JP2005002266A - Method for treating shredder dust in coke oven - Google Patents

Method for treating shredder dust in coke oven Download PDF

Info

Publication number
JP2005002266A
JP2005002266A JP2003169290A JP2003169290A JP2005002266A JP 2005002266 A JP2005002266 A JP 2005002266A JP 2003169290 A JP2003169290 A JP 2003169290A JP 2003169290 A JP2003169290 A JP 2003169290A JP 2005002266 A JP2005002266 A JP 2005002266A
Authority
JP
Japan
Prior art keywords
shredder dust
coal
coke oven
total
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003169290A
Other languages
Japanese (ja)
Other versions
JP4192042B2 (en
Inventor
Tsukasa Kashiwabara
司 柏原
Toshiyuki Komatsu
利幸 小松
Satoshi Tsuneoka
聡 常岡
Eiji Ide
英治 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003169290A priority Critical patent/JP4192042B2/en
Publication of JP2005002266A publication Critical patent/JP2005002266A/en
Application granted granted Critical
Publication of JP4192042B2 publication Critical patent/JP4192042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating shredder dust in a coke oven that can treat shredder dust utilizing a conventional coke oven and without a large amount of equipment investment. <P>SOLUTION: In this treating method, the amount of total irons and total aluminums from shredder dust is maintained at a level not more than 0.2 mass% of the charging coal comprising coal and formed coal for cokes for general metallurgic use, when the shredder dust is charged into the coke oven for the treatment. Furthermore, the amount of the shredder dust is kept at a level not more than 12 mass%, when the shredder dust is mixed with the formed coal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、コークス炉でシュレッダーダストを処理する方法に関するものである。
【0002】
【従来の技術】
シュレッダーダストとは、廃家電製品及び廃自動車からリサイクル可能な部品やパーツを取り外したあと、大型破砕機で10mm程度以下に破砕し、磁力選別や手選別などで金属を回収した後の残滓であり、細かい樹脂や硬質のプラスチックあるいは、配線や金属粉などが入っている。そして、この細かい樹脂や硬質のプラスチックとしては、断熱材や自動車のイスなどに使われるウレタンや、加工部品として使われるプラスチックが多く混入しているため、主な素材としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)及びポリ塩化ビニル(PVC)等が多く含まれる。
しかし、このシュレッダーダストには、磁力選別や手選別で取れなかった細かい金属や灰分などの不純物が10〜40質量%も混入している為、従来、大部分が埋立てあるいは焼却処理されていたが、環境(大気、土壌)への悪影響は避けられないものであった。
このため、近年、その有効利用の開発が盛んに行われるようになり、その一つとして、シュレッダーダストのプラスチック分をガスとして回収する為に、例えば、特許文献1には、シュレッダーダストをシャフト式ガス化溶融炉に装入して熱分解ガス化する方法の提案がある。
【0003】
【特許文献1】
特願2002―79号明細書
【0004】
【発明が解決しようとする課題】
前記特許文献1で提案の方法は、工業的には多額の設備投資がかかり、コスト的にペイしないために、シュレッダーダストの発生量に見合うだけの普及化は図られていないのが実状である。
本発明は、前記廃家電製品及び廃自動車のシュレッダーダストを多額の設備投資を必要とする事なく、既設のコークス炉を利用して処理することを課題とするものである。
【0005】
【課題を解決するための手段】
本発明は、上述した課題を解消するためになされたものであり、その手段は、下記(1)〜(4)である。
