【0001】
【発明の属する技術分野】
本発明は、免疫診断薬担体、細菌分離担体、細胞分離担体、核酸分離精製担体、蛋白分離精製担体、固定化酵素担体、ドラッグデリバリー担体などに使用することができ、特に光を利用した検出、分離、選別等に好適に用いることができる診断薬用磁性粒子に関する。
【0002】
【従来技術】
磁性体複合粒子は、粒子表面での特異物質の吸着や、化学結合や磁気応答性を利用した固液分離により、核酸、ウイルス、タンパク、細胞等の分離回収または濃縮用として、すでに生化学・分子生物・医療用診断薬等用として広く用いられている。また、そのアッセイ方法としても、サンドイッチ法、競合法等が従来から利用されている。
【0003】
免疫診断薬に利用される磁性体複合粒子は一般に、酸化鉄を主とする磁気応答性物質を含み、一般に黒色または褐色をしている。また、これらの磁気応答性物資や、蛋白質と反応するプレ活性官能基の導入について既に公知である(例えば、特許文献1〜5参照)。
【0004】
免疫診断においては、より簡便な方法でより高感度検出を実現するために、さまざまな工夫がなされた。特に検出系の改良効果が大きい。また、従来高感度測定系とされていた発色測定(例えば、蛍光、燐光、ルミネセンス、化学ルミネセンス等)が、現在主流の測定系になっている。しかしながら、検出系が改良されたにもかかわらず、検出系の特徴に合った固相担体の提供が遅れ、診断系全体の高感度の妨げとなってきた。
【0005】
例えば、固相担体に磁性体複合粒子が使用される場合、前述したように、磁性体複合粒子は一般に、黒色または褐色である。このため、目的物質を捕獲することにより形成される標識酵素と基質との反応に由来する発光シグナルが、褐色の磁性体複合粒子自身による吸収によって、時には半分以下にも低下してしまう場合があった。
【0006】
このような磁性体複合粒子による光吸収を回避するために、実用上多くの場合、発光強度を測定する直前に、磁石を用いて磁性体複合粒子と基質液層とを固液分離し、液層にのみ光を通過させて測定を行なう対策が取られている。しかしながら、この対策には二つの問題がある。
【0007】
第1の問題は、発色または発光時間の短い基質系において、磁性体複合粒子が使用困難であることである。磁性体複合粒子の表面に形成されている抗原・抗体・酵素複合体が基質液層と分離した時点で、反応速度が分離前の液層反応に比べて極端に低下し、発生するシグナルも低下する。したがって、固液分離して液層のみに光を通過させて測定を行なう手法は、発光持続時間が長い基質系以外では実用的ではない。
【0008】
第2の問題は、固液分離操作を加えることにより生ずる時間ロスおよび分離精度である。具体的には、短時間で迅速な処理が求められるアッセイシステムにおいては、固液分離の回数を可能な限り少なくすることが望ましい。また、分離しきれずに残留した微量の磁性体複合粒子の存在によってノイズが生じ、感度低下につながるので、上記固液分離操作をなくすことが強く求められている。
【0009】
また、蛍光や燐光検出系、またはラジオアイソトープ検出系においても、前述した褐色磁性体複合粒子を適用する際に同様な問題が生じる。
【0010】
ところで、磁性粒子の白色化または淡色化については、酸化チタンなどの白色微粒子に磁性体を複合させることで、磁性トナー、磁性記録媒体等の美観の改善を図る提案がされている(例えば、特許文献6および7参照)。これらの用途に用いられる磁性体複合粒子は、飽和磁化および残留磁化が高いこと、すなわち、外部磁場によって磁化されやすく、かつ保磁性も高いことが求められる。また、このような磁性体複合粒子は粉体であり、かつその表面が疎水的であることが必要とされる。
【0011】
一方、本発明の用途のひとつである免疫診断においては、磁性体複合粒子は一般に水懸濁液の形態で使用される。このため、磁性体複合粒子には粒子コロイド的な安定性が求められる。特に、免疫診断に用いられる磁性体複合粒子は、蛋白質等の非特異的な疎水結合を避けるために、少なくとも部分的に親水性の表面を有することが必要とされる。
【0012】
【特許文献1】
特許第2672151号公報
【特許文献2】
特許第2844263号公報
【特許文献3】
特開平7−316466号公報
【特許文献4】
特開平6−265550号公報
【特許文献5】
国際公開84/02031号パンフレット
【特許文献6】
特開2000−150218号公報
【特許文献7】
特開2002−15908号公報
【0013】
【発明が解決しようとする課題】
本発明は、従来、光検出系を用いた診断用途で使用されていた黒色または褐色磁性複合粒子による光吸収を回避し、高感度測定を実現できる診断薬用磁性粒子を提供することにある。
【0014】
【課題を解決するための手段】
本発明者が鋭意検討した結果、従来使用されていた褐色磁性体複合粒子の色を無くして、淡色または白色磁性体複合粒子に切り替えることにより、上記課題を解決できるとの結論に達した。これにより、磁性体複合粒子の白色化・淡色化は、磁性体複合粒子を用いた免疫アッセイの感度を向上させるために最も有効な解決手段と判明した。
【0015】
本発明の診断薬用磁性粒子は、磁性体粒子を含むコアと、前記コアより外側に形成された可視光散乱層とを含み、
Lab表色系でのL値が50以上、残留磁化が飽和磁化の30%以下、および粒子径が0.5〜15μmである。
【0016】
ここで、Lab表色系とは、JIS Z8729で定められている表色系をいう。
【0017】
上記診断薬用磁性粒子において、前記可視光散乱層が、酸化チタンおよび酸化亜鉛の少なくとも一方を含むことができる。
【0018】
【発明の実施の形態】
以下本発明の各構成要素について詳細に説明する。
【0019】
本発明の診断薬用磁性粒子は、磁性体粒子を含むコアと、前記コアより外側に形成された可視光散乱層とを含み、Lab表色系でのL値が50以上、残留磁化が飽和磁化の30%以下、および粒子径が0.5〜15μmである。この可視光散乱層が前記コアより外側に形成されていることにより、検出系において、光吸収を効率的に抑えることができる。
【0020】
[色彩]
本発明の診断薬用磁性粒子(以下、単に「磁性粒子」ともいう)は、外観上の色彩または色彩計で測定した表色度が懸濁液中の該粒子の含有量によって異なるが、本発明の診断薬用磁性粒子の10重量%水分散液の外観は通常、白色、乳白色または淡色(薄い灰色)を呈する。なお、一般に、粒子懸濁液を風乾すると、色彩に変化を生ずる。
【0021】
本発明の診断薬用磁性粒子の色彩は、その10重量%分散液を用いて測定する。具体的には、本発明の診断薬用磁性粒子の10重量%分散液100μLを、顕微鏡用スライドガラスに静かに垂らした後、10分以上放置して風乾させる。次いで、風乾させた粒子を色彩計で測定する。その測定結果を、JIS Z8729で定められたLab表色系で表現するものとする。
【0022】
本発明の診断薬用磁性粒子においては、Lab表色系でのL値が50以上であるのが好ましく、60以上であるのがより好ましい。L値が50未満になると、検出系の光吸収を効率的に避けることができないことがある。
【0023】
本発明の診断薬用磁性粒子の色相(a,b値)は、特に限定されるものではなく、実際のアッセイ時に選択される基質の発光波長や蛍光体の波長等に合わせて選択することができる。つまり、光の吸収を効率よく抑えるために、本発明の診断薬用磁性粒子の表面を白色にする以外に、避けるべき光の波長に合わせて磁性粒子の表面の色を選択することができる。例えば、波長450nmの光を発光する基質を使用するアッセイ系においては、本発明の診断薬用磁性粒子の表面が白色あるいは薄青紫色である場合においても、同様の効果が得られる。
【0024】
[残留磁化]
本発明の診断薬用磁性粒子の残留磁化は、飽和磁化の30%以下であり、より好ましくは20%以下であり、さらに好ましくは10%以下である。残留磁化が飽和磁化の30%よりも高いと、外部から磁場を除去した後も磁性粒子同士が互いに引き合い凝集しつづけるため、引き続いて行なわれる磁性粒子の再分散処理に不都合である場合がある。
【0025】
免疫診断薬は、本発明の診断薬用磁性粒子の用途の一つである(他の用途については後述する)。本発明の診断薬用磁性粒子を免疫診断薬に用いる場合、外部磁場の印加に速やかに応答して凝集する特性と、外部磁場の除去により磁化が速やかに消失して粒子同士が再分散する特性との両方があることが望ましい。
【0026】
外部磁場の印加によって凝集する特性は、診断薬用磁性粒子および診断薬用磁性粒子に特異的に結合した成分のみを回収し、不要な成分を除去するために必要である。
【0027】
また、外部磁場の除去によって速やかに磁化が消失する特性は、例えば発光を測定するため分散媒(例えば水)中に磁性粒子を均一に分散させたり、あるいは複数回の検体を作用させるために磁性粒子を分散させたりするのに必要である。外部磁場を除去した後に強い残留磁化が磁性粒子に存在していると、磁性粒子を再分散させるのに長時間を要したり、強い攪拌等の外部エネルギーを必要とすることがあり不都合である。
【0028】
本発明の診断薬用磁性粒子の飽和磁化、残留磁化、保磁力等の磁気特性は一般的、振動試料型磁力計より測定することができる。ここでは、最大外部印加磁場は15K Oeでの磁化を飽和磁化とし、ここで外部磁化をゼロに戻したときに得られた磁化ヒステリシスカーブから残留磁化を求めるものとする。
【0029】
[粒子径]
本発明の診断薬用磁性粒子の粒子径は0.5μm〜15μmであり、より好ましくは1μm〜10μmである。粒子径が0.5μmより小さいと、外部磁場への応答以外に磁性粒子自身のブラウン運動による擾乱が無視できなくなり、磁気分離に長時間を要するので望ましくない。一方、粒子径が15μmより大きいと、検出系に使用される励起光、シグナル発色、発光などに対する磁性粒子自体の遮蔽要因が大きくなること、磁性粒子の体積に対する表面積が小さくなりすぎるため導入できる蛋白質量が制限される結果検出感度が低下するおそれがあること、あるいは磁性粒子の自然沈降速度が速くなるため、均一に磁性粒子が分散している状態が維持しにくくなることから、好ましくない。
【0030】
[製造方法]
本発明の診断薬用磁性粒子の製造方法は、磁性コア粒子を作製する工程、引き続いて前記磁性コア粒子を可視光散乱層で被覆する工程、および必要に応じて種々の機能付与のための層で前記可視光散乱層を被覆する工程を含む。すなわち、磁性コア粒子を作製する工程により、本発明の診断薬用磁性粒子における「磁性体粒子を含むコア」が形成され、前記磁性コア粒子を可視光散乱層で被覆する工程により、「前記コアより外側に形成された可視光錯乱層」が形成される。
【0031】
磁性コア粒子は、無機物のみで形成されていてもよいが、低比重にすることにより水中での沈降を遅らせ、水への分散が容易になるため、有機物が含まれていることが好ましい。あるいは、低比重化するために、有機物または無機物からなる多孔質粒子を用いてもよい。
【0032】
磁性コア粒子としては、例えばポリマー粒子中に磁性体粒子を分散させたもの、ポリマー粒子表面に磁性体粒子を物理的に付着させたもの、ポリマー粒子や多孔質粒子の表面に磁性体粒子を析出させたものなどを挙げることができる。このような有機高分子物質を得るための単量体としては、スチレン、ビニルナフタレン、ビニルアントラセン、アクリル酸メチル、アクリル酸エチル、アクリル酸−n−ブチル、アクリル酸−2−ヒドロキシエチル、アクリル酸ポリオキシエチレン、アクリル酸グリシジル、エチレングリコールジアクリル酸エステル、アクリル酸トリブロモフェニル、アクリル酸ラウリル、アクリル酸トリデシル、アクリル酸ステアリル、アクリル酸−2−エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸ベンジル等のアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸−n−ブチル、メタクリル酸−2−ヒドロキシエチル、メタクリル酸ポリオキシエチレン、メタクリル酸グリシジル、エチレングリコールジメタクリル酸エステル、メタクリル酸トリブロモフェニル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸−2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル等のメタクリル酸エステル、クロルスチレン、クロロメチルスチレン、α−メチルスチレン、ジビニルベンゼン、スチレンスルホン酸ナトリウム、などを挙げることができる。これらは、単独でまたは2種以上を組み合わせて用いることができる。これらの中で、特にスチレン、ビニルナフタレンと(メタ)アクリル酸との共重合体が本発明に好適である。
【0033】
本発明において、磁性コア粒子を形成する際に使用する磁性体粒子の材質としては、特に制限はないが、酸化鉄系の物質が代表的であり、MnFe2O4(Mn=Co、Ni、Mg、Cu、Li0.5Fe0.5等)で表現されるフェライト、Fe3O4で表現されるマグネタイト、あるいはγFe2O3が挙げられる。また、上記磁性体を複合して用いてもよい。特に、飽和磁化が強く、かつ残留磁化が少ない磁性体として、γFe2O3、Fe3O4からなる磁性体粒子が好ましい。また、これら磁性体で構成される単磁区として径50nm以下が好ましい。単磁区が50nmを超えると、得られる診断薬用磁性粒子の残留磁化が飽和磁化の30%を超えるおそれがあるため、好ましくない。
【0034】
次に、磁性体粒子を含むコア(磁性コア粒子)より外側に形成される可視光散乱層は、可視光を反射または散乱する層である。この可視光錯乱層は、可視光に対する屈折率が高いことが好ましい。
【0035】
本発明において、磁性コア粒子より外側に可視光散乱層を形成する製法としては、たとえば磁性コア粒子を溶媒中に分散させ、可視光散乱性物質の溶液または分散液を用いて、磁性コア粒子の表面に可視光散乱性物質を析出させたりヘテロ凝集させたりする方法や、あるいは磁性コア粒子と可視光散乱性物質とを機械的に混錬したり高速気流中で衝突させたりすることで、磁性コア粒子の表面に可視光錯乱性物質を吸着させる方法などが例示できる。なかでも、可視光散乱性微粒子を、磁性コア粒子の表面に吸着させる方法が好ましい。
【0036】
磁性コア粒子より外側に可視光散乱層を形成することにより、本発明の診断薬用磁性粒子の外観を白色または淡色にすることができる。すなわち、磁性コア粒子を可視光散乱層を被覆することにより、通常黒色または褐色である磁性コア粒子を可視光散乱層で隠蔽して、基質由来の発光信号の減衰を抑える働きを付与することができる。
【0037】
可視光散乱層の形成に用いられる可視光錯乱性物質としては、空気または水との屈折率差の大きな酸化チタンや酸化亜鉛などが好ましいが、一般にこれらの物質を用いると高比重になりやすいので、使用目的によっては有機物なども選択することができる。本発明においては、上記材質の可視光散乱性物質を粒子の形態で用いることができる。実用的に取扱いが容易な可視光散乱性粒子の粒子径は、0.005μm〜2μmであり、一次粒子径が可視光の散乱に好適な0.2μm〜0.4μmの微粒子を用いることがより好ましい。
【0038】
本発明において、必要に応じて可視光散乱層の表面にポリマー被覆層を再度導入することにより、本発明の診断薬用磁性粒子の表面に磁性体粒子が露出するのを防止することができる。
【0039】
磁性体粒子が本発明の診断薬用磁性粒子の表面に露出している度合いを測定する方法として、通常の酵素免疫反応で使用されている基質の一つであり、鉄と敏感に反応するo−フェニレンジアミン(OPD)を使用することができる。OPDは酵素免疫アッセイの基質であるため、本発明の診断薬用磁性粒子の表面に露出した磁性体粒子の影響を、より実際のアッセイ系に近い形で確認することができる
また、必要に応じて水系への分散を容易にしたり、磁性粒子の表面に抗体や抗原等の蛋白質が結合するための官能基を導入したりするために、本発明の診断薬用磁性粒子の最外層に、ポリマーやオリゴマーによる被覆層を形成することが特に好ましい。
【0040】
本発明の診断薬用磁性粒子は、主に蛋白質で構成される生理活性物質、またはDNA、オリゴヌクレオチド、レクチン、多糖類等と表面で容易に結合することができるうえに、結合すべき生理活性物質と損傷なく結合することができる。
【0041】
本発明の診断薬用磁性粒子と生理活性物質等との結合方法としては、磁性粒子と蛋白質との疎水結合を利用する物理吸着法や、磁性粒子の表面に存在する官能基と蛋白質との化学結合法が挙げられる。簡便の観点から、物理吸着法が有望であるが、固定化物質の長期安定性を考慮すると、界面活性剤を含む環境で安定的に使用するためには、化学結合法が好ましい。化学結合法は一般的に、蛋白質側にあるカルボキシル基、アミノ基、SH基、核酸のアミノ基または導入されるスペーサ先端の官能基を利用する。そのために、磁性粒子の表面に、少なくともカルボキシル基、アミノ基、アルデヒド基、エポキシ基、トシル基を1種類以上導入することが好ましい。具体的な固定化方法は、例えばアミノ基同士を結合させる方法(ジイソシアネート法、グルタルアルデヒド法、ジフルオロベンゼン法もしくはベンゾキノン法)、またはカルボキシル基同士を結合させる方法(サクシンイミド法)等を用いることができる(石川榮治ら編「酵素免疫測定法 第3版」1987年 医学書院刊)。
【0042】
これらの官能基は、本発明の診断薬用磁性粒子の表面に導入できることはいうまでもない。具体的な方法として、例えば不飽和二重結合を有する反応性モノマーを磁性粒子の表面で重合させる方法や、導入された官能基に別種の官能基を含有する化合物を結合させて磁性粒子の表面を変性させる方法により、本発明の診断薬用磁性粒子の表面に上記官能基を導入することもできる。
【0043】
化学反応以外に、沈殿法、析出法、衝撃によって、本発明の診断薬用磁性粒子の表面に上記官能基を導入する方法も本発明の範囲に含まれるが、導入する官能基の密度、安定性、緻密性の観点から、化学反応、または上記導入法と化学反応とを組み合わせた方法が好ましい。また、必要に応じて、適当な長さを有する分子スペーサを導入してもよい。
【0044】
本発明の診断薬用磁性粒子が利用できる検出対象は、特に限定されるものではない。測定対象物が核酸、抗原、抗体、ウイルス等の広範囲に亘る。具体的な免疫診断として、例えば、CEA、免疫グロブリン(IgG、IgA、IgM、IgD、IgE)、補体(C3、C4、C5、C1q)、C反応性蛋白、α1−アンチトリプシン、α1−マイクログロブリン、β2−マイクログロブリン、ハプトグロブリン、トランスフェリン、セルロプラスミン、フェリチン、アルブミン、ヘモグロビンA1、ヘモグロビンA1C、ミオグロビン、ミオシン、デュパン−2、α−フェトプロテイン(AFP)、組織ポリペプチド抗原(TPA)、アポリポ蛋白A1、アポリポ蛋白E、リウマチ因子、抗ストレプトリジンO(ASO)、フィブリン分解産物(FDP)、フィブリン分解産物D分画(FDP−D)、フィブリン分解産物D−D分画(FDP−D Dimer)、フィブリン分解産物E分画(FDP−E)、アンチトロンビン−III(AT−III)等の蛋白質、アミラーゼ、前立腺由来酸性ホスファターゼ(PAP)、神経特異エノラーゼ(NSE)、フィブリノーゲン、エラスターゼ、プラスミノーゲン、クレアチンキナーゼ心筋型(CK−MB)等の酵素、インシュリン、甲状腺刺激ホルモン(TSH)、3,5,3´−トリヨードサイロニン(T3)、サイロキシン(T4)、副腎皮質刺激ホルモン(ACTH)、生長ホルモン(GH)、黄体化ホルモン(LH)等のホルモン、B型肝炎ウイルス関連抗体、B型肝炎ウイルス関連抗原、C型肝炎ウイルス抗体、HTLV(成人T細胞白血病ウイルス)抗体、HIV(エイズウイルス)抗体、クラミジア抗体、梅毒の抗体、トキソプラズマ抗体等各種感染症の原因ウイルス等が挙げられる。
【0045】
本発明の診断薬用磁性粒子が利用できる検体の種類も特に限定されるものではない。具体的に例えば、血液、血清、血漿、尿、体液、唾液、黴菌、細胞培養液等が挙げられる。これらの検体の処理法は通常の免疫診断方法に準ずるものである。遺伝子検出において、これら検体から予め遺伝子を抽出、精製することが好ましい。
【0046】
検出すべき対象によって、本発明の診断薬用磁性粒子の表面に抗体、抗原またはハプテン等を固定化することができる。検査対象の抗原に対応する抗体は、ポリクローナル抗体、モノクローナル抗体等通常抗原に対して反応し得る抗体があげられる〔「単クーロン抗体実験マニュアル」,富山朔二ら編、講談社サイエンティフィック刊,1987年:新生化学実験講座 第12巻,「分子免疫学 III抗原、抗体、補体」,日本生化学会編,東京化学同人社刊,1992年〕。該抗体は複数の抗体からなるものでもよく、抗体を限定分解したもの、蛋白修飾したものでもよい。
【0047】
これらの抗体を本発明の診断薬用磁性粒子の表面に共有結合で固定し、牛血清アルブミン、ミルクスキン含有緩衝液で分散、洗浄させたものを、そのまま免疫診断に使用することができる。抗体感作、または、粒子洗浄、分散させるときの緩衝液としてはリン酸緩衝液、トリス−塩酸緩衝液、グリシン緩衝液、ホウ酸緩衝液、酢酸緩衝液、グッドの緩衝液等があげられる。必要に応じて塩化ナトリウム等の塩、牛血清アルブミン等の安定化剤、アジ化ナトリウム等の防腐剤、ポリオキシエチレンソルビタンモノラウレート(Tween20)等の界面活性剤を加えてもよい。
【0048】
標識物質としては、西洋ワサビのペルオキシダ−ゼ(POD)、アルカリフォスファターゼ、β−ガラクトシダーゼ、グルコースオキシダーゼ等の酵素、アクリジウム−I等の発光物質、フルオレッセイン等の蛍光物質があげられる。これらの標識物質を一般的に2次抗体に結合させ、抗体・標識体のコンジュゲートで使用することが多い。
【0049】
標識体の測定法としては、標識物質が酵素の場合は基質を用いた該酵素活性の測定法、発光物質の場合は発光光度計を用いた発光光度測定法、蛍光物質の場合は蛍光光度計を用いた蛍光光度測定法、放射性同位元素の場合は液体シンチレーションカウンターによる測定法等があげられる。酵素活性測定法のうちPOD活性の測定には基質としてo−フェニレンジアミン、ヒドロキシフェニルプロピオン酸等が、アルカリフォスファターゼ活性の測定には基質として3−(2’−スピロアダマンタン)−4−メトキシ−4−(3’’−ホスフォピロキシ)フェニル−1,2−ジオキセタン〔AMPPD〕、p−ニトロフェニルフォスフェートが、β−ガラクトシダーゼ活性の測定には基質としてp−ニトロフェニル−β−ガラクトシド、4−メチルウムベリフェリル−β−ガラクトシド等が用いられる。また、グルコースオキシダーゼ活性にはグルコースを酸化する際に生じる過酸化水素の検出をPODにより行う。
【0050】
本発明の診断薬用磁性粒子を用いるイムノアッセイの測定原理は、既に公知の方法で実施することができる。例えばサンドイッチ法、競合法等が挙げられる。従来方法との相違は、固相担体と基質反応液との固液分離を行なわずに、本発明の診断薬用磁性粒子を含有したまま光学測定できるところである。
【0051】
【実施例】
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらによって制限されるものではない。
【0052】
なお、本実施例において、粒子径測定は光回折測定機SOLD2000V(島津製作所(株)製)、粒子表面の官能基の量は、粒子の重量に対する官能基のモル数で表され、伝導度滴定(Metrohm社製)より求めた。また、粒子分散液の色彩は以下の方法で求めた。粒子の10重量%分散液10μlをスライドガラスに垂らし、直径1〜2mmの粒子分散液ドロップを形成させ、室温で10分間風乾した後、ドロップ液の中心を含む円内3ヶ所の色彩を色彩色差計(ミノルタ色彩色差計、CR241)で2回測定し、それら測定値のCV値が10%以内であることを確認した上で、その平均値を粒子の色彩値とした。また、飽和磁化および残留磁化は振動試料型磁力計(VSM)により測定した。磁気分離性は、磁性粒子が100%分離したときの時間(100%粒子分離時間)で示した。具体的には、0.1%粒子分散液3mlを1cm四方のガラス吸光度測定セルに入れ、セル側面に3500ガウスのネオジュム型磁石を設置し、吸光度の経時変化により100%粒子分離時間を求めた。共有結合で固定化された蛋白質結合量(抗体結合量)は、BCA試薬(ピアース社製)を用い、試薬プロトコルに従って定量した。
【0053】
[実施例1] 磁性コア粒子1および2の作製
表1に示す粒子径の架橋ポリメチルメタクリレート(PMMA)粒子を合成し、乾燥粒子を得た。この乾燥粒子と、油性磁性流体「FV55」(松本油脂(株)製)の溶剤析出法によって得られたフェライト系の超常磁性体微粒子(平均粒子径:0.01μm)とをそれぞれ10gずつミキサーで混合し、この混合物をハイブリダイゼーションシステムNHS−0型(奈良機械製作所(株)製)を使用して、羽根(撹拌翼)の周速度100m/秒(16200rpm)で4分間処理した。この処理により、前記乾燥粒子(PMMA粒子)の表面が磁性体で被覆された磁性コア粒子1および2をそれぞれ得た。得られた磁性コア粒子1および2をそれぞれ0.1%SDS石鹸溶液で分散させて、粒子径を測定した。本実施例で用いたPMMA粒子の粒子径と、得られた磁性コア粒子との関係を表1に示す。
【0054】
【表1】
[実施例2] 淡色磁性粒子1および2の作製
上記実施例1で得られた磁性コア粒子1および2をそれぞれ7.54gと、顔料系酸化チタン「JR−600A」(テイカ(株)製、平均粒子径:0.25μm)10.64gと、ポリスチレン・ブチルアクリレートランダム共重合体粒子(平均粒子径:0.15μm)1.9gとをミキサーで混合し、この混合物をハイブリダイゼーションシステムNHS−0型(奈良機械製作所(株)製)を使用して、羽根(撹拌翼)の周速度100m/秒(16200rpm)で4分間処理し、淡色化磁性粒子1および2を得た。得られた淡色化磁性粒子1および2についてそれぞれ粒子径を測定した結果を表2に示す。
【0055】
【表2】
[実施例3] 診断薬用磁性粒子1および2の作成
上記実施例2で得られた淡色化磁性粒子1および2をそれぞれ30g、分散剤としてノニオン性乳化剤「エマルゲン150」(花王(株)製)の0.5重量%水溶液900gを1Lセパラブルフラスコに投入し充分に分散させた。これにモノマーとしてスチレン3g、メタクリル酸0.9g、重合開始剤としてt−ブチルペルオキシ−2−エチルヘキサネート(日本油脂(株)製;パーブチルO(商標))0.6gを添加し、N2ガス気流下イカリ型撹拌羽を用いて回転速度200rpmで80℃にて8時間撹拌して反応させた。上記工程により、表面にカルボキシル基を有する本実施例の診断薬用磁性粒子1および2を得た。
【0056】
【表3】
[実施例4] 診断薬用磁性粒子3の作製
上記実施例1で得られた淡色化磁性粒子1を30g用い、分散剤としてノニオン性乳化剤「エマルゲン150」(花王(株)製)の0.5重量%水溶液900gを1Lセパラブルフラスコに投入し充分に分散させた。これに、モノマーとしてスチレン3g、グリシジルメタクリレート2.0g、ジビニルベンゼン0.08g、重合開始剤として2,2’−アゾビス(2−アミノプロパン)ジヒドロクロライドを0.12g添加し、2時間後グリシジルメタクリレート0.3gを添加し、N2ガス気流下イカリ型撹拌羽を用いて回転速度200rpmで80℃にて8時間撹拌して反応させた。上記工程により、粒子径が4.8μmで、表面にエポキシ官能基を有する本実施例の診断薬用磁性粒子3を得た。
【0057】
[実施例5] 診断薬用磁性粒子4の作製
上記実施例1で得られた淡色化磁性粒子1の1gを、5mMのMES緩衝液で3回洗浄した後、リジン0.5gを溶解した5mMMES緩衝液1ml、10mg/mlEDC(1−エチル 3−ジメチルアミノプロピルカルボジイミドハイドロクロライド、同人化学(株)製)溶液 0.5mlを加え、室温で12時間回転攪拌した。続いてPBSで3回洗浄し、粒子固形分が10重量%となるように10nM燐酸緩衝液に分散し、表面にアミノ基を有する本実施例の診断薬用磁性粒子4を得た。抗体結合測定と同様に、BCA試薬を用いたアッセイでリジン導入量を測定した。
【0058】
[比較例]
粒子径が3.7μmのPMMA粒子を用いて、上記実施例1および3と同様の方法で、比較例の磁性複合粒子1を調製した。この磁性複合粒子1は、実施例2に相当する淡色化工程を省いて得られたものであるため、褐色である。また、この磁性複合粒子1の粒子径は4.4μmであった。
【0059】
[実施例6] 診断薬用磁性粒子の特性評価
上記実施例1−4で調製した診断薬用磁性粒子、および上記比較例で得られた磁性複合粒子1の固形分が5%となるように、0.01%SDS溶液に上記粒子を分散させ、長さ20cm、幅15cm、高さ5cmのガラス製容器に移し、容器の広い面を3500ガウスの磁石に接触させて、磁気分離を2回行ってから、100%粒子分離時間を測定した。この測定結果を表4に示す。また、実施例1−5で得られた診断薬用磁性粒子のL値、表面官能性基の量(μmol/g)、飽和磁化に対する残留磁化の割合(%)を上述した方法により測定した。この測定結果を併せて表4に示す。
【0060】
【表4】
[実施例7] AFP抗体固定粒子の調製
上記実施例1〜3で調製した本発明の診断薬用磁性粒子1の10%水分散液100μlを1ml微量チューブに分注し、1mlの5mMMES(pH6)で磁気分離により3回洗浄した。10mg/mlのEDC(1−エチル 3−ジメチルアミノプロピルカルボジイミドハイドロクロライド、同人化学(株)製)溶液50μlを加え、室温で2時間回転攪拌してから、磁気分離で上清を除去した。続いて、100μg/mlAFP BALB/Cマウス移植腹水より採集したモノクローナル抗体IgG1(バイオテスト社製、クローンNB−013)20μlを加え、5mMMES(pH6)で1mlにメスアップした。粒子分散液を再分散した後、回転攪拌で5時間室温で反応させた。次いで、0.1mlの1Mエタノールアミンを加え、室温で1晩攪拌した。この反応液をPBS緩衝液で2回洗浄し、最終的に0.1%カゼイン/PBS溶液1mlに前記磁性粒子を分散させた。次いで、粒子固形分が1%となるようにPBSで調整した。以上により、抗AFP抗体で固定化された診断薬用磁性粒子(固定化診断薬用磁性粒子)1の懸濁液を得た。この懸濁液は使用時まで冷蔵庫で保存した。また、上記方法で調製した固定化診断薬用磁性粒子1の抗体結合量を測定した。得られた抗体結合量を表5に示す。
【0061】
また、上記実施例1〜3で調製した診断薬用磁性粒子2、および比較例で調製した磁性複合粒子1を用いて、上記と同様な方法で抗体感作を行い、抗AFP抗体で固定化された診断薬用磁性粒子(固定化診断薬用磁性粒子)2、および比較例として抗AFP抗体で固定化された磁性複合粒子(固定化磁性複合粒子)1を得た。
【0062】
さらに、上記実施例4で調製した診断薬用磁性粒子3の10重量%粒子の水分散液100μlを0.1MPBS(pH7)で2回洗浄し、粒子固形分が10%となるように抗体溶液および0.1Mリン酸緩衝液(pH7)を加え、室温で一晩反応させた。前記以外の操作部分や抗体配合比等は、表面にカルボキシル基を官能基に含む粒子(診断薬用磁性粒子1および2)の場合と同様に取り扱うことにより、抗AFP抗体で固定化された診断薬用磁性粒子(固定化診断薬用磁性粒子)3を得た。
【0063】
【表5】
[実施例8] AFPのイムノアッセイ
上記実施例7で得られた固定化診断薬用磁性粒子1の特性評価を、2ステップイムノアッセイ化学発光法にて行った。上記実施例7でAFPモノクローナル抗体と結合させて得られた固定化診断薬用磁性粒子1の1重量%分散液10μlと、AFP Ag(抗原:Antigen)濃度0−1000ng/mlの血清検体50μlとを容量300μlのプレートウエルに加え、さらにPBS溶液40μlを加えて、軽く振動攪拌した後室温で5分間静置した。続いて、磁石で前記磁性粒子をウエル壁に寄せて、溶液を除去した。100μlPBS緩衝液で1回洗浄した後、10ng/mlのウシ小腸アルカリフォスファターゼと結合させたマウスモノクローナル抗体(バイオテスト社製、クローンNB−017)を含むPBS溶液100μlを加え、振動分散後室温で5分間静置した。この反応液を磁石で固液分離し、PBS/0.1%カゼイン含有溶液で2回洗浄した後に、粒子ペレットに100μl CDPstar基質溶液(Tropix社製)を加え、攪拌後室温で3分間静置した後、化学発光値を測定した。その測定結果を表6に示す。また、上記実施例7で得られた固定化診断薬用磁性粒子2、3ならびに比較例の固定化磁性複合粒子1についても、上記方法と同様に抗体を感作して、AFPのイムノアッセイを実施した。その結果も表6に示す。
【0064】
なお、対照例として、上記工程において、固定化診断薬用磁性粒子と上記血清検体を前記プレートウエルに加え、さらにPBS溶液を加えて室温で3分間攪拌振動させた後、上記固定化診断薬用磁性粒子を磁石で直ちに分離し、上清を分注して化学発光値を測定した例を表7に示す。
【0065】
【表6】
【0066】
【表7】
このようにして、実施例7の固定化診断薬用磁性粒子を用いた酵素免疫アッセイ系では、前記磁性粒子をB/F分離せずにそのまま測定した結果(表6参照)が、前記磁性粒子を除去してから測定した結果(表7参照)と殆ど差のないことが判明した。
【0067】
一方、比較例の固定化磁性複合粒子1の場合、全抗原濃度範囲において、この固定化磁性複合粒子1を含有した状態で測定した結果(表6参照)が、この固定化磁性複合粒子1を含有しない状態で測定した結果(表7参照)と比較して、シグナルが約1/2〜1/3程度低減したことが明らかになった。
【0068】
[実施例9] HRP標識AFPのイムノアッセイ
実施例7で使用したAFPモノクローナル抗体のかわりに、西洋ワサビパーオキシダーゼ(HRP)による標識化を行った。マウス抗ヒトAFP抗体のHRPによる標識化は石川らの方法(酵素免疫測定法、医学書院刊)に従って次のように行った。まず、N−サクシニジル−4−(N−マレイミドメチル)シクロヘキサン−1−カルボキシレートを用いて、HRPにマレイミド基を導入した。一方、抗ヒトAFP抗体をペプシン消化して得られたF(ab)’2画分を還元し、SH基を遊離させたF(ab)’を調製した。次いで、マレイミド基を導入したHRPと、SH基を遊離させたF(ab)’とを混合し反応させ、HRP標識化抗AFP抗体を得た。
【0069】
続いて、上記実施例7で説明した方法と同様の方法で、モノクローナル抗体IgG1(バイオテスト社製、クローンNB−013)のペプシン消化したF(ab)’2を、上記実施例5で得られた診断薬用磁性粒子4に結合させて、固定化診断薬用磁性粒子4を得た。また、上記方法で調製した固定化診断薬用磁性粒子4の抗体結合量を測定した。得られた抗体結合量を表8に示す。
【0070】
次いで、AFPのイムノアッセイを実施した。AFPのイムノアッセイ方法は、上記実施例8で用いた基質(CDP−star)の代わりにルミノール/H2O2を使用した以外は、上記実施例8で説明した方法と同様の方法で評価した。本実施例のAFPイムノアッセイの評価結果を表9および表10に示す。
【0071】
【表8】
【0072】
【表9】
【0073】
【表10】
これにより、実施例9の固定化診断薬用磁性粒子を用いた酵素免疫アッセイ系で、前記磁性粒子をB/F分離せずにそのまま測定した結果(表9参照)が、前記磁性粒子を除去してから測定した結果(表10参照)と殆ど差のないことが判明した。
【0074】
【発明の効果】
本発明の診断薬用磁性粒子は、磁性体粒子を含むコアと、前記コアより外側に形成された可視光散乱層とを含み、Lab表色系でのL値が50以上、残留磁化が飽和磁化の30%以下、および粒子径が0.5〜15μmであることにより、可視光吸収が抑えられているため、特に光測定、光検出、光選別等の用途に好適である。本発明の診断薬用磁性粒子は特に、診断薬用担体などの生化学用担体として好ましい素材で、その他の用途として、細胞、遺伝子、遺伝子治療用担体、電子材料、電子写真、化粧品、医薬品、農薬、食品、触媒など広い分野で利用できるものである。本発明の診断薬用磁性粒子の用途としては、医療用診断薬が好ましく、自動測定器対応粒子として適用されるのがより好ましい。
【0075】
本発明の診断薬用磁性粒子は、DNAやRNAなどの核酸、ヌクレオチド、または抗原・抗体、ハプテン、酵素などの生理活性物質の固相担体として特に好適である。本発明の診断薬用磁性粒子を固相担体として用いることにより、粒子を含有する系内で光学測定および光学操作を効率よく行うことができる。[0001]
BACKGROUND OF THE INVENTION
The present invention can be used for immunodiagnostic drug carriers, bacterial separation carriers, cell separation carriers, nucleic acid separation and purification carriers, protein separation and purification carriers, immobilized enzyme carriers, drug delivery carriers, etc. The present invention relates to magnetic particles for diagnostic agents that can be suitably used for separation, sorting and the like.
[0002]
[Prior art]
Magnetic composite particles are already used for the separation and collection or concentration of nucleic acids, viruses, proteins, cells, etc. by adsorption of specific substances on the surface of the particles and solid-liquid separation using chemical bonds and magnetic responsiveness. Widely used for molecular biology and medical diagnostics. As the assay method, a sandwich method, a competitive method and the like have been conventionally used.
[0003]
Magnetic composite particles used for immunodiagnostic agents generally contain a magnetically responsive substance mainly composed of iron oxide, and are generally black or brown. Moreover, introduction of these magnetically responsive materials and pre-active functional groups that react with proteins is already known (see, for example, Patent Documents 1 to 5).
[0004]
In the immunodiagnosis, various devices have been made in order to realize more sensitive detection by a simpler method. In particular, the detection system is greatly improved. Further, color development measurement (for example, fluorescence, phosphorescence, luminescence, chemiluminescence, etc.), which has conventionally been regarded as a high-sensitivity measurement system, has become the mainstream measurement system. However, despite the improvement of the detection system, provision of a solid phase carrier suitable for the characteristics of the detection system has been delayed, which has hindered high sensitivity of the entire diagnostic system.
[0005]
For example, when magnetic composite particles are used for the solid phase carrier, as described above, the magnetic composite particles are generally black or brown. For this reason, the luminescence signal derived from the reaction between the labeled enzyme formed by capturing the target substance and the substrate may sometimes be reduced to half or less due to absorption by the brown magnetic composite particles themselves. It was.
[0006]
In order to avoid such light absorption by the magnetic composite particles, in many cases, the magnetic composite particles and the substrate liquid layer are separated into solid and liquid using a magnet just before measuring the emission intensity. Measures are taken to pass light through only the layers. However, this countermeasure has two problems.
[0007]
The first problem is that it is difficult to use the magnetic composite particles in a substrate system having a short color development or light emission time. When the antigen / antibody / enzyme complex formed on the surface of the magnetic composite particle is separated from the substrate liquid layer, the reaction rate is drastically reduced compared to the liquid layer reaction before separation, and the generated signal is also reduced. To do. Therefore, the method of performing solid-liquid separation and measuring light only through the liquid layer is not practical except for a substrate system having a long emission duration.
[0008]
The second problem is time loss and separation accuracy caused by adding a solid-liquid separation operation. Specifically, in an assay system that requires rapid processing in a short time, it is desirable to reduce the number of solid-liquid separations as much as possible. In addition, noise is generated due to the presence of a minute amount of magnetic composite particles that remain without being separated, leading to a decrease in sensitivity. Therefore, it is strongly required to eliminate the solid-liquid separation operation.
[0009]
The same problem arises when applying the above-described brown magnetic composite particles also in a fluorescence or phosphorescence detection system or a radioisotope detection system.
[0010]
By the way, with regard to whitening or lightening of magnetic particles, proposals have been made to improve the aesthetics of magnetic toners, magnetic recording media, etc. by combining magnetic materials with white fine particles such as titanium oxide (for example, patents). References 6 and 7). The magnetic composite particles used for these applications are required to have high saturation magnetization and residual magnetization, that is, are easily magnetized by an external magnetic field and have high coercivity. Such magnetic composite particles are required to be powder and to have a hydrophobic surface.
[0011]
On the other hand, in the immunodiagnosis which is one of the uses of the present invention, the magnetic composite particles are generally used in the form of an aqueous suspension. For this reason, the magnetic composite particles are required to have particle colloidal stability. In particular, the magnetic composite particles used for immunodiagnosis are required to have at least a partially hydrophilic surface in order to avoid non-specific hydrophobic bonds such as proteins.
[0012]
[Patent Document 1]
Japanese Patent No. 2672151
[Patent Document 2]
Japanese Patent No. 2844263
[Patent Document 3]
JP 7-316466 A
[Patent Document 4]
JP-A-6-265550
[Patent Document 5]
International Publication No. 84/02031 Pamphlet
[Patent Document 6]
JP 2000-150218 A
[Patent Document 7]
Japanese Patent Laid-Open No. 2002-15908
[0013]
[Problems to be solved by the invention]
An object of the present invention is to provide magnetic particles for diagnostic agents that can avoid light absorption by the black or brown magnetic composite particles that have been conventionally used in diagnostic applications using a light detection system and can realize high-sensitivity measurement.
[0014]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, it has been concluded that the above-mentioned problems can be solved by eliminating the color of conventionally used brown magnetic composite particles and switching to light or white magnetic composite particles. Thus, whitening and lightening of the magnetic composite particles has been found to be the most effective solution for improving the sensitivity of immunoassays using magnetic composite particles.
[0015]
The magnetic particle for diagnostic agent of the present invention includes a core containing magnetic particles, and a visible light scattering layer formed outside the core,
The L value in the Lab color system is 50 or more, the residual magnetization is 30% or less of the saturation magnetization, and the particle diameter is 0.5 to 15 μm.
[0016]
Here, the Lab color system means a color system defined in JIS Z8729.
[0017]
In the diagnostic magnetic particles, the visible light scattering layer may contain at least one of titanium oxide and zinc oxide.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, each component of the present invention will be described in detail.
[0019]
The magnetic particle for diagnostic agent of the present invention includes a core including magnetic particles and a visible light scattering layer formed outside the core, and an L value in the Lab color system is 50 or more, and the residual magnetization is saturated magnetization. 30% or less, and the particle diameter is 0.5 to 15 μm. By forming the visible light scattering layer outside the core, light absorption can be efficiently suppressed in the detection system.
[0020]
[color]
The magnetic particles for diagnostic agents of the present invention (hereinafter also simply referred to as “magnetic particles”) differ in appearance color or colorimetry measured with a colorimeter depending on the content of the particles in the suspension. The appearance of a 10% by weight aqueous dispersion of diagnostic magnetic particles is usually white, milky white or light (light gray). Generally, when the particle suspension is air-dried, the color changes.
[0021]
The color of the magnetic particles for diagnostic agents of the present invention is measured using a 10% by weight dispersion thereof. Specifically, 100 μL of a 10 wt% dispersion of magnetic particles for diagnostic agents of the present invention is gently dropped on a microscope slide glass, and then allowed to stand for 10 minutes or more and air dried. The air-dried particles are then measured with a colorimeter. The measurement result is expressed in the Lab color system defined by JIS Z8729.
[0022]
In the diagnostic magnetic particles of the present invention, the L value in the Lab color system is preferably 50 or more, and more preferably 60 or more. If the L value is less than 50, light absorption by the detection system may not be efficiently avoided.
[0023]
The hue (a, b value) of the magnetic particle for diagnostic agent of the present invention is not particularly limited, and can be selected according to the emission wavelength of the substrate and the wavelength of the phosphor selected during the actual assay. . That is, in order to suppress light absorption efficiently, the color of the surface of the magnetic particle can be selected according to the wavelength of light to be avoided, in addition to making the surface of the magnetic particle for diagnostic agent of the present invention white. For example, in an assay system using a substrate that emits light having a wavelength of 450 nm, the same effect can be obtained even when the surface of the magnetic particle for diagnostic agent of the present invention is white or light blue-purple.
[0024]
[Residual magnetization]
The residual magnetization of the diagnostic magnetic particles of the present invention is 30% or less of the saturation magnetization, more preferably 20% or less, and even more preferably 10% or less. If the remanent magnetization is higher than 30% of the saturation magnetization, the magnetic particles are attracted to each other and aggregate even after the magnetic field is removed from the outside, which may be inconvenient for the subsequent redispersion of the magnetic particles.
[0025]
The immunodiagnostic agent is one of the uses of the magnetic particles for diagnostic agents of the present invention (other uses will be described later). When the magnetic particle for diagnostic agent of the present invention is used as an immunodiagnostic agent, the property of quickly responding to the application of an external magnetic field and the property of aggregation, the property of rapidly disappearing the magnetization due to the removal of the external magnetic field, and the redispersion of the particles It is desirable to have both.
[0026]
The property of aggregating by application of an external magnetic field is necessary for recovering only the diagnostic magnetic particles and the components specifically bound to the diagnostic magnetic particles and removing unnecessary components.
[0027]
In addition, the characteristic that the magnetization disappears rapidly by removing the external magnetic field is such that, for example, magnetic particles are uniformly dispersed in a dispersion medium (for example, water) to measure luminescence, or magnetic properties are used to cause multiple specimens to act. Necessary to disperse the particles. If strong residual magnetization exists in the magnetic particles after removing the external magnetic field, it may be inconvenient because it may take a long time to redisperse the magnetic particles or may require external energy such as strong stirring. .
[0028]
Magnetic properties such as saturation magnetization, residual magnetization, and coercive force of the magnetic particles for diagnostic agents of the present invention can be generally measured with a vibrating sample magnetometer. Here, it is assumed that the maximum external applied magnetic field is saturation magnetization at 15 K Oe, and the residual magnetization is obtained from the magnetization hysteresis curve obtained when the external magnetization is returned to zero.
[0029]
[Particle size]
The particle diameter of the magnetic particles for diagnostic agents of the present invention is 0.5 μm to 15 μm, more preferably 1 μm to 10 μm. If the particle size is smaller than 0.5 μm, disturbance due to the Brownian motion of the magnetic particle itself cannot be ignored other than the response to the external magnetic field, which is not desirable because it takes a long time for magnetic separation. On the other hand, if the particle diameter is larger than 15 μm, the shielding factor of the magnetic particle itself against the excitation light, signal color development, light emission, etc. used in the detection system becomes large, and the protein that can be introduced because the surface area relative to the volume of the magnetic particle becomes too small. As a result of limiting the amount, the detection sensitivity may be lowered, or the natural sedimentation rate of the magnetic particles is increased, which makes it difficult to maintain a uniformly dispersed state of the magnetic particles.
[0030]
[Production method]
The method for producing diagnostic magnetic particles of the present invention comprises a step of producing magnetic core particles, a step of subsequently coating the magnetic core particles with a visible light scattering layer, and a layer for imparting various functions as necessary. Covering the visible light scattering layer. That is, by the step of producing the magnetic core particle, the “core containing magnetic particles” in the magnetic particle for diagnostic agent of the present invention is formed, and the step of coating the magnetic core particle with a visible light scattering layer, A visible light confusion layer "is formed on the outside.
[0031]
The magnetic core particles may be formed of only an inorganic substance, but it is preferable that an organic substance is included because the sedimentation in water is delayed by making the specific gravity low, and the dispersion in water becomes easy. Alternatively, in order to reduce the specific gravity, porous particles made of an organic material or an inorganic material may be used.
[0032]
Examples of magnetic core particles include those in which magnetic particles are dispersed in polymer particles, those in which magnetic particles are physically attached to the surface of polymer particles, and magnetic particles deposited on the surfaces of polymer particles and porous particles. Can be mentioned. Monomers for obtaining such an organic polymer substance include styrene, vinyl naphthalene, vinyl anthracene, methyl acrylate, ethyl acrylate, acrylic acid-n-butyl, acrylic acid-2-hydroxyethyl, and acrylic acid. Acrylics such as polyoxyethylene, glycidyl acrylate, ethylene glycol diacrylate, tribromophenyl acrylate, lauryl acrylate, tridecyl acrylate, stearyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, benzyl acrylate, etc. Acid ester, methyl methacrylate, ethyl methacrylate, methacrylate-n-butyl, 2-hydroxyethyl methacrylate, polyoxyethylene methacrylate, glycidyl methacrylate, ethylene glycol dimethacrylate Acid esters, tribromophenyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, methacrylate-2-ethylhexyl, cyclohexyl methacrylate, benzyl methacrylate, and the like, chlorostyrene, chloromethylstyrene, α- Examples include methylstyrene, divinylbenzene, sodium styrenesulfonate, and the like. These can be used alone or in combination of two or more. Of these, copolymers of styrene, vinyl naphthalene and (meth) acrylic acid are particularly suitable for the present invention.
[0033]
In the present invention, the material of the magnetic particles used for forming the magnetic core particles is not particularly limited, but iron oxide-based substances are typical, and MnFe 2 O 4 (Mn = Co, Ni, Mg, Cu, Li 0.5 Fe 0.5 Etc.) 3 O 4 Magnetite expressed as γFe 2 O 3 Is mentioned. Moreover, you may use combining the said magnetic body. In particular, as a magnetic material with strong saturation magnetization and low residual magnetization, γFe 2 O 3 , Fe 3 O 4 The magnetic particles made of Moreover, the diameter of 50 nm or less is preferable as a single magnetic domain composed of these magnetic materials. If the single magnetic domain exceeds 50 nm, the residual magnetization of the obtained diagnostic magnetic particles may exceed 30% of the saturation magnetization, which is not preferable.
[0034]
Next, the visible light scattering layer formed outside the core containing the magnetic particles (magnetic core particles) is a layer that reflects or scatters visible light. The visible light confusion layer preferably has a high refractive index for visible light.
[0035]
In the present invention, as a method for forming the visible light scattering layer outside the magnetic core particles, for example, the magnetic core particles are dispersed in a solvent, and a solution or dispersion liquid of the visible light scattering material is used. Magnetic properties can be obtained by depositing or agglomerating visible light scattering materials on the surface, or by mechanically kneading magnetic core particles and visible light scattering materials or colliding them in a high-speed air stream. Examples thereof include a method of adsorbing a visible light confusing substance on the surface of the core particle. Among these, a method of adsorbing visible light scattering fine particles on the surface of the magnetic core particle is preferable.
[0036]
By forming the visible light scattering layer outside the magnetic core particles, the appearance of the diagnostic magnetic particles of the present invention can be white or light. That is, by covering the magnetic core particles with the visible light scattering layer, the magnetic core particles, which are usually black or brown, can be concealed by the visible light scattering layer, thereby giving a function of suppressing the attenuation of the emission signal derived from the substrate. it can.
[0037]
As the visible light confusing substance used for forming the visible light scattering layer, titanium oxide or zinc oxide having a large refractive index difference from air or water is preferable. However, since these substances generally tend to have a high specific gravity. Depending on the purpose of use, organic substances can also be selected. In the present invention, the visible light scattering material of the above material can be used in the form of particles. The particle diameter of the visible light scattering particles that are practically easy to handle is 0.005 μm to 2 μm, and it is more preferable to use fine particles having a primary particle diameter of 0.2 μm to 0.4 μm suitable for visible light scattering. preferable.
[0038]
In the present invention, if necessary, the polymer coating layer is reintroduced on the surface of the visible light scattering layer, whereby the magnetic particles can be prevented from being exposed on the surface of the magnetic particle for diagnostic agent of the present invention.
[0039]
As a method for measuring the degree of exposure of the magnetic particles to the surface of the magnetic particles for diagnostics of the present invention, it is one of the substrates used in normal enzyme immunoreaction, and it reacts sensitively with iron. Phenylenediamine (OPD) can be used. Since OPD is a substrate for enzyme immunoassay, the influence of magnetic particles exposed on the surface of magnetic particles for diagnostics of the present invention can be confirmed in a form closer to an actual assay system.
In addition, the magnetic particles for diagnostic agents of the present invention can be used for the purpose of facilitating dispersion in an aqueous system as needed, or introducing functional groups for binding proteins such as antibodies and antigens to the surface of the magnetic particles. It is particularly preferable to form a coating layer of polymer or oligomer on the outer layer.
[0040]
The magnetic particle for diagnostic agents of the present invention is a physiologically active substance mainly composed of a protein or a physiologically active substance that can be easily bound to DNA, oligonucleotides, lectins, polysaccharides and the like on the surface. And can be combined without damage.
[0041]
Examples of the method of binding the magnetic particle for diagnostic agent of the present invention and a physiologically active substance include a physical adsorption method using a hydrophobic bond between the magnetic particle and the protein, and a chemical bond between the functional group present on the surface of the magnetic particle and the protein. Law. From the viewpoint of simplicity, the physical adsorption method is promising, but in view of the long-term stability of the immobilized substance, the chemical bonding method is preferable for stable use in an environment containing a surfactant. The chemical bonding method generally utilizes a carboxyl group, amino group, SH group, amino acid amino group on the protein side, or a functional group at the tip of the spacer to be introduced. Therefore, it is preferable to introduce at least one carboxyl group, amino group, aldehyde group, epoxy group, and tosyl group on the surface of the magnetic particle. As a specific immobilization method, for example, a method of bonding amino groups (diisocyanate method, glutaraldehyde method, difluorobenzene method or benzoquinone method), a method of bonding carboxyl groups (succinimide method), or the like can be used. (Edited by Yuji Ishikawa et al., “Enzyme Immunoassay 3rd Edition”, 1987, published by Medical School).
[0042]
Needless to say, these functional groups can be introduced on the surface of the magnetic particle for diagnostic agents of the present invention. Specific methods include, for example, a method in which a reactive monomer having an unsaturated double bond is polymerized on the surface of the magnetic particle, or a compound containing another type of functional group is bonded to the introduced functional group to form the surface of the magnetic particle. The functional group can also be introduced on the surface of the magnetic particle for diagnostic agent of the present invention by a method of modifying the above.
[0043]
In addition to the chemical reaction, a method of introducing the functional group onto the surface of the magnetic particle for diagnostic agent of the present invention by precipitation method, precipitation method, or impact is also included in the scope of the present invention. From the viewpoint of compactness, a chemical reaction or a method combining the introduction method and the chemical reaction is preferable. Moreover, you may introduce | transduce the molecular spacer which has a suitable length as needed.
[0044]
The detection target that can use the magnetic particle for diagnostic agent of the present invention is not particularly limited. The measurement object covers a wide range of nucleic acids, antigens, antibodies, viruses and the like. Specific immunodiagnostics include, for example, CEA, immunoglobulin (IgG, IgA, IgM, IgD, IgE), complement (C3, C4, C5, C1q), C-reactive protein, α 1 -Antitrypsin, α 1 -Microglobulin, beta 2 Microglobulin, haptoglobulin, transferrin, ceruloplasmin, ferritin, albumin, hemoglobin A 1 , Hemoglobin A 1C , Myoglobin, myosin, dupan-2, α-fetoprotein (AFP), tissue polypeptide antigen (TPA), apolipoprotein A 1 Apolipoprotein E, rheumatoid factor, anti-streptolysin O (ASO), fibrin degradation product (FDP), fibrin degradation product D fraction (FDP-D), fibrin degradation product DD fraction (FDP-D Dimer), Fibrin degradation product E fraction (FDP-E), protein such as antithrombin-III (AT-III), amylase, prostate-derived acid phosphatase (PAP), neuron specific enolase (NSE), fibrinogen, elastase, plasminogen, Enzymes such as creatine kinase cardiac type (CK-MB), insulin, thyroid stimulating hormone (TSH), 3,5,3'-triiodothyronine (T 3 ), Thyroxine (T 4 ), Hormones such as adrenocorticotropic hormone (ACTH), growth hormone (GH), luteinizing hormone (LH), hepatitis B virus related antibody, hepatitis B virus related antigen, hepatitis C virus antibody, HTLV (adult T Cellular leukemia virus) antibodies, HIV (AIDS virus) antibodies, chlamydia antibodies, syphilis antibodies, toxoplasma antibodies, and other infectious disease-causing viruses.
[0045]
There are no particular limitations on the type of specimen that can be used with the magnetic particles for diagnostic agents of the present invention. Specific examples include blood, serum, plasma, urine, body fluid, saliva, bacilli and cell culture fluid. The treatment method of these specimens is in accordance with the usual immunodiagnostic method. In gene detection, it is preferable to extract and purify genes from these specimens in advance.
[0046]
Depending on the object to be detected, an antibody, an antigen, a hapten, or the like can be immobilized on the surface of the magnetic particle for diagnostic agent of the present invention. Examples of antibodies corresponding to the antigen to be tested include antibodies that can react with normal antigens such as polyclonal antibodies and monoclonal antibodies ["Single Coulomb Antibody Experimental Manual" edited by Tomiyama Shinji et al., Kodansha Scientific, 1987. : New Chemistry Laboratory, Vol. 12, “Molecular Immunology III Antigen, Antibody, Complement”, edited by the Japanese Biochemical Society, published by Tokyo Chemical Dojinsha, 1992]. The antibody may be composed of a plurality of antibodies, and may be a product obtained by limited degradation or protein modification of the antibody.
[0047]
These antibodies, which are covalently immobilized on the surface of the magnetic particles for diagnostic agents of the present invention, dispersed and washed with a bovine serum albumin or milk skin-containing buffer, can be used as they are for immunodiagnosis. Examples of the buffer solution used for antibody sensitization, particle washing, and dispersion include phosphate buffer solution, Tris-HCl buffer solution, glycine buffer solution, borate buffer solution, acetate buffer solution, Good's buffer solution and the like. If necessary, a salt such as sodium chloride, a stabilizer such as bovine serum albumin, a preservative such as sodium azide, or a surfactant such as polyoxyethylene sorbitan monolaurate (Tween 20) may be added.
[0048]
Examples of the labeling substance include horseradish peroxidase (POD), enzymes such as alkaline phosphatase, β-galactosidase and glucose oxidase, luminescent substances such as acridium-I, and fluorescent substances such as fluorescein. In many cases, these labeling substances are generally bound to a secondary antibody and used as an antibody / label conjugate.
[0049]
As the method for measuring the labeling substance, when the labeling substance is an enzyme, the enzyme activity is measured using a substrate. When the labeling substance is a luminescent substance, the luminescence photometry is performed using a luminescence photometer. When the labeling substance is a fluorescent substance, the fluorimeter is used. Fluorophotometric measurement method using, and in the case of a radioisotope, measurement method using a liquid scintillation counter. Among the enzyme activity measurement methods, o-phenylenediamine, hydroxyphenylpropionic acid and the like are used as substrates for measuring POD activity, and 3- (2′-spiroadamantane) -4-methoxy-4 as a substrate for measuring alkaline phosphatase activity. -(3 ″ -phosphopyroxy) phenyl-1,2-dioxetane [AMPPD], p-nitrophenyl phosphate, p-nitrophenyl-β-galactoside, 4-methylum as a substrate for the measurement of β-galactosidase activity Veriferyl-β-galactoside and the like are used. For glucose oxidase activity, POD is used to detect hydrogen peroxide produced when glucose is oxidized.
[0050]
The measurement principle of the immunoassay using the magnetic particle for diagnostic agent of the present invention can be carried out by a known method. For example, a sandwich method, a competitive method, etc. are mentioned. The difference from the conventional method is that optical measurement can be performed while containing the magnetic particles for diagnostic agents of the present invention without performing solid-liquid separation between the solid phase carrier and the substrate reaction solution.
[0051]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not restrict | limited by these.
[0052]
In this example, the particle size measurement is performed by an optical diffractometer SOLD2000V (manufactured by Shimadzu Corporation), and the amount of functional groups on the particle surface is expressed in moles of functional groups with respect to the weight of the particles. It was determined from (manufactured by Metrohm). Moreover, the color of the particle dispersion was determined by the following method. 10 μl of a 10% by weight dispersion of particles is placed on a glass slide to form a particle dispersion drop having a diameter of 1 to 2 mm, air-dried at room temperature for 10 minutes, and then the color difference at three locations in the circle including the center of the drop is displayed. After measuring twice with a meter (Minolta color difference meter, CR241) and confirming that the CV value of these measured values was within 10%, the average value was taken as the color value of the particles. Saturation magnetization and residual magnetization were measured with a vibrating sample magnetometer (VSM). The magnetic separation property is shown by the time when the magnetic particles are separated 100% (100% particle separation time). Specifically, 3 ml of 0.1% particle dispersion was placed in a 1 cm square glass absorbance measurement cell, a 3500 gauss neodymium magnet was placed on the side of the cell, and the 100% particle separation time was determined by the change in absorbance over time. . The protein binding amount (antibody binding amount) immobilized by covalent bonding was quantified using a BCA reagent (Pierce) according to the reagent protocol.
[0053]
[Example 1] Production of magnetic core particles 1 and 2
Cross-linked polymethyl methacrylate (PMMA) particles having a particle size shown in Table 1 were synthesized to obtain dry particles. 10 g each of the dried particles and ferrite superparamagnetic fine particles (average particle size: 0.01 μm) obtained by the solvent precipitation method of the oil-based magnetic fluid “FV55” (manufactured by Matsumoto Yushi Co., Ltd.) This mixture was treated for 4 minutes at a peripheral speed of 100 m / sec (16200 rpm) of a blade (stirring blade) using a hybridization system NHS-0 type (manufactured by Nara Machinery Co., Ltd.). By this treatment, magnetic core particles 1 and 2 in which the surfaces of the dry particles (PMMA particles) were coated with a magnetic material were obtained. The obtained magnetic core particles 1 and 2 were each dispersed with a 0.1% SDS soap solution, and the particle diameter was measured. Table 1 shows the relationship between the particle diameter of the PMMA particles used in this example and the obtained magnetic core particles.
[0054]
[Table 1]
[Example 2] Production of light-colored magnetic particles 1 and 2
7.54 g of the magnetic core particles 1 and 2 obtained in Example 1 above, 10.64 g of pigment-based titanium oxide “JR-600A” (manufactured by Teika Co., Ltd., average particle size: 0.25 μm), Polystyrene / butyl acrylate random copolymer particles (average particle size: 0.15 μm) 1.9 g were mixed with a mixer, and this mixture was used with a hybridization system NHS-0 type (manufactured by Nara Machinery Co., Ltd.). Then, treatment was performed at a peripheral speed of 100 m / sec (16200 rpm) of the blade (stirring blade) for 4 minutes to obtain light-colored magnetic particles 1 and 2. Table 2 shows the results of measuring the particle diameters of the obtained light-colored magnetic particles 1 and 2 respectively.
[0055]
[Table 2]
[Example 3] Preparation of magnetic particles 1 and 2 for diagnostic agents
30 g each of the light-colored magnetic particles 1 and 2 obtained in Example 2 above, and 900 g of a 0.5% by weight aqueous solution of a nonionic emulsifier “Emulgen 150” (manufactured by Kao Corporation) as a dispersant were placed in a 1 L separable flask. It was introduced and dispersed sufficiently. To this was added 3 g of styrene as a monomer, 0.9 g of methacrylic acid, and 0.6 g of t-butylperoxy-2-ethylhexanate (manufactured by NOF Corporation; Perbutyl O ™) as a polymerization initiator. 2 The reaction was carried out by stirring for 8 hours at 80 ° C. at a rotation speed of 200 rpm using a squid type stirring blade under a gas stream. Through the above steps, magnetic particles 1 and 2 for diagnostic agents of this example having a carboxyl group on the surface were obtained.
[0056]
[Table 3]
[Example 4] Preparation of magnetic particles 3 for diagnostic agents
Using 30 g of the light-colored magnetic particles 1 obtained in Example 1 above, 900 g of a 0.5% by weight aqueous solution of a nonionic emulsifier “Emulgen 150” (manufactured by Kao Corporation) as a dispersant was charged into a 1 L separable flask. Sufficiently dispersed. To this was added 3 g of styrene as a monomer, 2.0 g of glycidyl methacrylate, 0.08 g of divinylbenzene, and 0.12 g of 2,2′-azobis (2-aminopropane) dihydrochloride as a polymerization initiator, and glycidyl methacrylate after 2 hours. Add 0.3g, N 2 The reaction was carried out by stirring for 8 hours at 80 ° C. at a rotation speed of 200 rpm using a squid type stirring blade under a gas stream. Through the above steps, magnetic particles 3 for diagnostic agents of this Example having a particle diameter of 4.8 μm and having an epoxy functional group on the surface were obtained.
[0057]
[Example 5] Preparation of magnetic particles 4 for diagnostic agents
After washing 1 g of the light-colored magnetic particles 1 obtained in Example 1 with 5 mM MES buffer three times, 1 ml of 5 mM MES buffer in which 0.5 g of lysine was dissolved, 10 mg / ml EDC (1-ethyl 3- 0.5 ml of dimethylaminopropyl carbodiimide hydrochloride (manufactured by Dojin Chemical Co., Ltd.) solution was added, and the mixture was rotated and stirred at room temperature for 12 hours. Subsequently, the plate was washed three times with PBS, dispersed in 10 nM phosphate buffer so that the particle solid content was 10% by weight, and magnetic particles 4 for diagnostic agents of this example having amino groups on the surface were obtained. Similarly to the antibody binding measurement, the amount of lysine introduced was measured by an assay using a BCA reagent.
[0058]
[Comparative example]
A magnetic composite particle 1 of a comparative example was prepared in the same manner as in Examples 1 and 3 using PMMA particles having a particle diameter of 3.7 μm. Since this magnetic composite particle 1 is obtained by omitting the lightening step corresponding to Example 2, it is brown. The particle diameter of the magnetic composite particle 1 was 4.4 μm.
[0059]
[Example 6] Characteristic evaluation of magnetic particles for diagnostic agents
The particles were dispersed in a 0.01% SDS solution so that the solid content of the magnetic particles for diagnostic agents prepared in Example 1-4 and the magnetic composite particles 1 obtained in the comparative example was 5%. The sample was transferred to a glass container having a length of 20 cm, a width of 15 cm, and a height of 5 cm, the wide surface of the container was brought into contact with a 3500 gauss magnet, magnetic separation was performed twice, and 100% particle separation time was measured. The measurement results are shown in Table 4. Further, the L value, the amount of surface functional groups (μmol / g), and the ratio (%) of the residual magnetization to the saturation magnetization of the magnetic particles for diagnostic agents obtained in Example 1-5 were measured by the methods described above. The measurement results are also shown in Table 4.
[0060]
[Table 4]
[Example 7] Preparation of AFP antibody-immobilized particles
100 μl of a 10% aqueous dispersion of diagnostic magnetic particles 1 of the present invention prepared in Examples 1 to 3 above was dispensed into a 1 ml microtube and washed 3 times with 1 ml of 5 mM MES (pH 6) by magnetic separation. 50 μl of 10 mg / ml EDC (1-ethyl 3-dimethylaminopropylcarbodiimide hydrochloride, manufactured by Doujin Chemical Co., Ltd.) solution was added, and the mixture was rotationally stirred at room temperature for 2 hours, and then the supernatant was removed by magnetic separation. Subsequently, 20 μl of monoclonal antibody IgG1 (Biotest Corp., clone NB-013) collected from 100 μg / ml AFP BALB / C mouse transplanted ascites was added, and the volume was made up to 1 ml with 5 mM MES (pH 6). After re-dispersing the particle dispersion, it was reacted at room temperature for 5 hours with rotary stirring. Then 0.1 ml of 1M ethanolamine was added and stirred overnight at room temperature. This reaction solution was washed twice with PBS buffer, and finally the magnetic particles were dispersed in 1 ml of 0.1% casein / PBS solution. Subsequently, it adjusted with PBS so that particle solid content might be 1%. As a result, a suspension of diagnostic drug magnetic particles (immobilized diagnostic drug magnetic particles) 1 immobilized with an anti-AFP antibody was obtained. This suspension was stored in a refrigerator until use. Further, the antibody binding amount of the immobilized diagnostic magnetic drug magnetic particle 1 prepared by the above method was measured. The obtained antibody binding amounts are shown in Table 5.
[0061]
Moreover, using the magnetic particles 2 for diagnostic agents prepared in Examples 1 to 3 and the magnetic composite particles 1 prepared in Comparative Examples, antibody sensitization was performed in the same manner as described above, and immobilized with an anti-AFP antibody. The magnetic particles for diagnostic agents (immobilized magnetic particles for diagnostic agents) 2 and the magnetic composite particles (immobilized magnetic composite particles) 1 immobilized with an anti-AFP antibody as a comparative example were obtained.
[0062]
Furthermore, 100 μl of an aqueous dispersion of 10% by weight particles of magnetic particles 3 for diagnostic agents prepared in Example 4 above was washed twice with 0.1 M PBS (pH 7), so that the antibody solution and 0.1M phosphate buffer (pH 7) was added and allowed to react overnight at room temperature. For other diagnostic parts immobilized with anti-AFP antibody, the operation part other than the above, the antibody compounding ratio, etc. are handled in the same manner as in the case of particles (magnetic particles 1 and 2 for diagnostic drugs) containing carboxyl groups on the surface. Magnetic particles (immobilized diagnostic drug magnetic particles) 3 were obtained.
[0063]
[Table 5]
[Example 8] AFP immunoassay
The characteristics of the immobilized diagnostic magnetic drug magnetic particles 1 obtained in Example 7 were evaluated by a two-step immunoassay chemiluminescence method. 10 μl of a 1% by weight dispersion of magnetic particles for immobilized diagnostic drug 1 obtained by binding to an AFP monoclonal antibody in Example 7 above, and 50 μl of a serum sample having an AFP Ag (antigen) concentration of 0 to 1000 ng / ml In addition to a plate well having a volume of 300 μl, 40 μl of PBS solution was further added, and the mixture was gently shaken and allowed to stand at room temperature for 5 minutes. Subsequently, the magnetic particles were brought to the well wall with a magnet to remove the solution. After washing once with 100 μl PBS buffer, 100 μl of PBS solution containing mouse monoclonal antibody (Biotest, clone NB-017) conjugated with 10 ng / ml bovine small intestine alkaline phosphatase was added, and after shaking dispersion, 5 μm at room temperature was added. Let stand for a minute. This reaction solution was solid-liquid separated with a magnet, washed twice with a PBS / 0.1% casein-containing solution, 100 μl CDPstar substrate solution (manufactured by Tropix) was added to the particle pellet, and the mixture was stirred and allowed to stand at room temperature for 3 minutes. Then, the chemiluminescence value was measured. The measurement results are shown in Table 6. Further, the immobilized diagnostic magnetic drug particles 2 and 3 obtained in Example 7 and the immobilized magnetic composite particle 1 of the comparative example were also sensitized with an antibody in the same manner as described above, and an AFP immunoassay was performed. . The results are also shown in Table 6.
[0064]
As a control example, in the above step, the immobilized diagnostic diagnostic magnetic particles and the serum sample are added to the plate well, and further PBS solution is added and stirred and shaken at room temperature for 3 minutes. Table 7 shows an example in which the chemiluminescence value was measured by immediately separating with a magnet and dispensing the supernatant.
[0065]
[Table 6]
[0066]
[Table 7]
Thus, in the enzyme immunoassay system using the immobilized diagnostic magnetic drug particles of Example 7, the result of measuring the magnetic particles as they were without B / F separation (see Table 6) It was found that there was almost no difference from the measurement result after removal (see Table 7).
[0067]
On the other hand, in the case of the immobilized magnetic composite particle 1 of the comparative example, the measurement result (see Table 6) in the state containing the immobilized magnetic composite particle 1 in the whole antigen concentration range shows that the immobilized magnetic composite particle 1 It was revealed that the signal was reduced by about ½ to 比較 as compared with the result measured in the state not containing (see Table 7).
[0068]
[Example 9] Immunoassay of HRP-labeled AFP
Instead of the AFP monoclonal antibody used in Example 7, labeling with horseradish peroxidase (HRP) was performed. Labeling of the mouse anti-human AFP antibody with HRP was performed as follows according to the method of Ishikawa et al. First, a maleimide group was introduced into HRP using N-succinidyl-4- (N-maleimidomethyl) cyclohexane-1-carboxylate. On the other hand, F (ab) ′ 2 fraction obtained by digesting anti-human AFP antibody with pepsin was reduced to prepare F (ab) ′ from which SH group was released. Next, HRP into which the maleimide group was introduced and F (ab) ′ from which the SH group had been released were mixed and reacted to obtain an HRP-labeled anti-AFP antibody.
[0069]
Subsequently, F (ab) ′ 2 obtained by pepsin digestion of monoclonal antibody IgG1 (manufactured by Biotest, clone NB-013) in the same manner as described in Example 7 was obtained in Example 5 above. The immobilized magnetic particles 4 for diagnostic agents were obtained by binding to the magnetic particles 4 for diagnostic agents. Moreover, the antibody binding amount of the magnetic particle 4 for immobilized diagnostic agent prepared by the above method was measured. The obtained antibody binding amount is shown in Table 8.
[0070]
AFP immunoassay was then performed. The immunoassay method of AFP was performed using luminol / H instead of the substrate (CDP-star) used in Example 8 above. 2 O 2 Evaluation was performed in the same manner as described in Example 8 except that was used. The evaluation results of the AFP immunoassay of this example are shown in Table 9 and Table 10.
[0071]
[Table 8]
[0072]
[Table 9]
[0073]
[Table 10]
As a result, the result of measuring the magnetic particles as they were without B / F separation (see Table 9) in the enzyme immunoassay system using the immobilized diagnostic magnetic particles of Example 9 removed the magnetic particles. It was found that there was almost no difference from the measurement results (see Table 10).
[0074]
【The invention's effect】
The magnetic particle for diagnostic agent of the present invention includes a core including magnetic particles and a visible light scattering layer formed outside the core, and an L value in the Lab color system is 50 or more, and the residual magnetization is saturated magnetization. 30% or less and the particle diameter of 0.5 to 15 μm suppresses visible light absorption, and is particularly suitable for uses such as light measurement, light detection, and light sorting. The magnetic particles for diagnostic agents of the present invention are particularly preferable materials for biochemical carriers such as carriers for diagnostic agents. Other uses include cells, genes, carriers for gene therapy, electronic materials, electrophotography, cosmetics, pharmaceuticals, agricultural chemicals, It can be used in a wide range of fields such as food and catalysts. As the use of the magnetic particle for diagnostic agent of the present invention, a medical diagnostic agent is preferable, and it is more preferable to apply as a particle corresponding to an automatic measuring instrument.
[0075]
The magnetic particles for diagnostic agents of the present invention are particularly suitable as solid phase carriers for nucleic acids such as DNA and RNA, nucleotides, or physiologically active substances such as antigens / antibodies, haptens and enzymes. By using the magnetic particle for diagnostic agent of the present invention as a solid phase carrier, optical measurement and optical manipulation can be efficiently performed in a system containing the particle.