,メタン,エチレン,エタンについてはガスクロマトグラフ法により、またモノシラン,ゲルマンについてはガスクロマトグラフ−質量分析法により、夫々高感度分析を行った。
【0032】
【表3】
Figure 2005008481
【0033】
表3に示す分析結果から明らかなように、精製アルシン21cにおいては、窒素,一酸化炭素,二酸化炭素,エチレン,エタン,モノシラン,ゲルマン,水分,硫化水素及び硫化カルボニルの何れについても、その濃度が検出限界値以下となっており、これらの不純成分を効果的に除去し得ることが確認される。また、酸素,メタンの濃度は、原料アルシン21及び精製アルシン21cの何れにおいても検出限界値以下であることから、一次処理から三次処理に至る一連の精製処理によっては、アルシンの再汚染が生じないことが理解される。したがって、本発明の精製方法及び精製装置によれば、原料アルシンからこれに含まれる複数種の不純成分(副生不純成分を含む)を同時に一括して除去することができ、高純度の精製アルシンを得ることができることが確認される。
【0034】
【発明の効果】
以上の説明から容易に理解されるように、本発明のアルシンの精製方法によれば、原料不純成分及び副生不純成分を効果的に除去し得て、化合物半導体の製造原料又はN型半導体用ドーピングガス等として好適に使用できる高純度のアルシンを得ることができる。また、本発明のアルシンの精製装置によれば、かかる精製方法を好適に実施することができる。
【図面の簡単な説明】
【図1】本発明に係るアルシンの精製装置の実施の形態を示す系統図である。
【符号の説明】
1…アルシンの精製装置、2…原料ボンベ、3…一次処理装置、4…二次処理装置、5…三次処理装置(蒸留装置)、21…原料アルシン、21a…一次処理アルシン、21b…二次処理アルシン、21c…精製アルシン、21d…低沸点成分、31…アルカリ性反応剤、32…反応筒、41…吸着剤、42…吸着筒、51…蒸留塔。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to arsine (arsenic trihydride (AsH) used as a raw material for producing compound semiconductors (GaAs, AlxGa1-xAs, InxGa1-xAs, etc.) and doping gas for N-type semiconductors.3)), And a method and apparatus for purifying arsine of high purity by removing a plurality of impure components mixed in arsine production process (synthesis process) or gas cylinder filling process. The present invention relates to a method and a purification apparatus.
[0002]
[Prior art]
Industrial high-purity gas is used in a wide range of fields such as various industries and research, but with the advancement of industry, the purity of gas used is increasingly required. Especially in the semiconductor manufacturing process, impurities in the gas used adversely affect the performance and yield of the semiconductor elements, so the regulatory value of impurities in the gas required as performance and functionality increase is extremely low. As the concentration increases, the types of impurities that need to be guaranteed by specifying analytical values are also increasing. In line with these demands, development of a purification technique for removing these impurities inevitably has become indispensable.
[0003]
Thus, as one of its main applications, arsine is a raw material for the production of III-V compound semiconductors by chemical vapor deposition (CVD), which is extremely useful as a material for ultrafast semiconductor devices, light emitting devices, etc. It is used as a gas and doping gas for N-type semiconductors, etc., but in the arsine production process (synthesis process), etc., impure components that adversely affect the performance of these devices (oxygen-containing carbon monoxide, oxygen, Carbon dioxide, water, hydrocarbons such as methane, ethane, ethylene, group IV compounds such as silane, germane, and sulfur compounds such as hydrogen sulfide and carbonyl sulfide may be inevitably mixed in and contained.
[0004]
Therefore, it is necessary to use high-purity arsine that does not contain these impure components as a raw material for compound semiconductor production or doping gas for N-type semiconductors. Conventionally, adsorbents such as molecular sieves have been used. There has been proposed a method for purifying arsine in which impure components contained in arsine are physically removed by adsorption.
[0005]
[Problems to be solved by the invention]
However, depending on the method for purifying arsine using such an adsorbent, it is only possible to remove the easily adsorbed component from the plurality of impure components contained in the arsine, and it is effective for the impure component other than the easily adsorbed component. It is difficult to remove and high-purity purified arsine cannot be obtained. For this reason, there is a strong demand for the development of a purification method capable of highly removing impurities including easily adsorbed components and obtaining high-purity arsine.
[0006]
The present invention has been made in view of such circumstances, and a plurality of elements contained in arsine up to a purity suitable for applications requiring high purity such as raw materials for producing compound semiconductors and doping gases for N-type semiconductors. It is intended to provide a method for purifying arsine capable of removing seed impure components simultaneously and collectively, and to provide an apparatus for purifying arsine capable of suitably carrying out such a method.
[0007]
[Means for Solving the Problems]
By conducting various experiments and researches, the present inventor has found that there are three types of impure components that are inevitably mixed in the production process (synthesis process) of arsine and the filling process of gas cylinders. In other words, acidic component groups such as hydrogen sulfide and carbonyl sulfide, easily adsorbed component groups such as water (moisture), hydrocarbons such as carbon monoxide, oxygen and methane having a lower boiling point than arsine, and low-boiling component groups such as monosilane and germane. Impurity components belonging to each component group can be removed by applying the same process even when there are multiple types, and depending on the processing of impurity components belonging to one component group The impure component by-produced in this way may cause re-contamination of arsine. When the three component groups are removed by different treatments by investigating that they belong to at least one of the groups and conducting further experiments and research based on such findings, these three treatments are performed in a specific order. As a result, it was concluded that high-purity arsine from which all impure components were removed could be obtained without causing recontamination of arsine. The present invention proposes a method and apparatus for purifying arsine.
[0008]
That is, first, in the present invention, a primary treatment in which the raw material arsine is brought into contact with an alkaline reactant to fix and remove acidic components contained in the arsine, and the primary arsine is brought into contact with an adsorbent. A series of purification treatments comprising: a secondary treatment for removing easily adsorbed components contained in the arsine; and a tertiary treatment for removing low-boiling components contained in the arsine by distilling and separating the secondary treated arsine. Proposes a method for purifying arsine, characterized in that high-purity arsine is obtained. In a preferred embodiment of such a purification method, the primary treatment uses an alkaline composition mainly composed of calcium oxide or calcium hydroxide as a reactant, and the secondary treatment is contained in the raw material arsine. And / or low-boiling components that are contained in the raw material arsine and are not removed by the primary treatment and the secondary treatment, and / or Alternatively, low-boiling components that are by-produced in the primary treatment and are not removed in the secondary treatment are removed.
[0009]
Secondly, according to the present invention, the primary treatment device that fixes and removes the acidic component contained in the arsine by bringing the raw material arsine into contact with the alkaline reactant, and the arsine that has passed through the primary treatment device is brought into contact with the adsorbent. A secondary treatment device for removing the easily adsorbed component contained in the arsine, and a tertiary treatment device for removing the low boiling point component contained in the arsine by distilling and separating the arsine that has passed through the secondary treatment device. In addition, the present invention proposes an arsine purifying apparatus characterized in that high purity arsine is obtained by sequentially passing a raw material arsine through a primary treatment apparatus, a secondary treatment apparatus and a tertiary treatment apparatus. In a preferred embodiment of such a purification apparatus, the primary treatment apparatus is composed of a reaction cylinder filled with an alkali composition mainly composed of calcium oxide or calcium hydroxide as a reactant, and a secondary treatment apparatus. Is removed from the easily adsorbed components contained in the raw material arsine and not removed in the primary processing apparatus and / or the easily adsorbed components by-produced in the primary processing apparatus, and is composed of an adsorption cylinder filled with an adsorbent. Low boiling point components that are contained in the raw material arsine and are not removed in the primary treatment device and the secondary treatment device and / or low boiling points that are by-produced in the primary treatment device and are not removed in the secondary treatment device A distillation apparatus that removes components and includes a distillation column.
[0010]
Thus, according to the purification method or the purification apparatus of the present invention, the impure components contained in the raw material arsine are all belonging to at least one of the three component groups described above, no matter how many kinds. Therefore, after the primary treatment (treatment by the primary treatment equipment) by the reaction with the alkaline reactant that removes the impure components (acidic components) belonging to the acidic component group by the reaction with the alkaline reactant, it is easily adsorbed by the adsorbent. Performs secondary treatment (treatment by secondary treatment equipment) that removes impure components (easy-adsorbing components) belonging to the components, and further distills impure components (low-boiling components) belonging to the low-boiling component group that has a lower boiling point than arsine. By performing the tertiary treatment to be separated (treatment by the tertiary treatment apparatus), all impure components contained in the raw material arsine can be effectively removed. In addition, some acidic components and easily adsorbed components have a boiling point higher than that of arsine. When such a high boiling point impure component is subjected to tertiary treatment, the high boiling point impure component remains on the liquefied arsine side during distillation. Is performed after the primary treatment and the secondary treatment for removing the acidic component and the easily adsorbed component, so that the impure component can be effectively removed without causing such a problem. In addition, in the primary treatment in which acidic components are captured and removed by the reaction with the alkaline reactant, the reaction is carried out by reaction with the reactant, unlike the secondary treatment that is an adsorption treatment or the tertiary treatment that is a distillation separation treatment. By-products that are not captured by the agent may be generated, but such by-products belong to the easily adsorbed component group and / or the low-boiling component group, and therefore, by performing the secondary treatment and the tertiary treatment after the primary treatment. Such a by-product can be removed together with the easily adsorbed component or the low-boiling component contained in the raw material arsine by the secondary treatment or the tertiary treatment, and the arsine is not recontaminated. As described above, according to the purification method or the purification apparatus of the present invention, the primary treatment, the secondary treatment and the tertiary treatment are sequentially performed on the raw material arsine, so that the impure components contained in the raw material arsine are subsidized in the primary treatment. High purity arsine can be obtained because it can be removed at once, including impure components.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be specifically described with reference to FIG.
[0012]
FIG. 1 is a system diagram showing an embodiment of the present invention. As shown in FIG. 1, an arsine purifying apparatus 1 of the present invention comprises a material cylinder 2 for storing a material arsine 21 and a material arsine. 21, primary processing device 3 that performs primary processing, secondary processing device 4 that performs secondary processing on arsine (primary processing arsine) 21 a that has passed primary processing device 3, and arsine that has passed secondary processing device 4 (second And a tertiary processing device 5 for performing the tertiary processing on the next processing arsine) 21b.
[0013]
As shown in FIG. 1, the primary treatment device 3 is composed of a reaction cylinder 32 filled with an appropriate alkaline reactant 31. The inlet portion of the reaction cylinder 32 is connected to the raw material cylinder 2 via the first supply path 33, and a predetermined amount of the raw material arsine 21 is converted into the reaction cylinder by adjusting the adjustment valve 34 provided in the first supply path 33. 32 is supplied. The raw material arsine 21 supplied to the reaction tube 32 passes through the reaction tube 32 while being in contact with the reactant 31, and during this time, an acidic component of the impure component (hereinafter referred to as “raw material impure component”) contained in the raw material arsine 21. Are removed (primary processing). The primary treatment arsine 21 a from which the acidic component has been removed is discharged from the outlet portion of the reaction tube 32 to the second supply path 43. The reactant 31 is generally sodium oxide (Na2O), magnesium oxide (MgO), barium oxide (BaO), calcium oxide (CaO), calcium hydroxide (Ca (OH))2) And the like, and alkaline porous materials containing the same as the main component are used. In particular, calcium oxide or calcium hydroxide is the main component because it is relatively easy to handle and the market price is relatively low. An alkaline porous material (containing at least 50 mass% or more) is optimal. In this example, soda lime manufactured by Kanto Chemical Co., Ltd. (calcium oxide: about 96 mass% and sodium hydroxide: the remainder (about 4 mass%) is used as the reactant 31).
[0014]
As shown in FIG. 1, the secondary processing device 4 includes an adsorption cylinder 42 filled with an appropriate adsorbent 41. The inlet part of the adsorption cylinder 42 is connected to the outlet part of the reaction cylinder 32 via the second supply path 43 so that the primary treatment arsine 21 a that has passed through the reaction cylinder 32 is supplied to the adsorption cylinder 42. . The primary treatment arsine 21a supplied to the adsorption cylinder 42 passes through the adsorption cylinder 42 while being in contact with the adsorbent 41. During this period, impure components contained in the primary arsine 21a (hereinafter referred to as “impure components after primary treatment”). Of these, the easily adsorbed components are removed (secondary treatment). The secondary processed arsine 21 b from which the easily adsorbed component has been removed is discharged from the outlet portion of the adsorption cylinder 42 to the third supply path 55. As the adsorbent 41, a general physical adsorption type material such as molecular sieve can be arbitrarily used. For example, molecular sieve 3A, molecular sieve 4A, silica gel, activated alumina, silica alumina or the like can be used. it can. In this example, a molecular sieve 4A manufactured by Union Showa Co., Ltd. is used as the adsorbent 41.
[0015]
As shown in FIG. 1, the tertiary treatment device 5 includes a packed distillation column 51, a precooler 52 having a cooling means 52a, a reboiler 53 having a heating means 53a, a condenser 54 having a cooling means 54a, and the like. A continuous distillation apparatus, for example, capable of continuously performing a distillation operation at about 0 ° C. The secondary processing arsine 21b discharged from the outlet portion of the adsorption cylinder 42 is supplied to the distillation column 51 after being precooled to a predetermined temperature by a precooler 52 provided on the third supply path 55. The secondary treated arsine 21b supplied to the distillation column 51 is separated by distillation into an arsine and an impure component having a lower boiling point (low boiling point component) in the distillation column 51, and the separated liquid (bottom liquid), that is, the low boiling point component. Is removed from the bottom of the distillation column 51 via the reboiler 53 to the purified arsine extraction path 56, and the separated gas, that is, the low-boiling component 21d separated and removed from the secondary treatment arsine 21b. Is discharged from the top of the distillation column 51 through the condenser 54 to the exhaust passage 57. The purified arsine extraction passage 56 and the exhaust passage 57 are provided with regulating valves 58 and 59, respectively, and an exhaust gas treatment device (abatement device) is provided at the downstream end of the exhaust passage 57.
[0016]
The method for purifying arsine of the present invention is carried out as follows using the purification apparatus 1 described above.
[0017]
First, the raw material arsine 21 is supplied from the raw material cylinder 2 to the reaction cylinder 32, and the raw material arsine 21 is subjected to a primary treatment by contact with the reactant 31, whereby an impure component (raw material impure component) contained in the raw material arsine 21 is obtained. Of these, the acidic components are fixed and removed. That is, the acidic components contained in the raw material arsine 21 are carbon dioxide, hydrogen sulfide, carbonyl sulfide, and the like, but these acidic components react with the reactive agent 31 and are captured by the reactive agent 31 and removed from the raw material arsine 21. For example, when an alkaline porous material mainly composed of calcium oxide or calcium hydroxide is used as the reactant 31, carbon dioxide, hydrogen sulfide, and carbonyl sulfide react with the reactant 31 as in (1) to (6). Then, it is captured by the reactant 31 as a product and removed. For example, for carbonyl compounds, as shown in (5) and (6), the reaction with the reactant 31 causes CaCO3And CaS are produced, but such products are captured by the reactant 31.
[0018]
(1) CaO + CO2→ CaCO3
(2) Ca (OH)2+ CO2→ CaCO3+ H2O
(3) CaO + H2S → CaS + H2O
(4) Ca (OH)2+ H2S → CaS + 2H2O
(5) 2CaO + COS → CaS + CaCO3
(6) 2Ca (OH)2+ COS → CaS + CaCO3+ 2H2O
[0019]
However, in the primary treatment, one or a plurality of products (by-products) that are not captured by the reactant 31 may be generated by the reaction between the acidic component and the reactant 31. These may be impure components in the primary treatment arsine 21a. Mixed. For example, as shown in (2) to (4) and (6), water (moisture) is by-produced by the reaction with the reactant 1. As for the carbonyl compound, although it does not appear in the reaction formulas (5) and (6), as is clear from the results of Experiment 1 to be described later, carbon monoxide is adsorbed by the decomposition reaction by contact with the reactant 31. To be born. Such by-products such as water and carbon monoxide are not trapped by the reactant 31 and are newly generated (by-product) impure components (hereinafter referred to as “by-product impure components”) in the primary treatment arsine 21a. It will be mixed. In addition, when the reaction agent 31 (for example, soda lime) which has a dehydration function is used, a part of water byproduced in reaction of (2)-(4) (6) is removed by the dehydration function. There is.
[0020]
Next, the primary treatment arsine 21a from which the acidic component has been removed by the primary treatment is supplied from the reaction cylinder 32 to the adsorption cylinder 42, and the primary treatment arsine 21a is subjected to secondary treatment by contact with the adsorbent 41, Of the impure components after the primary treatment contained in the primary treatment arsine 21a, the easily adsorbed components are removed by adsorption. That is, the primary treatment arsine 21a is supplied to and passes through the adsorption cylinder 42. During this period, the primary treatment arsine 21a comes into contact with the adsorbent 41, and easily adsorbed components such as carbon dioxide and water among the impure components after the primary treatment are adsorbent 41. Is physically removed by adsorption. By the way, the impure component after the primary treatment is composed of (a) an impure component other than the acidic component that could not be removed by the primary treatment (hereinafter referred to as “raw impure component after the primary treatment”), b) It is roughly divided into those composed of by-product impure components by-produced in the primary treatment, and (c) those composed of both raw material impure components and by-product impure components after the primary treatment. In any case of c), by performing the secondary treatment subsequent to the primary treatment, arsine that does not contain acidic components and easily adsorbed components, that is, arsine and impure components having a lower boiling point than this (primary treatment and secondary components) A secondary treated arsine 21b comprising a low-boiling component that is not removed by the treatment is obtained. As described above, the secondary processing device 4 or the secondary processing adsorbs not only the easily adsorbed component as the raw material impure component but also the easily adsorbed component as the byproduct impure component by-produced in the primary processing device 3 or the primary processing. In this respect, both the processing apparatuses 3 and 4 or both processes (primary process and secondary process) have an effect of mutual complement in removing the impure components. Note that whether the impure component after the primary treatment is (a) to (c) depends on the purification conditions such as the properties of the raw material arsine 21 (type of raw material impure components) and the properties of the reactant 21 to be used.
[0021]
Then, the secondary treated arsine 21b that has passed through the adsorption cylinder 42 is precooled to a predetermined temperature by the precooler 52 and then supplied to the distillation column 51, and the arsine 21b is subjected to the tertiary treatment, thereby distilling the low-boiling components. Separation is performed to obtain a purified arsine 21c having a high purity and containing no impure components. That is, by continuously supplying the secondary treated arsine 21b from the adsorption cylinder 42 to the distillation column 51 and performing a distillation operation at about 0 ° C., purified arsine 21c is obtained as a bottoms from the bottom of the distillation column 55. Among raw material impure components and by-product impure components, low-boiling components having a boiling point lower than that of arsine (−62.5 ° C.) and not removed by primary treatment and secondary treatment include hydrogen (−252 .8 ° C), nitrogen (-195.8 ° C), carbon monoxide (-191.5 ° C), argon (-185.9 ° C), oxygen (-183 ° C), methane (-161.5 ° C), There are monosilane (-111.4 ° C), ethylene (-103.7 ° C), ethane (-88.7 ° C), germane (-88.5 ° C), phosphine (-87.8 ° C), etc. It is removed by a tertiary treatment which is a distillation separation. By the way, the low boiling point component contained in the secondary treatment arsine 21b is (d) the raw material impure component contained in the raw material arsine 21, which has not been removed by the primary treatment and the secondary treatment, (e) the raw material Among the by-product impurity components that were not contained in the arsine 21 but were by-produced by the reaction with the reactant 31 in the primary treatment, those that were not removed by the secondary treatment, and (f) the above (d In any case, since it has a boiling point lower than that of arsine, it can be separated and removed by the tertiary treatment to obtain a purified arsine 21c having a high purity. . In this way, the tertiary treatment device 5 to the tertiary treatment are not only low-boiling components as raw material impure components, but also by-produced in the primary treatment device 3 to the primary treatment and cannot be removed by the secondary treatment device 4 to the secondary treatment. The low boiling point component as a by-product impure component is also removed, and in this respect, the primary and secondary processing devices 3, 4 to primary and secondary processing and the tertiary processing device 5 to tertiary processing are impure components. In performing the removal, there is an effect of mutual complementation. Needless to say, impure components having a boiling point higher than that of arsine (for example, hydrogen sulfide (−60.2 ° C.), carbonyl sulfide (−50.2 ° C.), etc.) among raw material impure components are liquefied arsine during distillation. As a result, it cannot be separated from arsine by a single distillation method alone.
[0022]
As described above, the primary treatment, the secondary treatment, and the tertiary treatment are sequentially performed on the raw material arsine 21 to simultaneously remove a plurality of types of impure components (raw material impurities) contained in the arsine 21 simultaneously. In addition, even when a by-product impurity component is generated in the primary treatment, it can also be removed, and a high-purity purified arsine 21c containing no impurity component can be obtained.
[0023]
By the way, the following experiment 1 was conducted in order to confirm the generation of by-product impure components and the mutual complementary effects of the primary and secondary treatments. That is, in this experiment 1, the outlet part of the above-described reaction cylinder 32 (using soda lime manufactured by Kanto Chemical Co., Ltd. as the reactant 31) and the adsorption cylinder 42 (adsorbent 41 as a molecular sieve 4A manufactured by Union Showa Co., Ltd.) were used. 10 ppm of hydrogen sulfide (H2S) and arsine containing only 20 ppm of carbonyl sulfide (COS) (hereinafter referred to as “pre-venting gas”) are supplied from the inlet portion of the reaction tube 32 and are passed through both tubes 32 and 42, and from the outlet portion of the adsorption tube 42. Was collected in a container, and components other than arsine contained in the gas after aeration were analyzed. The results were as shown in Table 1. The analysis of hydrogen sulfide and carbonyl sulfide was conducted by bubbling the gas into an alkaline aqueous solution after bubbling, collecting bubbling in the solution, and measuring the sulfur content in the solution by ICP emission spectroscopy. Converted to hydrogen gas concentration. The moisture concentration was measured with a quartz oscillation type moisture meter, and the carbon monoxide concentration was measured by a gas chromatograph method.
[0024]
[Table 1]
Figure 2005008481
[0025]
From Table 1, the concentration of hydrogen sulfide, carbonyl sulfide, and moisture in the aerated gas is below the detection limit value of each analyzer, and carbon monoxide that is not contained in the aerated gas is contained in the aerated gas. It was confirmed. Therefore, it is understood that hydrogen sulfide is removed by the primary treatment with the reactant 31, and moisture generated as a by-product at this time is removed by the secondary treatment with the adsorbent 41. In addition, it is understood that carbonyl sulfide is removed and immobilized on the reactant 31 by the primary treatment, and the carbonyl sulfide causes a side reaction to produce carbon monoxide as a by-product. That is, carbon monoxide is a compound containing carbon, and among the components contained in the pre-venting gas, the compound containing carbon is only carbonyl sulfide, so carbon monoxide is considered to be a by-product of decomposition of carbonyl sulfide. It is done.
[0026]
Moreover, the following experiment 2 was performed in order to confirm that the impure component having a lower boiling point than that of arsine (low-boiling component) including the by-product impure component is removed by the tertiary treatment. That is, in Experiment 2, the continuous distillation apparatus 5 provided with the packed distillation column 51 described above was used, and arsine containing 0.07 ppm ethane and 0.005 ppm germane as impure components was supplied to the distillation column 51. A continuous distillation operation was performed at about 0 ° C., and the bottoms obtained from the bottom of the distillation column 51 were collected in a container. And the impure component contained in the bottoms was analyzed. The results are as shown in Table 2. The concentration after distillation was below the detection limit value for both ethane and germane. The ethane concentration was analyzed by gas chromatography, and the germane concentration was analyzed by gas chromatography-mass spectrometry.
[0027]
[Table 2]
Figure 2005008481
[0028]
By the way, as an index indicating the difficulty of separation between two components in the distillation operation, the relative volatility is usually used. However, as the combination of components having a higher relative volatility is obtained, the separation becomes easier and the relative volatility The smaller the combination, the more difficult it is to separate. On the other hand, raw material impure components and by-product impure components having a boiling point lower than that of arsine, which cannot be removed by primary treatment and secondary treatment (those that do not react with reactant 31 and are not adsorbed by adsorbent 41) As mentioned above, there are nitrogen, carbon monoxide, oxygen, methane, monosilane, ethylene, ethane, germane and the like. Among these, ethane and germane have the smallest relative volatility to arsine.
[0029]
Therefore, it is confirmed from Table 2 that ethane and germane are effectively removed by the tertiary treatment as the distillation separation process. From this point, it is confirmed that nitrogen and the like, which have a higher relative volatility to arsine than ethane and germane, are low. It is understood that the boiling component is more effectively removed by the tertiary treatment.
[0030]
The rectification method and rectification apparatus of the present invention are not limited to the above-described embodiments, and can be appropriately improved and changed without departing from the basic principle of the present invention. For example, the tertiary treatment device 5 that performs the tertiary treatment is generated according to a vapor-liquid equilibrium relationship between arsine contained in the secondary treatment arsine 21b and other components (impure components having a lower boiling point than arsine (low boiling point components)). As long as it has the function of performing component separation using the difference between the composition of the gas phase and the liquid phase, it is known depending on the type of the component to be removed (impure component) contained in the raw material arsine 21 or the secondary treatment arsine 21b. Any type of distillation apparatus such as simple distillation, rectification or batch type, or continuous type may be used.
[0031]
【Example】
As an example, the purification apparatus 1 described above is used to purify the raw material arsine 21 (primary treatment, secondary treatment, and tertiary treatment), and finally the purified arsine 21c as a bottom liquid obtained from the distillation column 51 is obtained. Was collected in a container. Then, the impure components contained in the raw material arsine 21 and the purified arsine 21c were analyzed. This analysis was conducted for typical nitrogen, oxygen, carbon monoxide, carbon dioxide, methane, ethylene, ethane, monosilane, germane, moisture, hydrogen sulfide and carbonyl sulfide as raw material impurity components. The results were as shown in Table 1. Note that commercially available arsine gas was used as the raw material arsine 21, and soda lime (manufactured by Kanto Chemical Co., Inc.) and molecular sieve 4A (manufactured by Union Showa Co., Ltd.) were used as the reactant 31 and the adsorbent 41. Moreover, about the continuous distillation apparatus 5 provided with the filling-type distillation column 51, distillation operation was performed at about 0 degreeC. The analysis of hydrogen sulfide and carbonyl sulfide and the water concentration were performed in the same manner as in Experiment 1. Nitrogen, carbon monoxide, oxygen, carbon dioxide, methane, ethylene, and ethane were analyzed by gas chromatography, and monosilane and germane were analyzed by gas chromatography-mass spectrometry.
[0032]
[Table 3]
Figure 2005008481
[0033]
As is apparent from the analysis results shown in Table 3, in the purified arsine 21c, the concentration of any of nitrogen, carbon monoxide, carbon dioxide, ethylene, ethane, monosilane, germane, moisture, hydrogen sulfide, and carbonyl sulfide is high. It is below the detection limit value, and it is confirmed that these impure components can be effectively removed. In addition, since the concentrations of oxygen and methane are below the detection limit values in both the raw material arsine 21 and the purified arsine 21c, arsine recontamination does not occur by a series of purification processes from the primary treatment to the tertiary treatment. It is understood. Therefore, according to the purification method and the purification apparatus of the present invention, it is possible to simultaneously remove a plurality of types of impure components (including by-product impure components) contained in the raw material arsine at the same time. It is confirmed that can be obtained.
[0034]
【The invention's effect】
As can be easily understood from the above description, according to the method for purifying arsine of the present invention, raw material impure components and by-product impure components can be effectively removed, and compound semiconductor manufacturing raw materials or N-type semiconductors can be used. High-purity arsine that can be suitably used as a doping gas or the like can be obtained. Moreover, according to the arsine purification apparatus of the present invention, such a purification method can be suitably carried out.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of an apparatus for purifying arsine according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Purification apparatus of arsine, 2 ... Raw material cylinder, 3 ... Primary processing apparatus, 4 ... Secondary processing apparatus, 5 ... Tertiary processing apparatus (distillation apparatus), 21 ... Raw material arsine, 21a ... Primary processing arsine, 21b ... Secondary Processed arsine, 21c ... purified arsine, 21d ... low boiling point component, 31 ... alkaline reactant, 32 ... reactor, 41 ... adsorbent, 42 ... adsorber, 51 ... distillation tower.

Claims (4)

原料アルシンをアルカリ性反応剤と接触させることにより当該アルシンに含まれる酸性成分を固定化して除去する一次処理と、一次処理されたアルシンを吸着剤と接触させることにより当該アルシンに含まれる易吸着成分を除去する二次処理と、二次処理されたアルシンを蒸留分離することにより当該アルシンに含まれる低沸点成分を除去する三次処理と、からなる一連の精製処理により、高純度のアルシンを得るようにしたことを特徴とするアルシンの精製方法。A primary treatment that fixes and removes the acidic component contained in the arsine by contacting the raw material arsine with an alkaline reactant, and an easily adsorbed component contained in the arsine by contacting the primary arsine with the adsorbent. To obtain high-purity arsine by a series of purification treatments consisting of a secondary treatment to be removed and a tertiary treatment to remove the low-boiling components contained in the arsine by distilling and separating the secondary-treated arsine. A method for purifying arsine, which is characterized by the above. 一次処理が、反応剤として酸化カルシウム又は水酸化カルシウムを主成分とするアルカリ組成物を使用するものであり、二次処理が、原料アルシンに含まれる易吸着成分及び/又は一次処理で副生する易吸着成分を吸着除去するものであり、三次処理が、原料アルシンに含まれており且つ一次処理及び二次処理で除去されない低沸点成分及び/又は一次処理で副生し且つ二次処理で除去されない低沸点成分を除去するものであることを特徴とする、請求項1に記載するアルシンの精製方法。The primary treatment uses an alkaline composition mainly composed of calcium oxide or calcium hydroxide as a reactant, and the secondary treatment is a by-product of the easily adsorbed component and / or the primary treatment contained in the raw material arsine. Adsorbs and removes easily adsorbed components. Tertiary treatment is contained in the raw material arsine and is not removed by primary treatment and secondary treatment. Low boiling point components and / or by-produced by primary treatment and removed by secondary treatment. 2. The method for purifying arsine according to claim 1, wherein the low-boiling components not removed are removed. 原料アルシンをアルカリ性反応剤と接触させることにより当該アルシンに含まれる酸性成分を固定化して除去する一次処理装置と、一次処理装置を通過したアルシンを吸着剤と接触させることにより当該アルシンに含まれる易吸着成分を除去する二次処理装置と、二次処理装置を通過したアルシンを蒸留分離することにより当該アルシンに含まれる低沸点成分を除去する三次処理装置と、を具備して、原料アルシンを一次処理装置、二次処理装置及び三次処理装置を順次通過させることにより高純度のアルシンを得るように構成したことを特徴とするアルシンの精製装置。A primary treatment device that immobilizes and removes the acidic components contained in the arsine by bringing the raw material arsine into contact with the alkaline reactant, and an arsine that has passed through the primary treatment device is brought into contact with the adsorbent to facilitate inclusion in the arsine. A secondary treatment device that removes adsorbed components, and a tertiary treatment device that removes low-boiling components contained in the arsine by distilling and separating the arsine that has passed through the secondary treatment device. A purification apparatus for arsine characterized in that high-purity arsine is obtained by sequentially passing through a treatment apparatus, a secondary treatment apparatus and a tertiary treatment apparatus. 