(1)鉄及びアルミを含有するシュレッダーダストを配合炭に混合して装入炭とし、これをコークス炉に装入する際に、該シュレッダーダストより入るトータル鉄とトータルアルミを、前記装入炭の0.2質量%以下となるように、シュレッダーダスト量を調整したことを特徴とするコークス炉でのシュレッダーダスト処理方法。
(2)前記装入炭が、微粉石炭を加圧成型した成型炭を有する際に、該成型炭内に前記シュレッダーダストを含有させたことを特徴とする上記(1)に記載のコークス炉でのシュレッダーダスト処理方法。
(3)前記成型炭中のシュレッダーダストの含有率を12質量%以下としたことを特徴とする上記(2)に記載のコークス炉でのシュレッダーダスト処理方法。
(4)前記トータル鉄とトータルアルミの含有量が合わせて5質量%以下のシュレッダーダストを用いることを特徴とする上記(2)又は(3)に記載のコークス炉でのシュレッダーダスト処理方法。
【0006】
【発明の実施の形態】
本発明者は、コークス炉炉壁、コークス品質に悪影響を与える事なく、前記廃家電製品及び廃自動車のシュレッダーダストをコークス炉で処理するために種々実験し、検討した。この結果、先ず、シュレッダーダストのみをコークス炉に直接装入すると炉壁煉瓦が損傷する事が確認された。これは、シュレッダーダスト中にアルミ、鉄等の金属が含まれているため、この金属がコークス炉の炉壁を構成している珪石煉瓦と接触し、石炭乾留中に煉瓦中のSiO と反応して低融点の化合物を作り損傷したものと推定される。
次ぎに、配合炭中に前記シュレッダーダストを混合して装入炭として装入すると、該シュレッダーダストが装入した石炭間に存在して、前記シュレッダーダスト中の金属が炉壁煉瓦に直接接触する機会が低減し、炉壁煉瓦の損傷を激減でき、コークス品質(強度)的にも影響が少ない事が判明した。
【0007】
ここで、本発明の一実施の形態に係るコークス炉でのシュレッダーダスト処理方法について説明する。本実施の形態に係るコークス炉でのシュレッダーダスト処理方法は、鉄及びアルミを含有するシュレッダーダストを配合炭に混合して装入炭とし、コークス炉に装入する際に、シュレッダーダストより入るトータル鉄とトータルアルミを、装入炭の0.2質量%以下となるように、シュレッダーダスト量を調整するものである。
先ず、本発明者等は、10mm以下に破砕したシュレッダーダストを、装入炭に混合して試験用のコークス炉に装入し、乾留してコークスを製造した。そして、このシュレッダーダストがコークス炉の炉壁耐火物に与える損傷を、調査した結果、図1に示すようにシュレッダーダスト中に含有される金属重量割合(トータル鉄とトータルアルミの合計重量割合)と装入炭中へのシュレッダーダストの装入重量割合に関係があることが判明した。ここで、図1には、耐火物の損傷のないケースを丸(○)で、損傷のあったケースを三角(▲)で、実験結果を表記した。また、図中の線は、縦軸と横軸の数値の積、すなわち全装入炭中のシュレッダーダストのトータル鉄とトータルアルミの量が0.2質量%であるところを示す。
【0008】
この図から、シュレッダーダストの金属、即ち、トータル鉄とトータルアルミの量が、装入炭の0.2質量%を超えるとコークス炉の炉壁煉瓦の損傷が顕著となり、0.2質量%以下であれば炉壁煉瓦の損傷が大幅に抑制可能となり、実操業上に問題にならなくなることが判明した。
そして、この炉壁煉瓦の損傷を詳細に観察した結果、金属の浸潤した形跡が見受けられた。これは、炉温を1100℃程度に上昇して石炭を乾留中に、シュレッダーダスト中の鉄分とアルミ分が前記同様に炉壁の珪石レンガ中のSiO と反応して低融点の化合物を生成し損傷したものと推定される。しかし、0.2質量%以下になると、反応に寄与するコークス中のカーボン量、珪石レンガ中のSiO 量に比較してシュレッダーダスト中の鉄分とアルミ分が少なく、生成する化合物の融点が低くならなくなり、実操業上問題になる程度の損傷に至らないものと推定される。
【0009】
また、前記配合炭の一部として、微粉炭(微粉石炭)と結合剤を混合して成型装置で成型した成型炭(塊成炭)を使用している場合には、その微粉炭にシュレッダーダストを混合して成型することによりシュレッダーダストの大部分を微粉炭で封じ込む事が可能となり、更に、該シュレッダーダスト中のアルミ、鉄等の金属がコークス炉の炉壁に接触する機会が減少すると共に、比重の小さなシュレッダーダストのコークス炉での飛散が防げる為、操業として望ましい。
この場合には、シュレッダーダスト添加率を図2に示すように13質量%にすると急激にコークス強度が低下する事から12質量%以下にする事が好ましい。これは、成型炭が乾留されてコークス化した際に、そのコークス強度の低下を抑制可能となるためである。即ち、シュレッダーダストは石炭の乾留中に気化して、その部分に空隙が発生し、この空隙を成型炭を構成する微粉炭の膨張で殆ど埋めるために強度の低下が抑制されるが、図2に示すように、シュレッダーダスト添加率が12質量%を超えるとその空隙が大きくなり過ぎて埋める量が不足してコークス強度が低くなるものと推定される。
【0010】
さらに、成型炭に添加するシュレッダーダストはトータル鉄とトータルアルミを合わせて5質量%以下のものを用いることが望ましい。これは、前記鉄分とアルミ分の多くが成型炭中に封じ込められた状態でコークス炉に装入されるが、成型炭中の鉄分とアルミ分が偏析して、多量の鉄分とアルミ分が成型炭の表面に出てきている部分が有る場合、その部分と炉壁が、局所的に接触する部分が存在したとしても、5質量%以下であれば、その接触部分が実操業上問題になるまで損傷しないためである。
【0011】
【実施例】
(実施例1、実施例2)
以下に、本発明の請求項1に対応する実施例を説明する。
配合炭は通常の冶金コークス用の石炭(強粘結炭:20重量%、粘結炭:60重量%、非微粘結炭:20重量%)を使用した。
そして、前記配合炭とシュレッダーダストを混合して装入炭とし、これを、炉温:1150℃、乾留時間:18.5hのコークス炉の試験用炭化室に60kg装入して乾留した結果を表1に示す。
【0012】
【表1】

Figure 2005002266
【0013】
この表1の実施例1、2はシュレッダーダストより入る装入炭中のトータル鉄とトータルアルミの量が本発明の0.2質量%以下としたので、製造したコークスのDI(ドラム強度)も良く、しかも、炉壁の損耗も殆どなかった。
これに対し、比較例1はトータル鉄とトータルアルミの装入率が本発明の上限(0.2質量%)を外れたので、炉壁の損耗が見られた。
【0014】
(実施例3、実施例4)
以下に、本発明の請求項2〜4に対応する実施例を説明する。
装入炭は前記通常の冶金用コークス用の石炭と下記のようにして製造した成型炭を配合したものを使用した。
成型炭は、図3に示すように、非微粘結炭1を粉砕機2で−3mmが80質量%になるように粉砕し、その後、乾燥・分級装置3により乾燥しつつ、微粉炭4と粗粒炭5に分級(分級点0.3mm)する。そして、分級された乾燥微粉炭4にタールバインダー6を6質量%及びシュレッダーダスト7を添加して混合装置8で混合し、その後、線圧4トン/cmを有する平ロール塊成機(コンパクティングマシーン)9にて加圧・成型して製造した。
前記装入炭を前記同様のコークス炉の試験用炭化室(炉温:1150℃、乾留時間:18.5h)に60kg装入して乾留した結果を表1に示す。
【0015】
この表1の実施例3は、成型炭のシュレッダーダストの含有量が本発明の12質量%以下で、且つ、そのシュレッダーダストより入るトータル鉄とトータルアルミ量が装入炭の0.2質量%以下としたので、製造したコークスのDIも良く、しかも、炉壁の損耗も殆どなかった。
【0016】
これに対し、比較例2は、装入炭中へのトータル鉄とトータルアルミの合計量が本発明の範囲内であったが、成型炭のシュレッダーダストの含有量が本発明の上限(12質量%)を外れたので、炉壁の損耗が見られなかったが、コークスのDIが低下した。
また、比較例3は、前記比較例2とは逆に、成型炭のシュレッダーダストの含有量が本発明の範囲内(12質量%以下)であったが、装入炭中へのトータル鉄とトータルアルミの合計量が本発明の上限(0.2質量%)を外れたので、コークスのDIの低下は見られなかったが、炉壁の損耗があった。
【0017】
更に、表1の実施例4は、成型炭に混合するシュレッダーダストのトータル鉄とトータルアルミの含有量が本発明の5質量%以下としたので、製造したコークスのDIも良く、しかも、炉壁の損耗も殆どなかった。
これに対し、比較例4は、装入炭に混合するシュレッダーダストのトータル鉄とトータルアルミの合計量が本発明の上限(5質量%)を外れたので、炉壁の損耗が見られた。
尚、実施例1において、装入炭として通常の冶金用コークス用の石炭のみを用いたが、シュレッダーダストを混合していない成型炭を装入してもよい。
【0018】
【発明の効果】
本発明は、コークス強度の低下と耐火物の損傷を抑制しつつ、コークス炉でシュレッダーダストを処理することが可能となり、該シュレッダーダストの処理コストを大幅に低減する事ができ、この分野における効果は大きい。
【図面の簡単な説明】
【図1】装入炭中のシュレッダーダスト装入量とシュレッダーダスト中のトータル鉄とトータルアルミの合計量との関係を示す説明図である。
【図2】コークス強度と成型炭へのシュレッダーダスト配合量の関係を示す説明図である。
【図3】シュレッダーダスト含有成型炭の製造工程を示す工程図である。
【符号の説明】
1:非微粘結炭、2:粉砕機、3:乾燥・分級装置、4:乾燥微粉炭、5:粗粒炭、6:タールバインダー、7:シュレッダーダスト、8:混合装置、9:平ロール塊成機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating shredder dust in a coke oven.
[0002]
[Prior art]
Shredder dust is the residue after removing recyclable parts and parts from waste home appliances and automobiles, crushing them to about 10 mm or less with a large crusher, and collecting metal by magnetic sorting or manual sorting. It contains fine resin, hard plastic, wiring or metal powder. And, as this fine resin and hard plastic are mixed with urethane used for heat insulation materials and automobile chairs and plastics used as processed parts, the main materials are polyethylene (PE), Polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and the like are often included.
However, the shredder dust contains 10 to 40% by mass of impurities such as fine metals and ash that could not be removed by magnetic sorting or manual sorting, so most of them have been landfilled or incinerated conventionally. However, adverse effects on the environment (atmosphere and soil) were inevitable.
For this reason, in recent years, the development of its effective use has been actively carried out, and as one of them, in order to recover the plastic content of shredder dust as a gas, for example, Patent Document 1 discloses shredder dust as a shaft type. There is a proposal of a method for pyrolysis gasification by charging in a gasification melting furnace.
[0003]
[Patent Document 1]
Japanese Patent Application No. 2002-79 Specification
[Problems to be solved by the invention]
The method proposed in Patent Document 1 requires a large amount of capital investment industrially and does not pay in terms of cost. Therefore, the method is not widespread enough to meet the amount of shredder dust generated. .
This invention makes it a subject to process the shredder dust of the said waste household appliances and a waste car using an existing coke oven, without requiring large capital investment.
[0005]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and the means thereof are the following (1) to (4).
(1) Shredder dust containing iron and aluminum is mixed with blended coal to obtain charged coal, and when this is charged into a coke oven, the total iron and total aluminum entering from the shredder dust are used as the charged coal. A shredder dust treatment method in a coke oven, wherein the amount of shredder dust is adjusted so as to be 0.2% by mass or less.
(2) In the coke oven according to (1), the shredder dust is contained in the charcoal when the charging coal includes coal that is pressure-molded from fine coal. Shredder dust processing method.
(3) The shredder dust treatment method in a coke oven as described in (2) above, wherein the content of shredder dust in the coal is 12% by mass or less.
(4) The shredder dust treatment method in a coke oven according to (2) or (3) above, wherein shredder dust having a total content of total iron and total aluminum of 5% by mass or less is used.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present inventor has conducted various experiments and studies for treating the waste home appliances and the shredder dust of the scrapped car in the coke oven without adversely affecting the coke oven wall and coke quality. As a result, first, it was confirmed that if only shredder dust was charged directly into the coke oven, the furnace wall bricks were damaged. This is because the shredder dust contains metals such as aluminum and iron, so this metal comes into contact with the quartz brick that forms the furnace wall of the coke oven and reacts with SiO 2 in the brick during coal dry distillation. It is presumed that a low melting point compound was formed and damaged.
Next, when the shredder dust is mixed into the blended coal and charged as charged coal, the shredder dust is present between the charged coals, and the metal in the shredder dust is in direct contact with the furnace wall brick. Opportunities were reduced, damage to furnace wall bricks could be drastically reduced, and coke quality (strength) was less affected.
[0007]
Here, the shredder dust processing method in the coke oven which concerns on one embodiment of this invention is demonstrated. The shredder dust processing method in the coke oven according to the present embodiment is a total of the shredder dust that is mixed from the shredder dust when charged into the coke oven by mixing the shredder dust containing iron and aluminum with the blended coal. The amount of shredder dust is adjusted so that iron and total aluminum become 0.2% by mass or less of the charged coal.
First, the present inventors mixed shredder dust crushed to 10 mm or less into charged coal, charged into a test coke oven, and dry-distilled to produce coke. And as a result of investigating the damage which this shredder dust gives to the furnace wall refractory of a coke oven, as shown in FIG. 1, the metal weight ratio (total weight ratio of total iron and total aluminum) contained in shredder dust and It was found that there was a relationship with the weight ratio of shredder dust charged into the charged coal. Here, in FIG. 1, the experimental results are indicated by a circle (◯) for a case where the refractory is not damaged, and a triangle (A) for a damaged case. Moreover, the line in a figure shows the place where the product of the numerical value of a vertical axis | shaft and a horizontal axis | shaft, ie, the quantity of the total iron and total aluminum of shredder dust in all charging, is 0.2 mass%.
[0008]
From this figure, when the amount of shredder dust metal, that is, total iron and total aluminum exceeds 0.2% by mass of the charged coal, damage to the bricks of the coke oven furnace wall becomes significant, and it is 0.2% by mass or less. Then, it became clear that damage to the furnace wall brick could be greatly suppressed, and it would not be a problem in actual operation.
As a result of detailed observation of damage to the furnace wall bricks, there was evidence of metal infiltration. This is because when the furnace temperature is raised to about 1100 ° C. and coal is carbonized, the iron and aluminum contents in the shredder dust react with the SiO 2 in the silica bricks on the furnace wall to produce a low melting point compound. Presumably damaged. However, when the amount is 0.2% by mass or less, the iron content and aluminum content in the shredder dust are less than the amount of carbon in the coke contributing to the reaction and the amount of SiO 2 in the silica brick, and the melting point of the resulting compound is low. It is estimated that it will not cause damage to the extent that it will cause problems in actual operation.
[0009]
In addition, as part of the blended coal, when using a coal pulverized coal (pulverized coal) mixed with a binder and molded with a molding device (agglomerated coal), shredder dust is added to the pulverized coal. By mixing and molding, it becomes possible to contain most of the shredder dust with pulverized coal, and further, the opportunity for metals such as aluminum and iron in the shredder dust to contact the furnace wall of the coke oven is reduced. At the same time, shredder dust with a small specific gravity can be prevented from scattering in the coke oven, which is desirable for operations.
In this case, if the addition rate of the shredder dust is 13% by mass as shown in FIG. This is because when coking coal is carbonized to coke, the reduction in coke strength can be suppressed. That is, the shredder dust is vaporized during the carbonization of coal, and voids are generated in the portion. Since the voids are almost filled with the expansion of the pulverized coal constituting the formed coal, a decrease in strength is suppressed. As shown in FIG. 5, when the shredder dust addition rate exceeds 12% by mass, it is estimated that the voids become too large and the amount to be filled becomes insufficient, resulting in low coke strength.
[0010]
Furthermore, it is desirable that the shredder dust added to the coal is a total of 5% by mass or less of total iron and total aluminum. This is because most of the iron and aluminum components are contained in the coking coal and charged into the coke oven, but the iron and aluminum components in the coal are segregated and a large amount of iron and aluminum components are formed. If there is a part coming out on the surface of the charcoal, even if there is a part where the part and the furnace wall are locally in contact with each other, if the part is 5% by mass or less, the contact part becomes a problem in actual operation. This is to prevent damage.
[0011]
【Example】
(Example 1, Example 2)
An embodiment corresponding to claim 1 of the present invention will be described below.
As the blended coal, normal metallurgical coke coal (strongly caking coal: 20% by weight, caking coal: 60% by weight, non-slightly caking coal: 20% by weight) was used.
Then, the blended coal and the shredder dust were mixed to obtain charged coal, and the result obtained by charging 60 kg into a test carbonization chamber of a coke oven having a furnace temperature of 1150 ° C. and a carbonization time of 18.5 h was obtained. Table 1 shows.
[0012]
[Table 1]
Figure 2005002266
[0013]
In Examples 1 and 2 in Table 1, since the total iron and total aluminum content in the charging coal entering from the shredder dust was 0.2% by mass or less of the present invention, the DI (drum strength) of the produced coke was also It was good and there was little wear on the furnace wall.
On the other hand, in Comparative Example 1, since the charging rate of total iron and total aluminum deviated from the upper limit (0.2% by mass) of the present invention, the furnace wall was worn.
[0014]
(Example 3, Example 4)
Examples corresponding to claims 2 to 4 of the present invention will be described below.
Charging coal used was a mixture of the above-mentioned ordinary coal for metallurgical coke and formed coal produced as described below.
As shown in FIG. 3, the coal is pulverized from the non-coking coal 1 with a pulverizer 2 so that -3 mm is 80% by mass, and then dried by the drying / classifying device 3. And classify into coarse coal 5 (classification point 0.3 mm). Then, 6% by mass of tar binder 6 and shredder dust 7 are added to the classified dry pulverized coal 4 and mixed by a mixing device 8, and then a flat roll agglomerator (compacting) having a linear pressure of 4 ton / cm. Machine) 9 was manufactured by pressing and molding.
Table 1 shows the results obtained by charging 60 kg of the charged coal into a test coking chamber (furnace temperature: 1150 ° C., dry distillation time: 18.5 h) of the same coke oven as described above.
[0015]
In Example 3 of Table 1, the content of shredder dust in the coal is 12% by mass or less of the present invention, and the total iron and the total aluminum content from the shredder dust are 0.2% by mass of the charged coal. Since it was as follows, DI of the manufactured coke was good and there was almost no wear of the furnace wall.
[0016]
In contrast, in Comparative Example 2, the total amount of total iron and total aluminum in the charging coal was within the range of the present invention, but the shredder dust content of the formed coal was the upper limit of the present invention (12 masses). %), No wear on the furnace wall was observed, but the DI of coke decreased.
In contrast to Comparative Example 2, in Comparative Example 3, the shredder dust content of the coal was within the range of the present invention (12% by mass or less). Since the total amount of total aluminum deviated from the upper limit (0.2% by mass) of the present invention, there was no reduction in DI of coke, but there was wear on the furnace wall.
[0017]
Further, in Example 4 of Table 1, since the total iron and total aluminum content of the shredder dust mixed with the coal was set to 5% by mass or less of the present invention, the DI of the produced coke was good, and the furnace wall There was almost no wear.
On the other hand, in Comparative Example 4, since the total amount of shredder dust total iron and total aluminum mixed with the charging coal deviated from the upper limit (5% by mass) of the present invention, the wear of the furnace wall was observed.
In Example 1, only ordinary coal for metallurgical coke was used as charging coal, but it is also possible to charge coal that is not mixed with shredder dust.
[0018]
【The invention's effect】
The present invention makes it possible to treat shredder dust in a coke oven while suppressing reduction in coke strength and refractory damage, and can significantly reduce the processing cost of the shredder dust. Is big.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the relationship between the amount of shredder dust charged during charging coal and the total amount of total iron and total aluminum in shredder dust.
FIG. 2 is an explanatory diagram showing the relationship between coke strength and the amount of shredder dust blended into coal.
FIG. 3 is a process diagram showing a process for producing shredder dust-containing coal.
[Explanation of symbols]
1: non-finely caking coal, 2: pulverizer, 3: drying / classifying device, 4: dry pulverized coal, 5: coarse coal, 6: tar binder, 7: shredder dust, 8: mixing device, 9: flat Roll agglomerator

Claims (4)

鉄及びアルミを含有するシュレッダーダストを配合炭に混合して装入炭とし、これをコークス炉に装入する際に、該シュレッダーダストより入るトータル鉄とトータルアルミを、前記装入炭の0.2質量%以下となるように、シュレッダーダスト量を調整したことを特徴とするコークス炉でのシュレッダーダスト処理方法。When shredder dust containing iron and aluminum is mixed with blended coal to form a charged coal, and this is charged into a coke oven, the total iron and total aluminum that enter from the shredder dust are added to the above-mentioned charged coal. A shredder dust treatment method in a coke oven, wherein the amount of shredder dust is adjusted to 2% by mass or less. 前記装入炭が、微粉石炭を加圧成型した成型炭を有する際に、該成型炭内に前記シュレッダーダストを含有させたことを特徴とする請求項1記載のコークス炉でのシュレッダーダスト処理方法。2. The shredder dust treatment method in a coke oven according to claim 1, wherein when the charging coal has formed coal obtained by pressure-molding pulverized coal, the shredder dust is contained in the formed coal. . 前記成型炭中のシュレッダーダストの含有率を12質量%以下としたことを特徴とする請求項2記載のコークス炉でのシュレッダーダスト処理方法。The shredder dust treatment method in a coke oven according to claim 2, wherein the content of shredder dust in the coal is 12 mass% or less. 前記トータル鉄とトータルアルミの含有量が合わせて5質量%以下のシュレッダーダストを用いることを特徴とする請求項2又は3に記載のコークス炉でのシュレッダーダスト処理方法。The shredder dust treatment method in a coke oven according to claim 2 or 3, wherein shredder dust having a total content of total iron and total aluminum of 5% by mass or less is used.
JP2003169290A 2003-06-13 2003-06-13 Shredder dust processing method in coke oven Expired - Fee Related JP4192042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169290A JP4192042B2 (en) 2003-06-13 2003-06-13 Shredder dust processing method in coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169290A JP4192042B2 (en) 2003-06-13 2003-06-13 Shredder dust processing method in coke oven

Publications (2)

Publication Number Publication Date
JP2005002266A true JP2005002266A (en) 2005-01-06
JP4192042B2 JP4192042B2 (en) 2008-12-03

Family

ID=34094473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169290A Expired - Fee Related JP4192042B2 (en) 2003-06-13 2003-06-13 Shredder dust processing method in coke oven

Country Status (1)

Country Link
JP (1) JP4192042B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020089816A (en) * 2018-12-04 2020-06-11 Jfeスチール株式会社 Shredder dust processing method and processing facility
JP2021109135A (en) * 2020-01-09 2021-08-02 Jfeスチール株式会社 Processing method and processing facility for shredder dust

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020089816A (en) * 2018-12-04 2020-06-11 Jfeスチール株式会社 Shredder dust processing method and processing facility
JP2021109135A (en) * 2020-01-09 2021-08-02 Jfeスチール株式会社 Processing method and processing facility for shredder dust
JP7095708B2 (en) 2020-01-09 2022-07-05 Jfeスチール株式会社 Shredder dust treatment method and treatment equipment

Also Published As

Publication number Publication date
JP4192042B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
CA2410021C (en) Method of producing a metallized briquette
US5752993A (en) Blast furnace fuel from reclaimed carbonaceous materials and related methods
JP4996105B2 (en) Vertical coal interior agglomerates
JP2005263983A (en) Method for recycling organic waste using coke oven
US6342089B1 (en) Direct reduced iron pellets
KR101493965B1 (en) Process for recovering iron and zinc from iron and zinc-bearing waste
US20070266824A1 (en) Using a slag conditioner to beneficiate bag house dust from a steel making furnace
US20110081284A1 (en) Treatment of bauxite residue and spent pot lining
KR20100122946A (en) Process for production of direct-reduced iron
KR100864458B1 (en) Apparatus and method for manufacturing molten irons
JP4192042B2 (en) Shredder dust processing method in coke oven
KR101405479B1 (en) Method for manufacturing coal briquettes and apparatus for the same
JP2006152432A (en) Method for producing molten iron
JPH09316512A (en) Method for melting steel using iron oxide briquette as auxiliary raw material
JP3802712B2 (en) How to recycle waste plastic
JP3995496B2 (en) Waste plastic-containing granulated coal
JP2000212630A (en) Production of carburizing material for steelmaking contained in electric furnace dust and carburizing material for steelmaling obtained therefrom and recycle of electric furnace dust
JP5271477B2 (en) How to reuse converter dust
JP5303855B2 (en) Method for producing coke for blast furnace using waste plastic
JP4231213B2 (en) Coke production method
KR100891204B1 (en) Reprocessing Method for Industrial Waste
KR102541715B1 (en) Method of manufacturing recarburizing agent and recarburizing agent manufactured by the method
RU2703084C1 (en) Method of producing technical silicon
JP2001096253A (en) Method of treating shredder dust
JP4457753B2 (en) Coke production method using waste plastic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees