JP2005005350A - Method of sealing and sorting electronic component - Google Patents

Method of sealing and sorting electronic component Download PDF

Info

Publication number
JP2005005350A
JP2005005350A JP2003164677A JP2003164677A JP2005005350A JP 2005005350 A JP2005005350 A JP 2005005350A JP 2003164677 A JP2003164677 A JP 2003164677A JP 2003164677 A JP2003164677 A JP 2003164677A JP 2005005350 A JP2005005350 A JP 2005005350A
Authority
JP
Japan
Prior art keywords
electronic component
liquid
pressure
sealing
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003164677A
Other languages
Japanese (ja)
Other versions
JP4085893B2 (en
Inventor
Koichi Orita
浩一 折田
Etsuo Nishikawa
悦生 西川
Masao Nishimura
昌雄 西村
Masato Higuchi
真人 日口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003164677A priority Critical patent/JP4085893B2/en
Publication of JP2005005350A publication Critical patent/JP2005005350A/en
Application granted granted Critical
Publication of JP4085893B2 publication Critical patent/JP4085893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which electronic components can be sorted by certainly evaluating the defectively sealed states of the components even when the components have very small internal volumes. <P>SOLUTION: This method includes a step of reducing the pressure in a pressure-resistant container 1 containing a liquid F after electronic components W are dipped in the liquid of the pressure-resistant container 1 where liquid F is stored, a step of infiltrating the liquid F into defectively sealed electronic components W by returning the pressure in the container 1 to a normal pressure, and a step of taking out the electronic components W from the container 1. The method also includes a step of measuring the electrical characteristics of the components W taken out from the container 1 and sorting the defectively sealed electronic components W based on the measured results of the electrical characteristics. The functions of the defectively sealed electronic components W are deteriorated or broken by infiltrating the liquid F into the electronic components W, and the deteriorated or broken functions are discriminated by measuring the electrical characteristics. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は微小内容積の電子部品の封止性を評価し、選別するのに適した電子部品の封止選別方法に関するものである。
【0002】
【従来の技術】
【特許文献1】特開平7−106393号公報
従来、電子部品の封止性を選別する方法として、Heリーク試験、グロスリーク(バブルリーク)試験、エアリーク試験などの試験方法が広く用いられている。
Heリーク試験は、ワーク内の大気分圧を真空引きで低減した後、Heガスを高圧で充填する。次に、一旦ワークを大気中に取り出し、テストポートに投入し、ポート内を高真空にしてワーク内のHeガスを吸い出し、質量分析計により漏洩He量を測定する方法である。
グロスリーク試験は、加熱したフロロカーボン(フッ素系不活性液体)中にワークを浸漬し、ワーク内の気体を膨張させてリークから発生する気泡を観察することで、リークの有無を判別する方法である。
エアリーク試験は、リークのないマスタワーク側との圧力差を比較することでリークの有無を判別する方法である。リークがあれば、ワーク内に印加圧力が分圧されるため、圧力が低下し、マスタ側との間で圧力差が生じる。また、圧力印加と同時にワーク内圧が飽和するほど大きなサイズのリーク判別は、圧力印加後、さらに大リーク検出タンクに接続し、判別する。リークがある場合、見かけ上測定側の容積がワーク内容積分だけ大きくなるため、大リーク検出タンクに接続した場合、マスタ側の圧力が低くなり、差圧が発生する。
【0003】
【発明が解決しようとする課題】
しかし、従来の試験方法では、以下のような理由により、微小な内容積(例えば内容積が10−10 以下)を持つ電子部品の封止性を測定することは困難であった。
すなわち、Heリーク試験では、He充填から測定開始までに、ワークを一旦大気中に取り出すため、充填Heが漏洩し、測定時、ワーク内のHe分圧が測定限界以下に低下するため、評価が困難になる。
グロスリーク試験では、リークサイズの大きなものはリーク部から気泡が離脱せず、リークサイズが小さなものは気泡が発生せず、いずれも評価が困難になる。
エアリーク試験では、リークがあっても内容積が小さいため、センサの検出感度以上の差圧が発生せず、評価が困難になる。
また、Heリーク試験ではリーク率を、エアリーク試験ではマスタカプセルとの差圧を測定したうえで、ワークの良品、不良品を判定する必要があり、一度に多数のワークを試験することは困難であり、処理効率が悪かった。
さらに、グロスリーク試験では、高温(125℃程度)にしたフロロカーボンで実施される。これはボイル・シャルルの法則に基づきワークを加熱し、内部気体の体積を膨張させて気泡の発生を容易にするためである。実際、この方式はMIL規格やJIS規格にも記載されており、グロスリーク試験の一般的な方法として広く行われている。しかし、高温下で試験を行うため、耐熱性の低いワークや、熱を加えることで部品特性が変動するワークでは、封止性が良好な製品であっても、部品機能を損なう恐れがある。
【0004】
特許文献1には、封止型電子部品を組立・封止を行った後、ファインリーク選別を実施し、次にグロスリーク選別を実施することで、封止性をより確実に評価できる方法を提案している。
しかし、このような2つの封止試験を実施することは、工程数が多くなり、生産性を低下させる。また、微小な内容積を持つ電子部品では、2つの封止試験を実施しても、やはりリークを評価することは困難であり、上記の問題点を解消できない。
【0005】
そこで、本発明の目的は、微小な内容積を持つ電子部品でも、封止不良を確実に評価・選別できる電子部品の封止選別方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、素子を収容したパッケージ内部を封止してなる電子部品の封止選別方法において、液体を貯留した耐圧容器の液体中に電子部品を浸漬した後、上記耐圧容器内を第1の圧力状態とするか、あるいは耐圧容器内を第1の圧力状態とした後、電子部品を液体中に浸漬する工程と、上記耐圧容器内を第1の圧力状態より高い第2の圧力状態とし、封止不良の電子部品の内部に液体を浸透させる工程と、上記耐圧容器から電子部品を取り出す工程と、上記耐圧容器から取り出された電子部品の電気的特性を測定し、その電気的測定により不良選別を行う工程と、を有する電子部品の封止選別方法を提供する。
【0007】
第1の圧力状態を減圧状態とし、第2の圧力状態を常圧状態とした場合を例にして説明する。
例えば、常圧下で電子部品を耐圧容器の液体中に浸漬し、その後で耐圧容器内を減圧すると、電子部品の内部の空気が膨張するので、リーク部から気泡が発生する。次に、耐圧容器内を常圧に戻すと、常圧と減圧との差圧分だけ電子部品に大きな液圧がかかるので、液体はリーク部から電子部品内に浸透する。
また、常圧下で電子部品を耐圧容器の気体中に配置し、耐圧容器内を減圧した後、電子部品を液体中に浸漬し、次に耐圧容器内を常圧に戻してもよい。この場合も、耐圧容器内を常圧に戻した時、常圧と減圧との差圧分だけ電子部品に大きな液圧がかかるので、液体はリーク部から電子部品内に浸透する。
このように、リーク部から液体を電子部品内に積極的に浸透させることにより、封止不良品の電気的機能を劣化あるいは破壊させる。例えば、封止不良品の内部に浸透した液体は、電子部品の内部回路やセンシング部分に付着し、その電気的特性を変化させる。その後、電子部品を耐圧容器から取り出し、特性選別工程でこの電子部品の電気的特性を測定する。封止性の良好な電子部品であれば、当然ながら電気的特性に異常はないが、封止不良品の場合には、電気的特性に異常があるため、封止不良を簡単に判別できる。
本発明は、圧力差を設けて封止不良の電子部品の内部に液体を浸透させることができればよく、第1の圧力状態は減圧状態(負圧状態)に限らず、常圧または正圧であってもよい。同様に、第2の圧力状態は常圧に限らず、負圧または正圧であってもよく、第1の圧力状態より第2の圧力状態の方が高ければよい。
【0008】
上記のような電気的特性による判別は、グロスリーク試験のような気泡を目視観察で判別するものとは異なり、微小な内容積の電子部品でも、明確にかつ短時間で判別できるので、封止検査の精度と効率とを向上させることができる。また、電気的特性による判別は、公知の装置により自動的に実施できるので、生産に係わる人員を削減でき、生産コストを下げることができる。
また、本発明では、液体に電子部品を浸漬した状態で、電子部品から発生する気泡を観察する必要がないので、一度に多数の電子部品を液中に浸漬することが可能であり、処理効率の向上を実現できる。
不良選別工程では、封止不良品だけでなく、電気的特性そのものの不良品(初期特性不良品)も一緒に判別することができる。したがって、不良選別工程を1回実施するだけで、封止不良品と初期特性不良品とを同時に選別でき、封止不良品を選別するための工程を別に設ける必要がなく、工程数を削減できる。
本発明では、液体を電子部品内に浸透させるために、耐圧容器を負圧にしている。従来の高温グロスリーク試験のように、液体を加熱する必要がないので、耐熱性の低い電子部品や加熱することで特性が変動する電子部品でも、機能を損なうことなく選別できる。また、蒸発による液体のロスや液体の昇温に時間がかかるといった問題も解消できる。
【0009】
請求項2のように、第1の圧力状態を負圧状態とし、第2の圧力状態を常圧状態とした場合には、耐圧容器(液体)から電子部品を取り出した時に内部に浸透した液体が吹き出すのを防止できるとともに、最初に減圧した後は、パージするだけでよいので、作業工程が簡素化される利点がある。
【0010】
本発明で使用可能な液体には、種々のものがある。
請求項3のように、不活性液体を使用してもよい。不活性液体は極性が低いため、粘性が低く、リーク部から電子部品の内部に浸入しやすい。特に、フロロカーボンのように粘性が低く、かつ比重が高い液体であれば、リーク部から容易に電子部品内部に浸入することができる。内部に浸入した液体は、素子に付着し、その電気特性を変化させるため、封止不良を容易に判別できる。
請求項4のように、電子部品内部の導電部を腐食させる性質を持つ液体を使用してもよい。このような液体としては、例えば酸がある。アルミニウムなどの卑金属よりなる内部電極を有する電子部品の場合、内部に酸などが浸入すると、電極が腐食あるいは溶解し、電気的機能を破壊するので、封止不良を簡単に判別できる。
請求項5のように、水のような導電性を有する液体を使用してもよい。この場合には、液体が電子部品の内部に浸入し、内部電極間に付着すると、電極間でショートするため、電気的特性が変化あるいは失われる。
請求項6のように、加熱処理により硬化する性質を持つ液体を使用し、耐圧容器から電子部品を取り出す工程と、電子部品の電気的特性を測定する工程との間に、液体を硬化させる加熱処理工程を設けてもよい。このような液体としては、例えば熱硬化性樹脂(エポキシ樹脂など)がある。この場合には、電子部品の内部に浸入した液体が硬化することで、素子の電気的特性(例えば圧電素子の場合には振動特性)が変化し、封止不良を判別できる。
【0011】
本発明は、請求項7のように、内容積が10−10 以下の電子部品に適用した場合に効果的である。
内容積が10−10 以下の微小容積の電子部品の場合、従来の試験方法では封止不良の検出が困難であったが、本発明方法を用いることで、確実に判別することができる。
【0012】
【発明の実施の形態】
図1は本発明にかかる封止選別方法に用いる試験装置の一例である。
封止選別に用いる電子部品Wは、パッケージPとその内部に収容された素子Eとを備え、パッケージPの内部は気密封止されている。
この試験装置は、耐圧性と気密性とを有する耐圧容器1を備える。耐圧容器1内には、フロロカーボンなどの液体Fが貯留されている。耐圧容器1の上部(空気相)には、容器1内の気圧を減圧するための減圧ポンプ2と圧力計3とが接続されている。なお、耐圧容器1内の減圧は、耐圧容器1内にピストンを配置し、このピストンによって内容積を膨張させることで行ってもよい。耐圧容器1の上部には、バルブ5を備えたパージポート4が接続されている。
【0013】
次に、上記構成の試験装置を用いて、封止選別を行う方法を図2に従って説明する。
まず、耐圧容器1内に電子部品Wを投入する前に、減圧ポンプ2を作動させて、容器1の気圧を減圧する(図2の(a)参照)。これにより、液体F中に溶存していた気体を脱ガスする。条件としては、常温(25〜30℃)で200〜500Paの圧力で30分程度処理するのが望ましい。この脱ガス処理は封止選別のための前工程であり、必要に応じて実施される。
脱ガス処理の後、バルブ5を開いてパージポート4から耐圧容器1をパージし、容器1内を常圧に戻す。そして、封止済みの電子部品Wを液体F中に浸漬し、耐圧容器1を密閉する(図2の(b)参照)。
次に、減圧ポンプ2を作動させて容器1内を再び減圧する(図2の(c)参照)。条件としては、常温(25〜30℃)で、1000Pa以下の圧力で、5分程度処理するのが望ましい。この減圧処理により、容器1内の気圧が低下するため、液中の電子部品Wに加わっている圧力が低下し、ボイル・シャルルの法則に基づき電子部品Wの内部の気体が体積膨張を始める。封止不良がある電子部品Wの場合には、内部気体の体積膨張分は気泡Bとしてリーク部から電子部品W外へ放出され、電子部品Wの内圧は圧力が低下した電子部品周辺の圧力と平衡しようとする。
次に、バルブ5を開いてパージポート4から耐圧容器1をパージし、容器1内を常圧に戻す(図2の(d)参照)。このとき、外圧が常圧に復帰するため、封止不良のある電子部品Wの場合、周囲に加わる圧力は減圧する前の状態に戻る。しかし、電子部品Wの内圧は減圧時の平衡状態のままであるから、圧力差が生じ、液体Fが電子部品W内に浸入する。これにより、電子部品Wの機能が劣化もしくは破壊される。封止不良のない電子部品Wは、内圧の変化がないので、液体Fが浸入せず、部品機能が損なわれることもない。この工程では、電子部品Wから発生する気泡を観察する必要がないので、耐圧容器1内に多数個の電子部品Wを同時に浸漬してもよい。また、液体Fを加熱する必要はなく、常温(25〜30℃)で実施すればよい。
以上の処理を終了した電子部品Wは、耐圧容器1から取り出され、特性測定器6によって電気的特性が測定される(図2の(e)参照)。電気的特性としては、例えば共振周波数、帯域ロス、カットオフ周波数、抵抗値、静電容量などがある。ここで、封止不良のある電子部品Wは上述の処理により液体Fが内部に浸入しているので、所望の電気的特性が得られず、封止不良を判別できる。また、この選別工程では、封止不良だけでなく、初期特性不良(封止不良はないが、電気的特性が不良のもの)も一緒に選別できる。
【0014】
図3は上記封止選別方法の流れを示す図である。
まず、減圧(脱ガス)処理を行い(ステップS1)、その後、パージして耐圧容器1内を常圧に戻す(ステップS2)。ステップS1,S2は前工程である。次に、電子部品Wを耐圧容器1内に投入して液体中に浸漬し(ステップS3)、耐圧容器内を減圧する(ステップS4)。次に、パージして耐圧容器1内を常圧に戻す(ステップS5)と、封止不良の電子部品W内に液体が浸入する。次に、電子部品Wを耐圧容器1から取り出し(ステップS6)、電子部品Wの電気的特性の測定・選別を行う(ステップS7)。
以上の処理を実施することで、微小な内容積を有する電子部品Wでも、封止不良を確実に選別できる。
なお、上記選別方法では、ステップS3で電子部品Wを液体中に浸漬した後、ステップS4で耐圧容器1を減圧したが、これとは逆に、電子部品Wを耐圧容器1の空気相に入れた状態で減圧し、その後、電子部品Wを液体中に浸漬してもよい。この場合には、空気相中で封止不良の電子部品Wの内圧が低下するので、電子部品Wを液体中に浸漬した後、常圧に戻した時の液体の浸入が促進される。
【0015】
圧電発振子、SAW素子、圧電フィルタのような圧電部品、半導体などの精密部品では、僅かでも異物(液体F)がパッケージ内部に浸入し、電極などに付着すると、電気的特性が大きく変化するため、封止不良を簡単に判別できる。
液体Fとしては、フロロカーボンのような不活性液体のほか、酸などの金属腐食性液体、水(塩水を含む)のような導電性を有する液体、熱硬化性樹脂のような加熱処理により硬化する性質を持つ液体を用いてもよい。
例えば、SAW素子の場合、IDT電極に液体Fが付着すると、伝播周波数が変化するため、異常を容易に判別できる。SAW素子のIDT電極はアルミ膜で形成されているので、希塩酸などが付着すると、IDT電極が溶解し、機能が破壊される。具体的には、pH3以下の希塩酸がよい。さらに、IDT電極上に水が付着すると、IDT間でショートし、電気特性が失われる。
熱硬化性樹脂(熱硬化エポキシなど)を用いる場合、例えば樹脂粘度が1Pa・s以下のものを使用するのがよい。これを圧力100Pa以下に減圧し、常圧に復帰させた後、耐圧容器から電子部品を取り出す。その後、樹脂の硬化処理(硬化温度:100℃、硬化時間180分)を実施し、電気特性による選別を実施する。
熱硬化性樹脂の場合、揮発しないので、耐圧容器から電子部品を取り出した後、特性選別までの時間が経過しても、封止不良を確実に検出できる。
【0016】
図4は、本発明方法と従来方法(グロスリーク試験)とを用いた場合に、試験溶媒(液体)外圧力と標準等価リーク率との関係を示す図である。ここでは、内容積が10−10 の電子部品を用いた。
標準等価リーク率とは、高圧側が1気圧(760mmHgもしくは1.013×10 Pa)で低圧側が1mmHg(133Pa)以下の場合に周囲温度が25℃でリーク箇所から1秒間に漏れる乾燥空気の量(Pa・m )で定義される。従来のグロスリーク試験では、リーク率の検出範囲が2.95E−7〜2.95E−5(Pa・m /s)であるのに対し、本発明では図中斜線で示すような広い領域において封止不良を測定可能である。
【0017】
上記実施例では、減圧プロセスの後に、常圧に復帰させることで、封止不良の電子部品の内部に液体を浸透させる例を示したが、常圧に復帰させるのではなく、加圧してもよい。この場合は、液体の浸入がさらに容易になり、検出精度がさらに良好になる。
本発明にかかる封止選別方法を適用できる試料としては、一般的な電子部品のほかに、BAW(Bulk Acoustic Wave) フィルターや、MEMS(Micro Electro Mechanical System)モジュール、具体的にはシリコンジャイロ、光スイッチ、ミリ波レーダースイッチなどがある。
上記製品は、いずれも内容積が10−10 以下と極小であることと、いずれもパイレックス(登録商標)ガラス、ソーダガラス、石英ガラスなどのガラスを使用しているため、Heガスが透過し、バックグランドノイズが増大し、微小なリークが選別できないからである。
【0018】
【発明の効果】
以上の説明で明らかなように、本発明によれば、電子部品を第1の圧力状態で液体中に浸漬し、耐圧容器内を第1の圧力より高い第2の圧力状態とすることで、封止不良の電子部品の内部に液体を浸透させ、この電子部品を耐圧容器から取り出してその電気的特性を測定し、その電気的測定により不良選別を行うようにしたので、グロスリーク試験のような気泡を目視観察で判別するものとは異なり、微小な内容積の電子部品でも、明確に、短時間で判別でき、封止検査の精度と効率とを向上させることができる。
また、本発明では、液体に電子部品を浸漬した状態で、電子部品から発生する気泡を観察する必要がないので、一度に多数の電子部品を液体に浸漬することが可能であり、処理効率の向上を実現できる。
不良選別工程では、封止不良品だけでなく、電気的特性そのものの不良品(初期特性不良品)も一緒に判別することができるので、封止不良品を選別するための工程を別に設ける必要がなく、工程数を削減できる。
さらに、液体を電子部品内に浸透させるために、耐圧容器内の圧力を変化させており、従来の高温グロスリーク試験のように、液体を加熱する必要がないので、耐熱性の低い電子部品や加熱することで特性が変動する電子部品でも、機能を損なうことなく選別できるという効果がある。
【図面の簡単な説明】
【図1】本発明にかかる封止選別方法に用いる試験装置の一例の構造図である。
【図2】本発明における封止選別方法を示す工程図である。
【図3】図3の工程の流れを示すフローチャート図である。
【図4】内容積の小さな電子部品における試験溶媒外圧力と標準等価リーク率との関係を示す図である。
【符号の説明】
1 耐圧容器
2 減圧ポンプ
3 圧力計
4 パージポート
6 特性測定器
W 電子部品
E 素子
P パッケージ
F 液体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for sealing and selecting electronic components suitable for evaluating and selecting the sealing performance of electronic components having a minute internal volume.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. 7-106393 Conventionally, test methods such as a He leak test, a gross leak (bubble leak) test, and an air leak test have been widely used as methods for selecting the sealing performance of electronic components. .
In the He leak test, the atmospheric partial pressure in the work is reduced by evacuation, and then He gas is filled at a high pressure. Next, the work is once taken out into the atmosphere, put into a test port, the inside of the port is made high vacuum, the He gas in the work is sucked out, and the amount of leaked He is measured by a mass spectrometer.
The gross leak test is a method for determining the presence or absence of a leak by immersing the work in heated fluorocarbon (fluorine-based inert liquid), expanding the gas in the work and observing bubbles generated from the leak. .
The air leak test is a method of determining the presence or absence of a leak by comparing the pressure difference with the master work side where there is no leak. If there is a leak, the applied pressure is divided in the work, so the pressure drops and a pressure difference occurs between the master side. In addition, when the pressure inside the work is saturated simultaneously with the application of pressure, the large leak detection is performed by connecting to the large leak detection tank after applying the pressure. When there is a leak, the volume on the measurement side apparently increases by the work content integral. Therefore, when connected to a large leak detection tank, the pressure on the master side decreases and a differential pressure is generated.
[0003]
[Problems to be solved by the invention]
However, in the conventional test method, it has been difficult to measure the sealing performance of an electronic component having a minute internal volume (for example, the internal volume is 10 −10 m 3 or less) for the following reasons.
That is, in the He leak test, since the workpiece is once taken out into the atmosphere from the He filling to the start of measurement, the filling He leaks, and during the measurement, the He partial pressure in the workpiece is reduced below the measurement limit. It becomes difficult.
In the gross leak test, bubbles having a large leak size do not release bubbles from the leak portion, and those having a small leak size do not generate bubbles, making evaluation difficult.
In the air leak test, even if there is a leak, the internal volume is small, so that a differential pressure higher than the detection sensitivity of the sensor does not occur and evaluation becomes difficult.
In addition, it is necessary to determine whether the workpiece is good or defective after measuring the leak rate in the He leak test and the differential pressure with the master capsule in the air leak test. It is difficult to test a large number of workpieces at once. Yes, processing efficiency was poor.
Furthermore, the gross leak test is performed with fluorocarbon at a high temperature (about 125 ° C.). This is because the work is heated based on Boyle-Charle's law, and the volume of the internal gas is expanded to facilitate the generation of bubbles. In fact, this method is also described in the MIL standard and the JIS standard, and is widely used as a general method for the gross leak test. However, since the test is performed at a high temperature, there is a risk that the function of the part may be impaired even if the product has a good sealing property in a work with low heat resistance or a work whose part characteristics are changed by applying heat.
[0004]
Patent Document 1 discloses a method that enables more reliable evaluation of sealing performance by performing fine leak sorting after assembly / sealing of a sealed electronic component and then performing gross leak sorting. is suggesting.
However, performing these two sealing tests increases the number of processes and decreases productivity. In addition, in an electronic component having a minute internal volume, it is difficult to evaluate leakage even if two sealing tests are performed, and the above problem cannot be solved.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide a sealing and sorting method for electronic components that can reliably evaluate and sort sealing defects even with electronic components having a minute internal volume.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to a first aspect of the present invention, there is provided an electronic component sealing / selecting method in which an interior of a package containing an element is sealed, wherein the electronic component is placed in a liquid in a pressure-resistant container storing the liquid. After the immersion, the inside of the pressure vessel is brought to the first pressure state, or the inside of the pressure vessel is brought to the first pressure state, and then the step of immersing the electronic component in the liquid and the inside of the pressure vessel are taken as the first pressure state. A second pressure state higher than the pressure state, a step of infiltrating the liquid into the poorly sealed electronic component, a step of taking out the electronic component from the pressure vessel, and an electric of the electronic component taken out from the pressure vessel There is provided a method for sealing and selecting an electronic component, which includes a step of measuring a mechanical characteristic and selecting a defect by the electrical measurement.
[0007]
A case where the first pressure state is a reduced pressure state and the second pressure state is a normal pressure state will be described as an example.
For example, when an electronic component is immersed in a liquid in a pressure resistant container under normal pressure and then the pressure inside the pressure resistant container is reduced, air inside the electronic component expands, and bubbles are generated from the leak portion. Next, when the pressure vessel is returned to normal pressure, a large liquid pressure is applied to the electronic component by the difference between the normal pressure and the reduced pressure, so that the liquid penetrates into the electronic component from the leak portion.
Alternatively, the electronic component may be placed in the gas of the pressure vessel under normal pressure, the pressure inside the pressure vessel may be reduced, the electronic component may be immersed in a liquid, and then the pressure vessel may be returned to normal pressure. Also in this case, when the pressure inside the pressure vessel is returned to normal pressure, a large liquid pressure is applied to the electronic component by the difference between the normal pressure and the reduced pressure, so that the liquid penetrates into the electronic component from the leak portion.
In this way, the liquid function is positively permeated into the electronic component from the leak portion, thereby degrading or destroying the electrical function of the defective sealing product. For example, a liquid that has penetrated into a defectively sealed product adheres to an internal circuit or a sensing portion of an electronic component and changes its electrical characteristics. Thereafter, the electronic component is taken out from the pressure vessel, and the electrical characteristics of the electronic component are measured in a characteristic selection step. An electronic component with good sealing performance naturally has no abnormality in electrical characteristics. However, in the case of a defective sealing product, since there is an abnormality in electrical characteristics, it is possible to easily determine sealing defects.
In the present invention, it is only necessary to provide a pressure difference so that the liquid can penetrate into the poorly sealed electronic component. The first pressure state is not limited to the reduced pressure state (negative pressure state), but is normal pressure or positive pressure. There may be. Similarly, the second pressure state is not limited to the normal pressure, and may be a negative pressure or a positive pressure. The second pressure state only needs to be higher than the first pressure state.
[0008]
The discrimination based on the electrical characteristics as described above is different from that used for visual observation of bubbles such as the gross leak test, and even electronic components with minute internal volumes can be clearly and quickly distinguished. Inspection accuracy and efficiency can be improved. Moreover, since the discrimination based on the electrical characteristics can be automatically performed by a known apparatus, the number of production personnel can be reduced and the production cost can be reduced.
Further, in the present invention, it is not necessary to observe bubbles generated from the electronic component in a state where the electronic component is immersed in the liquid, so it is possible to immerse a large number of electronic components in the liquid at a time, and processing efficiency Can be improved.
In the defect selection step, not only defective products but also defective products having electrical characteristics (initial property defective products) can be determined together. Therefore, it is possible to simultaneously select defective sealing products and initial characteristic defective products by performing the defective selection process only once, and it is not necessary to provide a separate process for selecting defective sealing products, thereby reducing the number of processes. .
In the present invention, the pressure vessel is set to a negative pressure in order to allow the liquid to penetrate into the electronic component. Unlike the conventional high-temperature gross leak test, it is not necessary to heat the liquid, so even electronic components with low heat resistance and electronic components whose characteristics change when heated can be selected without impairing the function. In addition, it is possible to solve problems such as liquid loss due to evaporation and the time required to raise the temperature of the liquid.
[0009]
If the first pressure state is a negative pressure state and the second pressure state is a normal pressure state as in claim 2, the liquid that has penetrated into the interior when the electronic component is taken out from the pressure vessel (liquid) Can be prevented, and after the pressure is reduced for the first time, it is only necessary to purge, so that there is an advantage that the work process is simplified.
[0010]
There are various liquids that can be used in the present invention.
As in claim 3, an inert liquid may be used. Since the inert liquid has low polarity, it has a low viscosity and easily enters the electronic component from the leak portion. In particular, a liquid having a low viscosity and a high specific gravity, such as fluorocarbon, can easily enter the electronic component from the leak portion. Since the liquid that has entered inside adheres to the element and changes its electrical characteristics, it is possible to easily determine the sealing failure.
As in claim 4, a liquid having a property of corroding a conductive portion inside the electronic component may be used. An example of such a liquid is an acid. In the case of an electronic component having an internal electrode made of a base metal such as aluminum, if an acid or the like enters the electrode, the electrode is corroded or dissolved, and the electrical function is destroyed, so that a sealing failure can be easily identified.
As in claim 5, a liquid having conductivity such as water may be used. In this case, if the liquid enters the electronic component and adheres between the internal electrodes, the electrical characteristics are changed or lost because the electrodes are short-circuited.
Heating that hardens the liquid between the step of taking out the electronic component from the pressure vessel and the step of measuring the electrical characteristics of the electronic component using a liquid having a property of being cured by heat treatment as in claim 6 A processing step may be provided. An example of such a liquid is a thermosetting resin (such as an epoxy resin). In this case, the liquid that has entered the inside of the electronic component is cured, so that the electrical characteristics of the element (for example, vibration characteristics in the case of a piezoelectric element) change, and a sealing failure can be determined.
[0011]
The present invention is effective when applied to an electronic component having an internal volume of 10 −10 m 3 or less as in the seventh aspect.
In the case of an electronic component having a minute volume with an internal volume of 10 −10 m 3 or less, it has been difficult to detect a sealing failure by the conventional test method, but it can be reliably determined by using the method of the present invention. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of a test apparatus used in the sealing and sorting method according to the present invention.
The electronic component W used for sealing selection includes a package P and an element E accommodated therein, and the inside of the package P is hermetically sealed.
This test apparatus includes a pressure vessel 1 having pressure resistance and airtightness. In the pressure vessel 1, a liquid F such as fluorocarbon is stored. A pressure reducing pump 2 and a pressure gauge 3 for reducing the pressure inside the container 1 are connected to the upper part (air phase) of the pressure resistant container 1. The pressure reduction in the pressure vessel 1 may be performed by arranging a piston in the pressure vessel 1 and expanding the internal volume by the piston. A purge port 4 having a valve 5 is connected to the upper portion of the pressure vessel 1.
[0013]
Next, a method for performing sealing selection using the test apparatus having the above configuration will be described with reference to FIG.
First, before putting the electronic component W into the pressure vessel 1, the pressure reducing pump 2 is operated to reduce the pressure in the vessel 1 (see FIG. 2A). Thereby, the gas dissolved in the liquid F is degassed. As conditions, it is desirable to process at a normal temperature (25-30 degreeC) and a pressure of 200-500 Pa for about 30 minutes. This degassing process is a pre-process for sealing selection, and is performed as necessary.
After the degassing process, the valve 5 is opened to purge the pressure-resistant container 1 from the purge port 4, and the inside of the container 1 is returned to normal pressure. And the sealed electronic component W is immersed in the liquid F, and the pressure-resistant container 1 is sealed (refer (b) of FIG. 2).
Next, the decompression pump 2 is operated to decompress the inside of the container 1 again (see (c) of FIG. 2). As conditions, it is desirable to process for about 5 minutes at room temperature (25-30 degreeC) and the pressure of 1000 Pa or less. Since the pressure in the container 1 is reduced by this decompression process, the pressure applied to the electronic component W in the liquid is reduced, and the gas inside the electronic component W starts to expand based on Boyle-Charles' law. In the case of an electronic component W with poor sealing, the volume expansion of the internal gas is released as bubbles B from the leak portion to the outside of the electronic component W, and the internal pressure of the electronic component W is the pressure around the electronic component where the pressure has decreased. Try to balance.
Next, the valve 5 is opened, the pressure vessel 1 is purged from the purge port 4, and the inside of the vessel 1 is returned to normal pressure (see (d) of FIG. 2). At this time, since the external pressure returns to normal pressure, in the case of the electronic component W with poor sealing, the pressure applied to the surroundings returns to the state before the pressure is reduced. However, since the internal pressure of the electronic component W remains in an equilibrium state when the pressure is reduced, a pressure difference is generated, and the liquid F enters the electronic component W. Thereby, the function of the electronic component W deteriorates or is destroyed. The electronic component W having no sealing failure does not change the internal pressure, so that the liquid F does not enter and the component function is not impaired. In this step, since it is not necessary to observe bubbles generated from the electronic component W, a large number of electronic components W may be immersed in the pressure-resistant container 1 at the same time. Moreover, it is not necessary to heat the liquid F, and what is necessary is just to implement at normal temperature (25-30 degreeC).
The electronic component W for which the above processing has been completed is taken out from the pressure-resistant container 1 and its electrical characteristics are measured by the characteristic measuring device 6 (see FIG. 2E). Examples of the electrical characteristics include a resonance frequency, a band loss, a cutoff frequency, a resistance value, and a capacitance. Here, since the liquid F has entered the electronic component W having a poor sealing due to the above-described processing, desired electrical characteristics cannot be obtained and the defective sealing can be determined. Further, in this sorting step, not only the sealing failure but also the initial characteristic failure (there is no sealing failure but the electrical property is poor) can be selected together.
[0014]
FIG. 3 is a diagram showing the flow of the sealing selection method.
First, pressure reduction (degassing) processing is performed (step S1), and then purge is performed to return the pressure vessel 1 to normal pressure (step S2). Steps S1 and S2 are pre-processes. Next, the electronic component W is put into the pressure vessel 1 and immersed in a liquid (step S3), and the pressure vessel is depressurized (step S4). Next, when purging and returning the pressure vessel 1 to normal pressure (step S5), the liquid enters the electronic component W with poor sealing. Next, the electronic component W is taken out from the pressure-resistant container 1 (step S6), and the electrical characteristics of the electronic component W are measured and selected (step S7).
By performing the above processing, it is possible to reliably select sealing defects even in the electronic component W having a minute internal volume.
In the above sorting method, after the electronic component W is immersed in the liquid in step S3, the pressure vessel 1 is depressurized in step S4. On the contrary, the electronic component W is placed in the air phase of the pressure vessel 1. In this state, the pressure may be reduced, and then the electronic component W may be immersed in the liquid. In this case, since the internal pressure of the poorly sealed electronic component W in the air phase is lowered, the penetration of the liquid when the electronic component W is immersed in the liquid and then returned to normal pressure is promoted.
[0015]
In piezoelectric parts such as piezoelectric oscillators, SAW elements, piezoelectric filters, and precision parts such as semiconductors, even if a small amount of foreign matter (liquid F) enters the package and adheres to the electrodes, the electrical characteristics change greatly. The sealing failure can be easily determined.
As the liquid F, in addition to an inert liquid such as fluorocarbon, a metal corrosive liquid such as an acid, a liquid having conductivity such as water (including salt water), or a heat treatment such as a thermosetting resin. A liquid having properties may be used.
For example, in the case of a SAW element, when the liquid F adheres to the IDT electrode, the propagation frequency changes, so that the abnormality can be easily determined. Since the IDT electrode of the SAW element is formed of an aluminum film, when diluted hydrochloric acid or the like adheres, the IDT electrode dissolves and its function is destroyed. Specifically, dilute hydrochloric acid having a pH of 3 or less is preferable. Furthermore, if water adheres on the IDT electrode, a short circuit occurs between the IDTs and the electrical characteristics are lost.
When using a thermosetting resin (such as thermosetting epoxy), it is preferable to use a resin having a viscosity of 1 Pa · s or less, for example. After reducing the pressure to 100 Pa or less and returning to normal pressure, the electronic component is taken out from the pressure vessel. Thereafter, a resin curing process (curing temperature: 100 ° C., curing time: 180 minutes) is performed, and sorting based on electrical characteristics is performed.
In the case of a thermosetting resin, since it does not volatilize, sealing failure can be reliably detected even if the time until the characteristic selection elapses after the electronic component is taken out from the pressure vessel.
[0016]
FIG. 4 is a diagram showing the relationship between the test solvent (liquid) external pressure and the standard equivalent leak rate when the method of the present invention and the conventional method (gross leak test) are used. Here, an electronic component having an internal volume of 10 −10 m 3 was used.
The standard equivalent leak rate is the amount of dry air that leaks in one second from the leak point at an ambient temperature of 25 ° C. when the high pressure side is 1 atm (760 mmHg or 1.013 × 10 5 Pa) and the low pressure side is 1 mmHg (133 Pa) or less. It is defined by (Pa · m 3 ). In the conventional gross leak test, the leak rate detection range is 2.95E-7 to 2.95E-5 (Pa · m 3 / s). The sealing failure can be measured.
[0017]
In the above embodiment, an example is shown in which the liquid is infiltrated into the electronic component with poor sealing by returning to the normal pressure after the pressure reducing process. Good. In this case, the infiltration of the liquid is further facilitated, and the detection accuracy is further improved.
Samples to which the sealing and sorting method according to the present invention can be applied include not only general electronic components but also BAW (Bulk Acoustic Wave) filters, MEMS (Micro Electro Mechanical System) modules, specifically silicon gyros, optical There are switches and millimeter wave radar switches.
All of the above products have an extremely small internal volume of 10 −10 m 3 or less, and all use glass such as Pyrex (registered trademark) glass, soda glass, and quartz glass, so that He gas is transmitted therethrough. This is because background noise increases and minute leaks cannot be selected.
[0018]
【The invention's effect】
As is clear from the above description, according to the present invention, the electronic component is immersed in the liquid in the first pressure state, and the pressure vessel is brought into the second pressure state higher than the first pressure. Since liquid is infiltrated inside the poorly sealed electronic component, the electronic component is taken out of the pressure vessel, its electrical characteristics are measured, and defective selection is performed by the electrical measurement. Unlike the case where a simple bubble is discriminated by visual observation, even an electronic component having a minute internal volume can be discriminated clearly in a short time, and the accuracy and efficiency of sealing inspection can be improved.
Further, in the present invention, since it is not necessary to observe bubbles generated from the electronic component in a state where the electronic component is immersed in the liquid, it is possible to immerse a large number of electronic components in the liquid at a time, and to improve the processing efficiency. Improvements can be realized.
In the defect sorting process, not only defective products but also defective products with initial electrical characteristics (initial property defective products) can be discriminated together, so it is necessary to provide a separate process for selecting defective products. The number of processes can be reduced.
In addition, the pressure in the pressure vessel is changed in order to infiltrate the liquid into the electronic component, and there is no need to heat the liquid as in the conventional high-temperature gross leak test. There is an effect that even an electronic component whose characteristics are changed by heating can be selected without impairing the function.
[Brief description of the drawings]
FIG. 1 is a structural diagram of an example of a test apparatus used in a sealing selection method according to the present invention.
FIG. 2 is a process diagram showing a sealing selection method in the present invention.
FIG. 3 is a flowchart showing a process flow of FIG. 3;
FIG. 4 is a diagram showing a relationship between a test solvent external pressure and a standard equivalent leak rate in an electronic component having a small internal volume.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pressure-resistant container 2 Pressure reducing pump 3 Pressure gauge 4 Purge port 6 Characteristic measuring device W Electronic component E Element P Package F Liquid

Claims (7)

素子を収容したパッケージ内部を封止してなる電子部品の封止選別方法において、
液体を貯留した耐圧容器の液体中に電子部品を浸漬した後、上記耐圧容器内を第1の圧力状態とするか、あるいは耐圧容器内を第1の圧力状態とした後、電子部品を液体中に浸漬する工程と、
上記耐圧容器内を第1の圧力状態より高い第2の圧力状態とし、封止不良の電子部品の内部に液体を浸透させる工程と、
上記耐圧容器から電子部品を取り出す工程と、
上記耐圧容器から取り出された電子部品の電気的特性を測定し、その電気的測定により不良選別を行う工程と、を有する電子部品の封止選別方法。
In the sealing selection method of the electronic component formed by sealing the inside of the package containing the element,
After immersing the electronic component in the liquid of the pressure vessel storing the liquid, the inside of the pressure vessel is set to the first pressure state, or the pressure vessel is set to the first pressure state, and then the electronic component is placed in the liquid. Dipping in,
A step of setting the inside of the pressure vessel to a second pressure state higher than the first pressure state, and infiltrating the liquid into the electronic component having a poor sealing;
A step of removing the electronic component from the pressure vessel;
Measuring the electrical characteristics of the electronic component taken out from the pressure vessel, and performing defect sorting by the electrical measurement.
上記第1の圧力状態は負圧状態であり、
上記第2の圧力状態は常圧状態であることを特徴とする請求項1に記載の電子部品の封止選別方法。
The first pressure state is a negative pressure state,
2. The electronic component sealing and selecting method according to claim 1, wherein the second pressure state is a normal pressure state.
上記液体は、不活性液体であることを特徴とする請求項1または2に記載の電子部品の封止選別方法。3. The electronic component sealing / selecting method according to claim 1, wherein the liquid is an inert liquid. 上記液体は、電子部品内部の導電部を腐食させる性質を持つ液体であることを特徴とする請求項1または2に記載の電子部品の封止選別方法。3. The electronic component sealing and selecting method according to claim 1, wherein the liquid is a liquid having a property of corroding a conductive portion inside the electronic component. 上記液体は、導電性を有する液体であることを特徴とする請求項1または2に記載の電子部品の封止選別方法。3. The electronic component sealing / selecting method according to claim 1, wherein the liquid is a conductive liquid. 上記液体は加熱処理により硬化する性質を持つ液体であり、
上記耐圧容器から電子部品を取り出す工程と、電子部品の電気的特性を測定する工程との間に、上記液体を硬化させる加熱処理工程を有することを特徴とする請求項1または2に記載の電子部品の封止選別方法。
The liquid is a liquid having a property of being cured by heat treatment,
3. The electronic device according to claim 1, further comprising a heat treatment step of curing the liquid between the step of taking out the electronic component from the pressure-resistant container and the step of measuring electrical characteristics of the electronic component. Sealing and sorting method for parts.
上記電子部品は、内容積が10−10 以下の電子部品であることを特徴とする請求項1ないし6のいずれかに記載の電子部品の封止選別方法。The electronic component sealing and sorting method according to any one of claims 1 to 6, wherein the electronic component is an electronic component having an internal volume of 10 -10 m 3 or less.
JP2003164677A 2003-06-10 2003-06-10 Sealing and sorting method for electronic parts Expired - Lifetime JP4085893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164677A JP4085893B2 (en) 2003-06-10 2003-06-10 Sealing and sorting method for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164677A JP4085893B2 (en) 2003-06-10 2003-06-10 Sealing and sorting method for electronic parts

Publications (2)

Publication Number Publication Date
JP2005005350A true JP2005005350A (en) 2005-01-06
JP4085893B2 JP4085893B2 (en) 2008-05-14

Family

ID=34091385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164677A Expired - Lifetime JP4085893B2 (en) 2003-06-10 2003-06-10 Sealing and sorting method for electronic parts

Country Status (1)

Country Link
JP (1) JP4085893B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032658A (en) * 2006-07-31 2008-02-14 Kyocera Kinseki Corp Method and device for inspecting airtightness of package
CN106546387A (en) * 2016-10-28 2017-03-29 中国科学院微电子研究所 A kind of wafer scale sensor air-tightness detection device and method
CN106595975A (en) * 2016-10-28 2017-04-26 中国科学院微电子研究所 Wafer-level sensor airtightness detection device and method
CN112397405A (en) * 2019-08-19 2021-02-23 苏州固锝电子股份有限公司 Screening method for defective semiconductor components

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032658A (en) * 2006-07-31 2008-02-14 Kyocera Kinseki Corp Method and device for inspecting airtightness of package
CN106546387A (en) * 2016-10-28 2017-03-29 中国科学院微电子研究所 A kind of wafer scale sensor air-tightness detection device and method
CN106595975A (en) * 2016-10-28 2017-04-26 中国科学院微电子研究所 Wafer-level sensor airtightness detection device and method
CN112397405A (en) * 2019-08-19 2021-02-23 苏州固锝电子股份有限公司 Screening method for defective semiconductor components

Also Published As

Publication number Publication date
JP4085893B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
Traeger Nonhermeticity of polymeric lid sealants
JP4515261B2 (en) System and process for detecting leakage of seal products
JP5368705B2 (en) Method for measuring leak rate of vacuum encapsulated device
JPH1151802A (en) Method for testing hermetical seal of package for piezoelectric element
EP0168972A2 (en) Hermeticity testing method and system
JP2004245752A (en) Method and apparatus for sealing test
JP6837065B2 (en) Incompressible test in film chamber Gross leak measurement
JP4085893B2 (en) Sealing and sorting method for electronic parts
JP2014134513A (en) Leak test method and device
JP3983479B2 (en) Battery leakage inspection device
JP2010223643A (en) Airtightness inspection device of piezoelectric vibrator, and airtightness inspection method
CN111562072A (en) Detection method, detection apparatus, and computer-readable storage medium
JP3870939B2 (en) Airtight test method and apparatus
JP4793258B2 (en) Manufacturing method for sealed products
JP2005274234A (en) Ceramic element inspection method
US6223586B1 (en) Micro-electromechanical device inspection
JP4036149B2 (en) Piezoelectric device leak detection method
JP7470373B2 (en) Leak inspection method and leak inspection device
JP2000097799A (en) Hermetic seal inspection system for hermetically sealed container
JP4002148B2 (en) Heat pipe leak inspection method and inspection apparatus therefor
JPH11108790A (en) Leakage detecting method for piezoelectric vibrator module
JP2003294572A (en) Airtightness inspection method for capacitor and its device
CN101278193A (en) Electrochemical fatigue sensor systems and methods
JP4506580B2 (en) Sealed leak test method
JP5115110B2 (en) Airtight inspection apparatus and airtight inspection method for piezoelectric vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4085893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

EXPY Cancellation because of completion of term