一次処理装置が、反応剤として酸化カルシウム又は水酸化カルシウムを主成分とするアルカリ組成物を充填した反応筒で構成されており、二次処理装置が、原料アルシンに含まれており且つ一次処理装置において除去されない易吸着成分及び/又は一次処理装置において副生する易吸着成分を除去するものであって、吸着剤を充填した吸着筒で構成されており、三次処理装置が、原料アルシンに含まれており且つ一次処理装置及び二次処理装置において除去されない低沸点成分及び/又は一次処理装置において副生し且つ二次処理装置において除去されない低沸点成分を除去するものであって、蒸留塔を具備する蒸留装置であることを特徴とする、請求項3に記載するアルシンの精製装置。The primary treatment device is composed of a reaction cylinder filled with an alkali composition mainly composed of calcium oxide or calcium hydroxide as a reactant, the secondary treatment device is contained in the raw material arsine and the primary treatment device In the primary treatment device, and is composed of an adsorption cylinder filled with an adsorbent, and the tertiary treatment device is included in the raw material arsine. And a low boiling point component that is not removed in the primary treatment device and the secondary treatment device and / or a low boiling point component that is by-produced in the primary treatment device and is not removed in the secondary treatment device, comprising a distillation column The apparatus for purifying arsine according to claim 3, wherein the apparatus is a distillation apparatus.
JP2003174194A 2003-06-19 2003-06-19 Arsine purification method and apparatus Expired - Fee Related JP3848638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174194A JP3848638B2 (en) 2003-06-19 2003-06-19 Arsine purification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174194A JP3848638B2 (en) 2003-06-19 2003-06-19 Arsine purification method and apparatus

Publications (2)

Publication Number Publication Date
JP2005008481A true JP2005008481A (en) 2005-01-13
JP3848638B2 JP3848638B2 (en) 2006-11-22

Family

ID=34097745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174194A Expired - Fee Related JP3848638B2 (en) 2003-06-19 2003-06-19 Arsine purification method and apparatus

Country Status (1)

Country Link
JP (1) JP3848638B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112520699A (en) * 2020-12-01 2021-03-19 深圳市博纯半导体材料有限公司 Synthetic purification method of arsine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112520699A (en) * 2020-12-01 2021-03-19 深圳市博纯半导体材料有限公司 Synthetic purification method of arsine

Also Published As

Publication number Publication date
JP3848638B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
US5051117A (en) Process for removing gaseous contaminating compounds from carrier gases containing halosilane compounds
US7384618B2 (en) Purification of nitrogen trifluoride
CN107848796B (en) Hydrogen recovery system and hydrogen separation and recovery method
US5069887A (en) Method of refining nitrogen trifluoride gas
JP2001089131A (en) Purification process and apparatus for boron trichloride
KR20050058491A (en) Utilisation of waste gas streams
JPH03112804A (en) Preparation of disilane
JP2009512612A (en) Method to enable supply of purified carbon dioxide
US7666379B2 (en) Process and apparatus for removing Bronsted acid impurities in binary halides
JP3595301B2 (en) Method and apparatus for continuous purification of ammonia gas
CN101263385A (en) Gas analysis method
JP3848638B2 (en) Arsine purification method and apparatus
US9174853B2 (en) Method for producing high purity germane by a continuous or semi-continuous process
JP5701217B2 (en) Germane purification
CS227317B2 (en) Method of preparing hydrogen cyanide
CN1559001A (en) A process and apparatus for purifying hydrogen bromide
JPH10130009A (en) Purifying method of gaseous carbon dioxide and device therefor
KR20080100579A (en) The refining method of ammonia and apparatus thereof
CN113262628A (en) Production device and process for preparing electronic-grade high-purity methane from synthetic ammonia tail gas
JP4173854B2 (en) Method and apparatus for purifying volatile metal hydride and purified volatile metal hydride product
CN111333037A (en) System and method for preparing high-purity hydrogen sulfide gas
JPH0340902A (en) Method for refining gaseous hydride
CN216878719U (en) Production device for preparing electronic-grade high-purity methane from synthetic ammonia tail gas
TW201938487A (en) Method of removing oxygen from crude carbon monoxide gas and method of purifying carbon monoxide gas
JP4363089B2 (en) Carbon dioxide treatment method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060825

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees