JP2005002976A - Hot air type external-combustion engine - Google Patents

Hot air type external-combustion engine Download PDF

Info

Publication number
JP2005002976A
JP2005002976A JP2003196776A JP2003196776A JP2005002976A JP 2005002976 A JP2005002976 A JP 2005002976A JP 2003196776 A JP2003196776 A JP 2003196776A JP 2003196776 A JP2003196776 A JP 2003196776A JP 2005002976 A JP2005002976 A JP 2005002976A
Authority
JP
Japan
Prior art keywords
side cylinder
combustion engine
change
heating
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003196776A
Other languages
Japanese (ja)
Other versions
JP3770324B2 (en
Inventor
Koji Kanamaru
孝二 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003196776A priority Critical patent/JP3770324B2/en
Publication of JP2005002976A publication Critical patent/JP2005002976A/en
Application granted granted Critical
Publication of JP3770324B2 publication Critical patent/JP3770324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot air type external-combustion engine having a low environmental load using a method having a high practicality. <P>SOLUTION: A heater 3 and a cooler 4 are connected parallel between a compression side cylinder 1 and an expansion side cylinder 2, and in the heating process, the passage including the heater 3 is selected by a shutoff/selector valve 5, and heating is conducted while the fluid is moved from the compression side cylinder 1 to the expansion side cylinder 2. In the cooling process, the passage including the cooler 4 is selected, and cooling is conducted while the fluid is moved from the expansion side cylinder 2 to the compression side cylinder 1. In the adiabatic process, the two cylinders are separated from the passages, and a adiabatic change takes place inside the cylinders. The heating and cooling processes are made in the form of isobaric change by driving pistons in the cylinders according to the cam curve, and the conditional change can be made in Brayton cycles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【従来の技術と問題点】
近年、地球環境に対する意識の向上により、熱源を選ばず低騒音で、排気に汚染物質の少ない外燃機関が注目されており、この外燃機関の代表として、スターリングエンジンの開発が進められている。スターリングエンジンはシリンダ容積変化の比率に関わらず作動流体の温度比を最大限に利用でき、常に最高の熱効率を実現できる可能性がある反面、以下にしめす欠点もある。
・図7のように、スターリングエンジンではカルノーサイクルに近づけるため再生器(蓄熱器)を使用しているが、再生器の効率は完全ではないため、高温側から低温側へ熱が筒抜ける。
・再生器が作動流体の移動時の抵抗となる。
・シリンダ全体を一定の温度に保つ構造が難しく、また熱を作動流体に効率的に伝えにくい。
・死容積があることにより、作動流体全体の温度変化が平均化され、温度比が縮退し熱効率が低下する。
・図8(a)はカルノーサイクルのT−S線図を、図8(b)はスターリングサイクルのT−S線図をしめす。スターリングサイクルにおける作動流体の最高温度,最低温度は、カルノーサイクルと同じくTh,Tcであるが、サイクルの軌道が曲線化されることにより、高温の代表値がTh(s)に下がり低温がTc(s)に上がってしまい、スターリングサイクルの熱効率はカルノーサイクルで示される熱効率(Th−Tc)/Thの0.8倍程度までしか上がらない。
このように、スターリングエンジンは現実的には作りにくく熱効率を上げにくいため、より実現性の高い外燃機関の開発が必要である。
【0002】
【本発明の構成と作用】
本発明の構成を図1にしめす。
本発明では、圧縮側シリンダ1と膨張側シリンダ2の間を、加熱器3を含む流路と冷却器4を含む流路の2つの流路によって接続し、遮断/切替弁5によって両シリンダにいずれかの流路を接続または両方の流路を切り離すようにして、内部には作動流体を充填する。
本発明の動作を図2(a)に、そのT−S線図を図2(b)にしめす。
まず圧縮側シリンダ1と両方の流路を切り離し、ピストンを動かして断熱圧縮をおこなう。このとき作動流体の温度はThaとなる。
次に圧縮側シリンダ1,膨張側シリンダ2と加熱器3を含む流路を接続し、ピストンを動かして作動流体を圧縮側シリンダ1から膨張側シリンダ2に移動させるとともに加熱をおこなう。加熱後の温度はThbであり、圧縮側シリンダ1と膨張側シリンダ2の容積比をTha:Thbにすることにより、作動流体の移動加熱は等圧膨張となる。エントロピーの変化ΔSはln(Thb/Tha)に比例するが、この等圧膨張での温度比が小さいためT−S線図に直線にてしめす。
さらに膨張側シリンダ2と両方の流路を切り離し、ピストンを動かして断熱膨張をおこなう。このとき作動流体の温度はTcbとなる。
最後に圧縮側シリンダ1,膨張側シリンダ2と冷却器4を含む流路を接続し、ピストンを動かして作動流体を膨張側シリンダ2から圧縮側シリンダ1に移動させるとともに冷却をおこなう。このときの状態変化は等圧圧縮となる。
【0003】
本発明の具体例として温度,容積変化比を設定し、図3(a)にT−S線図をしめす。
環境への影響を考慮し、窒素酸化物(NOx)の発生が少なくなるよう、作動流体の最高温度を1600°Kとし、燃焼温度もそれに準ずる。
熱効率はb/(a+b)で表され、本例の場合、1000÷1400=0.714となり、Th=1600°K,Tc=400°Kとしたときのカルノーサイクルの熱効率0.75に対して、その0.95倍と非常に近い値となる。
本例での等圧変化時の容積変化比は温度比に同じく、1600÷1400=1.14倍、作動流体にヘリウム(He)を使った場合、断熱変化時の温度比が1400÷400=3.5倍なので、容積変化比は6.5倍、圧力比は22.8倍となり、P−V線図は図3(b)のようになる。
図4に加速時の作動流体の温度,出力の変化をしめす。
本発明も従来のレシプロエンジンと同様に、アクセルにより速度,出力の調整をおこなう。
定常時は断熱,等圧変化比に適した空燃比による燃焼温度で燃焼をおこない、作動流体の最高温度も適正なものとなる。
アクセルをかけることにより燃料が増加し燃焼温度が上昇すると、容積変化比は一定であるため熱効率は変化しないが、1回転当たりの出力は増大し加速をおこなう。
アクセルを戻すことにより、1回転当たりの出力は定常時に戻るが、回転数が上昇しているので仕事率は増大している。
【0004】
図5に本発明の実施例の構成をしめす。
図5(a)のように、本発明の基本構成である圧縮側シリンダ1,膨張側シリンダ2,加熱器3,冷却器4および遮断/切替弁5をまとめて1ユニットとし、そのユニットを図5(b)のように円筒カムの軸を囲むように配置し、円筒カムにはピストンの駆動用等の溝を設ける。ユニットをカムに対して対向配置することにより、振動を相殺するとともにカム軸にかかる応力を最小にする。
加熱器3,冷却器4は向流形の熱交換器であり、流体の移動加熱のときのみ燃焼ガスが加熱器3に供給されるよう、カムによって駆動されるシャッターが設けられている。
図6にカム曲線の展開図をしめす。
各工程に対応して圧縮側シリンダ1,膨張側シリンダ2の容積が変わるよう、ピストンが移動する。
遮断/切替弁5の操作により両方のシリンダは、移動加熱時には加熱器3を含む流路に接続、移動冷却時には冷却器4を含む流路に接続され、断熱変化時には遮断/切替弁5は中立となり、どちらの流路からも切り離される。
シャッターは移動加熱のときのみ開くが、加熱器3自体を温める時間を考慮し、移動加熱に先行して開くようにしている。
また一定の回転速度の中で、加熱,冷却にかかる時間に合わせ、カム曲線を適正に設計することができる。
【0005】
【本発明の効果】
本発明は断熱変化や等圧変化時の温度比が固定されるため、熱源の温度が最適な温度を外したときには、その温度における最大熱効率を実現できず、排気中に無駄な熱を放出することになるが、排気熱は従来のタービン機関と同様に吸気あたためにより回生でき、無駄を最小限に抑えることができる。
本発明の特長を以下にしめす。
・1つ1つの状態変化を的確に再現することにより、カルノーサイクルの理論値に近い熱効率を実現できる。また挙動がつかみやすく理解しやすい。
・再生器が不要であり、熱の筒抜けの問題がなく、作動流体の抵抗も低減する。
・移動加熱が等圧変化であるため、シリンダ内と流路内の圧力が等しくなり、弁開放時に流体の噴出音が出ることがなく、静音性が高い。
・断熱変化工程では、シリンダが流路から完全に切り離されるため、シリンダ内では断熱変化が確実におこなわれ、流路が死容積となることがない。よって流路の長さ,容積の許容範囲が広く、加熱器,冷却器のレイアウトの自由度が高い。
・シリンダを加熱,冷却する必要がなく、熱交換機が死容積になることもないので、熱交換機構造の選択範囲が広がり、効率の高い熱交換器を使用できる。
以上のように、本発明によれば熱効率が高く実現性の高い外燃機関を作ることが可能である。
【図面の簡単な説明】
【図1】本発明の構成図である。
【図2】本発明の動作図である。
【図3】本発明の状態変化の具体例である。
【図4】本発明の状態変化の比較図である。
【図5】本発明の実施例の構成図である。
【図6】本発明の実施例の構成図である。
【図7】従来の方式の構成図である。
【図8】従来の方式の状態変化図である。
【符号の説明】
1.圧縮側シリンダ
2.膨張側シリンダ
3.加熱器
4.冷却器
5.遮断/切替弁
[0001]
[Conventional technology and problems]
In recent years, due to increased awareness of the global environment, external combustion engines with low noise and low pollutants in the exhaust gas are attracting attention, regardless of heat source. Stirling engines are being developed as representatives of these external combustion engines. . A Stirling engine can make full use of the temperature ratio of the working fluid regardless of the cylinder volume change ratio and can always achieve the highest thermal efficiency, but has the following drawbacks.
As shown in FIG. 7, the Stirling engine uses a regenerator (heat accumulator) to bring it closer to the Carnot cycle. However, the efficiency of the regenerator is not perfect, so that heat escapes from the high temperature side to the low temperature side.
・ Regenerator becomes resistance when moving working fluid.
・ It is difficult to construct a structure that keeps the entire cylinder at a constant temperature, and it is difficult to efficiently transfer heat to the working fluid.
-Due to the dead volume, the temperature change of the entire working fluid is averaged, the temperature ratio is degenerated and the thermal efficiency is lowered.
FIG. 8A shows a TS diagram of the Carnot cycle, and FIG. 8B shows a TS diagram of the Stirling cycle. The maximum temperature and the minimum temperature of the working fluid in the Stirling cycle are Th and Tc as in the Carnot cycle. However, when the cycle trajectory is curved, the representative value of the high temperature decreases to Th (s), and the low temperature decreases to Tc ( s), and the thermal efficiency of the Stirling cycle increases only to about 0.8 times the thermal efficiency (Th−Tc) / Th shown in the Carnot cycle.
Thus, since a Stirling engine is difficult to make in practice and it is difficult to increase thermal efficiency, it is necessary to develop a highly feasible external combustion engine.
[0002]
[Configuration and operation of the present invention]
The configuration of the present invention is shown in FIG.
In the present invention, the compression side cylinder 1 and the expansion side cylinder 2 are connected by two flow paths, a flow path including a heater 3 and a flow path including a cooler 4, and both cylinders are connected by a shutoff / switching valve 5. The inside is filled with working fluid so that one of the flow paths is connected or both flow paths are disconnected.
The operation of the present invention is shown in FIG. 2 (a), and its TS diagram is shown in FIG. 2 (b).
First, the compression-side cylinder 1 and both flow paths are disconnected, and the piston is moved to perform adiabatic compression. At this time, the temperature of the working fluid becomes Tha.
Next, the flow path including the compression side cylinder 1, the expansion side cylinder 2 and the heater 3 is connected, and the piston is moved to move the working fluid from the compression side cylinder 1 to the expansion side cylinder 2 and to perform heating. The temperature after heating is Thb, and by moving the volume ratio of the compression side cylinder 1 and the expansion side cylinder 2 to Tha: Thb, the moving heating of the working fluid becomes equal pressure expansion. The entropy change ΔS is proportional to ln (Thb / Tha), but since the temperature ratio in this isobaric expansion is small, it is shown as a straight line in the TS diagram.
Furthermore, the expansion side cylinder 2 and both flow paths are separated, and the piston is moved to perform adiabatic expansion. At this time, the temperature of the working fluid becomes Tcb.
Finally, the flow path including the compression side cylinder 1, the expansion side cylinder 2 and the cooler 4 is connected, and the piston is moved to move the working fluid from the expansion side cylinder 2 to the compression side cylinder 1 and to cool. The state change at this time is equal pressure compression.
[0003]
As a specific example of the present invention, temperature and volume change ratios are set, and a TS diagram is shown in FIG.
Considering the influence on the environment, the maximum temperature of the working fluid is set to 1600 ° K so that the generation of nitrogen oxides (NOx) is reduced, and the combustion temperature is also in accordance with it.
The thermal efficiency is represented by b / (a + b). In this example, 1000 ÷ 1400 = 0.714, and Th = 1600 ° K, Tc = 400 ° K, when the Carnot cycle thermal efficiency is 0.75. The value is very close to 0.95 times.
In this example, the volume change ratio when the isobaric change is the same as the temperature ratio is 1600 ÷ 1400 = 1.14 times. When helium (He) is used as the working fluid, the temperature ratio when the adiabatic change is 1400 ÷ 400 = Since it is 3.5 times, the volume change ratio is 6.5 times, the pressure ratio is 22.8 times, and the PV diagram is as shown in FIG.
Fig. 4 shows changes in the temperature and output of the working fluid during acceleration.
In the present invention, the speed and output are adjusted by the accelerator as in the conventional reciprocating engine.
In normal operation, combustion is performed at a combustion temperature with an air-fuel ratio suitable for adiabatic and isobaric change ratios, and the maximum temperature of the working fluid is also appropriate.
When the fuel is increased by applying the accelerator and the combustion temperature rises, the volume change ratio is constant and the thermal efficiency does not change, but the output per rotation increases and acceleration is performed.
By returning the accelerator, the output per rotation returns to the steady state, but the work rate increases because the rotation speed increases.
[0004]
FIG. 5 shows the configuration of the embodiment of the present invention.
As shown in FIG. 5 (a), the compression side cylinder 1, the expansion side cylinder 2, the heater 3, the cooler 4 and the shutoff / switching valve 5 which are the basic configuration of the present invention are collectively made into one unit. As shown in FIG. 5B, it is arranged so as to surround the axis of the cylindrical cam, and the cylindrical cam is provided with a groove for driving the piston or the like. By placing the unit opposite to the cam, the vibration is canceled and the stress applied to the cam shaft is minimized.
The heater 3 and the cooler 4 are counter-current heat exchangers, and are provided with a shutter driven by a cam so that the combustion gas is supplied to the heater 3 only during fluid heating of the fluid.
FIG. 6 shows a development view of the cam curve.
The piston moves so that the volumes of the compression side cylinder 1 and the expansion side cylinder 2 change corresponding to each step.
By operating the shut-off / switching valve 5, both cylinders are connected to the flow path including the heater 3 during moving heating, connected to the flow path including the cooler 4 during moving cooling, and the shut-off / switching valve 5 is neutral during adiabatic change. And separated from either flow path.
The shutter is opened only during moving heating, but is opened prior to moving heating in consideration of the time for heating the heater 3 itself.
In addition, the cam curve can be appropriately designed according to the time required for heating and cooling at a constant rotational speed.
[0005]
[Effect of the present invention]
In the present invention, since the temperature ratio at the time of adiabatic change or isobaric change is fixed, when the temperature of the heat source is removed from the optimum temperature, the maximum thermal efficiency at that temperature cannot be realized, and wasteful heat is released into the exhaust. However, the exhaust heat can be regenerated by the intake air as in the conventional turbine engine, and waste can be minimized.
The features of the present invention are as follows.
-By accurately reproducing each state change, thermal efficiency close to the theoretical value of Carnot cycle can be realized. The behavior is easy to grasp and understand.
-No regenerator is required, there is no problem of heat removal, and the resistance of the working fluid is reduced.
・ Since the moving heating is an isobaric change, the pressure in the cylinder and in the flow path are equal, and there is no sound of fluid jetting when the valve is opened, resulting in high silence.
In the adiabatic change process, since the cylinder is completely separated from the flow path, the adiabatic change is surely performed in the cylinder, and the flow path does not become dead volume. Therefore, the allowable range of the length and volume of the flow path is wide, and the flexibility of the layout of the heater and cooler is high.
-Since there is no need to heat and cool the cylinder and the heat exchanger does not become dead volume, the selection range of the heat exchanger structure is expanded, and a highly efficient heat exchanger can be used.
As described above, according to the present invention, it is possible to make an external combustion engine with high thermal efficiency and high feasibility.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of the present invention.
FIG. 2 is an operation diagram of the present invention.
FIG. 3 is a specific example of a state change of the present invention.
FIG. 4 is a comparison diagram of state changes of the present invention.
FIG. 5 is a configuration diagram of an embodiment of the present invention.
FIG. 6 is a configuration diagram of an embodiment of the present invention.
FIG. 7 is a configuration diagram of a conventional method.
FIG. 8 is a state change diagram of a conventional method.
[Explanation of symbols]
1. 1. Compression side cylinder 2. Expansion side cylinder Heater 4. 4. Cooler Shut-off / switching valve

Claims (3)

密封された流体を外部から加熱,冷却し力に変換する外燃機関において、圧縮側シリンダ1と膨張側シリンダ2の間に加熱器3と冷却器4を並列に接続し、各シリンダと加熱器3,冷却器4の間を流路の遮断/切替弁5によって加熱時と冷却時の流路を変え、流体の移動時に加熱または冷却をおこない、各シリンダ内においては断熱変化をおこなうことを特徴とする外燃機関。In an external combustion engine that heats and cools a sealed fluid from the outside and converts it into a force, a heater 3 and a cooler 4 are connected in parallel between the compression side cylinder 1 and the expansion side cylinder 2, and each cylinder and the heater 3. The flow path between the cooler 4 and the cooler 4 is changed by a flow path shut-off / switch valve 5 to change the flow path during heating and cooling, heating or cooling is performed when the fluid is moved, and adiabatic change is performed in each cylinder. An external combustion engine. カム曲線によって圧縮側シリンダ1,膨張側シリンダ2内のピストンを駆動しブレイトンサイクルを実現する範囲1の外燃機関。An external combustion engine in the range 1 in which the piston in the compression side cylinder 1 and the expansion side cylinder 2 is driven by the cam curve to realize the Brayton cycle. 流体の移動加熱をおこなうときのみ加熱器3に熱を供給するよう、燃焼ガスを制御するシャッターを有する範囲1の外燃機関。The external combustion engine of the range 1 which has a shutter which controls combustion gas so that heat may be supplied to the heater 3 only when fluid heating is performed.
JP2003196776A 2003-06-11 2003-06-11 Hot-air external combustion engine Expired - Fee Related JP3770324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196776A JP3770324B2 (en) 2003-06-11 2003-06-11 Hot-air external combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196776A JP3770324B2 (en) 2003-06-11 2003-06-11 Hot-air external combustion engine

Publications (2)

Publication Number Publication Date
JP2005002976A true JP2005002976A (en) 2005-01-06
JP3770324B2 JP3770324B2 (en) 2006-04-26

Family

ID=34100230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196776A Expired - Fee Related JP3770324B2 (en) 2003-06-11 2003-06-11 Hot-air external combustion engine

Country Status (1)

Country Link
JP (1) JP3770324B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027607A1 (en) * 2006-08-29 2008-03-06 Kashmerick Engine Systems Llc Combustion engine
US7765785B2 (en) 2005-08-29 2010-08-03 Kashmerick Gerald E Combustion engine
JP2012172584A (en) * 2011-02-21 2012-09-10 Hiroshi Sekita Stirling engine
WO2018035585A1 (en) * 2016-08-26 2018-03-01 Associacao Paranaense De Cultura - Apc Differential-cycle heat engine with four isobaric processes, four adiabatic processes and a method for controlling the thermodynamic cycle of the heat engine
JP2020529550A (en) * 2017-08-09 2020-10-08 カプリコーン パワー ピーティーイー リミテッド Efficient heat recovery engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7765785B2 (en) 2005-08-29 2010-08-03 Kashmerick Gerald E Combustion engine
WO2008027607A1 (en) * 2006-08-29 2008-03-06 Kashmerick Engine Systems Llc Combustion engine
JP2012172584A (en) * 2011-02-21 2012-09-10 Hiroshi Sekita Stirling engine
WO2018035585A1 (en) * 2016-08-26 2018-03-01 Associacao Paranaense De Cultura - Apc Differential-cycle heat engine with four isobaric processes, four adiabatic processes and a method for controlling the thermodynamic cycle of the heat engine
JP2020529550A (en) * 2017-08-09 2020-10-08 カプリコーン パワー ピーティーイー リミテッド Efficient heat recovery engine

Also Published As

Publication number Publication date
JP3770324B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
US5454426A (en) Thermal sweep insulation system for minimizing entropy increase of an associated adiabatic enthalpizer
EP2964941B1 (en) A thermodynamic machine
KR20090031436A (en) Ambient temperature thermal energy and constant pressure cryogenic engine
US9021800B2 (en) Heat exchanger and associated method employing a stirling engine
JP2007064222A (en) Hydrogen equalizing system for double-acting stirling engine
WO2011091576A1 (en) Zero-leakage external combustion heat engine
JP2006200431A (en) Engine system
JP2022547653A (en) Pump mechanism for recovering heat from thermoelastic material in heat pump/refrigeration system
JP3770324B2 (en) Hot-air external combustion engine
US20090277152A1 (en) Quasi-isobaric heat engine
JP2009270559A (en) Rotary type external combustion engine
WO2006104673A3 (en) Reciprocating four-stroke brayton refrigerator or heat engine
US6474058B1 (en) Warren cycle engine
JP2008163931A (en) Scroll type external combustion engine
JP2000265853A (en) Thermal engine capable of independently selecting compression ratio and expansion ratio
CA3072368A1 (en) Efficient heat recovery engine
WO2014101288A1 (en) Piston temperature difference engine
JP2002221089A (en) Gas turbine co-generation system
KR20060071827A (en) An external combustion engine combined with cylinder, re-generator and cooler
JP2000213418A (en) Heat source system using low temperature vapor and cogeneration system using thereof
JP2007192443A (en) Pulse tube type heat storage engine
CA2488241A1 (en) Method and device for converting thermal energy into kinetic energy
WO2024056007A1 (en) Heat regenerator, and heat engine having heat regenerator
WO2012093786A2 (en) Stirling cycle-based heat engine system
AU2004225862B2 (en) Method and device for converting heat energy into mechanical energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees