JP2005000934A - Method for manufacturing round corner flat square rolled material - Google Patents

Method for manufacturing round corner flat square rolled material Download PDF

Info

Publication number
JP2005000934A
JP2005000934A JP2003165339A JP2003165339A JP2005000934A JP 2005000934 A JP2005000934 A JP 2005000934A JP 2003165339 A JP2003165339 A JP 2003165339A JP 2003165339 A JP2003165339 A JP 2003165339A JP 2005000934 A JP2005000934 A JP 2005000934A
Authority
JP
Japan
Prior art keywords
corner
rolled material
rolling
flat
round bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003165339A
Other languages
Japanese (ja)
Inventor
Akishi Nozue
晃志 野末
Masakatsu Yamakawa
正克 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003165339A priority Critical patent/JP2005000934A/en
Publication of JP2005000934A publication Critical patent/JP2005000934A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a round corner R flat square rolled material as hot-rolled by the caliber-less flat square rolling by using a round bar stock in a small-amount and size-free manner. <P>SOLUTION: In the method for manufacturing the corner R flat square rolled material to provide roundness at the corners of a flat square rolled material, a round bar stock 2 is subjected to pass-rolling five times, i.e., a first horizontal rolling H1, a first vertical rolling V1, a second horizontal rolling H2, a second vertical rolling V2, and a third horizontal rolling H3 by using a caliber-less rolling mill 1, and a flat square rolled material 7 with a round corner R is manufactured thereby. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、平角圧延材のコーナにRを設けるコーナR平角圧延材の製造方法に関する。
【0002】
【従来の技術】
通常、平角圧延材は、コーナが直角をなしているが、コーナにRを付けた平角圧延材(以下「コーナR平角圧延材」という)が要求される場合がある。ここに、平角材は、断面が四角形状即ち、長方形状乃至正方形状をなすものを指す。平角圧延材のコーナにRを設けるコーナR平角圧延材の製造方法として、コーナR付きカリバを用いて熱間又は冷間圧延で製造する方法、コーナR無しの平角圧延材を引き抜き加工してコーナRを付与する方法等がある。
【0003】
更に、コーナRに応じた半径Rの溝を有する4個の孔型ロールによって圧延材の各コーナを1パスで圧延成形する方法、両端フランジ部近傍に半径Rの円弧面を有する上下一対の孔型ロールにより圧延材の各コーナ部を1パスで面取り圧延成形する方法がある(特許文献1参照。)。
【0004】
【特許文献1】
特開昭55−70401号公報(第2頁、第2図、第3図)
【0005】
【発明が解決しようとする課題】
しかしながら、コーナR付きカリバを用いて熱間又は冷間圧延でコーナR平角圧延材を製造する場合、各サイズ毎に専用カリバが必要であり、サイズ替えに時間が掛かり、生産性が劣る。また、専用カリバ数により製造可能範囲が規制され、フリーサイズが困難である、専用カリバが必要であるために少量の生産を受注し難い等の問題もある。
【0006】
また、コーナR無し平角圧延材を引き抜き加工してコーナRを付与する方法は、圧延工程と引き抜き工程を必要とするために製造コストが高くなる。各サイズ毎に引き抜き用の専用ダイスが必要であるために製造範囲が規制され、受注量に規制が生じる等の問題がある。
また、コーナRに応じた半径Rの溝を有する4個の孔型ロールによって圧延材の各コーナを1パスで圧延成形する方法は、専用装置が必要であり且つ装置が複雑であり、しかも製品のコーナR毎に対応する孔型ロールを必要とし、多数の孔型ロールが必要となるばかりでなく、調整に手間がかかり、作業性が悪い。
【0007】
また、両端フランジ部近傍にコーナRに応じた半径Rの円弧面を有する上下一対の孔型ロールにより圧延材の各コーナ部を1パスで面取り圧延成形する方法においては、面取り圧延成形後に発生したダレが次の平ロールによる圧延工程でかぶり傷として残り、製品の見栄えが悪いという問題がある。
本発明は、上述の点に鑑みてなされたもので、丸棒素材を用いてカリバレス平角圧延により熱間圧延そのままでコーナR平角圧延材を製造し、少量、サイズフリーで製造を可能とするコーナR平角圧延材の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために請求項1の発明では、平角圧延材のコーナにRを設けるコーナR平角圧延材の製造方法であって、丸棒素材を、カリバレス圧延により第1の水平圧延、第1の垂直圧延、第2の水平圧延、第2の垂直圧延、第3の水平圧延の順に5パス圧延を行い、コーナがRの平角圧延材を製造することを特徴としている。
【0009】
丸棒素材は、第1の水平圧延工程において上下両側から圧下されて断面横長の長円形圧延材に圧延成形され、次いで、第1の垂直圧延工程において左右両側から圧下されて平角圧延材に成形される。この平角圧延材は、各コーナに丸棒素材の外形の一部(円弧)を残した厚肉のコーナR平角圧延材とされる。このコーナR平角圧延材は、圧延荷重を受けて上下両面の各コーナ近傍に僅かながら膨出部が発生する。
【0010】
このコーナR平角圧延材は、第2の水平圧延工程において上下両面を圧下されて断面横長の所定板厚の長円形圧延材に成形される。前記厚肉のコーナR平角圧延材は、第2の水平圧延工程において上下両面を圧下されることで両側部が外方に膨出して断面長円形状となる。また、前記厚肉のコーナR平角圧延材の上下両面の膨出部は、第2の水平圧延工程において圧下されて平面とされる。
【0011】
この薄肉の長円形圧延材は、第2の垂直圧延工程において両側部を圧下されてコーナに前記厚肉の長円形圧延材の円弧の一部を残したコーナR平角圧延材に成形される。次いで、第3の水平圧延工程において前記薄肉のコーナR平角圧延材の上下両面を軽く圧下してコーナに所定のRを残したコーナR平角圧延材(製品)に成形する。最後の水平圧延工程においてコーナR平角圧延材の幅広の上下両面を良好な平面に成形することで見栄えが向上する。
【0012】
請求項2の発明では、請求項1において前記丸棒素材のサイズは、該丸棒素材の断面の外周長と製品の断面の外周長との比に基づいて決めることを特徴としている。
種々のサイズ(外径)の丸棒素材の断面外周長L1と、種々のサイズの製品コーナR平角圧延材の断面外周長L2との比(周長変化率と定義する)をδとし、このδと、製品コーナR平角圧延材のコーナRとの相関データを求める。次に、このデータから必要とする製品コーナRに対応する周長変化率δを求める。製品断面の外周長L2は、既知であり、丸棒素材断面の外周長L1は、L2×δとなり、丸棒素材のサイズ(外径)は、(δ×L2)/πとなる。これにより、必要な製品コーナRから適正な丸棒素材のサイズを決める。
【0013】
【発明の実施の形態】
以下本発明の実施の形態を図面により詳細に説明する。
図1は、本発明に係るコーナR平角圧延材の製造方法の製造工程を示す説明図である。図1(a)〜(f)に示すようにカリバレス平角圧延機1は、第1の水平圧延工程H1(b)、第1の垂直圧延工程V1(c)、第2の水平圧延工程H2(d)、第2の垂直圧延工程V2(e)、及び第3の水平圧延工程H3(f)の5パスの圧延工程から成る。このカリバレス平角圧延機1は、丸棒素材2(a)から5パスの圧延工程により熱間圧延そのままでコーナR平角圧延材を製造する。
【0014】
丸棒素材(母材)2は、第1の水平圧延工程H1において上下両側から圧下されて断面横長の第1の長円形圧延材(板厚t1、幅w1)3に圧延成形され、次いで、第1の垂直圧延工程V1において左右両側から圧下されて第1の平角圧延材(板厚t2、幅w2)4に成形される。この第1のコーナR平角圧延材4は、各コーナ4aに丸棒素材2の外形の一部(円弧)を残した厚肉のコーナR平角圧延材とされる。また、この第1のコーナR平角圧延材4は、圧延荷重を受けて上下両面の各コーナ4a近傍に2点鎖線で示すように僅かながら膨出部4bが発生する。
【0015】
この第1のコーナR平角圧延材4は、第2の水平圧延工程H2において上下両面を圧下されて断面横長の所定板厚の第2の長円形圧延材(板厚t3、幅w3)5に成形される。前記厚肉の第1のコーナR平角圧延材4は、第2の水平圧延工程H2において上下両面を圧下されることで両側部が外方に膨出して断面長円形状となる。また、第1のコーナR平角圧延材4の上下両面の膨出部4bは、第2の水平圧延工程H2において圧下されて平面とされる。
【0016】
この薄肉の第2の長円形圧延材5は、第2の垂直圧延工程V2において両側部を圧下されてコーナ6aに長円形圧延材5の円弧の一部(隅部)を残した第2のコーナR平角圧延材(板厚t4、幅w4)6に成形される。次いで、第3の水平圧延工程H3において第2のコーナR平角圧延材6の上下両面を軽く圧下してコーナ7aにRを残した板厚t5、幅w5)の第3のコーナR平角圧延材7に成形する。このコーナ7aのRは、コーナR平角圧延材6のコーナ6aのRと略同じとされる。最後の第3の水平圧延工程H3において第2のコーナR平角圧延材6の幅広の上下両面を良好な平面に成形することで見栄えが向上する。従って、最後の第3の水平圧延工程H3は、必要である。このようにして、H1−V1−H2−V2−H3の5パスの圧延工程により、丸棒素材2からコーナR平角圧延材7を成形する。このコーナR平角圧延材7は、製品とされる。
【0017】
丸棒素材2から所定のコーナR平角圧延材7を成形する場合、製造工程を第1の水平圧延工程H1―第1の垂直圧延工程V1―第2の水平圧延工程H2の3パス圧延とした場合には、図1(d)に示すように成形された圧延材5は、左右両側部が膨出した断面長円形状となり成形不良となる。前述したように圧延工程の最後の工程は、幅広の上下両面を良好な平面とするために水平圧延工程とすることが好ましく、従って、5パス圧延の上は7パス圧延となる。しかしながら、5パス目の第3の水平圧延工程H3の後に第3の垂直圧延工程、第4の水平圧延工程を加えて7パス圧延とすることは、徒に圧延工程を増やすだけであり不要である。従って、前述した5パス圧延工程で十分である。
【0018】
さて、本願発明者は、上述したように丸棒素材2の外形(円弧)の一部を残してコーナR平角圧延材を製造するに当たり、種々実験した結果、丸棒素材2のサイズ(外径、母材径)と最終製品であるコーナR平角圧延材7のコーナRとの間に相関関係があることを見い出した。丸棒素材断面の外周長(L1)と製品断面の外周長(L2)との比(L1/L2)を周長変化率(δ)と定義した場合、この周長変化率(δ)と製品のコーナRとの間に、例えば、下述するSUS304の場合であれば、図2のグラフで示すような相関関係があることを見い出したものである。
(実施例)
丸棒素材としてSUS304を使用してコーナR及び外形寸法の異なる4種類の製品コーナR平角圧延材(製品1〜製品4)を前記5パス圧延により製造し、周長変化率(δ)のデータを求めた。実験結果を表1に示す。
【0019】
【表1】

Figure 2005000934
【0020】
表1に基づいて製品コーナRと周長変化率(δ)との関係を図2に示す。
次に、コーナRの平角圧延材を成形するに当たり丸棒素材のサイズ(外径)を決める場合について説明する。
先ず、図2のグラフから必要な製品コーナRに対する周長変化率(δ)を求める。製品断面の外周長L2は、既知であり、丸棒素材断面の外周長L1は、L1=δ×L2となり、従って、丸棒素材のサイズ(外径)Dは、D=(δ×L2)/πとなる。これにより、必要な製品コーナRから適正な丸棒素材のサイズ(外径)を決めることができる。
【0021】
尚、丸棒素材2から製品コーナR平角圧延材7を製造する場合、熱間圧延により成形する場合について記述したが、冷間圧延により成形するようにしても良いことはいうまでもない。
また、上記実施例では、丸棒素材としてSUS304を使用した場合について記述したが、これに限るものではなく他の材質に対しても対応し得ることは勿論である。この場合、製品のコーナRは、丸棒素材の材質に応じて変わるが、前述のような、周長変化率(δ)と製品のコーナRとの間の一次の相関関係は維持される。
【0022】
【発明の効果】
以上説明したように本発明によれば、小径丸棒素材を用いたカリバレス平角圧延により、熱間圧延そのままで製品コーナR平角圧延材を製造することができ、作業性の大幅な向上が図られると共に製造設備の簡素化が図られる。更に、少量で且つフリーサイズで製造が可能となり、また、製造コストも安価にすることができる。
【0023】
請求項2の発明によれば、製品コーナRに応じた適正サイズの丸棒素材を簡単に決定することが可能となり、作業性の向上が図られる。
【図面の簡単な説明】
【図1】本発明に係るコーナR平角圧延材の製造方法の製造工程を示す説明図である。
【図2】本発明に係る製造方法における製品コーナRと周長変化率との関係を示すグラフである。
【符号の説明】
1 カリバレス平角圧延機
2 丸棒素材
3 第1の断面長円形圧延材
4 第1の厚肉コーナR平角圧延材
5 第2の断面長円形圧延材
6 第2の薄肉コーナR平角圧延材
7 製品コーナR平角圧延材
H1、H2、H3 水平圧延工程
V1、V2 垂直圧延工程[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a corner R flat rolled material in which R is provided at a corner of the flat rolled material.
[0002]
[Prior art]
Normally, the corner of the flat rolled material is perpendicular to the corner, but a flat rolled material with a rounded corner (hereinafter referred to as “corner R flat rolled material”) may be required. Here, the flat material refers to a material having a square cross section, that is, a rectangular shape or a square shape. As a manufacturing method of a corner R flat rolled material in which R is provided at a corner of a flat rolled material, a method of manufacturing by hot or cold rolling using a caliber with a corner R, a corner by drawing a flat rolled material without a corner R There is a method of imparting R and the like.
[0003]
Furthermore, a method of rolling and forming each corner of the rolled material in one pass with four perforated rolls having a radius R according to the corner R, a pair of upper and lower holes having an arc surface with a radius R in the vicinity of both end flange portions There is a method in which each corner portion of the rolled material is chamfered and rolled in one pass with a die roll (see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 55-70401 (2nd page, 2nd, 3rd)
[0005]
[Problems to be solved by the invention]
However, when a corner R flat rolled material is produced by hot or cold rolling using a caliber with corner R, a dedicated caliber is required for each size, and it takes time to change the size, resulting in poor productivity. In addition, the manufacturable range is regulated by the number of dedicated calibers, and it is difficult to make a free size, and there is a problem that it is difficult to order a small amount of production because a dedicated caliber is necessary.
[0006]
In addition, the method of drawing corner-free flat rolled material and applying the corner R requires a rolling process and a drawing process, and thus the manufacturing cost is high. Since a dedicated die for drawing is required for each size, there is a problem that the manufacturing range is restricted and the order quantity is restricted.
In addition, the method of rolling and forming each corner of the rolled material in one pass with four perforated rolls having a radius R according to the corner R requires a dedicated device and the device is complicated, and the product In addition to the need for a perforated roll corresponding to each corner R, not only a large number of perforated rolls are required, but also the adjustment takes time and workability is poor.
[0007]
Further, in the method in which each corner portion of the rolled material is chamfered and rolled in one pass by a pair of upper and lower perforated rolls having a radius R corresponding to the corner R in the vicinity of both end flange portions, this occurs after chamfering rolling. There is a problem that the sagging remains as a fogging scratch in the next rolling process with a flat roll, and the appearance of the product is poor.
The present invention has been made in view of the above-mentioned points, and a corner R flat rolled material is manufactured by using a round bar material as it is by hot rolling by a cavalier flattened rolling, and can be manufactured in a small amount and in a size-free manner. It aims at providing the manufacturing method of R flat rolled material.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is a method of manufacturing a corner R flat rolled material in which R is provided at the corner of the flat rolled material, wherein the round bar material is subjected to first horizontal rolling, 5 vertical rolling in the order of 1 vertical rolling, 2nd horizontal rolling, 2nd vertical rolling, and 3rd horizontal rolling, and a corner manufactures the flat rolled material of R. It is characterized by the above-mentioned.
[0009]
The round bar material is pressed from both the upper and lower sides in the first horizontal rolling process and rolled into an oblong rolled material having a horizontally long cross section, and then pressed from both the left and right sides in the first vertical rolling process to be formed into a flat rolled material. Is done. This flat rolled material is a thick corner R flat rolled material that leaves a part of the outer shape (arc) of the round bar material at each corner. The corner R flat rolled material receives a rolling load, and slightly bulges are generated in the vicinity of the upper and lower corners.
[0010]
The corner R flat rolled material is formed into an oblong rolled material having a predetermined plate thickness with a horizontally long cross section by being pressed down in both the upper and lower surfaces in the second horizontal rolling step. The thick corner R flat rolled material is squeezed on both the upper and lower surfaces in the second horizontal rolling step, so that both sides bulge outward and have an oval cross section. Further, the bulging portions on the upper and lower surfaces of the thick corner R flat rolled material are reduced to a flat surface in the second horizontal rolling step.
[0011]
The thin oval rolled material is formed into a corner R flat rolled material whose both sides are crushed in the second vertical rolling process, leaving a part of the arc of the thick oval rolled material in the corner. Next, in the third horizontal rolling step, the upper and lower surfaces of the thin corner R flat rolled material are lightly pressed to form a corner R flat rolled material (product) in which a predetermined R is left in the corner. In the final horizontal rolling process, the appearance is improved by forming the wide upper and lower surfaces of the corner R flat rolled material into a good flat surface.
[0012]
The invention of claim 2 is characterized in that, in claim 1, the size of the round bar material is determined on the basis of the ratio of the outer peripheral length of the cross section of the round bar raw material to the outer peripheral length of the cross section of the product.
The ratio (defined as the perimeter change rate) between the cross-sectional outer peripheral length L1 of the round bar material of various sizes (outer diameter) and the cross-sectional outer peripheral length L2 of the product corner R flat rolled material of various sizes is defined as δ. Correlation data between δ and the corner R of the product corner R flat rolled material is obtained. Next, the circumference change rate δ corresponding to the required product corner R is obtained from this data. The outer peripheral length L2 of the product cross section is known, the outer peripheral length L1 of the round bar material cross section is L2 × δ, and the size (outer diameter) of the round bar material is (δ × L2) / π. Thus, the appropriate round bar material size is determined from the necessary product corner R.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory view showing a manufacturing process of a method for manufacturing a corner R flat rolled material according to the present invention. As shown in FIGS. 1 (a) to (f), the Caliberless flat rolling mill 1 includes a first horizontal rolling process H1 (b), a first vertical rolling process V1 (c), and a second horizontal rolling process H2 ( d) consists of a 5-pass rolling process, a second vertical rolling process V2 (e), and a third horizontal rolling process H3 (f). This caliperless flat rolling mill 1 produces a corner R flat rolled material from a round bar material 2 (a) as it is by hot rolling as it is in a 5-pass rolling process.
[0014]
The round bar material (base material) 2 is rolled from the upper and lower sides in the first horizontal rolling step H1 and rolled into a first oblong rolled material (sheet thickness t1, width w1) 3 having a horizontally long cross section. In the first vertical rolling step V 1, the first flat rolled material (sheet thickness t 2, width w 2) 4 is formed by being reduced from both the left and right sides. The first corner R flat rolled material 4 is a thick corner R flat rolled material in which a part (arc) of the outer shape of the round bar material 2 is left in each corner 4a. In addition, the first corner R flat rolled material 4 receives a rolling load, and a slight bulging portion 4b is generated in the vicinity of each corner 4a on both the upper and lower surfaces as indicated by a two-dot chain line.
[0015]
In the second horizontal rolling step H2, the first corner R flat rolled material 4 is squeezed on both the upper and lower surfaces to form a second oval rolled material (plate thickness t3, width w3) 5 having a predetermined cross-sectionally long plate thickness. Molded. The thick first corner R flat rolled material 4 is squeezed on both the upper and lower surfaces in the second horizontal rolling step H2 so that both sides bulge outward and have an elliptical cross section. Further, the bulging portions 4b on the upper and lower surfaces of the first corner R flat rolled material 4 are flattened in the second horizontal rolling step H2.
[0016]
This thin second oval rolled material 5 is the second vertical rolling step V2 in which both sides are squeezed to leave a part (corner) of the arc of the oval rolled material 5 at the corner 6a. A corner R flat rolled material (sheet thickness t4, width w4) 6 is formed. Next, in the third horizontal rolling step H3, the third corner R flat rolled material having a thickness t5 and a width w5) in which the upper and lower surfaces of the second corner R flat rolled material 6 are slightly crushed to leave R in the corner 7a. 7 to form. R of the corner 7a is substantially the same as R of the corner 6a of the corner R flat rolled material 6. In the final third horizontal rolling step H3, the appearance is improved by forming the wide upper and lower surfaces of the second corner R flat rolled material 6 into good flat surfaces. Therefore, the final third horizontal rolling process H3 is necessary. Thus, the corner R flat rolled material 7 is formed from the round bar material 2 by a 5-pass rolling process of H1-V1-H2-V2-H3. This corner R flat rolled material 7 is a product.
[0017]
When the predetermined corner R flat rolled material 7 is formed from the round bar material 2, the manufacturing process is a three-pass rolling of the first horizontal rolling process H1-first vertical rolling process V1-second horizontal rolling process H2. In this case, the rolled material 5 formed as shown in FIG. 1 (d) has an oval cross-sectional shape in which the left and right side portions bulge, resulting in poor molding. As described above, the last step of the rolling step is preferably a horizontal rolling step in order to make the wide upper and lower surfaces good planes. Therefore, the top of the 5-pass rolling is 7-pass rolling. However, adding the third vertical rolling process and the fourth horizontal rolling process after the third horizontal rolling process H3 in the fifth pass to form a seven-pass rolling is not necessary because it only increases the number of rolling processes. is there. Therefore, the 5-pass rolling process described above is sufficient.
[0018]
Now, as a result of various experiments in manufacturing the corner R flat rolled material while leaving a part of the outer shape (arc) of the round bar material 2 as described above, the inventors of the present application have found that the size (outer diameter) of the round bar material 2 is as follows. It was found that there is a correlation between the diameter of the base material) and the corner R of the corner R flat rolled material 7 as the final product. When the ratio (L1 / L2) of the outer peripheral length (L1) of the round bar material cross section to the outer peripheral length (L2) of the product cross section is defined as the peripheral length change rate (δ), the peripheral length change rate (δ) and the product For example, in the case of SUS304 described below, it has been found that there is a correlation as shown in the graph of FIG.
(Example)
SUS304 is used as a round bar material, corner R and four types of product corner R flat rolled material (product 1 to product 4) with different outer dimensions are manufactured by the above-mentioned 5-pass rolling, and data on the rate of change in circumference (δ) Asked. The experimental results are shown in Table 1.
[0019]
[Table 1]
Figure 2005000934
[0020]
Based on Table 1, the relationship between the product corner R and the perimeter change rate (δ) is shown in FIG.
Next, the case where the size (outer diameter) of the round bar material is determined when forming the flat rolled material of the corner R will be described.
First, the perimeter change rate (δ) for the required product corner R is obtained from the graph of FIG. The outer peripheral length L2 of the product cross section is known, and the outer peripheral length L1 of the cross section of the round bar material is L1 = δ × L2. Therefore, the size (outer diameter) D of the round bar material is D = (δ × L2) / Π. Thereby, an appropriate size (outer diameter) of the round bar material can be determined from the necessary product corner R.
[0021]
In addition, although the case where the product corner R flat rolled material 7 was manufactured from the round bar material 2 was described as being formed by hot rolling, it goes without saying that it may be formed by cold rolling.
Moreover, although the case where SUS304 was used as a round bar material was described in the said Example, it is not restricted to this, Of course, it can respond also to another material. In this case, the corner R of the product changes according to the material of the round bar material, but the first-order correlation between the peripheral length change rate (δ) and the corner R of the product as described above is maintained.
[0022]
【The invention's effect】
As described above, according to the present invention, the product corner R flat rolled material can be produced as it is by hot rolling as it is by the caliberless flat rolling using the small-diameter round bar material, and the workability is greatly improved. At the same time, the manufacturing equipment can be simplified. Furthermore, it is possible to manufacture with a small amount and a free size, and the manufacturing cost can be reduced.
[0023]
According to the invention of claim 2, it becomes possible to easily determine a round bar material of an appropriate size according to the product corner R, thereby improving workability.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a manufacturing process of a method for manufacturing a corner R flat rolled material according to the present invention.
FIG. 2 is a graph showing a relationship between a product corner R and a circumference change rate in the manufacturing method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Caliberless flat rolling mill 2 Round bar raw material 3 1st section oblong rolling material 4 1st thick corner R flat rolling material 5 2nd section oblong rolling material 6 2nd thin-walled corner R flat rolling material 7 Product Corner R flat rolled material H1, H2, H3 Horizontal rolling process V1, V2 Vertical rolling process

Claims (2)

平角圧延材のコーナにRを設けるコーナR平角圧延材の製造方法であって、
丸棒素材を、カリバレス圧延により第1の水平圧延、第1の垂直圧延、第2の水平圧延、第2の垂直圧延、第3の水平圧延の順に5パス圧延を行い、コーナがRの平角圧延材を製造することを特徴とするコーナR平角圧延材の製造方法。
A method of manufacturing a corner R flat rolled material in which R is provided at a corner of a flat rolled material,
A round bar material is subjected to 5-pass rolling in the order of first horizontal rolling, first vertical rolling, second horizontal rolling, second vertical rolling, and third horizontal rolling by Caliberless rolling. A method for producing a corner R flat rolled material, characterized by producing a rolled material.
前記丸棒素材のサイズは、該丸棒素材の断面の外周長と製品の断面の外周長との比に基づいて決めることを特徴とする請求項1記載のコーナR平角圧延材の製造方法。The method of manufacturing a corner R flat rolled material according to claim 1, wherein the size of the round bar material is determined based on a ratio of an outer peripheral length of a cross section of the round bar material and an outer peripheral length of a cross section of the product.
JP2003165339A 2003-06-10 2003-06-10 Method for manufacturing round corner flat square rolled material Withdrawn JP2005000934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165339A JP2005000934A (en) 2003-06-10 2003-06-10 Method for manufacturing round corner flat square rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165339A JP2005000934A (en) 2003-06-10 2003-06-10 Method for manufacturing round corner flat square rolled material

Publications (1)

Publication Number Publication Date
JP2005000934A true JP2005000934A (en) 2005-01-06

Family

ID=34091852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165339A Withdrawn JP2005000934A (en) 2003-06-10 2003-06-10 Method for manufacturing round corner flat square rolled material

Country Status (1)

Country Link
JP (1) JP2005000934A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220137A (en) * 2008-03-14 2009-10-01 National Institute For Materials Science Method of manufacturing steel strip or steel sheet
CN101564734B (en) * 2009-05-27 2011-04-06 重庆钢铁(集团)有限责任公司 High-speed wire finish-rolling process
JP2013052444A (en) * 2012-11-30 2013-03-21 National Institute For Materials Science Method of manufacturing steel strip or steel sheet
CN104001731A (en) * 2014-05-30 2014-08-27 福建三安钢铁有限公司 Method for controlling iron mould at outlet of intermediate rolling adopting complete pass-free rolling
CN104128367A (en) * 2014-07-15 2014-11-05 北京首特冶金设备技术有限公司 Short stress continuous rolling unit and system for rolling wide flat steel
JP2018065166A (en) * 2016-10-18 2018-04-26 明昌 陳 Wrench manufacturing process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220137A (en) * 2008-03-14 2009-10-01 National Institute For Materials Science Method of manufacturing steel strip or steel sheet
CN101564734B (en) * 2009-05-27 2011-04-06 重庆钢铁(集团)有限责任公司 High-speed wire finish-rolling process
JP2013052444A (en) * 2012-11-30 2013-03-21 National Institute For Materials Science Method of manufacturing steel strip or steel sheet
CN104001731A (en) * 2014-05-30 2014-08-27 福建三安钢铁有限公司 Method for controlling iron mould at outlet of intermediate rolling adopting complete pass-free rolling
CN104128367A (en) * 2014-07-15 2014-11-05 北京首特冶金设备技术有限公司 Short stress continuous rolling unit and system for rolling wide flat steel
JP2018065166A (en) * 2016-10-18 2018-04-26 明昌 陳 Wrench manufacturing process

Similar Documents

Publication Publication Date Title
JP5114688B2 (en) Method of forming metal member with excellent shape freezing property
JP2005000934A (en) Method for manufacturing round corner flat square rolled material
JP2002126825A (en) Apparatus and method for deforming and processing blank composed of rolled and flexible metal strip member
CN109475911B (en) Metal plate for press molding, method for manufacturing same, and method for manufacturing stamped part
JPH07148528A (en) Press forming method
JP2016078108A (en) Slab forging method
JPH11347601A (en) Method for rolling rough shape billent
JP2010174617A (en) Method of manufacturing sink for sink cabinet
JP2003010902A (en) Method for rough rolling h-section steel
EP0916429B1 (en) Method and device for forming a side wall on a base plate
JP3371641B2 (en) Manufacturing method of stepped cylindrical fittings
JP2004154853A (en) Production method for plastic workpiece
CN207402019U (en) A kind of urgent guide rail
JP2738280B2 (en) Manufacturing method of external constant parallel flange channel steel
JP2970504B2 (en) Rolling method of constant parallel flange channel steel with external method
Fann et al. Finite element analysis of rolling process to locally thin metal strips
JP2004322105A (en) Method for manufacturing wide flange shape and grooved roll
JP4016733B2 (en) Rolling method for narrow flange width H-section steel
JPH09285825A (en) Press molding method for square pipe parts
JP2004300735A (en) Building board
JP2000135520A (en) Press forming die equipment
JP2008155262A (en) Method of manufacturing flat bar
JPH04344820A (en) Manufacture of wide width member by extrusion molding method and wide width member
JP3865929B2 (en) Roll structure of forming roll machine
JP3606249B2 (en) Rolling method of shape steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060426

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070107