JP2005002954A - Exhaust gas cleaning system - Google Patents

Exhaust gas cleaning system Download PDF

Info

Publication number
JP2005002954A
JP2005002954A JP2003169433A JP2003169433A JP2005002954A JP 2005002954 A JP2005002954 A JP 2005002954A JP 2003169433 A JP2003169433 A JP 2003169433A JP 2003169433 A JP2003169433 A JP 2003169433A JP 2005002954 A JP2005002954 A JP 2005002954A
Authority
JP
Japan
Prior art keywords
nox
amount
catalyst
exhaust gas
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003169433A
Other languages
Japanese (ja)
Other versions
JP4289033B2 (en
Inventor
Taiji Nagaoka
大治 長岡
Masashi Gabe
正志 我部
Hitoshi Sato
等 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2003169433A priority Critical patent/JP4289033B2/en
Publication of JP2005002954A publication Critical patent/JP2005002954A/en
Application granted granted Critical
Publication of JP4289033B2 publication Critical patent/JP4289033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas cleaning system which uses an NOx occulsion reduction type catalyst for clean-up of NOx in exhaust gas, so as to improve the rate of clean-up of NOx while preventing a reducing agent from being discharged into the atmosphere. <P>SOLUTION: The system is arranged such that the NOx accumulation amount in the NOx occulsion reduction type catalyst 3 is computed on the basis of the NOx concentration before and behind the NOx occulsion reduction type catalyst 3 detected by an NOx concentration detection means C13 and the amount of intake air detected by an intake air amount detection means C11. In the system, the amount of discharge of NOx per unit time when rich control is carried out, is computed on the basis of the catalyst temperature index value detected by a catalyst temperature detection means C12. A period of time for the rich control is decided depending on the computed NOx accumulation amount and the computed amount of discharge of NOx per unit time. The air fuel ratio of the exhaust gas is controlled to be in a rich state by an air fuel ratio control means C31 for the period of time for the rich control. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気ガス中のNOx(窒素酸化物)を還元して浄化するNOx吸蔵還元型触媒を備えた内燃機関の排気ガス浄化システムに関する。
【0002】
【従来の技術】
ディーゼルエンジンや一部のガソリンエンジン等の内燃機関や様々な燃焼装置の排気ガス中からNOxを還元除去するためのNOx触媒について種々の研究や提案がなされている。その一つに、ディーゼルエンジン用のNOx低減触媒としてNOx吸蔵還元型触媒があり、有効に排気ガス中のNOxを浄化できる。
【0003】
このNOx吸蔵還元型触媒は、図7に示すように、基本的に、アルミナ等の触媒担体31上に、酸化・還元反応を促進する白金(Pt)やパラジウム(Pd)等の貴金属類32と、バリウム(Ba)等のアルカリ土類金属等で形成されるNOxを吸蔵・放出する機能を有するNOx吸蔵材(NOx吸蔵物質)33を担持した触媒である。
【0004】
このNOx吸蔵還元型触媒は、流入する排気ガスの空燃比がリーン(高酸素濃度)状態であって雰囲気中に酸素(O)が存在する場合には、図7(a)に示すように、排気ガス中のNOが貴金属類32により酸化されてNOとなり、このNOはNOx吸蔵材33に硝酸塩(BaNO)として蓄積される。
【0005】
また、流入する排気ガスの空燃比が理論空燃比やリッチ(低酸素濃度)状態になって雰囲気中に酸素が存在しなくなると、図7(b)に示すように、Ba等のNOx吸蔵材33はCOと結合し、硝酸塩からNOが分解放出され、この放出されたNOは貴金属類32の三元機能により排気ガス中に含まれている未燃HCやCO等で還元されNとなり、排気ガス中の諸成分は、CO,HO,N等の無害な物質として大気中に放出される。
【0006】
そのため、NOx吸蔵還元型触媒を備えた排気ガス浄化システムでは、NOx吸蔵能力が飽和に近くなると、排気ガスの空燃比をリッチにして、流入する排気ガスの酸素濃度を低下させるNOx吸蔵能力回復用のリッチ制御を行うことにより吸収したNOxを放出させて、この放出されたNOxを貴金属触媒により還元させる再生操作を行っている。
【0007】
そして、NOx吸蔵還元型触媒を効果的に機能させるためには、リーン状態で吸蔵したNOxを還元するのに必要十分な量の還元剤をリッチ状態時に供給する必要がある。
【0008】
しかしながら、上記の硝酸塩からのNOの分解離脱の化学反応は、低温時は遅く、高温時には早いという温度依存性があり、NOの分解離脱速度は触媒温度に依存するので、NOx吸蔵還元型触媒の吸蔵機能と還元機能は、図8に示すように、触媒温度に依存する。
【0009】
つまり、極低温領域(A)ではNOx吸蔵機能も還元機能も低く、NOxを吸蔵及び還元しない。また、200℃前後の低温領域(B)ではNOの放出速度(分解離脱速度)が小さいため、吸蔵機能は高いが還元機能は低く、NOxを吸蔵するが還元能力が不十分となる。更に、450℃前後の中温領域(C)では、NOの放出速度が大きいため、吸蔵機能も還元機能も高く、吸蔵能力も還元能力も十分となる。そして、約600℃以上の高温領域(D)では、温度上昇により吸蔵量が減少するため、吸蔵能力が減少する。
【0010】
これらのNOx吸蔵還元型触媒の吸蔵機能と還元機能の触媒温度依存性を考慮して、NOx吸収剤(NOx吸蔵材)の温度を代表する温度(触媒温度等)が高いほどリッチの度合を大きくするか又はリッチにする時間を短くするNOx放出制御手段を具備した内燃機関の排気浄化装置が提案されている(例えば、特許文献1参照。)。
【0011】
【特許文献1】
特許第2722951号公報 (第2頁)
【0012】
【発明が解決しようとする課題】
しかしながら、実際にNOx吸蔵還元型触媒に蓄積されたNOx蓄積量との関係で、リッチ制御時間を決定し、適切な量の還元剤を供給しないと、NOx吸蔵材から放出されるNOx量と還元剤の量とがバランスできないため、触媒の下流側にNOx又は還元剤が排出されてしまうという問題が生じる。
【0013】
つまり、図8に示すような、NOの分解離脱速度が十分に活性化される温度領域(C)では、NOの分離離脱速度が大きく、還元機能も十分に働くため、NOx浄化率は低減され、また、COも還元剤として触媒反応に使用される量が増加するため、触媒後流側に排出(スリップ:SLIP)される量も少なくなる。
【0014】
一方、図8に示すような、触媒温度が低温でNOの分解離脱速度が遅い領域(B)では、分解速度が遅く、NOx吸蔵材の表面しか反応しないため、分解反応に必要な時間が不足し、NOが吸蔵材より脱離し切れず蓄積し、次第にNOxの排出量が増加してしまう。また、CO等の還元剤の供給時に、NOx還元の反応速度に対して過剰な還元剤が供給されるため、使用されない過剰な還元剤が触媒後流側に排出(スリップ:SLIP)されてしまう。
【0015】
本発明は、上記の問題を解決するためになされたものであり、その目的は、排気ガス中のNOxの浄化のためにNOx吸蔵還元型触媒を用いる排気ガス浄化システムにおいて、NOx吸蔵還元型触媒の上流側の排気温度等の触媒温度指標値を検出して、検出された触媒温度指標値に応じてリッチ制御時間と還元剤供給量を算出して、排気ガスの空燃比をリッチ制御することにより、還元剤の大気への排出を防止しながら、NOx浄化率を向上できる排気ガス浄化システムを提供することにある。
【0016】
【課題を解決するための手段】
以上のような目的を達成するための内燃機関の排気ガス浄化システムは、内燃機関の排気通路に配置されたNOx吸蔵還元型触媒と、該NOx吸蔵還元型触媒のNOx吸蔵能力を回復するための触媒再生制御装置を備えた排気ガス浄化システムにおいて、前記触媒再生制御装置が、吸入空気量検出手段、空燃比制御手段、触媒温度検出手段及びNOx濃度検出手段とを具備し、前記NOx濃度検出手段で検出した前記NOx吸蔵還元型触媒の前後のNOx濃度と、前記吸入空気量検出手段で検出した吸入空気量とから、前記NOx吸蔵還元型触媒におけるNOx累積量を算出すると共に、前記触媒温度検出手段で検出した触媒温度指標値からリッチ制御を行った場合の単位時間当たりのNOx放出量を算出し、該算出されたNOx累積量と単位時間当たりのNOx放出量からリッチ制御時間を決定し、リッチ制御時間の間、前記空燃比制御手段により排気ガス中の空燃比をリッチ状態に制御するように構成される。
【0017】
ここで使用している触媒温度指標値とは、触媒温度と相関を持つ物理量や数値であり、計測した触媒温度そのものや、触媒温度を推定できるような温度、例えば、計測した排気温度や、エンジンの負荷や回転数から予め入力したマップデータ等から推定した触媒温度等をいう。一般的に、触媒温度を直接測定するのは難しいため、排気温度等出、触媒温度の代用をする。ここでは、この触媒温度の代用となる指標値を触媒温度指標値と呼ぶことにする。
【0018】
また、上記の排気ガス浄化システムにおいて、前記触媒再生制御装置が、還元剤供給手段を具備し、前記触媒温度検出手段で検出した触媒温度指標値から単位時間当たりの還元剤供給量を算出し、前記還元剤供給手段により前記単位時間当たりの還元剤供給量になるように還元剤を供給するように構成される。
【0019】
あるいは、上記の排気ガス浄化システムにおいて、前記触媒再生制御装置が、還元剤供給手段を具備し、前記単位時間当たりのNOx放出量から単位時間当たりの還元剤供給量を算出し、前記還元剤供給手段により前記単位時間当たりの還元剤供給量になるように還元剤を供給するように構成される。
【0020】
また、上記の排気ガス浄化システムにおいて、前記触媒再生制御装置が、前記リッチ制御時間の間、前記空燃比制御手段により排気ガス中の空燃比をリッチ状態に制御する代りに、前記空燃比制御手段により所定の時間の間、排気ガス中の空燃比をリッチ状態に制御すると共に、前記単位時間当たりのNOx放出量と前記所定の時間とから算出したNOx吸蔵量の減少量を算出し、前記算出されたNOx累積量から前記減少量を引き算してNOx残存量を算出し、該NOx残存量がゼロ以下になるまでの間、排気ガス中の空燃比をリッチ状態に制御するように構成される。
【0021】
これらの構成によれば、NOx吸蔵還元型触媒の前後のNOx濃度と吸入空気量とから、NOx累積量を算出しているので、エンジンの運転状態の変化のみならず、環境の変化や過渡モードによるNOxの排出量の変化にも対応でき、より推定精度が高くなる。
【0022】
また、触媒温度検出手段で検出された触媒温度に基づいて、リッチ制御時のNOx放出量を算出しているので、NOx吸蔵還元型触媒の温度特性を考慮した推定を行うことができ、より推定精度が高くなる。
【0023】
そして、この高い精度で推定されたNOx累積量と単位時間当たりのNOx放出量とからリッチ制御時間を決定しているので、NOx吸蔵能力の回復に関係しない無駄なリッチ制御が不要になり、燃費の節約となる。
【0024】
更に、単位時間当たりの還元剤供給量も触媒温度に基づいて算出したり、単位時間当たりのNOx放出量に基づいて算出したりして、単位時間当たりのNOx放出量に対応した量で供給するので、NOxの還元に必要十分な量となり、NOx及び還元剤の大気への排出を防止できる。また、NOxが放出されているリッチ制御時間も必要十分な時間となるので、還元剤の無駄な放出がなくなり、還元剤を節約できる。
【0025】
【発明の実施の形態】
以下、本発明に係る実施の形態の排気ガス浄化システムについて、図面を参照しながら説明する。
【0026】
図1に示すように、この排気ガス浄化システム1を設けた自動車では、エンジン(内燃機関)Eの吸気通路10に上流側からマスエアフローセンサ11、インタークーラ12、スロットル弁(吸気絞り弁)13が設けられ、また、排気通路20に上流側から、λ(空気過剰率)センサ21、排気温度センサ22、入口側NOx濃度センサ23、NOx吸蔵還元型触媒3、出口側NOx濃度センサ24、消音器8が設けられている。また、排気ガスを吸気側に再循環するEGR通路40が設けられている。
【0027】
そして、エンジンEの燃料噴射を行うコモンレール噴射システム51及びエンジン全体を制御するECU(エンジンコントロールユニット)と呼ばれる電子制御装置(電子制御ボックス)5が設けられている。コモンレール噴射システム51は燃料タンク9から燃料を供給され、電子制御装置5はバッテリー7から電力供給される。
【0028】
この排気ガス浄化システム1においては、空気Aはマスエアフローセンサ11、インタークーラ12を通過して、電子制御装置5で制御されるスロットル弁13により、吸気流量を調整され、エンジンEの吸気マニホールドからシリンダ内に供給される。
【0029】
また、排気ガスGは、エンジンEの排気マニホールドを出て排気通路20のNOx吸蔵還元型触媒3を通過して浄化された排気ガスGcとなり、消音器8を通過し大気中へ排出される。そして、排気ガスGの一部であるEGRガスは、EGR通路40を通って吸気マニホールドに入り再循環する。
【0030】
そして、NOx吸蔵還元型触媒3は、図7に示すように、γアルミナ等で形成したモノリスハニカムのセルを担持体31とし、この担持体31の表面に触媒金属32とNOx吸蔵材(NOx吸蔵物質)33を担持させて形成される。
【0031】
この触媒金属32は、活性開始温度より高い温度域で酸化活性を持つ白金(Pt)やパラジウム(Pd)等で形成することができる。また、NOx吸蔵材33は、カリウム(K),ナトリウム(Na),リチウム(Li),セシウム(Cs)等のアルカリ金属、バリウム(Ba),カルシウム(Ca)等のアルカリ土類金属、ランタン(La),イットリウム(Y)等の希土類等でのいずれか一つまたは組合せで形成することができ、ガス中の酸素濃度が高い時にはNOxを吸蔵し、ガス中の酸素濃度が低い時にはNOxを放出する。
【0032】
そして、このNOx吸蔵還元型触媒3では、図7(a)に示すように、排気ガスがリーン状態(希薄燃焼)の高酸素濃度雰囲気下では、排気ガス中のNOは触媒金属32の触媒作用により酸化されてNOとなり、NO の形で触媒内に拡散しNOx吸蔵材33に硝酸塩(Ba(NO)の形で吸収される。つまり、炭酸バリウム(BaCO)から硝酸バリウム(Ba(NO)に変化することで、選択的にNOを吸蔵する。
【0033】
そして、図7(b)に示すように排気ガスがリッチ状態になり酸素濃度が低下するとNO がNOの形でNOx吸蔵材33から放出される。つまり、硝酸バリウム(Ba(NO)から炭酸バリウム(BaCO)に変化することで、NOを放出する。この放出されたNOは、排気ガス中に含まれている未燃HCやCOやH等の還元剤により触媒金属32の触媒作用を受けて、Nに還元される。この還元作用により、大気中にNOxが放出されるのを阻止することができる。
【0034】
なお、ここでいう排気ガスのリッチ状態とは、必ずしもシリンダボア内でリッチ燃焼する必要はなく、NOx吸蔵還元型触媒3に流入する排気ガス中に供給した空気量と燃料量(シリンダボア内で燃焼した分も含めて)との比が理論空燃比に近いか理論空燃比より燃料量が多いリッチの状態であることをいう。
【0035】
そして、本発明の排気ガス浄化システム1では、NOx吸蔵還元型触媒3のNOx吸蔵能力を回復するための触媒再生制御装置5aを、電子制御装置5内に備えて構成される。
【0036】
この触媒再生制御装置5aは、図2に示すような触媒再生手段C1を有して構成され、この触媒生成手段C1は、吸入空気量検出手段C11、触媒温度検出手段C12、NOx濃度検出手段C13、NOx累積量算出手段C21、NOx放出量算出手段C22、リッチ制御時間算出手段C23、還元剤供給量算出手段C24、空燃比制御手段C31、還元剤供給手段C32を具備して構成される。
【0037】
吸入空気量検出手段C11は、マスエアフローセンサ11で吸入空気量を検出し、触媒温度検出手段C12は、触媒温度指標値を検出する手段であるが、触媒温度の代りに排気温度センサ22で検出した排気温度Tgを触媒温度指標値として用いている。また、NOx濃度検出手段C13は、入口側NOx濃度センサ23と出口側NOx濃度センサ24で、NOx吸蔵還元型触媒3の前後のNOx濃度を検出する。
【0038】
また、NOx累積量算出手段C21は、吸入空気量検出手段C11で検出した吸入空気量とNOx濃度検出手段C13で検出したNOx吸蔵還元型触媒3の前後のNOx濃度とからNOx吸蔵還元型触媒3におけるNOx累積量を算出する。
【0039】
NOx放出量算出手段C22は、触媒温度検出手段C12で検出した排気温度(触媒温度指標値)から単位時間当たりのNOx放出量を算出し、リッチ制御時間算出手段C23は、NOx累積量算出手段C21で算出されたNOx累積量と、NOx放出量算出手段C22で算出された単位時間当たりのNOx放出量からリッチ制御時間を算出する。また、還元剤供給量算出手段C24は、触媒温度検出手段C12で検出した排気温度(触媒温度指標値)から単位時間当たりの還元剤供給量を算出する。
【0040】
空燃比制御手段C31は、NOx吸蔵還元型触媒3のNOx吸蔵能力を回復させるために、排気ガスをリッチ状態にして、触媒周囲の雰囲気を低酸素又は酸素ゼロの状態にするための手段であり、このリッチ状態にする空燃比制御では、シリンダ内への燃料噴射制御による多段噴射の燃料噴射量や噴射時期の調整とEGR調整と吸気絞り調整等によって、排気ガスの状態を酸素濃度がゼロに近いリッチ状態にする。
【0041】
還元剤供給手段C32は、NOx吸蔵還元型触媒3から放出されるNOxを還元するためのHCやCO等の還元剤を供給する手段であり、シリンダ内への燃料噴射において、ポスト噴射等により還元剤を供給し、このポスト噴射の量とタイミングの調整やEGR量の調整により、還元剤供給量を調整する。
【0042】
そして、この排気ガス浄化システム1では、触媒再生制御装置5aの触媒再生手段C1により、図3及び図4に例示するような制御フローに従って、NOx吸蔵還元型触媒3の再生制御が行われる。なお、この図3及び図4の制御フローは、エンジン10の運転に際して、エンジンの他の制御フローと並行して、実行されるものとして示してある。
【0043】
この図3の制御フローがスタートすると、ステップS10の制御の準備で、前回の制御終了時のNOx蓄積量Nt、リッチ制御フラグF、実リッチ制御経過時間tr等のデータを入力し、次のステップS20で、リッチ制御中であるか否かを、リッチ制御フラグFが立っているか(F=1)、否か(F=0)で判定する。
【0044】
このステップS20でリッチ制御中ではないと判定された場合にはステップS21に行き、リッチ制御中であると判定された場合にはステップS40のリッチ制御運転に行く。
【0045】
ステップS21では、NOx吸蔵能力の回復のためのリッチ制御が必要か否かを、例えば、NOx累積量Ntが所定の判定値Nt0を超えているか否かで判定する。この判定で、リッチ制御運転は必要ないと判定された場合は、ステップS30のリーンモード運転で通常のリーン燃焼(希薄燃焼)運転である通常のリーンモード運転を所定の時間(リッチ制御の判定間隔に関係する時間)Δtlの間行い、ステップS20に戻る。また、リッチ制御運転が必要と判定された場合は、ステップS40のリッチ制御運転に行く。
【0046】
このステップS30のリーンモード運転においては、入口NOx濃度センサ23から入口NOx濃度Naを、出口NOx濃度センサ23から出口NOx濃度Nbを、また、マスエアフローセンサ11から吸気量Vaを入力し、このNOx濃度値の差ΔN(=Na−Nb)と、吸気量Vaから、単位時間当たりのNOx累積量Nc(=ΔN×Va)を計算し、これを累積計算して、このリーンモード運転におけるNOx累積量Nt(=Nt+ΔN×Va×Δtl)を算出する。
【0047】
このステップS40のリッチ制御では、ステップS41の計測データの入力で、排気温度センサ22から排気温度(触媒温度指標値)Tgを入力し、次のステップS42で、リッチ制御を行った場合の単位時間当たりのNOx放出量(分解離脱量)Ndを算出する。このNOx放出量Ndの算出は、予め、実験等で求めたおいた排気温度TgとNOx放出量Ndとの関係をマップデータや関数等で記憶しておき、検出された排気温度Tgから、これらのマップデータ等を使用して、リッチ制御を行った場合の単位時間当たりのNOx放出量Ndを求める方法で行う。
【0048】
次のステップS43で、単位時間当たりの還元剤供給量Mdを算出する。この還元剤供給量Maの算出は、予め、実験等で求めたおいた排気温度Tgと還元剤供給量Maとの関係をマップデータや関数等で記憶しておき、検出された排気温度Tgから、これらのマップデータ等を使用して、単位時間当たりの還元剤供給量Maを求める方法で行ってもよく、あるいは、NOx放出量算出手段C22で算出した単位時間当たりのNOx放出量Ndを参照して、この還元剤供給量Maを補正する方法で行ってもよい。
【0049】
次のステップS44で、リッチタイマがオン中であるか否かを、リッチタイマで計測されている実リッチ制御経過時間trが正の値(tr>0)であるか否か、あるいは、リッチ制御フラグFが立っているか(F=1)、否か(F=0)で判定する。この判定でリッチタイマがオン中ではない(tr=0)、即ち、未だリッチ制御運転を開始していない(F=0)と判定された場合は、ステップS45〜S47でリッチ制御開始作業を行う。
【0050】
ステップS45で、NOx累積量Ntとリッチ制御を行った場合の単位時間当たりのNOx放出量Ndとから、リッチ制御時間tr0を算出する。このリッチ制御時間tr0の算出は、リッチ制御時間tr0内における触媒温度を一定と近似した場合には、NOx累積量Ntを単位時間当たりのNOx放出量Ndで除することで、リッチ制御時間tr0(=Nt/Nd)を算出できる。
【0051】
そして、ステップS46で、リッチ制御運転を開始し、リッチ制御フラグFを立てる(F=1)。それと共に、ステップS47で、リッチタイマを起動し、実リッチ制御経過時間trの計測を開始する。
【0052】
このリッチ制御運転は、シリンダ内への燃料噴射制御による多段噴射の燃料噴射量や噴射時期の調整とEGR調整と吸気絞り調整等によって、排気ガスの状態を酸素濃度がゼロに近いリッチ状態にする。
【0053】
つまり、燃料噴射制御において、多段噴射を行うと共に、λセンサ21で検出したλ(過剰空気率)をモニターし、目標のλtになるようにλをフィードバック制御する。つまり、触媒入口の酸素濃度をNOx吸蔵材からのNOの放出が可能な酸素濃度(例えば1%)以下になるように制御する。また、この時、吸気量を計測するマスエアフローセンサ11の出力をモニターしながら、EGR量や吸気絞り量をフィードバック制御する。
【0054】
そして、ステップS48で、実リッチ制御経過時間trがリッチ制御時間tr0を超えたか否かにより、リッチ制御運転が終了であるか否かを判定する。この判定で終了でない場合(tr<tr0)には、ステップS50で実リッチ制御経過時間trをメモリに収納して、ステップS11に戻る。
【0055】
そして、ステップS48の判定で、実リッチ制御経過時間trがリッチ制御時間tr0を超えてリッチ制御運転が終了になった場合には、ステップS49で、NOx累積量Ntとリッチ制御フラグFのリセット、及び、リッチタイマの停止(Nt=0,F=0,tr=0)等のリッチ制御運転終了作業を行い、ステップS50で実リッチ制御経過時間trをメモリに収納して、ステップS20に戻る。
【0056】
そして、エンジンキーがOFFされるまで、ステップS20〜S30又はステップS20〜S40が繰り返し実行される。
【0057】
そして、この制御フローの実行途中で、エンジンキーがOFFされると、ステップS60の割り込みが発生し、ステップS61で、NOx蓄積量Nt等をメモリに収納する等の終了作業を行って、ストップし終了する。
【0058】
図3及び図4の制御フローでは、リッチ制御時間内において、排気温度(触媒温度指標値)Tgがリッチ制御時間内(tr=0〜tr0間)で一定と近似して、この排気温度Tgにおけるリッチ制御を行った場合の単位時間当たりのNOx放出量Ndを使用して、NOx累積量Ntとからリッチ制御時間tr0(=Nt/Nd)を算出しているが、リッチ制御時間tr0内における触媒温度の変化を考慮する場合には、リッチ制御運転の終了に判定を次のような制御で行うこともできる。
【0059】
この制御では、リッチ制御時間内(0〜tr0間)ではなく、リッチ制御の各制御サイクル時間(Δtr)毎に触媒温度Tgの影響を入れて、その制御サイクルにおけるNOx放出量ΔNdを、単位時間当たりのNOx放出量Ndに制御サイクルの時間Δtrを乗じて算出し、このNOx放出量ΔNd(=Nd×Δtr)をNOx累積量Ntから引き算しながら(Nt=Nt−ΔNd)、NOx累積量Ntがゼロ又は負(Nt≦0)になった時点をリッチ制御の終了時期とする。この場合には、リッチ制御開始からこのリッチ制御の終了時期までがリッチ制御時間となる。
【0060】
以上の構成の排気ガス浄化システム1によれば、NOx吸蔵還元型触媒3の前後のNOx濃度Na,Nbと吸入空気量Vaとから、NOx累積量Ntを算出しているので、エンジンの運転状態の変化のみならず、環境の変化や過渡モードによるNOxの排出量の変化にも対応したより高精度の推定が可能となる。
【0061】
また、排気温度(触媒温度指標値)Tgに基づいて、リッチ制御時の単位時間当たりのNOx放出量Ndを算出しているので、NOx吸蔵還元型触媒3の吸蔵及び還元能力の温度特性を考慮することができる。
【0062】
そして、この高い精度で推定されたNOx累積量Ntと単位時間当たりのNOx放出量Ndとからリッチ制御時間tr0を決定しているので、NOx吸蔵能力の回復に関係しない無駄なリッチ制御運転が不要になり、燃費を節約できる。
【0063】
更に、単位時間当たりの還元剤供給量Maも触媒温度指標値Tg又は単位時間当たりのNOx放出量Ndに基づいて算出し、還元剤をNOx放出量に対応した量で供給するので、NOxの還元に必要十分な量となり、NOx及び還元剤の大気への排出を防止できる。
【0064】
この排気ガス浄化システム1による排気ガスの浄化の実施例と比較例を図5と図6に示す。この図5と図6は、触媒温度が200℃の時のNOx還元性能を示した図であり、図5は、触媒温度指標値をモニターして、NO分解反応速度を考慮したNO分解反応速度に応じたリッチ制御時間の設定と還元剤量の供給を行う実施例であり、図6は、NOx吸蔵還元型触媒のNO分解反応速度を考慮しない比較例である。
【0065】
比較例では、2点鎖線で示すように触媒出口NOxが徐々に増加しているのに対して、実施例では、触媒出口NOxは殆ど変化しておらず、本発明の効果が分かる。
【0066】
【発明の効果】
以上説明したように、本発明に係る排気ガス浄化システムによれば、NOx吸蔵還元型触媒の前後のNOx濃度と吸入空気量とから、NOx累積量を算出しているので、エンジンの運転状態の変化のみならず、環境の変化や過渡モードによるNOxの排出量の変化にも対応でき、より高精度でNOx累積量を推定できる。
【0067】
また、NOx吸蔵還元型触媒の温度特性を考慮に入れて、触媒温度検出手段で検出された触媒温度に基づいて、リッチ制御時の単位時間当たりのNOx放出量を算出し、この高い精度で推定されたNOx累積量と単位時間当たりのNOx放出量とからリッチ制御時間を決定しているので、NOx吸蔵能力の回復に関係しない無駄なリッチ制御が不要になり、リッチ制御のための燃料が節約でき、燃費が向上する。
【0068】
更に、単位時間当たりの還元剤供給量も触媒温度に基づいて算出し、単位時間当たりのNOx放出量に対応した量で供給するので、NOxの還元に必要十分な量となり、NOx及び還元剤の大気への排出を防止できる。また、NOxが放出されているリッチ制御時間も必要十分な時間となるので、還元剤の無駄な放出がなくなり、還元剤が節約できる。
【0069】
そして、特に、NOxの吸蔵還元能力の低下が見られる300℃以下の低温時でもNOxの還元浄化を効果的に行うことができる。
【図面の簡単な説明】
【図1】本発明に係る実施の形態の排気ガス浄化システムの構成を示す図である。
【図2】本発明に係る実施の形態の排気ガス浄化システムの再生制御手段の構成を示す図である。
【図3】本発明に係る実施の形態の排気ガスシステムの制御フローの一例を示す図である。
【図4】図3のリッチ制御運転の制御フロー図である。
【図5】実施例におけるNOx還元性能を示す図である。
【図6】比較例におけるNOx還元性能を示す図である。
【図7】本発明に係るNOx吸蔵還元型触媒の構成と浄化のメカニズムを模式的に示す図で、(a)はリーン制御の時の状態(NO吸蔵)を示す図で、(b)はリッチ制御の状態(NO放出還元)を示す図である。
【図8】NOx吸蔵還元型触媒の吸蔵及び還元能力と触媒温度との関係を示す図である。
【符号の説明】
1 排気ガス浄化システム
3 NOx吸蔵還元型触媒
5 電子制御装置(電子制御ボックス)
5a 触媒再生制御装置
11 マスエアフローセンサ
22 排気温度センサ
23 入口側NOx濃度センサ
24 出口側NOx濃度センサ
E エンジン(内燃機関)
C1 触媒再生手段
C11 吸入空気量検出手段
C12 触媒温度検出手段
C13 NOx濃度検出手段
C21 NOx累積量算出手段
C22 NOx放出量算出手段
C23 リッチ制御時間算出手段
C24 還元剤供給量算出手段
C31 空燃比制御手段
C32 還元剤供給手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification system for an internal combustion engine that includes a NOx storage reduction catalyst that reduces and purifies NOx (nitrogen oxides) in the exhaust gas of the internal combustion engine.
[0002]
[Prior art]
Various studies and proposals have been made on NOx catalysts for reducing and removing NOx from internal combustion engines such as diesel engines and some gasoline engines and exhaust gases from various combustion devices. One of them is a NOx occlusion reduction type catalyst as a NOx reduction catalyst for diesel engines, which can effectively purify NOx in exhaust gas.
[0003]
As shown in FIG. 7, the NOx occlusion reduction catalyst basically has a noble metal 32 such as platinum (Pt) or palladium (Pd) that promotes an oxidation / reduction reaction on a catalyst carrier 31 such as alumina. , A catalyst carrying a NOx occlusion material (NOx occlusion material) 33 having a function of occlusion / release NOx formed of alkaline earth metals such as barium (Ba).
[0004]
In this NOx occlusion reduction type catalyst, the air-fuel ratio of the inflowing exhaust gas is lean (high oxygen concentration) and oxygen (O2) Is present, NO in the exhaust gas is oxidized by the noble metals 32 as shown in FIG.2And this NO2NOx occlusion material 33 with nitrate (Ba2NO4).
[0005]
In addition, when the air-fuel ratio of the inflowing exhaust gas becomes a stoichiometric air-fuel ratio or a rich (low oxygen concentration) state, and no oxygen exists in the atmosphere, as shown in FIG. 7B, a NOx storage material such as Ba or the like 33 binds to CO and from nitrates to NO2Is decomposed and released, and this released NO2Is reduced by unburned HC, CO, etc. contained in the exhaust gas by the three-way function of the noble metals 32 and N2The various components in the exhaust gas are CO2, H2O, N2It is released into the atmosphere as a harmless substance.
[0006]
Therefore, in an exhaust gas purification system equipped with a NOx occlusion reduction type catalyst, when the NOx occlusion capacity becomes close to saturation, the air-fuel ratio of the exhaust gas is made rich, and the oxygen concentration of the inflowing exhaust gas is reduced, for recovering the NOx occlusion capacity By performing the rich control, the absorbed NOx is released and the released NOx is reduced by the noble metal catalyst.
[0007]
In order to effectively function the NOx occlusion reduction type catalyst, it is necessary to supply a sufficient amount of reducing agent necessary for reducing the NOx occluded in the lean state in the rich state.
[0008]
However, NO from the above nitrates2The chemical reaction of the decomposition and release of is slow at low temperatures and fast at high temperatures.2Since the decomposition / desorption rate of NOx depends on the catalyst temperature, the storage function and the reduction function of the NOx storage reduction catalyst depend on the catalyst temperature as shown in FIG.
[0009]
That is, in the extremely low temperature region (A), the NOx storage function and the reduction function are low, and NOx is not stored and reduced. In the low temperature region (B) around 200 ° C., NO2Since the release rate (decomposition and separation rate) is small, the occlusion function is high but the reduction function is low, and NOx is occluded but the reduction ability is insufficient. Furthermore, in the middle temperature region (C) around 450 ° C., NO2Since the release rate of the water is large, both the occlusion function and the reduction function are high, and the occlusion ability and the reduction ability are sufficient. In the high temperature region (D) of about 600 ° C. or higher, the occlusion amount decreases due to the temperature rise, and the occlusion capacity decreases.
[0010]
Considering the catalyst temperature dependence of the NOx storage reduction catalyst of these NOx storage reduction type catalysts, the higher the temperature (catalyst temperature, etc.) representing the temperature of the NOx absorbent (NOx storage material), the greater the degree of richness. There has been proposed an exhaust purification device for an internal combustion engine provided with NOx release control means for shortening the time to make or enrich (for example, see Patent Document 1).
[0011]
[Patent Document 1]
Japanese Patent No. 2722951 (2nd page)
[0012]
[Problems to be solved by the invention]
However, if the rich control time is determined in accordance with the NOx accumulation amount actually accumulated in the NOx occlusion reduction catalyst and an appropriate amount of reducing agent is not supplied, the NOx amount released from the NOx occlusion material and the reduction are reduced. Since the amount of the agent cannot be balanced, there arises a problem that NOx or the reducing agent is discharged downstream of the catalyst.
[0013]
That is, as shown in FIG.2In the temperature region (C) where the decomposition and release rate of the catalyst is sufficiently activated, NO2Since the separation / separation speed is large and the reduction function works sufficiently, the NOx purification rate is reduced, and the amount of CO used as a reducing agent in the catalytic reaction increases, so that it is discharged to the downstream side of the catalyst (slip: SLIP) is also reduced.
[0014]
On the other hand, as shown in FIG.2In the region (B) where the decomposition and desorption rate is slow, the decomposition rate is low and only the surface of the NOx storage material reacts, so that the time required for the decomposition reaction is insufficient,2Accumulates without being completely desorbed from the occlusion material, and the amount of NOx discharged gradually increases. Further, when a reducing agent such as CO is supplied, an excessive reducing agent is supplied with respect to the reaction rate of NOx reduction, so that an excessive reducing agent that is not used is discharged (slip: SLIP) to the downstream side of the catalyst. .
[0015]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a NOx occlusion reduction type catalyst in an exhaust gas purification system that uses a NOx occlusion reduction type catalyst to purify NOx in exhaust gas. The exhaust gas air-fuel ratio is richly controlled by detecting the catalyst temperature index value such as the exhaust gas temperature upstream of the engine and calculating the rich control time and the reducing agent supply amount according to the detected catalyst temperature index value. Thus, an object of the present invention is to provide an exhaust gas purification system capable of improving the NOx purification rate while preventing the reducing agent from being discharged into the atmosphere.
[0016]
[Means for Solving the Problems]
An exhaust gas purification system for an internal combustion engine for achieving the above-described object is provided for recovering the NOx occlusion reduction type catalyst disposed in the exhaust passage of the internal combustion engine and the NOx occlusion ability of the NOx occlusion reduction type catalyst. In the exhaust gas purification system provided with the catalyst regeneration control device, the catalyst regeneration control device comprises intake air amount detection means, air-fuel ratio control means, catalyst temperature detection means, and NOx concentration detection means, and the NOx concentration detection means The cumulative NOx amount in the NOx occlusion reduction catalyst is calculated from the NOx concentration before and after the NOx occlusion reduction catalyst detected in step 1 and the intake air amount detected by the intake air amount detection means, and the catalyst temperature detection The amount of NOx released per unit time when rich control is performed is calculated from the catalyst temperature index value detected by the means, and the calculated accumulated NOx amount is simply calculated. Determine the rich control time from the NOx emission amount per unit time, during the rich control time, configured to control the air-fuel ratio in the exhaust gas to a rich state by said air-fuel ratio control means.
[0017]
The catalyst temperature index value used here is a physical quantity or numerical value correlated with the catalyst temperature. The measured catalyst temperature itself or a temperature at which the catalyst temperature can be estimated, for example, the measured exhaust temperature, engine The catalyst temperature estimated from the map data or the like input in advance from the load and the rotational speed of the catalyst. In general, since it is difficult to directly measure the catalyst temperature, the exhaust temperature and the like are substituted for the catalyst temperature. Here, an index value that substitutes for the catalyst temperature is referred to as a catalyst temperature index value.
[0018]
In the exhaust gas purification system, the catalyst regeneration control device includes a reducing agent supply unit, and calculates a reducing agent supply amount per unit time from a catalyst temperature index value detected by the catalyst temperature detection unit, The reducing agent is supplied by the reducing agent supply means so that the reducing agent supply amount per unit time is obtained.
[0019]
Alternatively, in the above exhaust gas purification system, the catalyst regeneration control device includes a reducing agent supply means, calculates a reducing agent supply amount per unit time from the NOx release amount per unit time, and supplies the reducing agent supply It is comprised so that a reducing agent may be supplied so that it may become the reducing agent supply amount per said unit time by a means.
[0020]
Further, in the exhaust gas purification system, the air-fuel ratio control unit is configured to replace the air-fuel ratio in the exhaust gas in the rich state by the air-fuel ratio control unit during the rich control time. To control the air-fuel ratio in the exhaust gas to a rich state for a predetermined time, calculate the NOx occlusion amount calculated from the NOx release amount per unit time and the predetermined time, and calculate The remaining amount of NOx is calculated by subtracting the reduced amount from the accumulated NOx amount, and the air-fuel ratio in the exhaust gas is controlled to be rich until the remaining amount of NOx becomes zero or less. .
[0021]
According to these configurations, since the NOx accumulated amount is calculated from the NOx concentration before and after the NOx storage reduction catalyst and the intake air amount, not only the engine operating state change but also the environmental change and the transient mode are calculated. Therefore, it is possible to cope with a change in the NOx emission amount due to the above, and the estimation accuracy becomes higher.
[0022]
Further, since the NOx release amount at the time of rich control is calculated based on the catalyst temperature detected by the catalyst temperature detecting means, it is possible to perform estimation in consideration of the temperature characteristics of the NOx occlusion reduction type catalyst. Increases accuracy.
[0023]
Since the rich control time is determined from the NOx cumulative amount estimated with high accuracy and the NOx release amount per unit time, useless rich control that is not related to the recovery of the NOx storage capacity becomes unnecessary, and fuel consumption is reduced. Savings.
[0024]
Furthermore, the reducing agent supply amount per unit time is also calculated based on the catalyst temperature, or calculated based on the NOx release amount per unit time, and supplied in an amount corresponding to the NOx release amount per unit time. Therefore, the amount becomes necessary and sufficient for the reduction of NOx, and the emission of NOx and the reducing agent to the atmosphere can be prevented. Further, since the rich control time during which NOx is released is also a necessary and sufficient time, the reducing agent is not wastedly released and the reducing agent can be saved.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an exhaust gas purification system according to an embodiment of the present invention will be described with reference to the drawings.
[0026]
As shown in FIG. 1, in an automobile provided with this exhaust gas purification system 1, a mass air flow sensor 11, an intercooler 12, and a throttle valve (intake throttle valve) 13 from an upstream side to an intake passage 10 of an engine (internal combustion engine) E. And an λ (excess air ratio) sensor 21, an exhaust temperature sensor 22, an inlet-side NOx concentration sensor 23, an NOx storage reduction catalyst 3, an outlet-side NOx concentration sensor 24, and a muffler from upstream to the exhaust passage 20. A vessel 8 is provided. Further, an EGR passage 40 for recirculating exhaust gas to the intake side is provided.
[0027]
A common rail injection system 51 that performs fuel injection of the engine E and an electronic control device (electronic control box) 5 called an ECU (engine control unit) that controls the entire engine are provided. The common rail injection system 51 is supplied with fuel from the fuel tank 9, and the electronic control unit 5 is supplied with power from the battery 7.
[0028]
In this exhaust gas purification system 1, the air A passes through the mass air flow sensor 11 and the intercooler 12, and the intake air flow rate is adjusted by the throttle valve 13 controlled by the electronic control unit 5. Supplied into the cylinder.
[0029]
Further, the exhaust gas G exits the exhaust manifold of the engine E, passes through the NOx occlusion reduction type catalyst 3 in the exhaust passage 20, becomes purified exhaust gas Gc, passes through the silencer 8, and is discharged into the atmosphere. Then, the EGR gas that is a part of the exhaust gas G enters the intake manifold through the EGR passage 40 and recirculates.
[0030]
As shown in FIG. 7, the NOx occlusion reduction catalyst 3 uses a monolith honeycomb cell formed of γ alumina or the like as a carrier 31, and a catalyst metal 32 and a NOx occlusion material (NOx occlusion material) are formed on the surface of the carrier 31. (Material) 33 is supported.
[0031]
The catalytic metal 32 can be formed of platinum (Pt), palladium (Pd), or the like having oxidation activity in a temperature range higher than the activation start temperature. The NOx occlusion material 33 is composed of alkali metals such as potassium (K), sodium (Na), lithium (Li) and cesium (Cs), alkaline earth metals such as barium (Ba) and calcium (Ca), lanthanum ( La), rare earth such as yttrium (Y), etc. can be formed by any one or a combination thereof, storing NOx when the oxygen concentration in the gas is high, and releasing NOx when the oxygen concentration in the gas is low To do.
[0032]
In the NOx occlusion reduction type catalyst 3, as shown in FIG. 7A, NO in the exhaust gas is catalyzed by the catalyst metal 32 in a high oxygen concentration atmosphere in which the exhaust gas is lean (lean combustion). Oxidized by NO2And NO3 The NOx storage material 33 diffuses into the catalyst in the form of nitrate (Ba (NO3)2) Is absorbed. That is, barium carbonate (BaCO3) To barium nitrate (Ba (NO3)2) To selectively NO2Occlude.
[0033]
Then, as shown in FIG. 7B, when the exhaust gas becomes rich and the oxygen concentration decreases, NO3 Is NO2In the form of NOx occlusion material 33. That is, barium nitrate (Ba (NO3)2) To barium carbonate (BaCO)3) To change to NO2Release. This released NO2Is unburned HC, CO or H contained in the exhaust gas2Catalytic action of the catalytic metal 32 by a reducing agent such as N2Reduced to This reduction action can prevent NOx from being released into the atmosphere.
[0034]
The exhaust gas rich state here does not necessarily need to be richly burned in the cylinder bore, but the amount of air and fuel supplied into the exhaust gas flowing into the NOx storage reduction catalyst 3 (burned in the cylinder bore). (Including the minute) is close to the stoichiometric air-fuel ratio, or the fuel is richer than the stoichiometric air-fuel ratio.
[0035]
In the exhaust gas purification system 1 of the present invention, a catalyst regeneration control device 5 a for recovering the NOx storage capacity of the NOx storage reduction catalyst 3 is provided in the electronic control device 5.
[0036]
The catalyst regeneration control device 5a includes a catalyst regeneration means C1 as shown in FIG. 2, and the catalyst generation means C1 includes an intake air amount detection means C11, a catalyst temperature detection means C12, and a NOx concentration detection means C13. NOx cumulative amount calculation means C21, NOx release amount calculation means C22, rich control time calculation means C23, reducing agent supply amount calculation means C24, air-fuel ratio control means C31, and reducing agent supply means C32.
[0037]
The intake air amount detection means C11 detects the intake air amount by the mass air flow sensor 11, and the catalyst temperature detection means C12 detects the catalyst temperature index value, but it is detected by the exhaust temperature sensor 22 instead of the catalyst temperature. The exhaust temperature Tg thus used is used as the catalyst temperature index value. Further, the NOx concentration detection means C13 detects the NOx concentration before and after the NOx storage reduction catalyst 3 by the inlet side NOx concentration sensor 23 and the outlet side NOx concentration sensor 24.
[0038]
Further, the NOx accumulation amount calculating means C21 calculates the NOx occlusion reduction type catalyst 3 from the intake air quantity detected by the intake air quantity detection means C11 and the NOx concentration before and after the NOx occlusion reduction type catalyst 3 detected by the NOx concentration detection means C13. The cumulative amount of NOx at is calculated.
[0039]
The NOx release amount calculating means C22 calculates the NOx release amount per unit time from the exhaust temperature (catalyst temperature index value) detected by the catalyst temperature detecting means C12, and the rich control time calculating means C23 is the NOx accumulated amount calculating means C21. The rich control time is calculated from the NOx accumulated amount calculated in step S1 and the NOx release amount per unit time calculated by the NOx release amount calculation means C22. The reducing agent supply amount calculating means C24 calculates the reducing agent supply amount per unit time from the exhaust temperature (catalyst temperature index value) detected by the catalyst temperature detecting means C12.
[0040]
The air-fuel ratio control means C31 is a means for bringing the exhaust gas into a rich state and bringing the atmosphere around the catalyst into a low oxygen or oxygen-free state in order to recover the NOx storage capacity of the NOx storage reduction catalyst 3. In the air-fuel ratio control to make this rich state, the oxygen concentration is reduced to zero by adjusting the fuel injection amount and injection timing of the multistage injection by the fuel injection control into the cylinder, adjusting the EGR, adjusting the intake throttle, etc. Make it near rich.
[0041]
The reducing agent supply means C32 is a means for supplying a reducing agent such as HC or CO for reducing NOx released from the NOx occlusion reduction type catalyst 3 and is reduced by post injection or the like in fuel injection into the cylinder. The reducing agent supply amount is adjusted by adjusting the amount and timing of the post injection and adjusting the EGR amount.
[0042]
In this exhaust gas purification system 1, regeneration control of the NOx occlusion reduction type catalyst 3 is performed by the catalyst regeneration means C1 of the catalyst regeneration control device 5a according to the control flow illustrated in FIG. 3 and FIG. 3 and 4 are shown to be executed in parallel with other control flows of the engine when the engine 10 is operated.
[0043]
When the control flow in FIG. 3 starts, data such as the NOx accumulation amount Nt at the end of the previous control, the rich control flag F, the actual rich control elapsed time tr are input in preparation for control in step S10, and the next step In S20, whether or not the rich control is being performed is determined by whether or not the rich control flag F is set (F = 1) or not (F = 0).
[0044]
If it is determined in step S20 that the rich control is not being performed, the process proceeds to step S21. If it is determined that the rich control is being performed, the rich control operation in step S40 is performed.
[0045]
In step S21, it is determined whether or not rich control for recovery of the NOx storage capacity is necessary, for example, based on whether or not the NOx accumulated amount Nt exceeds a predetermined determination value Nt0. If it is determined in this determination that the rich control operation is not necessary, the normal lean mode operation that is the normal lean combustion (lean combustion) operation in the lean mode operation of step S30 is performed for a predetermined time (rich control determination interval). (Time relating to) for Δtl, and the process returns to step S20. Further, when it is determined that the rich control operation is necessary, the rich control operation of step S40 is performed.
[0046]
In the lean mode operation in step S30, the inlet NOx concentration sensor 23 inputs the inlet NOx concentration Na, the outlet NOx concentration sensor 23 inputs the outlet NOx concentration Nb, and the mass airflow sensor 11 inputs the intake air amount Va. From the concentration value difference ΔN (= Na−Nb) and the intake air amount Va, a NOx cumulative amount Nc (= ΔN × Va) per unit time is calculated, this is cumulatively calculated, and NOx cumulative in this lean mode operation is calculated. The amount Nt (= Nt + ΔN × Va × Δtl) is calculated.
[0047]
In the rich control at step S40, the unit time when the exhaust temperature (catalyst temperature index value) Tg is input from the exhaust temperature sensor 22 by inputting the measurement data at step S41, and the rich control is performed at the next step S42. The NOx emission amount (decomposition and separation amount) Nd per unit is calculated. This NOx release amount Nd is calculated in advance by storing the relationship between the exhaust temperature Tg and the NOx release amount Nd obtained in advance by experiments or the like using map data or a function, and from these detected exhaust temperature Tg, This is performed by a method of obtaining the NOx emission amount Nd per unit time when rich control is performed using the map data of FIG.
[0048]
In the next step S43, a reducing agent supply amount Md per unit time is calculated. The calculation of the reducing agent supply amount Ma is performed by storing the relationship between the exhaust gas temperature Tg and the reducing agent supply amount Ma previously obtained through experiments or the like using map data or a function, and using the detected exhaust gas temperature Tg. These map data may be used to calculate the reducing agent supply amount Ma per unit time, or refer to the NOx release amount Nd per unit time calculated by the NOx release amount calculation means C22. And you may carry out by the method of correct | amending this reducing agent supply amount Ma.
[0049]
In the next step S44, whether or not the rich timer is on, whether or not the actual rich control elapsed time tr measured by the rich timer is a positive value (tr> 0), or rich control It is determined whether the flag F is set (F = 1) or not (F = 0). If it is determined in this determination that the rich timer is not on (tr = 0), that is, the rich control operation has not yet started (F = 0), the rich control start work is performed in steps S45 to S47. .
[0050]
In step S45, the rich control time tr0 is calculated from the NOx accumulated amount Nt and the NOx release amount Nd per unit time when rich control is performed. When the catalyst temperature in the rich control time tr0 is approximated to be constant, the rich control time tr0 is calculated by dividing the NOx accumulated amount Nt by the NOx release amount Nd per unit time to obtain the rich control time tr0 ( = Nt / Nd) can be calculated.
[0051]
In step S46, the rich control operation is started and the rich control flag F is set (F = 1). At the same time, in step S47, the rich timer is activated and measurement of the actual rich control elapsed time tr is started.
[0052]
In this rich control operation, the exhaust gas is brought into a rich state in which the oxygen concentration is close to zero by adjusting the fuel injection amount and injection timing of the multistage injection by the fuel injection control into the cylinder, adjusting the EGR, adjusting the intake throttle, and the like. .
[0053]
That is, in the fuel injection control, multistage injection is performed, λ (excess air ratio) detected by the λ sensor 21 is monitored, and λ is feedback-controlled so as to become the target λt. That is, the oxygen concentration at the catalyst inlet is set to NO from the NOx storage material.2The oxygen concentration is controlled to be lower than the possible oxygen concentration (for example, 1%). At this time, the EGR amount and the intake throttle amount are feedback-controlled while monitoring the output of the mass air flow sensor 11 that measures the intake amount.
[0054]
In step S48, it is determined whether or not the rich control operation is ended based on whether or not the actual rich control elapsed time tr exceeds the rich control time tr0. If the determination is not finished (tr <tr0), the actual rich control elapsed time tr is stored in the memory in step S50, and the process returns to step S11.
[0055]
If it is determined in step S48 that the actual rich control elapsed time tr exceeds the rich control time tr0 and the rich control operation is terminated, the NOx accumulated amount Nt and the rich control flag F are reset in step S49. Further, the rich control operation end work such as stop of the rich timer (Nt = 0, F = 0, tr = 0) is performed, the actual rich control elapsed time tr is stored in the memory in step S50, and the process returns to step S20.
[0056]
Then, steps S20 to S30 or steps S20 to S40 are repeatedly executed until the engine key is turned off.
[0057]
If the engine key is turned off during the execution of this control flow, an interrupt in step S60 occurs, and in step S61, an end work such as storing the NOx accumulation amount Nt or the like in the memory is performed and stopped. finish.
[0058]
In the control flow of FIGS. 3 and 4, the exhaust temperature (catalyst temperature index value) Tg is approximated to be constant within the rich control time (between tr = 0 to tr0) within the rich control time, and at this exhaust temperature Tg. The rich control time tr0 (= Nt / Nd) is calculated from the NOx accumulated amount Nt using the NOx release amount Nd per unit time when the rich control is performed. The catalyst within the rich control time tr0 When considering the change in temperature, the determination at the end of the rich control operation can be performed by the following control.
[0059]
In this control, the influence of the catalyst temperature Tg is included for each control cycle time (Δtr) of the rich control, not within the rich control time (between 0 and tr0), and the NOx release amount ΔNd in the control cycle is expressed in unit time. The NOx emission amount Nd is calculated by multiplying the NOx emission amount Nd by the control cycle time Δtr, and subtracting the NOx emission amount ΔNd (= Nd × Δtr) from the NOx accumulation amount Nt (Nt = Nt−ΔNd), Is the time when rich control ends when the value becomes zero or negative (Nt ≦ 0). In this case, the rich control time is from the start of the rich control to the end time of the rich control.
[0060]
According to the exhaust gas purification system 1 having the above configuration, the NOx accumulated amount Nt is calculated from the NOx concentrations Na and Nb before and after the NOx storage reduction catalyst 3 and the intake air amount Va. It is possible to estimate with higher accuracy corresponding to not only the change in the environment but also the change in the environment and the change in the NOx emission amount due to the transient mode.
[0061]
Further, since the NOx release amount Nd per unit time during the rich control is calculated based on the exhaust temperature (catalyst temperature index value) Tg, the temperature characteristics of the storage and reduction ability of the NOx storage reduction catalyst 3 are taken into consideration. can do.
[0062]
Since the rich control time tr0 is determined from the NOx accumulated amount Nt estimated with high accuracy and the NOx release amount Nd per unit time, useless rich control operation not related to the recovery of the NOx storage capability is unnecessary. And saves fuel consumption.
[0063]
Further, the reducing agent supply amount Ma per unit time is also calculated based on the catalyst temperature index value Tg or the NOx release amount Nd per unit time, and the reducing agent is supplied in an amount corresponding to the NOx release amount. Therefore, NOx and reducing agent can be prevented from being discharged into the atmosphere.
[0064]
Examples of exhaust gas purification by this exhaust gas purification system 1 and comparative examples are shown in FIGS. FIGS. 5 and 6 are graphs showing NOx reduction performance when the catalyst temperature is 200 ° C., and FIG.2NO considering decomposition reaction rate2FIG. 6 shows an example in which the rich control time is set according to the decomposition reaction rate and the amount of reducing agent is supplied. FIG. 6 shows the NOx storage reduction catalyst NO.2This is a comparative example that does not consider the decomposition reaction rate.
[0065]
In the comparative example, the catalyst outlet NOx gradually increases as shown by the two-dot chain line, whereas in the example, the catalyst outlet NOx hardly changes, and the effect of the present invention can be understood.
[0066]
【The invention's effect】
As described above, according to the exhaust gas purification system of the present invention, the accumulated NOx amount is calculated from the NOx concentration and the intake air amount before and after the NOx occlusion reduction type catalyst. Not only the change but also the change of environment and the change of NOx emission due to the transient mode can be dealt with, and the accumulated amount of NOx can be estimated with higher accuracy.
[0067]
In addition, taking into account the temperature characteristics of the NOx storage reduction catalyst, the amount of NOx released per unit time during rich control is calculated based on the catalyst temperature detected by the catalyst temperature detection means, and is estimated with high accuracy. Since the rich control time is determined from the accumulated amount of NOx and the amount of NOx released per unit time, useless rich control that is not related to the recovery of the NOx storage capacity becomes unnecessary, and fuel for rich control is saved. This improves fuel economy.
[0068]
Furthermore, since the reducing agent supply amount per unit time is calculated based on the catalyst temperature and is supplied in an amount corresponding to the NOx release amount per unit time, it becomes a necessary and sufficient amount for the reduction of NOx. Emissions to the atmosphere can be prevented. In addition, since the rich control time during which NOx is released is also a necessary and sufficient time, the reducing agent is not wastedly released and the reducing agent can be saved.
[0069]
In particular, NOx reduction and purification can be effectively performed even at a low temperature of 300 ° C. or lower where a reduction in NOx storage and reduction capability is observed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an exhaust gas purification system according to an embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of regeneration control means of the exhaust gas purification system according to the embodiment of the present invention.
FIG. 3 is a diagram showing an example of a control flow of the exhaust gas system according to the embodiment of the present invention.
4 is a control flow diagram of the rich control operation of FIG. 3. FIG.
FIG. 5 is a diagram showing NOx reduction performance in an example.
FIG. 6 is a diagram showing NOx reduction performance in a comparative example.
FIG. 7 is a diagram schematically showing the configuration and purification mechanism of a NOx storage reduction catalyst according to the present invention, where (a) is a state during lean control (NO2(B) is a state of rich control (NO2FIG.
FIG. 8 is a diagram showing the relationship between the storage and reduction ability of a NOx storage reduction catalyst and the catalyst temperature.
[Explanation of symbols]
1 Exhaust gas purification system
3 NOx storage reduction catalyst
5 Electronic control device (electronic control box)
5a Catalyst regeneration control device
11 Mass Air Flow Sensor
22 Exhaust temperature sensor
23 Inlet NOx concentration sensor
24 NOx concentration sensor on outlet side
E engine (internal combustion engine)
C1 Catalyst regeneration means
C11 Intake air amount detection means
C12 catalyst temperature detection means
C13 NOx concentration detection means
C21 NOx cumulative amount calculation means
C22 NOx emission amount calculation means
C23 rich control time calculation means
C24 Reducing agent supply amount calculation means
C31 air-fuel ratio control means
C32 Reducing agent supply means

Claims (4)

内燃機関の排気通路に配置されたNOx吸蔵還元型触媒と、該NOx吸蔵還元型触媒のNOx吸蔵能力を回復するための触媒再生制御装置を備えた排気ガス浄化システムにおいて、
前記触媒再生制御装置が、吸入空気量検出手段、空燃比制御手段、触媒温度検出手段及びNOx濃度検出手段とを具備し、
前記NOx濃度検出手段で検出した前記NOx吸蔵還元型触媒の前後のNOx濃度と、前記吸入空気量検出手段で検出した吸入空気量とから、前記NOx吸蔵還元型触媒におけるNOx累積量を算出すると共に、前記触媒温度検出手段で検出した触媒温度指標値からリッチ制御を行った場合の単位時間当たりのNOx放出量を算出し、
該算出されたNOx累積量と単位時間当たりのNOx放出量からリッチ制御時間を決定し、リッチ制御時間の間、前記空燃比制御手段により排気ガス中の空燃比をリッチ状態に制御することを特徴とする排気ガス浄化システム。
In an exhaust gas purification system comprising a NOx occlusion reduction type catalyst disposed in an exhaust passage of an internal combustion engine and a catalyst regeneration control device for recovering the NOx occlusion capacity of the NOx occlusion reduction type catalyst,
The catalyst regeneration control device comprises intake air amount detection means, air-fuel ratio control means, catalyst temperature detection means, and NOx concentration detection means,
A cumulative NOx amount in the NOx storage reduction catalyst is calculated from the NOx concentration before and after the NOx storage reduction catalyst detected by the NOx concentration detection means and the intake air amount detected by the intake air amount detection means. The amount of NOx released per unit time when rich control is performed from the catalyst temperature index value detected by the catalyst temperature detection means,
The rich control time is determined from the calculated NOx accumulated amount and the NOx release amount per unit time, and the air-fuel ratio in the exhaust gas is controlled to be rich by the air-fuel ratio control means during the rich control time. Exhaust gas purification system.
前記触媒再生制御装置が、還元剤供給手段を具備し、前記触媒温度検出手段で検出した触媒温度指標値から単位時間当たりの還元剤供給量を算出し、前記還元剤供給手段により前記単位時間当たりの還元剤供給量になるように還元剤を供給することを特徴とする請求項1記載の内燃機関の排気ガス浄化システム。The catalyst regeneration control device includes a reducing agent supply means, calculates a reducing agent supply amount per unit time from a catalyst temperature index value detected by the catalyst temperature detection means, and the reducing agent supply means calculates the per unit time. 2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the reducing agent is supplied so that the amount of the reducing agent is reduced. 前記触媒再生制御装置が、還元剤供給手段を具備し、前記単位時間当たりのNOx放出量から単位時間当たりの還元剤供給量を算出し、前記還元剤供給手段により前記単位時間当たりの還元剤供給量になるように還元剤を供給することを特徴とする請求項1記載の内燃機関の排気ガス浄化システム。The catalyst regeneration control device includes a reducing agent supply unit, calculates a reducing agent supply amount per unit time from the NOx release amount per unit time, and supplies the reducing agent per unit time by the reducing agent supply unit. 2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the reducing agent is supplied so as to be an amount. 前記触媒再生制御装置が、
前記リッチ制御時間の間、前記空燃比制御手段により排気ガス中の空燃比をリッチ状態に制御する代りに、
前記空燃比制御手段により所定の時間の間、排気ガス中の空燃比をリッチ状態に制御すると共に、前記単位時間当たりのNOx放出量と前記所定の時間とから算出したNOx吸蔵量の減少量を算出し、前記算出されたNOx累積量から前記減少量を引き算してNOx残存量を算出し、
該NOx残存量がゼロ以下になるまでの間、排気ガス中の空燃比をリッチ状態に制御することを特徴とする請求項1〜3のいずれか1項に記載の排気ガス浄化システム。
The catalyst regeneration control device comprises:
Instead of controlling the air-fuel ratio in the exhaust gas to the rich state by the air-fuel ratio control means during the rich control time,
The air-fuel ratio control means controls the air-fuel ratio in the exhaust gas to a rich state for a predetermined time, and reduces the NOx occlusion amount calculated from the NOx release amount per unit time and the predetermined time. Calculating, subtracting the decrease from the calculated NOx cumulative amount to calculate the NOx remaining amount,
The exhaust gas purification system according to any one of claims 1 to 3, wherein the air-fuel ratio in the exhaust gas is controlled to a rich state until the remaining amount of NOx becomes zero or less.
JP2003169433A 2003-06-13 2003-06-13 Exhaust gas purification system Expired - Fee Related JP4289033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169433A JP4289033B2 (en) 2003-06-13 2003-06-13 Exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169433A JP4289033B2 (en) 2003-06-13 2003-06-13 Exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2005002954A true JP2005002954A (en) 2005-01-06
JP4289033B2 JP4289033B2 (en) 2009-07-01

Family

ID=34094570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169433A Expired - Fee Related JP4289033B2 (en) 2003-06-13 2003-06-13 Exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP4289033B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327465A (en) * 2006-06-09 2007-12-20 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008248860A (en) * 2007-03-30 2008-10-16 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2009512805A (en) * 2005-10-21 2009-03-26 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for operating a nitrogen oxide storage catalyst in a diesel engine
JP2009209783A (en) * 2008-03-04 2009-09-17 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2010053841A (en) * 2008-08-29 2010-03-11 Nissan Motor Co Ltd Exhaust gas purification device of diesel engine
US8033102B2 (en) 2007-10-01 2011-10-11 Honda Motor Co., Ltd. Exhaust emission control device for internal combustion engine, method of controlling the exhaust emission control device, and engine control unit
DE102022105639A1 (en) 2021-03-16 2022-09-22 Kabushiki Kaisha Toyota Jidoshokki exhaust gas cleaner
CN115111073A (en) * 2021-12-22 2022-09-27 长城汽车股份有限公司 Method and system for treating vehicle exhaust by adopting LNT device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512805A (en) * 2005-10-21 2009-03-26 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for operating a nitrogen oxide storage catalyst in a diesel engine
JP2007327465A (en) * 2006-06-09 2007-12-20 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008248860A (en) * 2007-03-30 2008-10-16 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
US8033102B2 (en) 2007-10-01 2011-10-11 Honda Motor Co., Ltd. Exhaust emission control device for internal combustion engine, method of controlling the exhaust emission control device, and engine control unit
JP2009209783A (en) * 2008-03-04 2009-09-17 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2010053841A (en) * 2008-08-29 2010-03-11 Nissan Motor Co Ltd Exhaust gas purification device of diesel engine
DE102022105639A1 (en) 2021-03-16 2022-09-22 Kabushiki Kaisha Toyota Jidoshokki exhaust gas cleaner
CN115111073A (en) * 2021-12-22 2022-09-27 长城汽车股份有限公司 Method and system for treating vehicle exhaust by adopting LNT device
CN115111073B (en) * 2021-12-22 2024-04-12 长城汽车股份有限公司 Method and system for treating vehicle tail gas by adopting LNT device

Also Published As

Publication number Publication date
JP4289033B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4304428B2 (en) Exhaust gas purification system for internal combustion engine
JP3852461B2 (en) Exhaust gas purification method and exhaust gas purification system
JP3341284B2 (en) Exhaust gas purification device for internal combustion engine
JP4415648B2 (en) Sulfur purge control method and exhaust gas purification system
JP4304539B2 (en) NOx purification system control method and NOx purification system
JP4175427B1 (en) NOx purification system control method and NOx purification system
JP3901194B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4983491B2 (en) Exhaust gas purification device for internal combustion engine
JP5217102B2 (en) NOx purification system control method and NOx purification system
JP2006242124A (en) Exhaust emission control device for internal combustion engine
JP2004251177A (en) METHOD FOR REGENERATING NOx CATALYST OF NOx PURIFYING SYSTEM AND NOx PURIFYING SYSTEM
JP4289033B2 (en) Exhaust gas purification system
JP3925357B2 (en) Control method of exhaust gas purification system
JP2001303937A (en) Exhaust emission control device for internal combustion engine
JP3552603B2 (en) Exhaust gas purification device for internal combustion engine
JP3624747B2 (en) Exhaust gas purification device for internal combustion engine
JP4357918B2 (en) Exhaust gas purification device for internal combustion engine
JP3656496B2 (en) Exhaust gas purification device for internal combustion engine
JP2003065036A (en) Exhaust emission control device for internal combustion engine
JP3925203B2 (en) Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof
JP2009019515A (en) Nox purification system and control method thereof
JP3772554B2 (en) Engine exhaust purification system
JP2004285841A (en) Exhaust emission control device of internal combustion engine
JP3624812B2 (en) Exhaust gas purification device for internal combustion engine
JP2005042734A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees