JP2005003601A - Hybrid sensor - Google Patents

Hybrid sensor Download PDF

Info

Publication number
JP2005003601A
JP2005003601A JP2003169367A JP2003169367A JP2005003601A JP 2005003601 A JP2005003601 A JP 2005003601A JP 2003169367 A JP2003169367 A JP 2003169367A JP 2003169367 A JP2003169367 A JP 2003169367A JP 2005003601 A JP2005003601 A JP 2005003601A
Authority
JP
Japan
Prior art keywords
current
conductor
hybrid sensor
temperature
detection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003169367A
Other languages
Japanese (ja)
Inventor
Masayasu Furuya
正保 降矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003169367A priority Critical patent/JP2005003601A/en
Publication of JP2005003601A publication Critical patent/JP2005003601A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect a temperature simultaneously with detection of a current flowing in a conductor to be measured in the electrically noncontact state without increasing the number of components or increasing the labor for incorporation. <P>SOLUTION: In this hybrid sensor, an output resistance 5 is connected to a Rogowski coil 3 arranged close to a semiconductor chip 10 as the conductor to be measured in parallel with the Rogowski coil 3 through a lead wire 4, and a first current detection circuit 6 for detecting a flowing current in the semiconductor chip 10 from the voltage of the output resistance 5 is provided, to thereby constitute a current sensor. The sensor is also equipped with a first temperature detection circuit 12 for detecting the temperature of the semiconductor chip 10 from the current and the voltage by making a current flow in the Rogowski coil 3, and a first circuit switching device 11 for connecting the first temperature detection circuit 12 to the Rogowski coil 3 instead of the output resistance 5 and the first current detection circuit 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、被測定導体を通流する電流で生じる磁界からその電流値を計測する電流センサを利用して前記被測定導体の温度を検出するハイブリッドセンサに関する。
【0002】
【従来の技術】
被測定導体を流れる電流により生じる磁界を計測することで電流を計測することができる磁界計測電流センサとしてロゴスキーコイルがある(例えば、特許文献1参照。)
図5は被測定導体の通流電流をロゴスキーコイルにより検出する一般的な構成を示した構成図であって、閉鎖ループ状の一部を切り欠いた形状の非磁性導体でなる第1導体1に、同じく非磁性導体でなる第2導体2を前記第1導体1とは絶縁して巻き付け、これら第1導体1と第2導体2を直列に接続してロゴスキーコイル3を形成し、被測定導体7の周囲をこのロゴスキーコイル3で取り囲むように配置する。被測定導体7に電流が流れるとその周囲に磁界が発生するから、これを周回積分することで、被測定導体7の通流電流を求めることができる。そのために、ロゴスキーコイル3に接続したリード線4の先端に出力抵抗5をロゴスキーコイル3と並列に接続し、出力抵抗5の電圧を周回積分する第1電流検出回路6を備える。
【0003】
このような構成にすることにより、被測定導体7とは電気的に非接触の状態で電流を測定することができるし、ロゴスキーコイル3には切り欠き部があるので電流路を開放しなくても装着することができるなどの特徴が有する。
このような特徴は、半導体素子の通流電流を計測するのに都合が良い。最近の電力変換用半導体素子の電流容量はますます増大しつつあり、この大きな通流電流容量を確保するために、多数の半導体チップを並列に接続して1つのパッケージに収納する構造にしている。このとき同一パッケージ内の全部あるいは一部の半導体チップに流れる電流を、このロゴスキーコイルを使って検出することにより、各半導体チップに流れる電流に不平衡が生じているか否かをチェックすることができる(例えば、非特許文献1参照。)。
【0004】
ところで半導体素子の接合部温度が素子の使用限界を規定するのは周知であるから、各半導体チップに流れる電流を計測すると共に、各半導体チップの温度を計測することが重要になる。そこで電流を計測する場合と同様に、同一パッケージ内の全部あるいは一部の半導体チップに熱電対あるいは測温抵抗体などの温度センサを取り付ける。
【0005】
【特許文献1】
特開2001−343401号公報
【0006】
【非特許文献1】
降矢正保、石山泰士,「平型IGBT素子内部の電流測定技術」,富士時報,富士電機株式会社,平成14年8月,第75巻,第8号,p453−455
【0007】
【発明が解決しようとする課題】
半導体チップの温度は、前述したように熱電対か測温抵抗体を素子に密着させて検出するのであるが、熱電対は出力信号が微弱であるため、半導体素子がスイッチング動作をした場合に生じるノイズなどが原因で測定誤差が大きくなる恐れがあるし、温度の基準点も必要である。また測温抵抗体を使用する場合は、測温用センサに余分なスペースが必要になる。且つ、いずれの場合も温度測定用の部品をパッケージ内部に組み込まなければならないから、部品点数が増加するし、組み込みのための手間も増加する不具合がある。
【0008】
そこでこの発明の目的は、被測定導体を通流する電流を電気的に非接触の状態での検出と同時に温度の検出を、部品点数の増加や組み込みの手間の増大を招かずに実現できるようにすることにある。
【0009】
【課題を解決するための手段】
前記の目的を達成するために、この発明のハイブリッドセンサは、
被測定導体に直近に配置したロゴスキーコイルにリード線を介して該ロゴスキーコイルと並列に出力抵抗を接続し、この出力抵抗の電圧から前記被測定導体の通流電流を検出する第1電流検出回路を備えて電流センサを構成し、該ロゴスキーコイルに電流を流してその電流と電圧から前記被測定導体の温度を検出する第1温度検出回路と、前記出力抵抗と第1電流検出回路の代わりにこの第1温度検出回路を前記ロゴスキーコイルに接続する第1回路切替器とを備える。
【0010】
前記出力抵抗を、前記第1電流検出回路の入力インピーダンスで代用する。
前記第1電流検出回路へ入力する電圧の検出位置を、前記ロゴスキーコイルの出力端とする。
前記ロゴスキーコイルの一部または全部を、抵抗温度係数の大きさよりも固有抵抗の大きさを優先して選択した導体で構成する。
前記第1回路切替器は、前記リード線の先端に設ける。
前記ロゴスキーコイルの代わりに、被測定導体に直近に巻き回数が1回乃至数回で平坦なピックアップコイルを配置し、該ピックアップコイルにリード線を介して第2電流検出回路を接続して電流センサを構成し、該ピックアップコイルに電流を流してその電流と電圧から前記被測定導体の温度を検出する第2温度検出回路と、前記第2電流検出回路の代わりにこの第2温度検出回路を前記ピックアップコイルに接続する第2回路切替器とを備える。
【0011】
前記第2電流検出回路へ入力する電圧の検出位置を前記ピックアップコイルの出力端とする。
前記ピックアップコイルの一部または全部を、抵抗温度係数の大きさよりも固有抵抗の大きさを優先して選択した導体で構成する。
前記第2回路切替器は、前記リード線の先端に設ける。
【0012】
【発明の実施の形態】
図1は本発明の第1実施例を表した構成図であるが、この図1に記載の第1導体1と第2導体2で構成しているロゴスキーコイル3,リード線4,出力抵抗5および第1電流検出回路6の名称・用途・機能は、図5で既述の従来例と同じであるから、これらの説明は省略する。
図1の第1実施例では、ロゴスキーコイル3の端子部に第1回路切替器11を設置し、被測定導体としての半導体チップ10(実際の半導体チップは平角板状であるが、電流の通流状況を表すために円柱状で図示している)の通流電流を計測する際には、出力抵抗5と第1電流検出回路6をロゴスキーコイル3に接続している。なおこの出力抵抗5は、第1電流検出回路6の入力インピーダンスで代用することができる。
【0013】
次に半導体チップ10の温度を測定する場合は、通流電流をオフにすると共に第1回路切替器11を切り換えて、ロゴスキーコイル3を第1温度検出回路12に接続する。このとき、ロゴスキーコイル3の温度と半導体チップ10の温度はほぼ同じ値まで上昇しているから、ロゴスキーコイル3を構成する導体が正の抵抗温度係数を持つならば、その抵抗値は大きくなっている。そこで第1温度検出回路12からはロゴスキーコイル3へ計測用の電流を供給すると共に、電流検出器13と電圧検出器14とで検出する電流値と電圧値から抵抗値を演算することで、ロゴスキーコイル3の温度すなわち半導体チップ10の温度を知ることができる。このとき、電圧検出器14がロゴスキーコイル3の出力端に近接した位置にあると、第1回路切替器11やリード線の電圧降下が含まれないので、温度検出の精度を向上させることができる。
【0014】
図2は本発明の第2実施例を表した構成図であるが、この図2では、ロゴスキーコイル3を固有抵抗が大きい導体で構成していることと、第1回路切替器11をリード線4の先端部(出力抵抗5に近い位置)に設置していることが、図1の第1実施例と異なっているが、これ以外はすべて図1と同じである。
リード線4は通常は銅線であるが、ロゴスキーコイル3の全部または一部に固有抵抗が大きな導体,例えば固有抵抗が銅の約40倍であるステンレス線を使用すれば、第1回路切替器11をロゴスキーコイル3から遠い位置に設置した場合には、ロゴスキーコイル3の抵抗値を計測する際にリード線4の抵抗値が含まれることになるが、そのための測定誤差は無視できる程度に小さい。よって第1回路切替器11を半導体素子から離れた位置に設置できるから、当該半導体素子の周辺に多数のリード線4や第1回路切替器11が集中するのを回避することができる。
【0015】
なお、ロゴスキーコイル3を構成する材料は、抵抗温度係数が大きくなくても固有抵抗が大であるほうが好ましい。例えば前述のステンレス線は、抵抗温度係数は銅の約25%しかないけれども、固有抵抗が銅の約40倍であることから、温度1度当たりの抵抗値の変化量は固有抵抗が小さい銅の10倍である。よって温度の検出精度を高くできるし、耐ノイズ性も向上する。
図3は本発明の第3実施例を表した構成図であるが、この図3はロゴスキーコイル3の代わりにピックアップコイル20を使って半導体チップ10の通流電流を検出するところが図1で既述の第1実施例と異なるが、これ以外のリード線4,第2回路切替器21,第2温度検出回路22,電流検出器23,電圧検出器24および第2電流検出回路26の名称は異なるが、その機能は殆ど同じである。すなわち、ピックアップコイル20と第2電流検出回路26で半導体チップ10の通流電流を検出するが、第2回路切替器21を切り換えることによりピックアップコイル20が測温抵抗体となり、その抵抗値の変化から第2温度検出回路22がピックアップコイル20の温度,すなわち半導体チップ10の温度を検出する。なお前述の場合と同様に、電圧検出器24をピックアップコイル20の出力端に近接して位置させると、第2回路切替器21やリード線の電圧降下が含まれないので、温度検出の精度を向上させることができる。
【0016】
図4は本発明の第4実施例を表した構成図であって、図2で既述の第2実施例と同様に、ピックアップコイル20を固有抵抗が大なる導体で構成することで、抵抗温度係数があまり大きくなくても、温度変化に対応する抵抗値の変化量を大きくできるから、第2回路切替器21をピックアップコイル20から離れた位置に設置しても、リード線4の抵抗値が温度測定の際の誤差要因にならないし、ノイズの影響も受け難くなるし、半導体素子の周辺にリード線4や第2回路切替器21が集中するのを回避することもできる。
【0017】
【発明の効果】
従来のロゴスキーコイルは、被測定導体を流れる電流を電気的に非接触で検出することはできたが、被測定導体の温度は、別途の温度センサを被測定導体に取り付けていたので、この温度センサ設置用のスペースが必要であったし、リード線も増えていた。これに対して本発明では、電流を測定しないときは回路を切り換えてロゴスキーコイルまたはピックアップコイルを測温抵抗体として使用することにより、別途の温度センサを取り付ける必要がなくなって、取り付けスペースが削減できるし、取り付けの手間を不要にできる効果も得られる。更にこれらロゴスキーコイルまたはピックアップコイルは、抵抗温度係数が大きくなくても固有抵抗が大なる導体で形成することで、温度変化に対する抵抗値の変化量を大きくすることができるので、ノイズの影響を排除できるし、リード線を含んだ状態で抵抗値を計測しても、そのときの誤差は無視できる程度に小さくなるから、温度測定のための回路切替器を被測定導体から離れた位置に設置できる。よって被測定導体の周辺に回路切替器やリード線が集中する不具合を回避できる効果も得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例を表した構成図
【図2】本発明の第2実施例を表した構成図
【図3】本発明の第3実施例を表した構成図
【図4】本発明の第4実施例を表した構成図
【図5】被測定導体の通流電流をロゴスキーコイルにより検出する一般的な構成を示した構成図
【符号の説明】
3 ロゴスキーコイル
4 リード線
5 出力抵抗
6 第1電流検出回路
10 被測定導体としての半導体チップ
11 第1回路切替器
12 第1温度検出回路
13,23 電流検出器
14,24 電圧検出器
20 ピックアップコイル
21 第2回路切替器
22 第2温度検出回路
26 第2電流検出回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hybrid sensor that detects the temperature of a conductor to be measured using a current sensor that measures a current value from a magnetic field generated by a current flowing through the conductor to be measured.
[0002]
[Prior art]
There is a Rogowski coil as a magnetic field measurement current sensor capable of measuring a current by measuring a magnetic field generated by a current flowing through a conductor to be measured (see, for example, Patent Document 1).
FIG. 5 is a configuration diagram showing a general configuration for detecting a current flowing through a conductor to be measured by a Rogowski coil, and is a first conductor made of a nonmagnetic conductor having a closed loop shape cut out. 1, a second conductor 2 that is also a nonmagnetic conductor is insulated from the first conductor 1 and wound, and the first conductor 1 and the second conductor 2 are connected in series to form the Rogowski coil 3. The conductor to be measured 7 is arranged so as to be surrounded by the Rogowski coil 3. When a current flows through the conductor to be measured 7, a magnetic field is generated around the conductor. Therefore, the current flowing through the conductor to be measured 7 can be obtained by circular integration. For this purpose, a first current detection circuit 6 that connects the output resistor 5 in parallel with the Rogowski coil 3 at the tip of the lead wire 4 connected to the Rogowski coil 3 and circulates and integrates the voltage of the output resistor 5 is provided.
[0003]
With such a configuration, the current can be measured in an electrically non-contact state with the conductor 7 to be measured, and the Rogowski coil 3 has a notch so that the current path is not opened. However, it has the feature that it can be worn.
Such a feature is convenient for measuring the current flowing through the semiconductor element. The current capacity of recent power conversion semiconductor elements is increasing, and in order to secure this large current carrying capacity, a structure in which a large number of semiconductor chips are connected in parallel and stored in one package is adopted. . At this time, it is possible to check whether or not there is an imbalance in the current flowing through each semiconductor chip by detecting the current flowing through all or part of the semiconductor chip in the same package using this Rogowski coil. (For example, refer nonpatent literature 1.).
[0004]
By the way, since it is well known that the junction temperature of the semiconductor element defines the use limit of the element, it is important to measure the current flowing through each semiconductor chip and measure the temperature of each semiconductor chip. Therefore, as in the case of measuring the current, a temperature sensor such as a thermocouple or a resistance temperature detector is attached to all or some of the semiconductor chips in the same package.
[0005]
[Patent Document 1]
JP-A-2001-343401 [0006]
[Non-Patent Document 1]
Masayasu Furuya, Yasushi Ishiyama, “Current Measurement Technology in Flat IGBT Devices”, Fuji Times, Fuji Electric Co., Ltd., August 2002, Vol. 75, No. 8, p453-455
[0007]
[Problems to be solved by the invention]
As described above, the temperature of the semiconductor chip is detected by bringing a thermocouple or a resistance temperature detector into close contact with the element. However, since the thermocouple has a weak output signal, it occurs when the semiconductor element performs a switching operation. Measurement errors may increase due to noise, etc., and a temperature reference point is also required. When using a resistance temperature detector, an extra space is required for the temperature sensor. In either case, since the temperature measurement component must be incorporated into the package, the number of components is increased, and there is a problem that the labor for incorporation is increased.
[0008]
Therefore, an object of the present invention is to realize temperature detection at the same time as detecting the current flowing through the conductor to be measured in an electrically non-contact state without causing an increase in the number of parts and an increase in installation time. Is to make it.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the hybrid sensor of the present invention provides:
An output resistor is connected in parallel to the Rogowski coil via a lead wire to the Rogowski coil arranged closest to the conductor to be measured, and a first current is detected from the voltage of this output resistor. A first temperature detection circuit configured to detect a temperature of the conductor to be measured from the current and the voltage by passing a current through the Rogowski coil; and the output resistor and the first current detection circuit. Instead of a first circuit switch for connecting the first temperature detection circuit to the Rogowski coil.
[0010]
The output resistance is substituted with the input impedance of the first current detection circuit.
The detection position of the voltage input to the first current detection circuit is the output terminal of the Rogowski coil.
A part or all of the Rogowski coil is composed of a conductor selected by giving priority to the magnitude of the specific resistance over the magnitude of the resistance temperature coefficient.
The first circuit switch is provided at the tip of the lead wire.
Instead of the Rogowski coil, a flat pickup coil having one to several turns is disposed immediately around the conductor to be measured, and a second current detection circuit is connected to the pickup coil via a lead wire. A second temperature detection circuit configured to detect a temperature of the conductor to be measured from the current and voltage by supplying a current to the pickup coil; and the second temperature detection circuit instead of the second current detection circuit. And a second circuit switch connected to the pickup coil.
[0011]
The detection position of the voltage input to the second current detection circuit is defined as the output end of the pickup coil.
A part or all of the pickup coil is made of a conductor selected by giving priority to the magnitude of the specific resistance over the magnitude of the resistance temperature coefficient.
The second circuit switch is provided at the tip of the lead wire.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing the first embodiment of the present invention. The Rogowski coil 3, the lead wire 4, and the output resistance which are composed of the first conductor 1 and the second conductor 2 shown in FIG. 5 and the first current detection circuit 6 have the same names, uses, and functions as those of the conventional example described above with reference to FIG.
In the first embodiment of FIG. 1, the first circuit switch 11 is installed at the terminal portion of the Rogowski coil 3, and the semiconductor chip 10 as the conductor to be measured (the actual semiconductor chip is a flat plate shape, In order to measure the flow current (shown in a column shape to represent the flow condition), the output resistor 5 and the first current detection circuit 6 are connected to the Rogowski coil 3. The output resistor 5 can be substituted with the input impedance of the first current detection circuit 6.
[0013]
Next, when measuring the temperature of the semiconductor chip 10, the conduction current is turned off and the first circuit switch 11 is switched to connect the Rogowski coil 3 to the first temperature detection circuit 12. At this time, since the temperature of the Rogowski coil 3 and the temperature of the semiconductor chip 10 have risen to substantially the same value, if the conductor constituting the Rogowski coil 3 has a positive resistance temperature coefficient, the resistance value is large. It has become. Therefore, by supplying a current for measurement from the first temperature detection circuit 12 to the Rogowski coil 3, and calculating a resistance value from the current value and the voltage value detected by the current detector 13 and the voltage detector 14, The temperature of the Rogowski coil 3, that is, the temperature of the semiconductor chip 10 can be known. At this time, if the voltage detector 14 is in a position close to the output end of the Rogowski coil 3, the voltage drop of the first circuit switch 11 and the lead wire is not included, so that the accuracy of temperature detection can be improved. it can.
[0014]
FIG. 2 is a block diagram showing a second embodiment of the present invention. In FIG. 2, the Rogowski coil 3 is composed of a conductor having a large specific resistance, and the first circuit switch 11 is read. Although it is different from the first embodiment of FIG. 1 that it is installed at the tip of the wire 4 (position close to the output resistor 5), everything else is the same as FIG.
The lead wire 4 is usually a copper wire, but if a conductor having a large specific resistance, for example, a stainless wire having a specific resistance approximately 40 times that of copper, is used for all or a part of the Rogowski coil 3, the first circuit is switched. When the device 11 is installed at a position far from the Rogowski coil 3, the resistance value of the lead wire 4 is included when measuring the resistance value of the Rogowski coil 3, but the measurement error for that can be ignored. Small enough. Therefore, since the first circuit switch 11 can be installed at a position away from the semiconductor element, it is possible to avoid the concentration of a large number of lead wires 4 and the first circuit switch 11 around the semiconductor element.
[0015]
Note that the material constituting the Rogowski coil 3 preferably has a large specific resistance even if the temperature coefficient of resistance is not large. For example, although the above-mentioned stainless steel wire has a resistance temperature coefficient of only about 25% of copper, the specific resistance is about 40 times that of copper. 10 times. Therefore, the temperature detection accuracy can be increased and the noise resistance is also improved.
FIG. 3 is a block diagram showing a third embodiment of the present invention. FIG. 3 shows the detection of the current flowing through the semiconductor chip 10 using the pickup coil 20 instead of the Rogowski coil 3. In FIG. Although different from the first embodiment described above, other names of the lead wire 4, the second circuit switching device 21, the second temperature detection circuit 22, the current detector 23, the voltage detector 24, and the second current detection circuit 26 Are different, but their functions are almost the same. That is, the pick-up coil 20 and the second current detection circuit 26 detect the current flowing through the semiconductor chip 10, but by switching the second circuit switch 21, the pick-up coil 20 becomes a temperature measuring resistor, and the resistance value changes. The second temperature detection circuit 22 detects the temperature of the pickup coil 20, that is, the temperature of the semiconductor chip 10. As in the case described above, if the voltage detector 24 is positioned close to the output end of the pickup coil 20, the voltage drop of the second circuit switch 21 and the lead wire is not included, so that the temperature detection accuracy is improved. Can be improved.
[0016]
FIG. 4 is a block diagram showing a fourth embodiment of the present invention. Like the second embodiment described with reference to FIG. 2, the pickup coil 20 is made of a conductor having a large specific resistance so that the resistance is increased. Even if the temperature coefficient is not so large, the amount of change in the resistance value corresponding to the temperature change can be increased. Therefore, even if the second circuit switch 21 is installed at a position away from the pickup coil 20, the resistance value of the lead wire 4 is increased. This is not an error factor in temperature measurement, is less susceptible to noise, and can avoid the concentration of the lead wire 4 and the second circuit switch 21 around the semiconductor element.
[0017]
【The invention's effect】
The conventional Rogowski coil was able to detect the current flowing through the conductor to be measured in a non-contact manner. However, the temperature of the conductor to be measured had a separate temperature sensor attached to the conductor to be measured. Space for installing the temperature sensor was required, and lead wires were also increasing. On the other hand, in the present invention, when current is not measured, the circuit is switched and a Rogowski coil or a pickup coil is used as a resistance temperature detector, so that it is not necessary to attach a separate temperature sensor and the installation space is reduced. It is also possible to obtain the effect of eliminating the need for mounting. Furthermore, these Rogowski coils or pickup coils can be made of a conductor having a large specific resistance even if the resistance temperature coefficient is not large, so that the amount of change in the resistance value with respect to the temperature change can be increased. Even if the resistance value is measured with the lead wire included, the error at that time will be negligibly small, so install a circuit switch for temperature measurement at a position away from the conductor to be measured. it can. Therefore, it is possible to obtain an effect of avoiding the problem that the circuit switch and the lead wire are concentrated around the conductor to be measured.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment of the present invention. FIG. 2 is a block diagram showing a second embodiment of the present invention. FIG. 3 is a block diagram showing a third embodiment of the present invention. 4 is a block diagram showing a fourth embodiment of the present invention. FIG. 5 is a block diagram showing a general configuration for detecting a current flowing through a conductor to be measured by a Rogowski coil.
DESCRIPTION OF SYMBOLS 3 Rogowski coil 4 Lead wire 5 Output resistance 6 1st electric current detection circuit 10 Semiconductor chip 11 as a to-be-measured conductor 1st circuit switcher 12 1st temperature detection circuit 13 and 23 Current detector 14 and 24 Voltage detector 20 Pickup Coil 21 Second circuit switch 22 Second temperature detection circuit 26 Second current detection circuit

Claims (11)

被測定導体に直近に配置したロゴスキーコイルにリード線を介して該ロゴスキーコイルと並列に出力抵抗を接続し、この出力抵抗の電圧から前記被測定導体の通流電流を検出する第1電流検出回路を備えている電流センサにおいて、
前記ロゴスキーコイルに電流を流してその電流と電圧から前記被測定導体の温度を検出する第1温度検出回路と、前記出力抵抗と第1電流検出回路の代わりにこの第1温度検出回路を前記ロゴスキーコイルに接続する第1回路切替器と、を備えることを特徴とするハイブリッドセンサ。
An output resistor is connected in parallel to the Rogowski coil via a lead wire to the Rogowski coil arranged closest to the conductor to be measured, and a first current is detected from the voltage of this output resistor. In a current sensor equipped with a detection circuit,
A first temperature detecting circuit for detecting a temperature of the conductor to be measured from the current and voltage by passing a current through the Rogowski coil; and the first temperature detecting circuit instead of the output resistor and the first current detecting circuit. A hybrid sensor comprising: a first circuit switching device connected to the Rogowski coil.
請求項1に記載のハイブリッドセンサにおいて、
前記出力抵抗を、前記第1電流検出回路の入力インピーダンスで代用することを特徴とするハイブリッドセンサ。
The hybrid sensor according to claim 1,
The hybrid sensor, wherein the output resistance is substituted with an input impedance of the first current detection circuit.
請求項1乃至請求項2に記載のハイブリッドセンサにおいて、
前記第1電流検出回路へ入力する電圧の検出位置を、前記ロゴスキーコイルの出力端とすることを特徴とするハイブリッドセンサ。
In the hybrid sensor according to claim 1 or 2,
A hybrid sensor, wherein a detection position of a voltage input to the first current detection circuit is an output end of the Rogowski coil.
請求項1乃至請求項3に記載のハイブリッドセンサにおいて、
前記ロゴスキーコイルの一部または全部を、固有抵抗が大きい導体で構成することを特徴とするハイブリッドセンサ。
The hybrid sensor according to claim 1, wherein:
A hybrid sensor characterized in that a part or all of the Rogowski coil is formed of a conductor having a large specific resistance.
請求項1乃至請求項4に記載のハイブリッドセンサにおいて、
前記ロゴスキーコイルの一部または全部を、抵抗温度係数の大きさよりも固有抵抗の大きさを優先して選択した導体で構成することを特徴とするハイブリッドセンサ。
The hybrid sensor according to claim 1, wherein:
A hybrid sensor, wherein a part or all of the Rogowski coil is made of a conductor selected by giving priority to the magnitude of the specific resistance over the magnitude of the resistance temperature coefficient.
請求項1乃至請求項5に記載のハイブリッドセンサにおいて、
前記第1回路切替器を、前記リード線の先端に設けることを特徴とするハイブリッドセンサ。
The hybrid sensor according to any one of claims 1 to 5,
The hybrid sensor, wherein the first circuit switch is provided at a tip of the lead wire.
被測定導体に直近に配置した巻き回数が1回乃至数回で平坦なピックアップコイルにリード線を介して第2電流検出回路を接続して前記被測定導体の通流電流を検出する電流センサにおいて、
前記ピックアップコイルに電流を流してその電流と電圧から前記被測定導体の温度を検出する第2温度検出回路と、前記第2電流検出回路の代わりにこの第2温度検出回路を前記ピックアップコイルに接続する第2回路切替器と、を備えることを特徴とするハイブリッドセンサ。
In a current sensor for detecting a current flowing through a conductor to be measured by connecting a second current detection circuit to a flat pickup coil via a lead wire with the number of windings arranged one or several times closest to the conductor to be measured. ,
A second temperature detection circuit for detecting a temperature of the conductor to be measured from the current and voltage by passing a current through the pickup coil; and the second temperature detection circuit is connected to the pickup coil instead of the second current detection circuit. And a second circuit switching device.
請求項7に記載のハイブリッドセンサにおいて、
前記第2電流検出回路へ入力する電圧の検出位置を前記ピックアップコイルの出力端とすることを特徴とするハイブリッドセンサ。
The hybrid sensor according to claim 7,
A hybrid sensor, wherein a detection position of a voltage input to the second current detection circuit is an output end of the pickup coil.
請求項7乃至請求項8に記載のハイブリッドセンサにおいて、
前記ピックアップコイルの一部または全部を、固有抵抗が大きい導体で構成することを特徴とするハイブリッドセンサ。
The hybrid sensor according to any one of claims 7 to 8,
A hybrid sensor, wherein a part or all of the pickup coil is made of a conductor having a large specific resistance.
請求項7乃至請求項9に記載のハイブリッドセンサにおいて、
前記ピックアップコイルの一部または全部を、抵抗温度係数の大きさよりも固有抵抗の大きさを優先して選択した導体で構成することを特徴とするハイブリッドセンサ。
The hybrid sensor according to any one of claims 7 to 9,
A hybrid sensor characterized in that a part or all of the pickup coil is made of a conductor selected by giving priority to the magnitude of the specific resistance over the magnitude of the resistance temperature coefficient.
請求項7乃至請求項10に記載のハイブリッドセンサにおいて、
前記第2回路切替器は、前記リード線の先端に設けることを特徴とするハイブリッドセンサ。
The hybrid sensor according to any one of claims 7 to 10,
The second sensor is provided at the tip of the lead wire.
JP2003169367A 2003-06-13 2003-06-13 Hybrid sensor Withdrawn JP2005003601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169367A JP2005003601A (en) 2003-06-13 2003-06-13 Hybrid sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169367A JP2005003601A (en) 2003-06-13 2003-06-13 Hybrid sensor

Publications (1)

Publication Number Publication Date
JP2005003601A true JP2005003601A (en) 2005-01-06

Family

ID=34094526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169367A Withdrawn JP2005003601A (en) 2003-06-13 2003-06-13 Hybrid sensor

Country Status (1)

Country Link
JP (1) JP2005003601A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003395A1 (en) * 2007-06-29 2009-01-08 Wei Wu A wide range and high accuracy on-line current and temperature measuring device and method
CN102959408A (en) * 2010-07-07 2013-03-06 阿尔卑斯绿色器件株式会社 Current sensor
JP2019020369A (en) * 2017-07-21 2019-02-07 日置電機株式会社 Current sensor and measurement device
CN111208752A (en) * 2018-11-21 2020-05-29 伊顿智能动力有限公司 Single input circuit for receiving output from di/dt sensor or current transformer and circuit breaker including the same
EP3795966A1 (en) * 2019-09-23 2021-03-24 Eaton Intelligent Power Limited Circuit interrupter and method of estimating a temperature of a busbar in a circuit interrupter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003395A1 (en) * 2007-06-29 2009-01-08 Wei Wu A wide range and high accuracy on-line current and temperature measuring device and method
CN102959408A (en) * 2010-07-07 2013-03-06 阿尔卑斯绿色器件株式会社 Current sensor
JP2019020369A (en) * 2017-07-21 2019-02-07 日置電機株式会社 Current sensor and measurement device
CN111208752A (en) * 2018-11-21 2020-05-29 伊顿智能动力有限公司 Single input circuit for receiving output from di/dt sensor or current transformer and circuit breaker including the same
CN111208752B (en) * 2018-11-21 2024-01-16 伊顿智能动力有限公司 Single input circuit for receiving output from di/dt sensor or current transformer and circuit breaker comprising same
EP3795966A1 (en) * 2019-09-23 2021-03-24 Eaton Intelligent Power Limited Circuit interrupter and method of estimating a temperature of a busbar in a circuit interrupter
US11268987B2 (en) 2019-09-23 2022-03-08 Eaton Intelligent Power Limited Circuit interrupter and method of estimating a temperature of a busbar in a circuit interrupter

Similar Documents

Publication Publication Date Title
US7612553B2 (en) Current sensor having sandwiched magnetic permeability layer
CN111308154B (en) Current sensor
JP3681584B2 (en) Current sensor and electric circuit using the same
US7642768B1 (en) Current sensor having field screening arrangement including electrical conductors sandwiching magnetic permeability layer
JPH04364472A (en) Magnetoelectric conversion device
JP2004132790A (en) Current sensor
JP6017182B2 (en) Current sensor
RU2727565C1 (en) Current measurement method and current measurement device
US20200064380A1 (en) Current sensing module
JP2008151530A (en) Semiconductor integrated circuit for detecting magnetic field
US20060012459A1 (en) Sensor and method for measuring a current of charged particles
JP2005003601A (en) Hybrid sensor
JP2023169302A (en) Vehicle battery current detection system
JP6609947B2 (en) Magnetic detector
CN213181743U (en) Current detection device for circuit breaker
JP2004325352A (en) Current sensor
US6351115B1 (en) Low profile laminated shunt
US6861717B2 (en) Device for defecting a magnetic field, magnetic field measure and current meter
JP4150624B2 (en) Calibration jig
CN112352163A (en) Electronic module
CN113702880B (en) Magneto-resistance sensor chip
JP2019152558A (en) Current sensor and voltmeter
JPH11265974A (en) Power semiconductor module
JPH06273449A (en) Current sensor
JP2005121471A (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081217