JP2005003678A - Flow measuring instrument, flow rate measuring instrument, and flow rate instrumentation method - Google Patents

Flow measuring instrument, flow rate measuring instrument, and flow rate instrumentation method Download PDF

Info

Publication number
JP2005003678A
JP2005003678A JP2004150038A JP2004150038A JP2005003678A JP 2005003678 A JP2005003678 A JP 2005003678A JP 2004150038 A JP2004150038 A JP 2004150038A JP 2004150038 A JP2004150038 A JP 2004150038A JP 2005003678 A JP2005003678 A JP 2005003678A
Authority
JP
Japan
Prior art keywords
pressure
flow
wake
fluid
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004150038A
Other languages
Japanese (ja)
Other versions
JP4130644B2 (en
Inventor
Kazumitsu Nukui
一光 温井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON APPLIED FLOW KK
Original Assignee
NIPPON APPLIED FLOW KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON APPLIED FLOW KK filed Critical NIPPON APPLIED FLOW KK
Priority to JP2004150038A priority Critical patent/JP4130644B2/en
Publication of JP2005003678A publication Critical patent/JP2005003678A/en
Application granted granted Critical
Publication of JP4130644B2 publication Critical patent/JP4130644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To find a proper method of correction factor setting in flow rate instrumentation that uses a two-pressure tube or wake flow differential pressure measuring tube, and to conduct accurate flow measurement by means of a simple system, and to provide a method using the correction factor setting. <P>SOLUTION: In this method, the bi-pressure tube 1 is used to measure both total pressure P1, produced by fluid flow at a total pressure pore 11 and wake flow pressure P2, produced by fluid flow at a wake flow pressure pore 12, in obtaining flow measurement values of a measuring object fluid. Additionally, a flow measurement value arithmetic circuit 3 computes the flow measurement value of the measuring object fluid by compensating, such that it multiplies the value computed as a square root of the value twice P, the differential pressure between the wake flow pressure P2 and the total pressure P1 divided by mass density of the fluid, by the reciprocal of the substantial fill factor for a channel 4, the value of substantial opening area obtained by deducing the two-pressure tube 1 interrupted cross section from the total cross section as a stream tube of the channel 4 and then divided by the total cross section as the correction factor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、流体の流量または流速を簡易な手法で正確に計測する流量計測装置および流速計測装置ならびに流速計測方法に関する。   The present invention relates to a flow rate measurement device, a flow rate measurement device, and a flow rate measurement method that accurately measure the flow rate or flow rate of a fluid using a simple method.

簡易な計測装置を用いて簡易な手法で液体や気体などの流体の流速を正確に計測する技術として、ピトー管を用いた流速計測方法、オリフィスやベンチュリ管を用いた流量計測方法などが知られている。   Known techniques for accurately measuring the flow velocity of fluids such as liquids and gases using a simple measurement device include flow velocity measurement methods using pitot tubes and flow rate measurement methods using orifices and venturi tubes. ing.

ピトー管は、計測対象の流体の総圧(全圧)と静圧との差である動圧を求め、その動圧の2倍の値を流体の密度で除した値の平方根に、そのピトー管に固有のいわゆるピトー管係数kを乗じて較正(校正または補正)を行うことによって、流体の流速値(流速の計測値)を求める、というもので、種々の広範囲な分野に用いられている。ピトー管係数kは、ピトー管が導通路や風洞などのいわゆるシュラウドに覆われた状態で(シュラウドの中で)用いられてその中を通る流体の流速や流量を計測する場合には、そのときの壁面からピトー管が配置されている位置までの距離によって影響を受けることが知られている。   The Pitot tube calculates the dynamic pressure, which is the difference between the total pressure (total pressure) of the fluid to be measured and the static pressure, and calculates the pitot to the square root of the value obtained by dividing twice the dynamic pressure by the fluid density. This is used to calculate the flow velocity value (measurement value of the flow velocity) of the fluid by performing calibration (calibration or correction) by multiplying the so-called Pitot tube coefficient k inherent to the tube, and is used in various wide fields. . The Pitot tube coefficient k is used when measuring the flow velocity and flow rate of fluid passing through the Pitot tube used in a so-called shroud such as a conduction path or a wind tunnel (in a shroud). It is known that it is influenced by the distance from the wall surface to the position where the Pitot tube is arranged.

さらに具体的には、例えば風洞実験の際に正確な流速を計測する必要性から行われた種々の実験等によって、ピトー管係数kは壁面に近付くほど小さな値になり、例えば風洞の中心部の位置のように壁面からの距離が十分に長くなるほど、1に近付くことが知られている。また、ピトー管の長手方向の先端には、いわゆる総圧孔(総圧孔とも呼ぶ)が設けられている。そして静圧孔が、そのピトー管の円筒状の側面に設けられている場合が多い。その静圧孔は、設けられている位置が、ピトー管の先端から短い距離しか離れていないほど、そのピトー管の先端での流れの加減速の影響を受けてしまう。このため、静圧孔は、例えばピトー管の直径の10倍以上の距離を隔てた位置などのような、ピトー管の先端から十分に長い距離を隔てた位置に設けることが望ましいことが知られている。   More specifically, the pitot coefficient k becomes smaller as it approaches the wall surface, for example, by various experiments conducted from the necessity of measuring an accurate flow velocity during the wind tunnel experiment, for example, at the center of the wind tunnel It is known that as the distance from the wall surface becomes sufficiently long like the position, the distance approaches 1. In addition, a so-called total pressure hole (also referred to as a total pressure hole) is provided at the longitudinal end of the Pitot tube. In many cases, the static pressure hole is provided on the cylindrical side surface of the Pitot tube. The static pressure hole is affected by the acceleration and deceleration of the flow at the tip of the pitot tube as the position where the static pressure hole is provided is only a short distance from the tip of the pitot tube. For this reason, it is known that it is desirable to provide the static pressure hole at a position separated by a sufficiently long distance from the tip of the Pitot tube, such as a position separated by a distance of 10 times or more the diameter of the Pitot tube. ing.

また、オリフィスやベンチュリ管を用いた流量計測方法では、オリフィスまたはベンチュリ管を用いて、計測対象の流れに対して故意に増速減圧等を生じせしめ、その前後での圧力差から流量を求めるようにしている。この場合も、流量係数αをあらかじめ実験等で求めておき、そのαを用いて理論流量値を補正して、流量計測値を得るようにしている。その流量係数αは、例えばJIS規格のオリフィスでは、管路入口付近に設ける場合にはα=0.60、中間または出口に設けるときにはα=0.60〜0.80程度の値に設定すればよいことが実験的に知られている。さらに具体的な数値については、そのオリフィスごとで適宜に実験等に基づいて設定することが可能である。ベンチュリ管の場合も、オリフィスの場合とほぼ同様である。   In addition, in the flow rate measurement method using an orifice or a venturi pipe, the flow rate is obtained from the pressure difference before and after the orifice or the venturi pipe is used to intentionally increase / decrease the pressure in the flow to be measured. I have to. Also in this case, the flow rate coefficient α is obtained in advance by experiments or the like, and the theoretical flow rate value is corrected using the α to obtain a flow rate measurement value. For example, in the case of a JIS standard orifice, the flow coefficient α is set to a value of α = 0.60 when provided near the pipe inlet, and α = 0.60 to 0.80 when provided at the middle or outlet. It is experimentally known to be good. More specific numerical values can be appropriately set for each orifice based on experiments or the like. The Venturi tube is almost the same as the orifice.

ところで、上記のような従来のピトー管では、あらかじめ定められた一方向の流れについての流速または流量を計測することはできるが、それとは逆方向の流れについては計測することはできなかった。また、オリフィスもしくはベンチュリ管についても、実用上、あらかじめ定められた一方向の流れしか計測することができなかった。   By the way, with the conventional Pitot tube as described above, it is possible to measure the flow velocity or flow rate for a predetermined flow in one direction, but it is not possible to measure the flow in the opposite direction. Further, with respect to the orifice or the venturi tube, it was practically possible to measure the flow in one predetermined direction.

また、特に従来のピトー管の場合、総圧孔が流れに対して正対するように設けられているので、例えば計測対象の流体にミスト(結露のような水滴や油脂滴等)や塵埃が混在していると、それが総圧孔を塞いでしまうなどして、正確な計測を続行することの妨げとなる場合があった。   In particular, in the case of the conventional pitot tube, the total pressure hole is provided so as to face the flow. For example, mist (water droplets or oil droplets such as condensation) and dust are mixed in the fluid to be measured. If this is done, it may block the total pressure hole and prevent accurate measurement from continuing.

そこで、本発明者は、導通路を流れる計測対象の流体の流れに正対して開口し、その位置で流体の流れによって生じる、いわゆる総圧を計測する総圧孔と、その流体の流れに正対する向きとは逆向きに、流れの下流側を向くように開口し、その開口位置での流体の圧力を後流圧として計測する後流圧孔が設けられている双圧管を用いて、その双圧管によって測定される総圧と後流圧との差圧に基づいて、計測対象の流体の流量値を計測する、という流量計測装置および流量計測方法を提案した。この流量計測装置および流量計測方法によれば、計測対象の流体にミスト(結露のような水滴や油脂滴等)や塵埃が混在していても、それが総圧孔を塞いでしまうといった虞を解消して、常に正確な流量計測を続行することができる。   Therefore, the present inventor opens a hole facing the flow of the fluid to be measured flowing through the conduction path, and measures the so-called total pressure generated by the flow of the fluid at that position, and the flow of the fluid. In the opposite direction to the opposite direction, using a double pressure pipe that opens to face the downstream side of the flow and has a wake pressure hole that measures the pressure of the fluid at the opening position as the wake pressure, A flow measuring device and a flow measuring method for measuring the flow value of the fluid to be measured based on the differential pressure between the total pressure and the wake pressure measured by the double pressure pipe were proposed. According to the flow measuring device and the flow measuring method, there is a possibility that even if mist (water droplets or oil droplets such as condensation) or dust is mixed in the fluid to be measured, it may block the total pressure hole. This eliminates the need for continuous accurate flow measurement.

この流量計測装置および流量計測方法によれば、双圧管が前後対称であることから、導通路における正逆どちらの流れでも対称的に正確に流量の計測を行うことができる。   According to the flow rate measuring device and the flow rate measuring method, since the double pressure tube is symmetric in the front-rear direction, the flow rate can be accurately and symmetrically measured in either the forward or reverse flow in the conduction path.

ところが、この流量計測装置および流量計測方法は、それが新しいものであるが故に、実用に際しては、どのような補正係数や補正方法を用いれば、より正確な流量計測が可能となるのかが、全く確認されていなかった。また、従来のピトー管からの類推に基づいて双圧管における補正係数について考察してみても、双圧管は、長手方向が計測対象の流れに対してほぼ平行に配置される従来のピトー管とはその使用形態が上記のように全く異なっている。このため、従来のピトー管からの類推に基づいて補正の手法を類推することは、極めて困難である。また、従来のピトー管は一般に、上記のように風洞実験などで流速値を計測するために用いられる場合が多いので、風洞の壁面からの距離に対応して補正係数を設定するという手法を適用可能であるかもしれない、という可能性については、すぐにでも思い至り得る。しかし、そのような可能性に基づいて考えても、双圧管の場合、導通路の管路断面の中央部に総圧孔や後流圧孔を設けることが望ましい、といったことなどは考察され得るが、具体的にどのような手法で、換言すればどのようなファクタに基づいて、補正係数を定めればよいのかは、全く不明であった。   However, since the flow measuring device and the flow measuring method are new, in practical use, what kind of correction coefficient and correction method can be used to make more accurate flow measurement possible. It was not confirmed. Also, considering the correction coefficient in the double pressure tube based on the analogy from the conventional Pitot tube, the double pressure tube is different from the conventional Pitot tube in which the longitudinal direction is arranged almost parallel to the flow to be measured. The usage is completely different as described above. For this reason, it is extremely difficult to analogize the correction method based on the analogy from the conventional Pitot tube. In addition, the conventional Pitot tube is generally used to measure the flow velocity value in wind tunnel experiments as described above, so the method of setting the correction coefficient corresponding to the distance from the wall surface of the wind tunnel is applied. The possibility that it may be possible can be immediately conceived. However, even in consideration of such a possibility, in the case of a double pressure tube, it may be considered that it is desirable to provide a total pressure hole or a wake pressure hole in the center of the cross section of the conduit of the conduction path. However, it is completely unknown what method is used, in other words, what factor should be used to determine the correction coefficient.

このため、本発明者は、双圧管を用いた流量計測について種々の実験を行って、実際に双圧管を用いて計測された圧力差に基づいた理論計算によって算出される(つまり補正係数=1として算出される)流量計測値には、流量の真値に対してどのような誤差が生じるものかを確認した。その結果、従来の一般的なピトー管の場合に生じる誤差とは全く異なった様相を示すことが確認された。また、双圧管の補正係数の設定方法として、オリフィスやベンチュリ管を用いた流量計測の場合の補正係数の手法が適用できないものかとも考えたが、それらも適用できなかった。これは、換言すれば、双圧管を用いた流量計測における補正係数の設定方法は、従来のピトー管やオリフィスやベンチュリ管を用いた流量計測の場合から類推または転用することはできない、ということが確認された、ということである。従ってまた、双圧管を用いた流量計測における補正係数の適切な設定手法を見出すことが必要であるが、それは未だ解決されていない問題として残されている、ということである。   For this reason, the present inventor performs various experiments on the flow rate measurement using the double pressure tube, and is calculated by theoretical calculation based on the pressure difference actually measured using the double pressure tube (that is, correction coefficient = 1). It was confirmed what kind of error occurred in the measured flow rate value (calculated as follows) with respect to the true value of the flow rate. As a result, it was confirmed that the appearance was completely different from the error generated in the case of the conventional general Pitot tube. In addition, as a method for setting the correction coefficient of the double pressure tube, it was considered that the correction coefficient method in the case of flow rate measurement using an orifice or a venturi tube could not be applied. In other words, the correction coefficient setting method in the flow rate measurement using the double pressure tube cannot be analogized or diverted from the conventional flow rate measurement using the Pitot tube, the orifice, or the Venturi tube. It has been confirmed. Therefore, it is necessary to find an appropriate setting method of the correction coefficient in the flow rate measurement using the double pressure tube, but this is still an unsolved problem.

また、従来のピトー管も含めて、計測対象の流体に対する総圧孔の迎角が、ある程度以上の大きな角度に亘って変化すると(つまり総圧孔に対して流れが斜めになると)、流量または流速の計測精度が著しく損なわれてしまう虞があることが種々の実験により確認された。   In addition, including the conventional Pitot tube, if the angle of attack of the total pressure hole with respect to the fluid to be measured changes over a large angle of a certain degree or more (that is, when the flow becomes oblique with respect to the total pressure hole), the flow rate or Various experiments have confirmed that the measurement accuracy of the flow velocity may be significantly impaired.

すなわち、流量計測を行う場合には、一般に、総圧孔を有するピトー管または双圧管は流体の流れに対して正対するように導通路中に固定して配置されるので、流れに対する総圧孔の迎角が変化することは有り得ないように考えられる。しかし、実際には、導通路中の流れに著しい乱流や渦等が発生した場合、それに起因して、実質的な流れに対する総圧孔の迎角が、ある程度以上の大きな角度に亘って変化してしまうという虞がある。
また、ピトー管や双圧管を流速計測に適用する場合、流れに対する総圧孔の迎角が大幅に変化する場合がある。例えば、ここで航空機の対気速度を計測するためにピトー管や双圧管を用いることを想定してみる。航空機は一般に迎角を変化させることで揚力を調節する場合が多いので、大気中を飛行している航空機に設置されたピトー管や双圧管における総圧孔の迎角は、例えば±30度あるいはそれ以上のような大幅な角度に亘って変化する場合がある。このように流れに対する総圧孔の迎角が、ある程度以上に変化した場合には、それに起因して、ピトー管や双圧管による流速や対気速度の正確な計測が困難になるという虞があった。
That is, when performing flow rate measurement, a pitot tube or a double pressure tube having a total pressure hole is generally fixedly disposed in the conduction path so as to face the fluid flow. It is unlikely that the angle of attack will change. However, in reality, when a significant turbulent flow or vortex is generated in the flow in the conduction path, the angle of attack of the total pressure hole with respect to the substantial flow changes over a large angle of a certain degree or more. There is a risk of it.
Moreover, when a Pitot tube or a double pressure tube is applied to flow velocity measurement, the angle of attack of the total pressure hole with respect to the flow may change significantly. For example, assume that a Pitot tube or a double pressure tube is used to measure the airspeed of an aircraft. Since aircraft generally adjust lift by changing the angle of attack, the angle of attack of the total pressure hole in a Pitot tube or a double pressure tube installed in an aircraft flying in the atmosphere is, for example, ± 30 degrees or It may vary over such a significant angle. Thus, if the angle of attack of the total pressure hole with respect to the flow changes more than a certain level, there is a risk that accurate measurement of the flow velocity and airspeed with a Pitot tube or a twin pressure tube may be difficult. It was.

本発明はこのような問題を解決するためになされたもので、その目的は、双圧管を用いた流量計測における補正係数の適切な設定手法を見出して、その補正係数の設定を用いた簡易な装置を用いた簡易な方法によって正確な流量計測を行うこと、および流れに対する迎角が変化しても正確な流量計測を行うことを可能とする、流量計測装置および流速計測装置ならびに流速計測方法を提供することにある。   The present invention has been made to solve such a problem, and its object is to find an appropriate setting method of a correction coefficient in flow rate measurement using a twin-pressure tube and to use a simple method using the setting of the correction coefficient. A flow rate measuring device, a flow velocity measuring device, and a flow velocity measuring method capable of performing accurate flow rate measurement by a simple method using a device, and capable of performing accurate flow rate measurement even when the angle of attack to the flow changes. It is to provide.

本発明による第1の流量計測装置は、導通路を流れる計測対象の流体の流れに正対する向きに総圧孔が設けられており、前記総圧孔で前記流体の流れによって生じる総圧を計測すると共に、前記流体の流れに正対する向きとは逆向きの位置に後流圧孔が設けられており、前記後流圧孔で前記流体の流れによって生じる後流圧を計測する双圧管と、前記総圧と前記後流圧とに対応した出力を行う圧力センサと、前記圧力センサからの出力に基づいて求められる前記総圧と前記後流圧との差圧の値の2倍を前記流体の密度で除した値の平方根を演算してなる値に、前記導通路の流管としての総断面積から前記双圧管によって遮られる断面積を差し引いた実質的開口面積の値を前記総断面積で除してなる前記導通路の実質的開口率の逆数を乗算する演算を含む補正を行って、前記流体の流量値を算出する流量値演算回路とを備えている。   In the first flow rate measuring device according to the present invention, a total pressure hole is provided in a direction opposite to the flow of the fluid to be measured flowing through the conduction path, and the total pressure generated by the flow of the fluid is measured at the total pressure hole. In addition, a wake pressure hole is provided at a position opposite to the direction directly facing the fluid flow, and a double pressure tube that measures the wake pressure generated by the fluid flow at the wake pressure hole, A pressure sensor that performs output corresponding to the total pressure and the wake pressure, and twice the value of the differential pressure between the total pressure and the wake pressure that is obtained based on the output from the pressure sensor. The value obtained by calculating the square root of the value divided by the density is subtracted from the total cross-sectional area as the flow pipe of the conduction path from the cross-sectional area blocked by the double pressure pipe, and the value of the substantial opening area is the total cross-sectional area. Multiply by the reciprocal of the substantial aperture ratio of the conduction path divided by Performing a correction comprising the calculation, and a flow rate value calculation circuit for calculating a flow rate value of the fluid.

本発明による第1の流量計測装置では、導通路を流れる計測対象の流体の流れに正対する向きに総圧孔が設けられていると共に、流体の流れに正対する向きとは逆向きの位置に後流圧孔が設けられている双圧管を用いて、計測対象の流体の流量の計測値を得るにあたり、総圧孔によって流体の流れに正対して生じる総圧と、後流圧孔によって流体の流れに対して下流向きで生じる後流圧とを計測し、その両者の差圧の値の2倍を流体の密度で除した値の平方根を演算してなる値に、導通路の流管としての総断面積から双圧管によって遮られる断面積を差し引いた実質的開口面積の値を総断面積で除してなる導通路の実質的開口率の逆数を、補正係数として乗算するという補正を行うことで、より精確な流量計測値が得られる。   In the first flow rate measuring device according to the present invention, the total pressure hole is provided in a direction facing the flow of the fluid to be measured flowing through the conduction path, and at a position opposite to the direction facing the fluid flow. In obtaining the measurement value of the flow rate of the fluid to be measured using the double pressure pipe provided with the wake pressure hole, the total pressure generated by the total pressure hole directly facing the fluid flow and the fluid by the wake pressure hole Measures the wake pressure generated downstream from the flow of the fluid, and calculates the square root of the value obtained by dividing twice the value of the differential pressure by the fluid density to the flow tube of the conduction path. Correction by multiplying as a correction coefficient the reciprocal of the substantial opening ratio of the conductive path obtained by dividing the value of the substantial opening area obtained by subtracting the sectional area blocked by the twin pressure tube from the total sectional area as the total sectional area. By doing so, a more accurate flow rate measurement value can be obtained.

本発明による第2の流量計測装置は、導通路中に配置され、当該導通路を流れる計測対象の流体の流れの静圧を計測する静圧孔と、前記流体の流れに正対する向きとは逆の下流側に向いて開口するように設けられて当該開口位置での前記流体の後流圧を計測する後流圧孔とを設けてなる後流差圧計測管と、前記後流差圧計測管によって計測される前記静圧と前記後流圧との差圧に対応した出力を行う圧力センサと、前記導通路の流管としての総断面積から前記後流差圧計測管によって遮られる断面積を差し引いた実質的開口面積の値を前記総断面積で除してなる前記導通路の実質的開口率の逆数を、前記圧力センサからの出力に基づいて求められる前記差圧の値の2倍を前記流体の密度で除した値の平方根を演算してなる値に乗算する演算を含む補正を行って、前記流体の流量値を算出する流量値演算回路とを備えている。   The second flow rate measuring device according to the present invention is arranged in the conduction path, and the static pressure hole for measuring the static pressure of the flow of the fluid to be measured flowing through the conduction path and the direction facing the fluid flow are as follows. A wake differential pressure measuring pipe provided to open toward the opposite downstream side and provided with a wake pressure hole for measuring the wake pressure of the fluid at the opening position, and the wake differential pressure A pressure sensor that outputs an output corresponding to a differential pressure between the static pressure and the wake pressure measured by the measurement pipe, and is blocked by the wake differential pressure measurement pipe from a total cross-sectional area as a flow pipe of the conduction path The reciprocal number of the substantial opening ratio of the conduction path obtained by dividing the value of the substantial opening area obtained by subtracting the sectional area by the total sectional area is the value of the differential pressure value obtained based on the output from the pressure sensor. An operation of multiplying a value obtained by calculating a square root of a value obtained by dividing twice by the density of the fluid. Performing no correction, and a flow rate value calculation circuit for calculating a flow rate value of the fluid.

本発明による第2の流量計測装置では、静圧孔で計測された静圧と後流圧孔で計測された圧力との差圧を用いて、その後流差圧計測管に関する理論計算を行って流体の理論流量値を算出する。そしてその理論流量値に対して、導通路の流管としての総断面積から後流差圧計測管によって遮られる断面積を差し引いた実質的開口面積の値を総断面積で除してなる導通路の実質的開口率の逆数を補正係数として乗算する演算を含む補正を行うことで、より精確な流量計測値が得られる。   In the second flow rate measuring device according to the present invention, the theoretical calculation regarding the downstream differential pressure measuring tube is performed using the differential pressure between the static pressure measured at the static pressure hole and the pressure measured at the downstream pressure hole. Calculate the theoretical flow rate of the fluid. Then, with respect to the theoretical flow rate value, a value obtained by dividing the value of the substantial opening area obtained by subtracting the cross-sectional area blocked by the wake differential pressure measuring pipe from the total cross-sectional area as the flow pipe of the conduction path by the total cross-sectional area. A more accurate flow rate measurement value can be obtained by performing a correction including an operation of multiplying the reciprocal of the substantial opening ratio of the passage as a correction coefficient.

なお、上記の第1の流量計測装置または第2の流量計測装置において、圧力センサは、総圧孔で計測された総圧または静圧孔で計測された静圧と、後流圧孔で計測された後流圧との、それぞれに個別に対応した出力を行う機能を備えるなどして、流量値演算回路は、上記の補正として、静圧と後流圧との比率または総圧と後流圧との比率を流体の理論密度(または静止時の流体の密度の値)に乗算することで、密度の補正を行う機能を、さらに含むようにしてもよい。このようにすることにより、上記のような基本的な補正係数を用いた補正を行って計測誤差を低減することにさらに加えて、密度の誤差に起因した計測誤差を低減して、最終的に得られる流量値の計測精度をさらに高いものとすることが可能となる。   In the first flow measurement device or the second flow measurement device, the pressure sensor measures the total pressure measured at the total pressure hole or the static pressure measured at the static pressure hole and the wake pressure hole. The flow value calculation circuit has a function of performing an output individually corresponding to each of the wake pressures, and the flow rate value calculation circuit, as the above correction, has a ratio between the static pressure and the wake pressure or the total pressure and the wake flow. A function of correcting the density by multiplying the ratio of the pressure and the theoretical density of the fluid (or the value of the density of the fluid at rest) may be further included. In this way, in addition to reducing the measurement error by performing the correction using the basic correction coefficient as described above, the measurement error due to the density error is reduced, and finally It becomes possible to make the measurement accuracy of the obtained flow rate value higher.

また、上記の流量値演算回路は、上記の補正として、圧力センサからの出力に基づいて流体のレイノルズ数を演算し、その演算されたレイノルズ数に対応した補正を行う機能を、さらに含むようにしてもよい。このようにレイノルズ数に対応した補正をさらに行うことにより、上記のような基本的な補正係数を用いた補正を行って計測誤差を低減することにさらに加えて、計測対象の流体のレイノルズ数に対応した補正を行って、最終的に得られる流量値の計測精度をさらに高いものとすることが可能となる。   In addition, the flow value calculation circuit described above may further include a function of calculating the Reynolds number of the fluid based on the output from the pressure sensor and performing a correction corresponding to the calculated Reynolds number as the correction. Good. In addition to reducing the measurement error by performing the correction using the basic correction coefficient as described above by further performing the correction corresponding to the Reynolds number in this way, the Reynolds number of the fluid to be measured is set. By performing corresponding correction, it becomes possible to further increase the measurement accuracy of the finally obtained flow rate value.

ここで、計測対象の流体のレイノルズ数を、測定された差圧などから算出し、そのレイノルズ数が臨界レイノルズ数(一般にRe(th)=2000)未満の場合には、その演算されたレイノルズ数を用いた補正を行うようにすることも可能である。   Here, the Reynolds number of the fluid to be measured is calculated from the measured differential pressure, and when the Reynolds number is less than the critical Reynolds number (generally, Re (th) = 2000), the calculated Reynolds number It is also possible to perform correction using.

また、計測対象の流体のレイノルズ数を、測定された差圧などから算出し、そのレイノルズ数が臨界レイノルズ数以上の場合には、導通路および双圧管または後流差圧計測管に対応して予め定められた補正定数を用いた補正を行うようにすることも可能である。   Also, calculate the Reynolds number of the fluid to be measured from the measured differential pressure, etc., and if the Reynolds number is greater than or equal to the critical Reynolds number, it corresponds to the conduction path and the double pressure pipe or the wake differential pressure measurement pipe. It is also possible to perform correction using a predetermined correction constant.

あるいは、計測対象の流体のレイノルズ数を、測定された差圧などから算出し、そのレイノルズ数が臨界レイノルズ数未満の場合には、その演算されたレイノルズ数を用いた補正を行うが、臨界レイノルズ数以上の場合には、導通路および双圧管または後流差圧計測管に対応して予め定められた補正定数を用いた補正を行うようにすることも可能である。   Alternatively, the Reynolds number of the fluid to be measured is calculated from the measured differential pressure, and if the Reynolds number is less than the critical Reynolds number, correction is performed using the calculated Reynolds number. In the case of more than a few, it is also possible to perform correction using a predetermined correction constant corresponding to the conduction path and the double pressure pipe or the wake differential pressure measuring pipe.

すなわち、計測対象の流体のレイノルズ数が臨界レイノルズ数未満の場合には、流量計測値がそのときのレイノルズ数によって強い影響を受けて真値に対する大幅な誤差が生じる傾向にあるので、そのときのレイノルズ数に対応して補正係数を大幅に変更することが必要である。また計測対象の流体のレイノルズ数が臨界レイノルズ数以上の場合には、レイノルズ数が変化しても流量計測値はそのときのレイノルズ数によってほとんど影響を受けない傾向にあるので、この場合には補正係数として双圧管または後流差圧計測管および導通路の寸法(流れに関与する代表寸法)などによってほぼ一義的に定まる定数を用いることが可能である。   That is, when the Reynolds number of the fluid to be measured is less than the critical Reynolds number, the flow rate measurement value is strongly influenced by the Reynolds number at that time, and there is a tendency for a large error to occur to the true value. It is necessary to significantly change the correction coefficient corresponding to the Reynolds number. If the Reynolds number of the fluid to be measured is greater than or equal to the critical Reynolds number, the flow rate measurement tends to be hardly affected by the Reynolds number even if the Reynolds number changes. As a coefficient, it is possible to use a constant that is almost uniquely determined by the twin pressure tube or the wake differential pressure measuring tube and the dimension of the conduction path (representative dimension related to the flow).

ここで、後流差圧計測管は、外形が円筒状で、内部がシリンダ状の空洞を成し、当該円筒状の側面には、前記後流圧孔が前記空洞と連通するように設けられており、前記後流圧孔が前記流体の流れに正対する向きとは逆の下流側に向くように、前記導通路の側壁の外側から当該導通路の内側へと前記流体の流れを横切って挿通されて、前記流れの方向から見て前記円筒状の下流側の前記開口位置で前記流体の後流圧を計測し、他方、前記導通路の側壁と前記円筒状の側面との間には前記静圧孔として所定寸法の間隙が設けられて、前記静圧孔によって前記流体の静圧を計測し、前記後流圧を前記後流圧孔から前記空洞を通して前記圧力センサへと伝達すると共に、前記静圧を前記静圧孔から前記圧力センサへと伝達するように設定されているようにすることは望ましい一態様である。このような態様とすることにより、後流差圧計測管の構造を簡易なものとすることができる。   Here, the wake differential pressure measuring tube has a cylindrical outer shape, and a cylindrical cavity is formed inside, and the wake pressure hole is provided on the cylindrical side surface so as to communicate with the cavity. Crossing the fluid flow from the outside of the side wall of the conduction path to the inside of the conduction path so that the wake pressure hole faces the downstream side opposite to the direction facing the fluid flow. Is inserted and measures the downstream pressure of the fluid at the opening position on the downstream side of the cylindrical shape when viewed from the flow direction, and on the other hand, between the side wall of the conduction path and the cylindrical side surface. A gap having a predetermined size is provided as the static pressure hole, the static pressure of the fluid is measured by the static pressure hole, and the wake pressure is transmitted from the wake pressure hole to the pressure sensor through the cavity. The static pressure is set to be transmitted from the static pressure hole to the pressure sensor. Unisuru it is desirable aspect. By adopting such an aspect, the structure of the wake differential pressure measuring tube can be simplified.

本発明の流速計測装置は、計測対象の流体の流れの静圧を計測する静圧孔と、前記流体の流れに正対する向きとは逆の下流側に向いて開口するように設けられて当該開口位置での前記流体の後流圧を計測する後流圧孔とを設けてなる後流差圧計測管と、前記後流差圧計測管によって計測される前記静圧と前記後流圧との差圧に基づいて前記流体の流速値を計測する流速量値計測手段とを備えている。   The flow velocity measuring device of the present invention is provided so as to open toward the downstream side opposite to the direction facing the fluid flow, and the static pressure hole for measuring the static pressure of the fluid flow to be measured. A wake differential pressure measuring pipe provided with a wake pressure hole for measuring the wake pressure of the fluid at the opening position, the static pressure and the wake pressure measured by the wake differential pressure measuring pipe, And a flow rate value measuring means for measuring the flow rate value of the fluid based on the differential pressure.

また、本発明の流速計測方法は、計測対象の流体の流れの静圧を計測する静圧孔と、前記流体の流れに正対する向きとは逆の下流側に向いて開口するように設けられて当該開口位置での前記流体の後流圧を計測する後流圧孔とを設けてなる後流差圧計測管を用いて、前記静圧孔によって計測される静圧と前記後流圧孔によって計測される後流圧との差圧に基づいて前記流体の流速値を計測するというものである。   Further, the flow velocity measuring method of the present invention is provided so as to open toward the downstream side opposite to the static pressure hole for measuring the static pressure of the fluid flow to be measured and the direction facing the fluid flow. And a wake pressure hole for measuring the wake pressure of the fluid at the opening position. The flow velocity value of the fluid is measured based on the differential pressure with respect to the wake pressure measured by.

本発明の流速計測装置または流速計測方法では、下流側に向いて開口するように設けられた後流圧孔によって、その開口位置での流体の後流圧が計測される。そしてその後流圧と静圧との差圧に基づいて、流体の流速値が計測される。上記のような下流側に向いて開口してなる後流圧孔によれば、流体に対する迎角が30度以上のような大幅な角度に亘って変化しても、それに起因した計測の乱れが生じることがない。このことは、本発明者による種々の実験によって確認された新知見である。   In the flow velocity measuring device or flow velocity measuring method of the present invention, the wake pressure of the fluid at the opening position is measured by the wake pressure hole provided so as to open toward the downstream side. Then, the flow velocity value of the fluid is measured based on the differential pressure between the flow pressure and the static pressure. According to the downstream pressure hole that opens toward the downstream side as described above, even if the angle of attack with respect to the fluid changes over a large angle such as 30 degrees or more, measurement disturbance due to the angle changes. It does not occur. This is a new finding confirmed by various experiments by the present inventors.

本発明の流量計測装置および流速計測装置ならびに流速計測方法によれば、双圧管を用いた流量計測における補正係数の適切な設定手法を見出して、その補正係数の設定を用いた簡易な装置を用いた簡易な方法によって正確な流量計測を行うこと、および流れに対する迎角が変化しても正確な流量計測を行うことが可能になる。   According to the flow rate measuring device, the flow velocity measuring device, and the flow velocity measuring method of the present invention, an appropriate setting method of the correction coefficient in the flow rate measurement using the double pressure tube is found, and a simple apparatus using the setting of the correction coefficient is used. Thus, it is possible to perform accurate flow measurement by a simple method and to perform accurate flow measurement even if the angle of attack with respect to the flow changes.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る流量計測装置の概要構成を表す図である。この流量計測装置は、双圧管1と、圧力センサ2と、流量値演算回路3とから、その主要部が構成されている。
[First Embodiment]
FIG. 1 is a diagram illustrating a schematic configuration of a flow rate measuring device according to a first embodiment of the present invention. This flow measuring device is composed mainly of a double pressure tube 1, a pressure sensor 2, and a flow value calculation circuit 3.

双圧管1は、その外形が円筒状で、導通路(導通管)4の中に流体の流れを横切るように横断して設けられるものである。その円筒状の側面には、導通路4を流れる計測対象の流体(気体または液体)の正方向の流れ(ここでは、便宜上の一例として、図1で左から右へと流体が流れる方向を正方向と呼ぶものとする)に正対する向きに総圧孔11が設けられている。その総圧孔11で、流体の流れによって生じる総圧が計測される。また、前述の正方向の流体の流れに正対する向きとは逆向きに、流れの下流側を向いて開口してなる後流圧孔12が設けられている。この後流圧孔12では、この後流圧孔12自体が設けられている位置で流体の流れによって生じる圧力が、後流圧として計測される。   The double pressure tube 1 has a cylindrical outer shape and is provided in a conduction path (conduction tube) 4 so as to cross the flow of fluid. On the cylindrical side surface, the flow of the fluid to be measured (gas or liquid) flowing through the conduction path 4 in the positive direction (here, as an example for convenience, the direction in which the fluid flows from left to right in FIG. A total pressure hole 11 is provided in a direction opposite to the direction). The total pressure generated by the fluid flow is measured at the total pressure hole 11. Further, there is provided a wake pressure hole 12 that is open toward the downstream side of the flow in the direction opposite to the direction facing the fluid flow in the forward direction. In the wake pressure hole 12, the pressure generated by the fluid flow at the position where the wake pressure hole 12 itself is provided is measured as the wake pressure.

この双圧管1における総圧孔11で拾われた総圧P1は、この双圧管1内に設けられた第1の経路111を通って圧力センサ2へと伝達される。他方、後流圧孔12で拾われた後流圧P2は、この双圧管1内に設けられた第2の経路121を通って圧力センサ2へと伝達される。なお、総圧孔11および後流圧孔12は、流れが逆向きになったときには、その果たす機能がそれまでとは逆になる。   The total pressure P 1 picked up by the total pressure hole 11 in the double pressure tube 1 is transmitted to the pressure sensor 2 through the first path 111 provided in the double pressure tube 1. On the other hand, the wake pressure P2 picked up by the wake pressure hole 12 is transmitted to the pressure sensor 2 through the second path 121 provided in the double pressure tube 1. The total pressure hole 11 and the wake pressure hole 12 have reverse functions when the flow is reversed.

圧力センサ2は、双圧管1から伝達されて来た総圧P1および後流圧P2に対応した電圧または電気信号を出力する。図4は、この圧力センサ2からの差圧出力と流量値(真値Qo)との相関の実例を表したものである。この実例では、流量値Qoに対応して差圧出力が2次関数的に変化している。このように、差圧出力と流量とは、明確な1対1対応の関数関係にある。   The pressure sensor 2 outputs a voltage or an electric signal corresponding to the total pressure P1 and the wake pressure P2 transmitted from the twin pressure tube 1. FIG. 4 shows an actual example of the correlation between the differential pressure output from the pressure sensor 2 and the flow rate value (true value Qo). In this example, the differential pressure output changes in a quadratic function corresponding to the flow rate value Qo. As described above, the differential pressure output and the flow rate have a clear one-to-one correspondence relationship.

流量値演算回路3は、圧力センサ2からの出力に基づいて求められる総圧P1と後流圧P2との差圧ΔP(=P1−P2)の値の2倍(2ΔP)を、計測対象の流体の密度ρで除した値(2ΔP/ρ)の平方根√(2ΔP/ρ)を演算してなる値に、導通路4の流管としての総断面積Dから双圧管1によって遮られる断面積dを差し引いた実質的開口面積(D−d)の値を総断面積Dで除してなる導通路4の実質的開口率Kd(Kd=D/(D−d))の逆数(1/Kd=(D−d)/D)を乗算する。   The flow rate calculation circuit 3 calculates twice the value (2ΔP) of the differential pressure ΔP (= P1−P2) between the total pressure P1 and the wake pressure P2 obtained based on the output from the pressure sensor 2 as a measurement target. The cross-sectional area blocked by the double pressure tube 1 from the total cross-sectional area D as the flow tube of the conduction path 4 to a value obtained by calculating the square root √ (2ΔP / ρ) of the value (2ΔP / ρ) divided by the density ρ of the fluid The reciprocal (1 / of the substantial aperture ratio Kd (Kd = D / (D−d)) of the conduction path 4 obtained by dividing the value of the substantial aperture area (D−d) by subtracting d by the total cross-sectional area D. Multiply by Kd = (D−d) / D).

そしてさらに、計測対象の流体の静圧(P0)と総圧(P1 )との比率(P1 /P0)を静止時の流体の密度の値ρ0に乗算する演算を行うことで((P1 /P0)・ρ0=ρ1 )、流体の密度の値ρを補正する。その補正を施された密度の値ρ1 を、流量計測値(Q)を算出するための演算に用いる。   Further, by calculating the ratio (P1 / P0) of the static pressure (P0) of the fluid to be measured and the total pressure (P1) to the value ρ0 of the density of the fluid at rest ((P1 / P0)). ) · Ρ0 = ρ1), the fluid density value ρ is corrected. The density value ρ1 subjected to the correction is used for the calculation for calculating the flow rate measurement value (Q).

また、さらには、圧力センサ2からの出力に基づいて流体のレイノルズ数(Re)を演算し、その演算されたレイノルズ数に対応した補正を行う。さらに詳細には、圧力センサ2からの出力に基づいて演算される圧力差または総圧などによって推定される計測対象の流体のレイノルズ数が、臨界レイノルズ数(一般にRe-th=2000)未満の場合には(Re<Re-th)、その演算されたレイノルズ数を用いた補正を行うが、臨界レイノルズ数以上の場合には(Re≧Re-th)、導通路4および双圧管1に対応して予め定められた補正定数を用いた補正を行う。   Further, the Reynolds number (Re) of the fluid is calculated based on the output from the pressure sensor 2, and correction corresponding to the calculated Reynolds number is performed. More specifically, when the Reynolds number of the fluid to be measured estimated by the pressure difference or the total pressure calculated based on the output from the pressure sensor 2 is less than the critical Reynolds number (generally Re-th = 2000) (Re <Re-th), correction is performed using the calculated Reynolds number. If the Reynolds number is greater than the critical Reynolds number (Re ≧ Re-th), it corresponds to the conduction path 4 and the double pressure tube 1. Then, correction using a predetermined correction constant is performed.

すなわち、このレイノルズ数に対応した補正のための補正係数をF(Re)(;ここにFはReの関数)とすると、それは、レイノルズ数が臨界レイノルズ数未満の場合には、例えば図2,図3に示したような単調減少関数となる。なお、図2は、導通路4の直径が16[mm]であり、双圧管1の直径が3[mm],4[mm],6[mm]の場合についての実験結果を示しており、図3は、導通路4の直径が20[mm]で、双圧管1の直径が3[mm],4[mm],8[mm]の場合についての実験結果を示している。   That is, assuming that the correction coefficient for correction corresponding to this Reynolds number is F (Re) (where F is a function of Re), it is shown in FIG. 2 when the Reynolds number is less than the critical Reynolds number. A monotonically decreasing function as shown in FIG. In addition, FIG. 2 has shown the experimental result about the case where the diameter of the conduction path 4 is 16 [mm] and the diameter of the double pressure tube 1 is 3 [mm], 4 [mm], 6 [mm] FIG. 3 shows experimental results when the diameter of the conduction path 4 is 20 [mm] and the diameter of the double pressure tube 1 is 3 [mm], 4 [mm], and 8 [mm].

また、レイノルズ数が臨界レイノルズ数以上の場合には、F(Re)はほぼ定数となることが、図2,図3から明確に分かる。より具体的には、図2,図3に示した実例によれば、導通路4の直径が16[mm]の場合にはF(Re)=約0.65、導通路4の直径が20[mm]の場合にはF(Re)=約1.01となっている。   Further, it can be clearly seen from FIGS. 2 and 3 that when the Reynolds number is greater than or equal to the critical Reynolds number, F (Re) is almost constant. More specifically, according to the examples shown in FIGS. 2 and 3, when the diameter of the conduction path 4 is 16 [mm], F (Re) = about 0.65, and the diameter of the conduction path 4 is 20. In the case of [mm], F (Re) = about 1.01.

以上のような補正を含めて、流量計測値Qを算出するために流量値演算回路3で行われる演算は、図1の流量値演算回路3のブロック内に示したような数式で書き表されるものとなる。すなわち、ここにもその演算式を書き記すと、Q=F(Re)・(1/Kd)・√{(P0/P1)・ΔP/ρ0})である。このような補正を含んだ演算によって、誤差の少ない流量計測値(Q)を算出することができる。   The calculation performed by the flow value calculation circuit 3 to calculate the flow rate measurement value Q including the correction as described above is expressed by a mathematical formula as shown in the block of the flow value calculation circuit 3 in FIG. Will be. That is, if the arithmetic expression is also written here, Q = F (Re) · (1 / Kd) · √ {(P0 / P1) · ΔP / ρ0}). By the calculation including such correction, the flow rate measurement value (Q) with less error can be calculated.

流量値演算回路3は、導通路4の流管としての総断面積および双圧管1によって遮られる断面積の情報を入力するための入力装置5を備えている。そしてそれらの情報が入力されると、臨界レイノルズ数以上の場合に用いられる補正定数(F(Re))を自動的に演算して更新する機能を、さらに備えている。   The flow value calculation circuit 3 includes an input device 5 for inputting information on the total cross-sectional area as a flow tube of the conduction path 4 and the cross-sectional area blocked by the double pressure pipe 1. Further, when such information is input, a function of automatically calculating and updating a correction constant (F (Re)) used when the number of critical Reynolds numbers is exceeded is further provided.

このような機能によって、流量値演算回路3は、異なった寸法や仕様の導通路4や双圧管1を用いた流量計測を行う場合などにも、そのとき用いられる導通路4や双圧管1によって定まるレイノルズ数に対応した補正係数を自動的に適切な値に設定変更して、常に正確な流量計測値(Q)を算出することができる。   With such a function, the flow value calculation circuit 3 also uses the conduction path 4 and the double pressure tube 1 used at that time when performing flow measurement using the conduction path 4 and the double pressure pipe 1 having different dimensions and specifications. The correction coefficient corresponding to the fixed Reynolds number can be automatically changed to an appropriate value to always calculate an accurate flow rate measurement value (Q).

また、流量値演算回路3は、導通路4の流管としての総断面積および双圧管1によって遮られる断面積の情報が入力されると、その情報に基づいて、実質的開口率の逆数(1/Kd)を自動的に演算して更新する機能を、さらに備えている。   Further, when information on the total cross-sectional area as the flow tube of the conduction path 4 and the cross-sectional area blocked by the twin pressure pipe 1 are input, the flow value calculation circuit 3 receives the reciprocal of the substantial aperture ratio ( A function of automatically calculating and updating 1 / Kd) is further provided.

このような機能によって、流量値演算回路3は、異なった寸法や仕様の導通路4や双圧管1を用いた流量計測を行う場合などにも、そのとき用いられる導通路4や双圧管1に対応して自動的に適切な補正係数(Kd)に変更して、常に正確な流量計測値(Q)を得ることができる。   With such a function, the flow value calculation circuit 3 can also be used for the conduction path 4 and the double pressure tube 1 used at that time, even when performing flow measurement using the conduction path 4 and the double pressure pipe 1 having different dimensions and specifications. Correspondingly, it is automatically changed to an appropriate correction coefficient (Kd), and an accurate flow rate measurement value (Q) can always be obtained.

次に、上記のような補正係数を設定するために本発明者が行った種々の実験の経緯および結果について説明する。   Next, the background and results of various experiments conducted by the inventor in order to set the correction coefficient as described above will be described.

(1) 導通路4の直径(流路の直径とも呼ぶ)Dは変更せずに双圧管1の直径dのみを大きくすると、同じ流量(真値Qo)を流した状態でも差圧ΔPが増大することが判明した。
(2) 双圧管1の直径dは変更せずに導通路4の直径を大きくすると、安定した精度での計測可能レンジが拡大した。
(3) 導通路4の直径Dおよび双圧管1の直径dは変更せずに流体の圧力(静止圧または総圧)を大きくすると、差圧ΔPが減少した。
(1) If only the diameter d of the double pressure tube 1 is increased without changing the diameter D (also referred to as the diameter of the flow path) D of the conduction path 4, the differential pressure ΔP increases even when the same flow rate (true value Qo) flows. Turned out to be.
(2) When the diameter d of the conduction path 4 is increased without changing the diameter d of the double pressure tube 1, the measurable range with stable accuracy is expanded.
(3) When the fluid pressure (static pressure or total pressure) was increased without changing the diameter D of the conduction path 4 and the diameter d of the double pressure tube 1, the differential pressure ΔP decreased.

これらの実験結果に基づいて、種々の考察を行った。上記の(2)の「双圧管1の直径dは変更せずに導通路4の直径を大きくすると、安定した精度での計測可能レンジが拡大した」のは、流路の断面積の増大に伴って、導通路4の許容流量が増大したことと、流体のレイノルズ数が大きくなったためであると推測された。   Various considerations were made based on the results of these experiments. The above (2) “When the diameter of the conduction path 4 is increased without changing the diameter d of the double-pressure tube 1, the measurable range with a stable accuracy is expanded” is an increase in the cross-sectional area of the flow path. Along with this, it was speculated that the allowable flow rate of the conduction path 4 increased and the Reynolds number of the fluid increased.

ここで、補正係数をqと置いて、上記の(1)のように導通路4の直径Dは変更せずに双圧管1の直径dのみを大きくすると、同じ流量(Qo)を流した状態でも差圧ΔPが増大する。このとき、補正係数をqとおくと、導通路4の実質的開口率(開口面積比)Kdと補正係数qとの間には反比例の相関関係(Kd・q=const.)が成り立つことが判明した。例えば、導通路4の直径を16[mm]で一定として、双圧管1の直径がφ=6[mm],4[mm],3[mm]の、それぞれの場合について、そのときの流量の真値Qoとの誤差を補正することができる補正係数qの平均値を実験結果に基づいて算出した。その結果、補正係数qの平均値は、前記の双圧管1の直径の大きい順に、0.257,0.204,0.190となった。   Here, when the correction coefficient is set to q and the diameter D of the double pressure tube 1 is increased without changing the diameter D of the conduction path 4 as in (1) above, the same flow rate (Qo) is applied. However, the differential pressure ΔP increases. At this time, if the correction coefficient is set to q, an inversely proportional correlation (Kd · q = const.) May be established between the substantial aperture ratio (opening area ratio) Kd of the conduction path 4 and the correction coefficient q. found. For example, assuming that the diameter of the conduction path 4 is constant at 16 [mm] and the diameter of the double pressure tube 1 is φ = 6 [mm], 4 [mm], and 3 [mm], the flow rate at that time is The average value of the correction coefficient q that can correct the error from the true value Qo was calculated based on the experimental results. As a result, the average value of the correction coefficient q was 0.257, 0.204, and 0.190 in descending order of the diameter of the double pressure tube 1.

他方、その各双圧管1の直径ごとでの実質的開口率Kd=D/(D−d)は、前記の双圧管1の直径の大きい順に、0.534,0.685,0.763であった。そこで、各双圧管1の直径φごとで実質的開口率Kdと補正係数qとを乗算して確認したところ、その乗算結果の値はほぼ一定となった。   On the other hand, the substantial aperture ratio Kd = D / (D−d) for each diameter of each double pressure tube 1 is 0.534, 0.685, 0.763 in descending order of the diameter of the double pressure tube 1. there were. Therefore, when the substantial aperture ratio Kd and the correction coefficient q are multiplied for each diameter φ of each twin pressure tube 1 and confirmed, the value of the multiplication result is substantially constant.

このことから、Kd・q=const.であり、従って補正係数qは、q=c/Kd(ここに左式のcは定数)となることが分かった。これは、導通路4の実質的開口率が、双圧管1の設置で減少するために、その小さくなった導通路4の実質的開口面積に対応して流体の流速が増加され、その結果、差圧が増大することによるものであると考えられる。このような実験および考察に基づいて、上記ような補正方法を本発明者は発明するに至ったのである。   From this, Kd · q = const. Therefore, the correction coefficient q is found to be q = c / Kd (where c in the left equation is a constant). This is because the flow rate of the fluid is increased corresponding to the reduced substantial opening area of the conduction path 4 because the substantial opening ratio of the conduction path 4 is reduced by the installation of the twin pressure tube 1, and as a result, This is thought to be due to an increase in the differential pressure. Based on such experiments and considerations, the present inventors have invented the correction method as described above.

このように、第1の実施の形態に係る流量計測装置によれば、双圧管1を用いて測定された差圧の値の2倍を流体の密度で除した値の平方根を演算してなる値に、導通路4の流管としての総断面積から双圧管1によって遮られる断面積を差し引いた実質的開口面積の値を総断面積で除してなる導通路4の実質的開口率の逆数を補正係数として乗算する、という補正を行うことで、計測対象の流体の流量計測値を得るようにしたので、その補正係数を用いた的確な補正を行うことができ、それによって正確な流量の計測値を得ることができる。   As described above, according to the flow rate measuring apparatus according to the first embodiment, the square root of a value obtained by dividing twice the value of the differential pressure measured using the double pressure tube 1 by the density of the fluid is calculated. The value of the substantial opening area obtained by dividing the value of the substantial opening area obtained by subtracting the sectional area blocked by the double pressure tube 1 from the total sectional area as the flow tube of the conducting path 4 by the total sectional area. By performing the correction of multiplying the reciprocal as a correction coefficient, the flow rate measurement value of the fluid to be measured was obtained, so that an accurate correction using the correction coefficient could be performed, thereby providing an accurate flow rate. Can be obtained.

[第2の実施の形態]
双圧管1の代りに、図5、図6に示すような後流差圧計測管20を用いることが可能である。この後流差圧計測管20は、外形が円筒状の本体21と、フランジ部22とから、その主要部が構成されている。
[Second Embodiment]
Instead of the twin pressure tube 1, a wake differential pressure measuring tube 20 as shown in FIGS. 5 and 6 can be used. The wake differential pressure measuring tube 20 includes a main body 21 having a cylindrical outer shape and a flange portion 22, and the main part thereof is configured.

本体21は、外形がほぼ円筒状で、内部がシリンダ状の空洞23を成している。その本体21の側面の長手方向ほぼ中央に、後流圧孔24が設けられている。   The main body 21 has a substantially cylindrical outer shape and a cylindrical cavity 23 inside. A wake pressure hole 24 is provided substantially at the center in the longitudinal direction of the side surface of the main body 21.

後流圧孔24は、この本体21の内部の空洞23と連通するように設けられている。そして計測対象の流体の流れに正対する向きとは逆向きに、つまり流れの下流側に向くように配置され、その位置での流体の後流圧P2を拾う。   The wake pressure hole 24 is provided so as to communicate with the cavity 23 inside the main body 21. And it arrange | positions so that it may face in the direction opposite to the direction which opposes the flow of the fluid of measurement object, ie, the downstream of a flow, and picks up the wake pressure P2 of the fluid in the position.

フランジ部22は、本体21の根元(一端)に設けられている。その第1主面26には、本体21を中心としてその両脇の点対称な位置にそれぞれ支持ピン27a,27bが配設されている。導通路4の側壁の表面上には、静圧孔28を中心としてその両脇にそれぞれ嵌合孔29a,29bが刻設されている。そして支持ピン27a,27bはそれぞれ、その先端から所定の長さに亘る部分が嵌合孔29a,29bに嵌合される。ここで、本体21を中心として点対称に支持ピン27a,27bが配設されているので、導通路4中の流体の流れが逆方向になる場合には、それに合わせて後流差圧計測管20の前後方向を180度逆向きにして再配置し、後流圧孔24をいつでも流れの下流側に向かせることができるようになっている。   The flange portion 22 is provided at the base (one end) of the main body 21. On the first main surface 26, support pins 27a and 27b are disposed at point-symmetric positions on both sides of the main body 21 as a center. On the surface of the side wall of the conduction path 4, fitting holes 29a and 29b are formed on both sides of the static pressure hole 28 as a center. The support pins 27a and 27b are fitted into the fitting holes 29a and 29b at portions extending from their tips to a predetermined length. Here, since the support pins 27a and 27b are arranged symmetrically with respect to the main body 21, when the fluid flow in the conduction path 4 is in the opposite direction, the wake differential pressure measuring tube is accordingly adjusted. By rearranging the front-rear direction of 20 with 180 degrees reversed, the rear pressure hole 24 can be directed downstream of the flow at any time.

この後流差圧計測管20は、本体2を導通路4の側壁の外側からその内側へと、静圧孔28の中心を通って遊間状態で挿通させることで、その本体2が流体の流れを横切った状態で保持されるように、導通路4に組み付けられる。このとき、後流圧孔24が流体の流れの下流側に向くようにする。こうして後流差圧計測管20が導通路4に組み付けられることで、フランジ部22は、導通路4の側壁の外向きの面(表面)上に、支持ピン27a,27bによって所定の間隙を隔てて浮かせて配置された状態となる。   This wake differential pressure measuring tube 20 is inserted into the main body 2 from the outside of the side wall of the conduction path 4 to the inside thereof through the center of the static pressure hole 28 in a loose state, so that the main body 2 flows in the fluid flow. It is assembled | attached to the conduction path 4 so that it may be hold | maintained in the state which crossed. At this time, the wake pressure hole 24 faces the downstream side of the fluid flow. As the wake differential pressure measuring tube 20 is assembled to the conduction path 4 in this way, the flange portion 22 is separated on the outward surface (surface) of the side wall of the conduction path 4 by a support pin 27a, 27b. It will be in a state of being placed floating.

蓋体部30は、導通路4上の側壁の表面上に、フランジ部22を覆うと共に導通路4の側壁との間での気密を保つようにして固定されている。この蓋体部30の内側には凹部31が設けられており、この凹部31内にフランジ部22が収容される。フランジ部22の第2主面34と凹部31の天面35との間隙には、Oリング36が介挿されて、その輪の内側と外側とが互いに気密状態で隔離されている。また、この蓋体部30には、第1の導圧経路32と第2の導圧経路33とが設けられている。   The lid body portion 30 is fixed on the surface of the side wall on the conduction path 4 so as to cover the flange portion 22 and to maintain airtightness with the side wall of the conduction path 4. A concave portion 31 is provided inside the lid body portion 30, and the flange portion 22 is accommodated in the concave portion 31. An O-ring 36 is inserted in the gap between the second main surface 34 of the flange portion 22 and the top surface 35 of the recess 31 so that the inner side and the outer side of the ring are isolated from each other in an airtight state. In addition, the lid 30 is provided with a first pressure guiding path 32 and a second pressure guiding path 33.

計測対象の流体の静圧P0は、本体21と静圧孔28との間の隙間を実質的な静圧孔として、そこからさらに導通路4の側壁の表面とフランジ部22の第1主面26との間隙〜フランジ部22と蓋体部30の凹部31との間隙〜第1の導圧経路32を通って、圧力センサ2(図1と同様のものであるため図5では図示省略)へと伝達される。また、後流圧孔24で拾われた後流圧P2は、空洞23〜Oリング36の輪の内側〜第2の導圧経路33を通って、圧力センサ2へと伝達される。ここで、フランジ部22と導通路4との間の隙間を確保するための構造的手段としては、支持ピン以外にも、例えばOリングを介挿することなども可能であることは言うまでもない。あるいは、静圧孔28を、本体21自体のフランジ部22に近い根元の部分の側面に穿設してもよい。   The static pressure P0 of the fluid to be measured is defined as a substantial static pressure hole in the gap between the main body 21 and the static pressure hole 28, and further from there the surface of the side wall of the conduction path 4 and the first main surface of the flange portion 22. 26 through the gap between the flange portion 22 and the concave portion 31 of the lid body portion 30 through the first pressure guiding path 32, and the pressure sensor 2 (not shown in FIG. 5 because it is similar to FIG. 1). Is transmitted to. Further, the wake pressure P2 picked up by the wake pressure hole 24 is transmitted to the pressure sensor 2 through the cavity 23 to the inner side of the ring of the O-ring 36 to the second pressure guide path 33. Here, it goes without saying that as a structural means for ensuring a gap between the flange portion 22 and the conduction path 4, for example, an O-ring may be inserted in addition to the support pin. Alternatively, the static pressure hole 28 may be formed in the side surface of the base portion near the flange portion 22 of the main body 21 itself.

圧力センサ2は、第1の実施の形態の場合と同様に、後流差圧計測管20によって計測された静圧P0と後流圧P2との差圧ΔP(=P2−P0)に対応した出力を行う。   The pressure sensor 2 corresponds to the differential pressure ΔP (= P 2 −P 0) between the static pressure P 0 and the wake pressure P 2 measured by the wake pressure differential measuring tube 20, as in the case of the first embodiment. Output.

流量値演算回路3は、差圧ΔPに基づいて、流量計測値(Q)を算出する。具体的には、圧力センサ2からの出力に基づいて求められるP0とP2との差圧ΔP(=P2−P0)の値(但し、この値としてはP2−P0の絶対値を採ることは言うまでもない)の2倍(2ΔP)を計測対象の流体の密度ρで除した値(2ΔP/ρ)の平方根√(2ΔP/ρ)の値を演算する。そして、導通路4の流管としての総断面積Dから後流差圧計測管20(より具体的にはその本体21)によって遮られる断面積dを差し引いた実質的開口面積(D−d)の値を総断面積Dで除すことで、導通路4の実質的開口率Kd(Kd=D/(D−d))の逆数(1/Kd=(D−d)/D)を乗算する。そしてさらに、計測対象の流体の静圧(P0)と後流圧(P2)との比率(P2/P0)を静止時の流体の密度の値ρ0に乗算する演算を行うことで((P2/P0)・ρ0=ρ1)、流体の密度の値ρを補正する。その補正を施された密度の値ρ1 を、流量計測値(Q)を算出するための演算に用いる。   The flow rate value calculation circuit 3 calculates a flow rate measurement value (Q) based on the differential pressure ΔP. Specifically, the value of the pressure difference ΔP (= P2−P0) between P0 and P2 obtained based on the output from the pressure sensor 2 (however, the absolute value of P2−P0 is taken as this value). 2) (2ΔP) divided by the density ρ of the fluid to be measured (2ΔP / ρ) is calculated as a square root √ (2ΔP / ρ). And the substantial opening area (Dd) which subtracted the cross-sectional area d interrupted | blocked by the wake differential pressure | voltage measurement pipe | tube 20 (more specifically the main body 21) from the total cross-sectional area D as a flow pipe of the conduction path 4. Is multiplied by the reciprocal (1 / Kd = (D−d) / D) of the substantial aperture ratio Kd (Kd = D / (D−d)) of the conduction path 4 To do. Further, by calculating the ratio (P2 / P0) of the static pressure (P0) and the wake pressure (P2) of the fluid to be measured to the value ρ0 of the density of the fluid at rest ((P2 / P0) · ρ0 = ρ1), the fluid density value ρ is corrected. The density value ρ1 subjected to the correction is used for the calculation for calculating the flow rate measurement value (Q).

また、さらには、圧力センサ2からの出力に基づいて流体のレイノルズ数(Re)を演算し、その演算されたレイノルズ数に対応した補正を行う。   Further, the Reynolds number (Re) of the fluid is calculated based on the output from the pressure sensor 2, and correction corresponding to the calculated Reynolds number is performed.

ここで、この流量値演算回路3は、導通路4の流管としての総断面積および後流差圧計測管20によって遮られる断面積の情報を入力するための入力装置5を備えている。そしてそれらの情報が入力されると、臨界レイノルズ数以上の場合に用いられる補正定数(F(Re))を自動的に演算して更新する機能を、さらに備えている。   Here, the flow value calculation circuit 3 includes an input device 5 for inputting information on a total cross-sectional area as a flow pipe of the conduction path 4 and a cross-sectional area blocked by the wake differential pressure measuring pipe 20. Further, when such information is input, a function of automatically calculating and updating a correction constant (F (Re)) used when the number of critical Reynolds numbers is exceeded is further provided.

このような機能によって、流量値演算回路3は、異なった寸法や仕様の導通路4や後流差圧計測管20を用いた流量計測を行う場合などにも、そのとき用いられる導通路4や後流差圧計測管20によって定まるレイノルズ数に対応した補正係数を自動的に適切な値に設定変更して、常に正確な流量計測値(Q)を算出することができる。   With such a function, the flow value calculation circuit 3 can also be used when the flow path 4 having different dimensions and specifications or the flow rate measurement using the wake differential pressure measuring tube 20 is performed. An accurate flow rate measurement value (Q) can always be calculated by automatically changing the correction coefficient corresponding to the Reynolds number determined by the wake differential pressure measuring tube 20 to an appropriate value.

また、この流量値演算回路3は、導通路4の流管としての総断面積および後流差圧計測管20によって遮られる断面積の情報が入力されると、その情報に基づいて、実質的開口率の逆数(1/Kd)を自動的に演算して更新する機能を、さらに備えている。   In addition, when the information of the total cross-sectional area as the flow pipe of the conduction path 4 and the cross-sectional area blocked by the wake differential pressure measuring pipe 20 is input, the flow value calculation circuit 3 is substantially based on the information. A function of automatically calculating and updating the reciprocal of the aperture ratio (1 / Kd) is further provided.

このような機能によって、流量値演算回路3は、異なった寸法や仕様の導通路4や後流差圧計測管20を用いた流量計測を行う場合などにも、そのとき用いられる導通路4や後流差圧計測管20に対応して自動的に適切な補正係数(Kd)に変更して、常に正確な流量計測値(Q)を得ることができる。   With such a function, the flow value calculation circuit 3 can also be used when the flow path 4 having different dimensions and specifications or the flow rate measurement using the wake differential pressure measuring tube 20 is performed. It is possible to always obtain an accurate flow rate measurement value (Q) by automatically changing to an appropriate correction coefficient (Kd) corresponding to the wake differential pressure measuring tube 20.

なお、上記の補正、および自動的更新機能に関する基本的な演算ロジック等は、第1の実施の形態で説明したものと同様である。但し、その演算に用いられる具体的な定数や係数の値については、この第2の実施の形態の場合と第1の実施の形態の場合とで、それぞれに適した値が選択されて用いられることは言うまでもない。   Note that the basic arithmetic logic and the like related to the correction and the automatic update function are the same as those described in the first embodiment. However, specific values of constants and coefficients used for the calculation are selected and used in the case of the second embodiment and the case of the first embodiment. Needless to say.

このように、第2の実施の形態に係る流量計測装置では、静圧孔28で計測された静圧P0と後流圧孔24で計測された後流圧P2との差圧ΔPを用いて、その後流差圧計測管20に関する理論計算を行って流体の理論流量値を算出する。そしてその理論流量値に対して、導通路4の実質的開口率Kdに対応した補正を行うことで、正確な流量計測値Qを得ることができる。   Thus, in the flow rate measuring apparatus according to the second embodiment, the differential pressure ΔP between the static pressure P0 measured at the static pressure hole 28 and the wake pressure P2 measured at the wake pressure hole 24 is used. Then, the theoretical flow calculation of the flow differential pressure measuring tube 20 is performed to calculate the theoretical flow rate value of the fluid. An accurate flow rate measurement value Q can be obtained by correcting the theoretical flow rate value corresponding to the substantial opening ratio Kd of the conduction path 4.

しかも、流量計測に用いられる後流差圧計測管20は、上記のように、極めて簡易な構造のものであり、延いてはこの流量計測装置全体としての製造コストや部品コストの低廉化、および機械的な故障や不良等の発生確率の低減化を、達成することが可能となる。   Moreover, the wake differential pressure measuring tube 20 used for the flow rate measurement has a very simple structure as described above, and as a result, the manufacturing cost and parts cost of the entire flow rate measuring device are reduced, and It is possible to achieve a reduction in the probability of occurrence of mechanical failure or defect.

また、後述するように、上記の後流差圧計測管20によれば、流れに対する後流圧孔24の迎角が30度以上のように大幅に変化しても、常に精確な流量計測を行うことが可能となる。   Further, as will be described later, according to the wake differential pressure measuring tube 20 described above, accurate flow measurement is always performed even if the angle of attack of the wake pressure hole 24 with respect to the flow changes significantly, such as 30 degrees or more. Can be done.

そのような流れに対する圧力孔の迎角θと、それに対して圧力孔によって測定される差圧ΔPとの関係について、本発明者は種々の実験を行った。   The inventor conducted various experiments on the relationship between the angle of attack θ of the pressure hole for such a flow and the differential pressure ΔP measured by the pressure hole.

そこで、次に、その実験結果およびそれに基づいて考察される新知見について説明する。   Then, next, the experimental result and the new knowledge considered based on it are demonstrated.

図7は、計測対象の流れに対する圧力孔の迎角θを変化させて行く実験に用いた実験装置の構成の主要部を模式的に表したものである。この実験では、流れ71は導通路4による管路に対して常に平行に流れているものとする。また、その流れ71に対して完全に正対する方向を、迎角θ=0度として、そのθ=0からの圧力孔70の偏角(正対方向とのなす角)を、圧力孔70の流れ71に対する迎角θと定義する。また、圧力孔70は、後流差圧計測管20と同様の本体21に、後流圧孔24と同様の大きさおよび形状で設けられているものとした。   FIG. 7 schematically shows the main part of the configuration of the experimental apparatus used in the experiment in which the angle of attack θ of the pressure hole with respect to the flow to be measured is changed. In this experiment, it is assumed that the flow 71 always flows parallel to the conduit formed by the conduction path 4. In addition, the direction that is completely opposite to the flow 71 is an angle of attack θ = 0 degrees, and the declination angle of the pressure hole 70 from that θ = 0 (angle formed with the directly facing direction) is the angle of the pressure hole 70. The angle of attack θ with respect to the flow 71 is defined. Further, the pressure hole 70 is provided in the main body 21 similar to the wake pressure differential measuring tube 20 with the same size and shape as the wake pressure hole 24.

具体的には、この実験で用いた本体21の管径は4[mm]、圧力孔70の直径は3[mm]、導通路4の内径(管路直径)は10[mm]とした。流れ71の流量は、標準状態で、50〜95NL(リットル)/min(分)]とし、レイノルズ数を2500〜5000とした。差圧ΔPとしては、流れ71の静圧P0と、圧力孔70で計測された後流圧P2との圧力差を採った。この差圧ΔPについては、θ=90度のときに圧力センサから出力される電圧を基準値の1として、それに対する比率を取ることで無次元化した。このような実験装置を用いて、本体21をその円筒の軸を中心として回転させて行くことで、圧力孔70の迎角θを0度から180度まで変化させた。   Specifically, the tube diameter of the main body 21 used in this experiment was 4 [mm], the diameter of the pressure hole 70 was 3 [mm], and the inner diameter (tube diameter) of the conduction path 4 was 10 [mm]. The flow rate of the stream 71 was 50 to 95 NL (liter) / min (minutes)] in a standard state, and the Reynolds number was 2500 to 5000. As the differential pressure ΔP, the pressure difference between the static pressure P 0 of the flow 71 and the wake pressure P 2 measured at the pressure hole 70 was taken. This differential pressure ΔP was made dimensionless by taking the voltage output from the pressure sensor when θ = 90 degrees as a reference value of 1, and taking the ratio to that. Using such an experimental apparatus, the angle of attack θ of the pressure hole 70 was changed from 0 degrees to 180 degrees by rotating the main body 21 around the axis of the cylinder.

このような実験を行ったところ、図8に示すような結果が得られた。まず、迎角θが0〜30度の範囲内のときには、差圧ΔPを安定して計測することが可能であった。   When such an experiment was conducted, results as shown in FIG. 8 were obtained. First, when the angle of attack θ is in the range of 0 to 30 degrees, the differential pressure ΔP can be stably measured.

ところが、迎角θを30〜90度の範囲内にすると、圧力センサ2からの出力が(つまり差圧ΔPの計測が)時間的または計測回ごとで極めて不安定となり、かつその計測値の大きさも、θ=0〜30度の場合と比較して顕著に低下した。特にθ=60度〜90度の範囲のときには、差圧ΔPの計測値がほぼ0の付近でランダムに上下して極めて不安定となり、実質的に計測不能となってしまった。これは、迎角θが60〜90度になると、後流圧孔24付近の流れに著しい剥離や渦や乱流等の攪乱現象が発生し、それが著しい外乱となって後流圧P2の状態を極めて不安定なものにしてしまうためであろうと推定される。いずれにしても、このように迎角θが30〜90度の範囲内の角度になると、差圧ΔPの精確な計測が実質的に不可能になるということが確認された。   However, when the angle of attack θ is in the range of 30 to 90 degrees, the output from the pressure sensor 2 (that is, the measurement of the differential pressure ΔP) becomes extremely unstable over time or measurement times, and the measured value is large. In addition, it was significantly reduced compared to the case of θ = 0 to 30 degrees. In particular, when θ is in the range of 60 ° to 90 °, the measured value of the differential pressure ΔP rises and falls randomly in the vicinity of approximately 0 and becomes extremely unstable, making it substantially impossible to measure. This is because when the angle of attack θ is 60 to 90 degrees, a significant separation or turbulence phenomenon such as vortex or turbulence occurs in the flow in the vicinity of the wake pressure hole 24, which becomes a significant disturbance and becomes the wake pressure P 2. It is presumed that the situation would be extremely unstable. In any case, when the angle of attack θ is in the range of 30 to 90 degrees, it has been confirmed that accurate measurement of the differential pressure ΔP is substantially impossible.

そして、迎角θが90度になると、差圧ΔPはそれまでの正圧(静圧P0をゲージ圧=0としたときの、ゲージ圧が正である圧力値)から、負圧(同様に静圧P0に対するゲージ圧が負である圧力値)へと逆転した。また、このとき、差圧ΔPの計測値の大きさ(絶対値)が、最大になった。   When the angle of attack θ becomes 90 degrees, the differential pressure ΔP is changed from the previous positive pressure (the pressure value when the static pressure P0 is the gauge pressure = 0) to the negative pressure (similarly, The pressure was reversed to a negative pressure value with respect to the static pressure P0. At this time, the magnitude (absolute value) of the measured value of the differential pressure ΔP was maximized.

そして迎角θを90度よりもさらに大きくして行くと、差圧ΔPの計測値の大きさ(絶対値)は緩やかに小さくなって行ったが、このθ=90〜180度の範囲内では、常に極めて安定的に差圧ΔPの計測を行うことができた。すなわち、図8にも明らかなように、迎角θの変化に対して、差圧ΔPの変化は、不連続点や特異点などがなく、連続性の極めて良好で緩やかなものとなった。また、このθ=90〜180度の範囲内では、θ=0〜30度の場合よりも常に大きな値(絶対値同士で比較して)が計測された。   When the angle of attack θ is further increased from 90 degrees, the magnitude (absolute value) of the measured value of the differential pressure ΔP gradually decreases, but within the range of θ = 90 to 180 degrees. The differential pressure ΔP could always be measured extremely stably. That is, as apparent from FIG. 8, the change in the differential pressure ΔP with respect to the change in the angle of attack θ has no discontinuities or singular points, and is extremely good and gentle in continuity. In addition, in the range of θ = 90 to 180 degrees, a value always larger (compared with absolute values) than that in the case of θ = 0 to 30 degrees was measured.

このような迎角θを変化させて行く実験を、流れ71の流量Qを53[L/min]、62[L/min]、70[L/min]、78[L/min]、85[L/min]、93[L/min]とした各場合について、それぞれ試行したところ、図8に示したように、上記の6通りの流量の全ての場合で、無次元化した差圧ΔPの計測結果(6本の曲線の全て)は、ほぼ1本の関数曲線上に重なる結果となった。   In an experiment in which the angle of attack θ is changed, the flow rate Q of the flow 71 is 53 [L / min], 62 [L / min], 70 [L / min], 78 [L / min], 85 [L]. L / min] and 93 [L / min] were tried, and as shown in FIG. 8, the dimensionless pressure difference ΔP was reduced in all the above six flow rates as shown in FIG. The measurement results (all of the six curves) overlapped almost on one function curve.

このような実験結果から、圧力孔70の流れ71に対する迎角θを90度から180度の範囲内に設定すること、つまり後流差圧計測管20のように後流圧孔24を流れ71の下流側に向けること(換言すればθを90〜180度の範囲内に設定すること)により、流れ71の流量Qの計測を、迎角θの変化に起因して妨げられることなく、常に安定的に行うことが可能となることが確認された。   From such an experimental result, the angle of attack θ with respect to the flow 71 of the pressure hole 70 is set within the range of 90 ° to 180 °, that is, the flow 71 flows through the wake pressure hole 24 like the wake differential pressure measuring tube 20. (In other words, θ is set in the range of 90 to 180 degrees), the measurement of the flow rate Q of the flow 71 is always prevented without being hindered by the change in the angle of attack θ. It was confirmed that it was possible to perform stably.

また、上記のような後流圧孔24による計測機能の特質を流量計測に生かすことで、層流から乱流まで、導通路中(管路中)での流れの乱れに因る悪影響を受けることなく、常に安定的に精確な流量計測を実現できることが確認された。   Further, by taking advantage of the characteristic of the measurement function by the wake pressure hole 24 as described above for the flow rate measurement, from laminar flow to turbulent flow, there is an adverse effect due to flow disturbance in the conduction path (in the pipe line). It has been confirmed that accurate and accurate flow measurement can always be realized without any problems.

また、図9に示すように、静圧P0を変化させることで、等価的に流体のガス密度を変化させて、その各々の場合での差圧ΔPと流量Qとの関係について確認する実験を行った。具体的には、静圧P0を、0.1[MPa],0.2[MPa],0.4[MPa]としたそれぞれの場合について、理論値と実験値(測定値)とを、各々調べた。その結果、どの場合でも、理論値と実験値とが極めて明確に合致することが確認された。また、静圧P0が高くなるほど、つまりガス密度が高くなるほど、同じ流量Qに対する差圧ΔPは小さな値となることが確認された。このことから、第2の実施の形態に係る流量計測装置においても、第1の実施の形態に係る流量計測装置と同様の演算ロジックを用いて補正係数Kdによる流量計測値の補正を行うことが可能であることが確認された。   Further, as shown in FIG. 9, by changing the static pressure P0, the gas density of the fluid is equivalently changed, and an experiment for confirming the relationship between the differential pressure ΔP and the flow rate Q in each case. went. Specifically, for each case where the static pressure P0 is 0.1 [MPa], 0.2 [MPa], and 0.4 [MPa], the theoretical value and the experimental value (measured value) are respectively Examined. As a result, in all cases, it was confirmed that the theoretical value and the experimental value agreed very clearly. Further, it was confirmed that the higher the static pressure P0, that is, the higher the gas density, the smaller the differential pressure ΔP for the same flow rate Q. Therefore, also in the flow rate measuring device according to the second embodiment, the flow rate measurement value can be corrected by the correction coefficient Kd using the same arithmetic logic as that of the flow rate measuring device according to the first embodiment. It was confirmed that it was possible.

ここで、上記のような後流差圧計測管20の、迎角θによらず安定した計測が可能であるという、計測機能上の特質を生かして、その後流差圧計測管20を流速計測に適用することも可能である。すなわち、例えば図10に一例を示したように、後流差圧計測管20を、航空機の胴体側面9から外側へと突出するように設けて、後流圧孔24によって後流圧P2を計測すると共に静圧孔28によって静圧P0を計測し、後流圧P2と静圧P0との差圧ΔPに基づいて、その航空機の対気速度を計測することなども可能である。ここで、後流差圧計測管20の管部分の外形は、円筒状のみには限定されないことは勿論である。例えば、上記のように移動体の対気速度計測や、流速計測などに適用する場合には、後流差圧計測管20の受ける空気抵抗や衝撃波等を緩和するために、図10に示したような偏平な筒状などに形成してもよい。   Here, taking advantage of the characteristic in the measurement function that the wake differential pressure measuring tube 20 as described above can stably measure regardless of the angle of attack θ, the wake differential pressure measuring tube 20 is used to measure the flow velocity. It is also possible to apply to. That is, for example, as shown in FIG. 10, for example, the wake differential pressure measuring tube 20 is provided so as to protrude outward from the fuselage side surface 9 of the aircraft, and the wake pressure P2 is measured by the wake pressure hole 24. In addition, the static pressure P0 can be measured by the static pressure hole 28, and the airspeed of the aircraft can be measured based on the differential pressure ΔP between the wake pressure P2 and the static pressure P0. Here, it goes without saying that the outer shape of the tube portion of the wake differential pressure measuring tube 20 is not limited to a cylindrical shape. For example, in the case of applying to the airspeed measurement or the flow velocity measurement of the moving body as described above, in order to reduce the air resistance, the shock wave, etc. received by the wake differential pressure measuring tube 20, it is shown in FIG. You may form in such a flat cylinder shape.

このように、後流差圧計測管20を例えば航空機に適用することにより、その航空機が姿勢変化やダイナミックなマニューバを行う際などに、迎角θを例えば±30度以上のように大幅に変化させても、不安定な計測状態に陥ったり計測不能の状態になったりすることなく、常に精確にその航空機の対気速度を計測することが可能となる。このような大幅な迎角θの変化に対して常に安定した流速の計測を行うことは、総圧孔が流れに対して正対する向きに設けられていた従来の一般的なピトー管では、不可能または極めて困難なものであった。   In this way, when the wake differential pressure measuring tube 20 is applied to, for example, an aircraft, when the aircraft changes its attitude or performs dynamic maneuver, the angle of attack θ changes significantly, for example, ± 30 degrees or more. Even if it makes it, it will become possible to always measure the airspeed of the aircraft accurately without falling into an unstable measurement state or being unable to measure. Measurement of a stable flow velocity against such a large change in the angle of attack θ is not possible with a conventional general Pitot tube in which the total pressure hole is provided in a direction facing the flow. It was possible or extremely difficult.

ところで、この後流差圧計測管20を流速計測に用いる場合には、実際上、圧力センサ2から差圧ΔPに対応して出力される電圧に基づいて流体の流速値Vを計測する流速値演算回路(図示省略)が必要となる。   By the way, when this wake differential pressure measuring tube 20 is used for flow velocity measurement, the flow velocity value for actually measuring the fluid flow velocity value V based on the voltage output corresponding to the differential pressure ΔP from the pressure sensor 2. An arithmetic circuit (not shown) is required.

その流速値演算計測回路では、基本的な流速値の演算ロジックとして、圧力センサ2からの出力に基づいて求められるP0とP2との差圧P2−P0の絶対値(すなわちΔP=−(P2−P0))の2倍(2ΔP)を、計測対象の流体の密度ρで除し、その値(2ΔP/ρ)の平方根√(2ΔP/ρ)の値を演算することで、流速計測値(V)が算出される。なお、場合によっては、その基本的演算ロジックによって算出されたVに対して、所定の補正値kを乗算することで、流速計測値の精度をさらに向上させるようにしてもよいことは勿論である。   In the flow velocity value calculation and measurement circuit, the absolute value of the differential pressure P2 -P0 between P0 and P2 obtained based on the output from the pressure sensor 2 (that is, ΔP = − (P2−) is used as the basic flow velocity value calculation logic. P0)) is divided by twice the density ρ of the fluid to be measured, and the value of the square root √ (2ΔP / ρ) of the value (2ΔP / ρ) is calculated to obtain the flow velocity measurement value (V ) Is calculated. In some cases, the accuracy of the flow velocity measurement value may be further improved by multiplying V calculated by the basic arithmetic logic by a predetermined correction value k. .

なお、非定常流発生器を用いて、計測対象の流体に対して強制的に非定常流を生じさせた状態で、従来の一般的なピトー管による流量計測と、この第2の実施の形態に係る後流差圧計測管20による流量計測とを比較する実験を行った。その結果、図11,図12に示すような結果が得られた。   In addition, in the state which forcedly produced the unsteady flow with respect to the fluid of measurement using an unsteady flow generator, the flow measurement by the conventional general Pitot tube, and this 2nd Embodiment An experiment for comparing the flow rate measurement with the wake differential pressure measuring tube 20 according to the above was performed. As a result, results as shown in FIGS. 11 and 12 were obtained.

具体的には、計測環境として、計測対象の流体の静圧をP0=0.3[MPa]とし、5[Hz]の非定常流を発生させた状態で、流量計測を行う実験を行った。その結果、図11(a)に示したように、θ=0である従来の一般的なピトー管を用いて計測された波形には、非定常流発生器(図示省略)によって発生した非定常流の波形に対して、10%あるいはそれ以上の最大振幅のずれが生じた。それと比較して、図11(b)に示したように、後流差圧計測管20によって計測された波形では、非定常流発生器によって発生した非定常流の波形に対して、3〜4%あるいはそれ未満の振幅のずれしか生じなかった。これにより、計測された差圧ΔPの波形は、従来の一般的なピトー管の場合には鈍い波形となるのに比べて、後流差圧計測管20の場合には、非定常流発生器によって発生した非定常流の波形とほぼ同位相で明確な(大きな)振幅を有する波形となることが確認された。   Specifically, as a measurement environment, an experiment was performed in which the static pressure of the fluid to be measured was P0 = 0.3 [MPa] and a flow rate measurement was performed in a state where an unsteady flow of 5 [Hz] was generated. . As a result, as shown in FIG. 11A, the waveform measured using a conventional general Pitot tube with θ = 0 has an unsteady flow generated by an unsteady flow generator (not shown). There was a maximum amplitude shift of 10% or more relative to the flow waveform. In comparison, as shown in FIG. 11B, the waveform measured by the wake differential pressure measuring tube 20 is 3 to 4 with respect to the waveform of the unsteady flow generated by the unsteady flow generator. % Or less amplitude deviation occurred. Thereby, the waveform of the measured differential pressure ΔP is a dull waveform in the case of the conventional general Pitot tube, and in the case of the wake differential pressure measuring tube 20, the unsteady flow generator It was confirmed that the waveform has a clear (large) amplitude almost in phase with the waveform of the unsteady flow generated by the above.

また、計測環境として、計測対象の流体の静圧をP0=0.4[MPa]とし、20[Hz]の非定常流を発生させた状態で、流量計測を行う実験を行った。その結果、図12(a),(b)に示したように、従来の一般的なピトー管による計測結果と後流差圧計測管20による計測結果との違いは、図11に示した場合よりもさらに顕著なものとなった。すなわち、図12(a)に示したように、θ=0である従来の一般的なピトー管を用いて計測された波形には、非定常流発生器によって発生した非定常流の波形に対して、50%あるいはそれ以上の最大振幅のずれが生じた。それと比較して、図12(b)に示したように、後流差圧計測管20によって計測された波形では、非定常流発生器によって発生した非定常流の波形に対して、10%あるいはそれ未満の振幅のずれしか生じなかった。これにより、計測された差圧ΔPの波形は、従来の一般的なピトー管の場合には明らかに鈍くて乱れた波形となるのに比べて、後流差圧計測管20の場合には、非定常流発生器によって発生した非定常流の波形とほぼ同位相で、かつしっかりと明確な振幅を有する波形となることが確認された。このように、第2の実施の形態に係る流量計測装置によれば、計測対象の流体に例えば脈動のような非定常流が発生している状態であっても、従来の一般的なピトー管を用いた計測よりもさらに確実に正確な流量計測を実現することができる。
なお、上記の第1および第2の実施の形態では、計測対象の流体として、気体を想定したが、液体を計測対象とすることも可能であることは勿論である。
In addition, as a measurement environment, an experiment was performed in which the static pressure of the fluid to be measured was set to P0 = 0.4 [MPa] and a flow rate measurement was performed in a state where an unsteady flow of 20 [Hz] was generated. As a result, as shown in FIGS. 12A and 12B, the difference between the measurement result of the conventional general Pitot tube and the measurement result of the wake differential pressure measurement tube 20 is as shown in FIG. Even more prominent. That is, as shown in FIG. 12 (a), the waveform measured using a conventional general Pitot tube with θ = 0 has a waveform of the unsteady flow generated by the unsteady flow generator. As a result, a maximum amplitude deviation of 50% or more occurred. In comparison, as shown in FIG. 12B, the waveform measured by the wake differential pressure measuring tube 20 is 10% or less than the waveform of the unsteady flow generated by the unsteady flow generator. Only smaller amplitude deviations occurred. Thereby, the waveform of the measured differential pressure ΔP is clearly dull and disturbed in the case of the conventional general Pitot tube, but in the case of the wake differential pressure measuring tube 20, It was confirmed that the waveform was almost in phase with the waveform of the unsteady flow generated by the unsteady flow generator and had a firm and clear amplitude. As described above, according to the flow rate measuring apparatus according to the second embodiment, even in a state where an unsteady flow such as pulsation is generated in the fluid to be measured, the conventional general Pitot tube It is possible to realize more accurate flow rate measurement more reliably than measurement using the.
In the first and second embodiments described above, gas is assumed as the fluid to be measured, but it is needless to say that liquid can also be used as the measurement target.

本発明の第1の実施の形態に係る流量計測装置の概要構成を示す一部省略断面図である。1 is a partially omitted cross-sectional view showing a schematic configuration of a flow rate measuring device according to a first embodiment of the present invention. レイノルズ数と補正係数との関係の一例を示す表図である。It is a table | surface figure which shows an example of the relationship between the Reynolds number and a correction coefficient. 図2とは異なる流路径でのレイノルズ数と補正係数との関係の一例を示す表図である。FIG. 3 is a table showing an example of a relationship between a Reynolds number and a correction coefficient at a flow path diameter different from that in FIG. 2. 圧力センサからの差圧出力と流量値真値との相関の実例を示す表図である。It is a table | surface figure which shows the actual example of the correlation with the differential pressure | voltage output from a pressure sensor, and a flow value true value. 後流差圧計測管を導通路に設置した状態を示す断面図である。It is sectional drawing which shows the state which installed the wake differential pressure measuring tube in the conduction path. 後流差圧計測管の外観を示す斜視図である。It is a perspective view which shows the external appearance of a wake differential pressure measuring tube. 計測対象の流れに対する圧力孔の迎角θを変化させる実験装置の主要な構成を示す模式図である。It is a schematic diagram which shows the main structures of the experimental apparatus which changes the attack angle (theta) of the pressure hole with respect to the flow of a measuring object. 迎角θと差圧ΔPとの関係についての実験結果を示す表図である。It is a table | surface figure which shows the experimental result about the relationship between the angle of attack (theta) and differential pressure (DELTA) P. 静圧P0を変化させたときの流量Qと差圧ΔPとの関係を示す表図である。It is a table | surface figure which shows the relationship between the flow volume Q when changing the static pressure P0, and differential pressure | voltage (DELTA) P. 航空機用の流速計測装置の一部として用いられる後流差圧計測管の外観を示す斜視図である。It is a perspective view which shows the external appearance of the wake differential pressure measuring tube used as a part of aircraft flow velocity measuring device. 流体に対して強制的に非定常流を生じさせて流量計測を行った場合の実験結果の一例を示す表図である。It is a table | surface figure which shows an example of the experimental result at the time of performing flow volume measurement by producing unsteady flow with respect to the fluid compulsorily. 流体に対して強制的に非定常流を生じさせて流量計測をおこなった場合の実験結果の他の一例を示す表図である。It is a table | surface figure which shows another example of the experimental result at the time of performing flow rate measurement by producing unsteady flow with respect to the fluid compulsorily.

符号の説明Explanation of symbols

1…双圧管、2…圧力センサ、3…流量値演算回路、4…導通路、5…入力装置、11…総圧孔、12…後流圧孔、20…後流差圧計測管、21…本体、22…フランジ部、23…空洞、24…後流圧孔、28…静圧孔、30…蓋体部、32…第1の導圧経路、33…第2の導圧経路   DESCRIPTION OF SYMBOLS 1 ... Double pressure pipe, 2 ... Pressure sensor, 3 ... Flow rate value calculation circuit, 4 ... Conduction path, 5 ... Input device, 11 ... Total pressure hole, 12 ... Back pressure hole, 20 ... Back differential pressure measuring pipe, 21 DESCRIPTION OF SYMBOLS ... Main body, 22 ... Flange part, 23 ... Cavity, 24 ... Back pressure hole, 28 ... Static pressure hole, 30 ... Lid part, 32 ... 1st pressure guide path, 33 ... 2nd pressure guide path

Claims (9)

導通路を流れる計測対象の流体の流れに正対する向きに総圧孔が設けられており、前記総圧孔で前記流体の流れによって生じる総圧を計測すると共に、前記流体の流れに正対する向きとは逆向きの位置に後流圧孔が設けられており、前記後流圧孔で前記流体の流れによって生じる後流圧を計測する双圧管と、
前記双圧管によって計測される前記総圧と前記後流圧とに対応した出力を行う圧力センサと、
前記圧力センサからの出力に基づいて求められる前記総圧と前記後流圧との差圧の値の2倍を前記流体の密度で除した値の平方根を演算してなる値に、前記導通路の流管としての総断面積から前記双圧管によって遮られる断面積を差し引いた実質的開口面積の値を前記総断面積で除してなる前記導通路の実質的開口率の逆数を、乗算する演算を含む補正を行って、前記流体の流量値を算出する流量値演算回路と
を備えたことを特徴とする流量計測装置。
A total pressure hole is provided in a direction facing the flow of the fluid to be measured flowing through the conduction path, and the total pressure generated by the flow of the fluid is measured at the total pressure hole, and the direction facing the flow of the fluid A double pressure pipe that is provided with a wake pressure hole at a position opposite to the directional pressure, and that measures the wake pressure generated by the fluid flow at the wake pressure hole;
A pressure sensor for performing output corresponding to the total pressure and the wake pressure measured by the double pressure pipe;
A value obtained by calculating a square root of a value obtained by dividing twice the value of the differential pressure between the total pressure and the wake pressure obtained based on the output from the pressure sensor by the density of the fluid, Multiplying the reciprocal of the substantial aperture ratio of the conducting path by dividing the value of the substantial opening area obtained by subtracting the sectional area blocked by the double pressure tube from the total sectional area as a flow tube of the current by the total sectional area. A flow rate measurement device comprising: a flow rate value calculation circuit that performs correction including calculation to calculate a flow rate value of the fluid.
導通路中に配置され、当該導通路を流れる計測対象の流体の流れの静圧を計測する静圧孔と、前記流体の流れに正対する向きとは逆の下流側に向いて開口するように設けられて当該開口位置での前記流体の後流圧を計測する後流圧孔とを設けてなる後流差圧計測管と、
前記後流差圧計測管によって計測される前記静圧と前記後流圧との差圧に対応した出力を行う圧力センサと、
前記導通路の流管としての総断面積から前記後流差圧計測管によって遮られる断面積を差し引いた実質的開口面積の値を前記総断面積で除してなる前記導通路の実質的開口率の逆数を、前記圧力センサからの出力に基づいて求められる前記差圧の値の2倍を前記流体の密度で除した値の平方根を演算してなる値に、乗算する演算を含む補正を行って、前記流体の流量値を算出する流量値演算回路と
を備えたことを特徴とする流量計測装置。
A static pressure hole that is disposed in the conduction path and measures the static pressure of the flow of the fluid to be measured flowing through the conduction path, and opens toward the downstream side opposite to the direction facing the fluid flow. A wake differential pressure measuring pipe provided with a wake pressure hole provided to measure the wake pressure of the fluid at the opening position;
A pressure sensor that performs an output corresponding to a differential pressure between the static pressure and the wake pressure measured by the wake pressure differential measurement tube;
Substantial opening of the conduction path obtained by dividing the value of the substantial opening area obtained by subtracting the cross-sectional area blocked by the wake differential pressure measuring pipe from the total cross-sectional area as the flow pipe of the conduction path by the total cross-sectional area. A correction including an operation of multiplying a reciprocal of a rate by a value obtained by calculating a square root of a value obtained by dividing twice the value of the differential pressure obtained by the output from the pressure sensor by the density of the fluid. And a flow rate value calculation circuit for calculating the flow rate value of the fluid.
前記流量値演算回路は、前記総圧と前記後流圧または前記静圧と前記後流圧との比率を、前記流体の密度に乗算することで、前記密度の補正を行う機能を、さらに備えている
ことを特徴とする請求項1または2記載の流量計測装置。
The flow value calculation circuit further includes a function of correcting the density by multiplying the density of the fluid by a ratio of the total pressure and the wake pressure or the static pressure and the wake pressure. The flow rate measuring device according to claim 1, wherein the flow rate measuring device is provided.
前記流量値演算回路は、前記圧力センサからの出力に基づいて前記流体のレイノルズ数を演算し、当該レイノルズ数に対応した補正を行う機能を、さらに備えている
ことを特徴とする請求項1ないし3のうちいずれか1項に記載の流量計測装置。
The flow rate calculation circuit further includes a function of calculating a Reynolds number of the fluid based on an output from the pressure sensor and performing a correction corresponding to the Reynolds number. The flow rate measuring device according to any one of 3.
前記流量値演算回路は、前記補正として、前記圧力センサからの出力に基づいて演算されたレイノルズ数が臨界レイノルズ数未満の場合には、前記演算されたレイノルズ数を用いた補正を行う
ことを特徴とする請求項4記載の流量計測装置。
When the Reynolds number calculated based on the output from the pressure sensor is less than the critical Reynolds number, the flow rate value calculation circuit performs correction using the calculated Reynolds number as the correction. The flow rate measuring device according to claim 4.
前記流量値演算回路は、前記補正として、前記圧力センサからの出力に基づいて演算されたレイノルズ数が臨界レイノルズ数以上の場合には、予め定められた補正定数を用いた補正を行う
ことを特徴とする請求項4または5記載の流量計測装置。
When the Reynolds number calculated based on the output from the pressure sensor is greater than or equal to the critical Reynolds number, the flow rate calculation circuit performs correction using a predetermined correction constant as the correction. The flow rate measuring device according to claim 4 or 5.
前記後流差圧計測管は、外形が円筒状で、内部がシリンダ状の空洞を成し、当該円筒状の側面には、前記後流圧孔が前記空洞と連通するように設けられており、前記後流圧孔が前記流体の流れに正対する向きとは逆の下流側に向くように、前記導通路の側壁の外側から当該導通路の内側へと前記流体の流れを横切って挿通されて、前記流れの方向から見て前記円筒状の下流側の前記開口位置で前記流体の後流圧を計測し、他方、前記導通路の側壁と前記円筒状の側面との間には前記静圧孔として所定寸法の間隙が設けられて、前記静圧孔によって前記流体の静圧を計測し、前記後流圧を前記後流圧孔から前記空洞を通して前記圧力センサへと伝達すると共に、前記静圧を前記静圧孔から前記圧力センサへと伝達するように、設定されている
ことを特徴とする請求項2記載の流量計測装置。
The wake differential pressure measuring tube has a cylindrical outer shape and forms a cylindrical cavity inside, and the wake pressure hole is provided on the cylindrical side surface so as to communicate with the cavity. The wake pressure hole is inserted across the fluid flow from the outside of the side wall of the conduction path to the inside of the conduction path so that the downstream pressure hole faces the downstream side opposite to the direction facing the fluid flow. The downstream pressure of the fluid is measured at the opening position on the downstream side of the cylindrical shape when viewed from the flow direction, and the static pressure is measured between the side wall of the conduction path and the cylindrical side surface. A gap having a predetermined dimension is provided as a pressure hole, the static pressure of the fluid is measured by the static pressure hole, the wake pressure is transmitted from the wake pressure hole to the pressure sensor through the cavity, and It is set to transmit static pressure from the static pressure hole to the pressure sensor. The flow rate measuring device according to claim 2.
計測対象の流体の流れの静圧を計測する静圧孔と、前記流体の流れに正対する向きとは逆の下流側に向いて開口するように設けられて当該開口位置での前記流体の後流圧を計測する後流圧孔とを設けてなる後流差圧計測管と、
前記後流差圧計測管によって計測される前記静圧と前記後流圧との差圧に基づいて前記流体の流速値を計測する流速量値計測手段と
を備えたことを特徴とする流速計測装置。
A static pressure hole for measuring the static pressure of the flow of the fluid to be measured, and a rear side of the fluid at the opening position provided to open toward the downstream side opposite to the direction facing the fluid flow. A wake differential pressure measuring tube provided with a wake pressure hole for measuring the fluid pressure;
A flow velocity measurement comprising: a flow velocity value measuring means for measuring a flow velocity value of the fluid based on a differential pressure between the static pressure and the wake pressure measured by the wake differential pressure measuring tube. apparatus.
計測対象の流体の流れの静圧を計測する静圧孔と、前記流体の流れに正対する向きとは逆の下流側に向いて開口するように設けられて当該開口位置での前記流体の後流圧を計測する後流圧孔とを設けてなる後流差圧計測管を用いて、前記静圧孔によって計測される静圧と前記後流圧孔によって計測される後流圧との差圧に基づいて、前記流体の流速値を計測する
ことを特徴とする流速計測方法。
A static pressure hole for measuring the static pressure of the flow of the fluid to be measured, and a rear side of the fluid at the opening position provided to open toward the downstream side opposite to the direction facing the fluid flow. The difference between the static pressure measured by the static pressure hole and the wake pressure measured by the wake pressure hole using the wake differential pressure measuring pipe provided with the wake pressure hole for measuring the flow pressure. A flow velocity measurement method, comprising: measuring a flow velocity value of the fluid based on pressure.
JP2004150038A 2003-05-20 2004-05-20 Flow measuring device Expired - Fee Related JP4130644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150038A JP4130644B2 (en) 2003-05-20 2004-05-20 Flow measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003142543 2003-05-20
JP2004150038A JP4130644B2 (en) 2003-05-20 2004-05-20 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2005003678A true JP2005003678A (en) 2005-01-06
JP4130644B2 JP4130644B2 (en) 2008-08-06

Family

ID=34106445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150038A Expired - Fee Related JP4130644B2 (en) 2003-05-20 2004-05-20 Flow measuring device

Country Status (1)

Country Link
JP (1) JP4130644B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155350A (en) * 2005-11-30 2007-06-21 Nippon Applied Flow Kk Flow rate measuring apparatus
JP2010256075A (en) * 2009-04-22 2010-11-11 Aichi Tokei Denki Co Ltd Flowmeter and method of measuring flow rate
CN104236657A (en) * 2014-10-16 2014-12-24 辽宁毕托巴科技有限公司 Pitot mass flowmeter
CN107543936A (en) * 2017-06-27 2018-01-05 石家庄铁道大学 Fiber grating flow rate of water flow sensor
CN108645459A (en) * 2018-07-04 2018-10-12 东莞市益安人防工程有限公司 A kind of apparatus for measuring air quantity
CN109443459A (en) * 2018-12-05 2019-03-08 福建上润精密仪器有限公司 The throttling set of built-in high-precision sensor
CN112284478A (en) * 2020-10-28 2021-01-29 中国航发沈阳发动机研究所 Auxiliary device for flow measurement
CN112729420A (en) * 2020-12-29 2021-04-30 安徽省锐凌计量器制造有限公司 Non-full pipe flowmeter and installation and use method thereof
CN112964323A (en) * 2021-02-10 2021-06-15 河北大学 Saturated wet steam mass flow and dryness measuring device and measuring method
CN113238074A (en) * 2021-05-18 2021-08-10 贵州电网有限责任公司 Pitot tube wind speed and direction measuring method based on sextant method
CN113654603A (en) * 2021-08-16 2021-11-16 河南省奥瑞环保科技股份有限公司 Flow velocity surface measuring device
CN114675051A (en) * 2022-03-08 2022-06-28 中国水利水电科学研究院 River flow velocity monitoring device, system and method based on differential pressure measurement
CN114829829A (en) * 2019-12-17 2022-07-29 宝马股份公司 Pressure vessel system and energy supply device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671620U (en) * 1993-03-15 1994-10-07 株式会社イナックス Interior wall construction structure
CN104165664B (en) * 2014-08-22 2017-06-20 辽宁毕托巴科技有限公司 Pitot bar integrated mass flow meter

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155350A (en) * 2005-11-30 2007-06-21 Nippon Applied Flow Kk Flow rate measuring apparatus
JP2010256075A (en) * 2009-04-22 2010-11-11 Aichi Tokei Denki Co Ltd Flowmeter and method of measuring flow rate
CN104236657A (en) * 2014-10-16 2014-12-24 辽宁毕托巴科技有限公司 Pitot mass flowmeter
CN107543936A (en) * 2017-06-27 2018-01-05 石家庄铁道大学 Fiber grating flow rate of water flow sensor
CN107543936B (en) * 2017-06-27 2023-08-18 石家庄铁道大学 Fiber bragg grating water flow velocity sensor
CN108645459A (en) * 2018-07-04 2018-10-12 东莞市益安人防工程有限公司 A kind of apparatus for measuring air quantity
CN109443459B (en) * 2018-12-05 2024-01-16 福建上润精密仪器有限公司 Throttle device with built-in high-precision sensor
CN109443459A (en) * 2018-12-05 2019-03-08 福建上润精密仪器有限公司 The throttling set of built-in high-precision sensor
CN114829829A (en) * 2019-12-17 2022-07-29 宝马股份公司 Pressure vessel system and energy supply device
CN114829829B (en) * 2019-12-17 2023-11-28 宝马股份公司 Pressure vessel system and energy supply device
CN112284478A (en) * 2020-10-28 2021-01-29 中国航发沈阳发动机研究所 Auxiliary device for flow measurement
CN112729420A (en) * 2020-12-29 2021-04-30 安徽省锐凌计量器制造有限公司 Non-full pipe flowmeter and installation and use method thereof
CN112729420B (en) * 2020-12-29 2022-06-07 安徽省锐凌计量器制造有限公司 Non-full pipe flowmeter and installation and use method thereof
CN112964323A (en) * 2021-02-10 2021-06-15 河北大学 Saturated wet steam mass flow and dryness measuring device and measuring method
CN113238074A (en) * 2021-05-18 2021-08-10 贵州电网有限责任公司 Pitot tube wind speed and direction measuring method based on sextant method
CN113654603A (en) * 2021-08-16 2021-11-16 河南省奥瑞环保科技股份有限公司 Flow velocity surface measuring device
CN114675051B (en) * 2022-03-08 2022-10-28 中国水利水电科学研究院 River flow velocity monitoring device, system and method based on differential pressure measurement
CN114675051A (en) * 2022-03-08 2022-06-28 中国水利水电科学研究院 River flow velocity monitoring device, system and method based on differential pressure measurement
US11796559B2 (en) 2022-03-08 2023-10-24 China Institute Of Water Resources And Hydropower Research Device, system and method for monitoring river flow velocity based on differential pressure measurement

Also Published As

Publication number Publication date
JP4130644B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
JP4130644B2 (en) Flow measuring device
CA1324507C (en) Self-averaging pitot tube probe and method for measuring fluid flow
KR20100124809A (en) Apparatus and method for operation in the laminar, transition, and turbulent flow regimes
CN108548573A (en) Differential pressure flowmeter
JP6771254B2 (en) Flow rate measuring device and flow rate measuring method
US20070256506A1 (en) Method and Device for Measuring
US7478565B2 (en) Method &amp; apparatus for fluid flow rate and density measurement
US20140230568A1 (en) Ultrasonic flow-meter
EP3112878B1 (en) Device for measuring total pressure of fluid flow
US10724879B2 (en) Flow measuring device operating on the vortex counter principle
KR101178038B1 (en) Differential pressure-type mass flow meter with double nozzles
CN105628969A (en) Small section streamline body airfoil-shaped wind velocity sensor
CN208140195U (en) A kind of differential pressure flowmeter
JP3119782B2 (en) Flowmeter
CN114270149A (en) Magnetic inductive flow meter and method for operating a magnetic inductive flow meter
CN107167194A (en) A kind of gas pipeline rectifier
Hancock Low Reynolds number two-dimensional separated and reattaching turbulent shear flow
JP6861226B2 (en) Breath measuring device
US5569859A (en) Vortex flow sensor with a drag body
KR102158294B1 (en) Gas flowmeter capable of measuring at sonic speed and subsonic speed
JP3179720U (en) Flow measuring device
JPH10170320A (en) Flowmeter
JP3200638U (en) Flow measuring device
JP6886675B2 (en) Flow measuring device
CN102901538B (en) Double-wing type flow sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160530

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees