JP2005000889A - Filter medium for fixed bed of sewage treatment tank and nitrogen removal method using the same - Google Patents

Filter medium for fixed bed of sewage treatment tank and nitrogen removal method using the same Download PDF

Info

Publication number
JP2005000889A
JP2005000889A JP2003170360A JP2003170360A JP2005000889A JP 2005000889 A JP2005000889 A JP 2005000889A JP 2003170360 A JP2003170360 A JP 2003170360A JP 2003170360 A JP2003170360 A JP 2003170360A JP 2005000889 A JP2005000889 A JP 2005000889A
Authority
JP
Japan
Prior art keywords
filter medium
sewage
treatment tank
anaerobic
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003170360A
Other languages
Japanese (ja)
Inventor
Tomio Hatta
富夫 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEST TECH KK
Original Assignee
BEST TECH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEST TECH KK filed Critical BEST TECH KK
Priority to JP2003170360A priority Critical patent/JP2005000889A/en
Publication of JP2005000889A publication Critical patent/JP2005000889A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter medium which can be used for the formation of an anaerobic filter bed and an aerobic filter bed, can be manufactured at a low price, can surely retain an anaerobic area inside even when used under an aerobic environment, and can efficiently carry out a denitrification action. <P>SOLUTION: In the filter medium for fixed bed in a sewage treatment tank where tabular filter media are parallelly disposed in the sewage tank using microorganisms so as to leave a space of 40 mm to 100 mm between them for carrying out both or either of removal of organic substances in sewage and denitrification, the tabular filter medium is made of an open-cell foam having a thickness of 10 mm to 100 mm, and the number of bubbles in the open-cell foam is 10-40 per inch. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば汚水の合併処理槽等の固定濾床を形成する固定床用濾材と、これを用いた汚水中の窒素除去方法の改良に関するものである。
【0002】
【従来の技術】
従前から、中規模以下の合併処理槽に於いては、図4に示すような上流側(前段)の嫌気性濾床槽Aと下流側(後段)の好気性処理槽Bとを組み合せた方式が多く採用されており、前段の嫌気性濾床槽Aには、立体骨格様や立体網様等のプラスチック製嫌気処理濾材Dが充填されていて、ここで汚水中の有機固形物の可溶化、低分子化及び汚泥のメタンガス化による減溶化等が行われると共に、後段の好気性処理槽Bに於いてアンモニア性窒素成分が硝化された汚水の一部Cを受け入れして、嫌気処理濾材に付着した脱窒素菌の働きにより、汚水内の前記アンモニア性窒素成分の硝化物である硝酸性窒素や亜硝酸性窒素をガス化分解することにより、窒素成分の除去が行われている。
【0003】
また、前記後段の好気性処理槽Bには、プラスチック製波板から成る濾床材が充填された接触曝気方式や流動担体を流動させる担体流動曝気方式、生物濾過層を形成した生物濾過方式等の各種の方式が適宜に用いられており、何れの方式に於いても、処理槽Bの下部に散気装置を設けて送風機からの空気を処理槽B内へ供給することにより、充填された好気性濾床材の表面に好気性微生物を付着増殖させ、汚水C内の有機物の分解並びにアンモニア性窒素成分の硝化等を行なわさせることによって、BOD、COD並びに必要な場合には窒素を所定の濃度以下に低減させたあと、処理済み水Cを公共水域へ放出するようにしている。
【0004】
更に、中規模以上の合併処理槽では、図5に示すように嫌気処理槽Aを省いて好気性処理槽Bのみを設け、処理槽B内にスポンジ製担体Sを充填してこれを曝気流動させると共に、スポンジ製担体Sに好気性部分(外表面部)と嫌気性部分(内方部)とを共存させ、これによって前記有機物の分解除去と脱窒素反応を処理槽B内で同時に行うようにした方式のものが利用されている(特開平4−94800号等)。
【0005】
ところで、前記何れの方式を採用するにしても、生物学的処理により汚水中の窒素を除去するためには、公知の数1に示すようなアンモニア態窒素を硝酸態窒素又は亜硝酸態窒素に硝化(酸化)する反応(工程)と、硝化された硝酸態窒素又は亜硝酸態窒素を嫌気性条件下で還元して脱窒素を行わせる反応(工程)とを同時に進行させる必要がある。
(数1)
NH +O→NO N+HO+2H(硝化反応)
NO+C12 →N+CO+HO(脱窒素反応)
【0006】
ところで、上記数1の硝化反応の速度は、硝化菌の量に比例する。また脱窒素反応の速度は嫌気性菌の量に比例する。そのため、各処理槽A、B内に如何に多くの菌体(微生物)を保持することが出来るかが、反応効率に大きく影響することになる。
【0007】
しかし、従来から一般的に使用されている嫌気処理濾材Dでは、嫌気性菌を有効に保持することが難しく、特に嫌気性濾床槽Aの前段部(上流側部分)では、流入汚水C自身が含有する溶存酸素と、好気性処理槽Bから返送されてくる汚水Cに含有されている多量の溶存酸素とにより、汚水の容存酸素が約0.1mg/l程度の高い値となる。その結果、嫌気性濾床槽A内を完全な嫌気状態に維持することが出来ず、前述の通り必要量の嫌気性菌を有効に保持することが困難となる。
【0008】
同様に、嫌気性濾床槽A内の後段部(下流側部分)に於いても、前段部から持ち込まれた汚水内の溶存酸素が残留するうえ、嫌気処理濾材Dの汚泥の捕捉性能が低いため、嫌気処理濾材Dの内方部でも酸化還元電位をマイナス側に維持することが出来ない。その結果効率のよい脱窒素能力を発揮し且つこれを維持することが出来ないと云う問題がある。
【0009】
また、前記図5の処理方式に於いても、好気性処理槽B内へ充填するスポンジ製担体Sにより有機物の除去と脱窒素の両方を同時に行うことが出来るものの、スポンジ製担体そのものが流動するため、衝突や接触による担体の摩耗や好気性微生物膜の剥離が発生し、安定した汚水処理を行い難いと云う問題がある。
【0010】
【発明が解決しようとする課題】
本発明は、従前のこの種合併処理槽の濾床用濾材に於ける上述の如き問題、即ち▲1▼図4の嫌気性濾床槽Aと好気性処理槽Bとを組み合せる方式の処理装置に於いては、嫌気性濾床槽Aの嫌気処理濾材Dの微生物保持能力が低いうえ、溶存酸素の影響もあって嫌気性濾床の内方部でも酸化還元電位をマイナス側に維持することが困難となり、効率のよい脱窒素能力を維持することが困難なこと、及び▲2▼図5に示す好気性処理槽B内にスポンジ製担体Sを充填する方式の処理装置に於いては、スポンジ製担体Sが流動時に接触したり衝突することにより、担体自体の摩耗や好気性微生物膜の剥離が生じて安定した汚水処理が行い難いこと、等の問題を解決せんとするものであり、所定の厚さの連続気泡体から成る板状体又は筒状体を固定床用濾材とすることにより、嫌気性濾床槽Aに用いた場合には、優れた嫌気性菌の保持力と汚泥の捕捉力によって高い脱窒素性能を発揮することが出来、また、好気性処理槽Bに用いた場合には、より安価な濾床用濾材でもって高能率な有機物の除去と脱窒素とを行えるようにした、汚水処理槽の固定床用濾材とこれを用いた窒素の除去方法を提供するものである。
【0011】
【課題を解決するための手段】
本願発明者は、前記従前の嫌気性濾床槽Aに用いる嫌気処理濾材Dの問題点を解決するものとして、先に図6に示す如き形態の固定床用濾材を開発し、これを特願2002−239340号として公開している。
即ち、当該嫌気処理濾床に用いる濾材21は、濾材本体22と網状骨格体23とから形成されていて、前者の濾材本体22は連続気泡体により内径D=30〜150mm、長さL=30〜200mm、厚さT=5〜50mmの円筒形に形成されている。
また、連続気泡体としては、気泡の大きさが1インチ当り10〜40個(10〜40PPi)のスポンジが使用されている。
【0012】
前記網状骨格体23は合成樹脂製であって、濾材本体2の外側(又は内側でも良い)に設けられており、濾材本体22の形状を維持する機能を果している。
【0013】
前記図6に示した濾材21は嫌気濾床用の濾材として開発されたものであるが、これを用いた各種の汚水処理試験の結果から、当該濾材21は、その外部表面又は内部表面の汚水内の溶存酸素量が如何に高くなっても(例えば、曝気式の好気性処理槽内の溶存酸素濃度と同等か或いはそれ以上の溶存酸素濃度になっても)、濾材内部に酸化還元電位が−50mv以下の嫌気性部分を確保することが可能なものであることを知得した。
【0014】
本願発明は、前記嫌気処理濾材として開発した前記濾材21に関する知得を基にしてこれに各種の改良を加えることにより、嫌気濾床用濾材としてだけではなく、好気性処理槽Bの濾床用濾材としても、或いは従前のスポンジ担体を用いた有機物の除去と脱窒素とを同時に行うようにした好気性処理槽Bの濾材としても、利用可能な濾床用濾材を開発したものである。
【0015】
即ち、一般に嫌気性濾床槽Aの場合には、固定濾床を通過する汚水は上向流又は下向流の何れかであり、しかも汚水の流速は滞留時間が長いために5〜30cm/時間と極めて遅い。その結果、固定濾床の濾材として網状円筒体や骨格球状体、多孔質材円筒等の濾材が不規則に充填されていても、汚物や微生物汚泥等によって濾床が閉塞されることは殆どない。
その結果、本願発明に係る固定床用濾材は、従前の嫌気性濾床槽Aの嫌気処理用濾材と同様に、嫌気性濾床槽の濾材として適用することができる。
【0016】
これに対して、好気性処理槽Bの場合には、処理槽B内に板状体を縦向きに配列し、その外表面に汚水を接触させつつ流動させると、板状濾材の表面に微生物膜が急速に増殖し、所謂板状濾材相互の間に閉塞が起生し易くなる。
そのため、接触濾材(板状濾材)の表面に添って乱流空気を均等に供給したり、或いは溶存酸素を十分に含んだ汚水を10cm/秒以上の流速で循環流動させる等の方法により、微生物膜の急速な増殖(肥厚)を押えて板状濾材の間隙の閉塞を防止する必要がある。
尚、前記好気性環境下に於ける板状濾材表面の微生物膜の増殖速度は、処理対象汚水のBOD濃度が高いほど早くなる。
【0017】
本願発明者は、合併処理槽の最も一般的な汚水BOD濃度が200〜300mg/lの汚水を用いた試験を行うことにより、本願発明の板状連続気泡体を濾材とした場合に、閉塞を起さない板状濾材間隔の最適値が約80mmであること、また、三次処理等に於けるBOD濃度が20〜50mg/lの汚水の場合には、前記最適な板状濾材間隔が約40mmであることを見出した。
【0018】
即ち、連続発砲体から成る板状濾材を合併処理槽の好気性処理槽Bへ適用する場合には、板状濾材の間隔を40〜100mmに設定して縦向きの平行に配列することにより、好気性処理槽の接触濾材を形成することが最良の方策であることを見出した。
勿論、この40〜100mmの間隔で平行に配列した連続気泡体の板状体から成る好気性接触濾材は、云うまでもなく前記図4及び図5の好気性処理槽Bの接触濾材としてだけでなく、図4の嫌気性濾床槽Aの嫌気処理濾材Dとしても用いることが出来るものである。
【0019】
また、連続気泡体から成る板状濾材内を伝わる汚水中の溶存酸素の速度(即ち拡散速度)は、連続気泡体の気泡の大きさに比例する。本願発明者は前記各試験の結果から、気泡サイズ(セルサイズ)が30〜40PPi(1インチ当り30〜40個の気泡が連続的に並んでいる状態の気泡の大きさ)のウレタンフォームの場合、最も効率よく板状体の外部を好気性部分に、またその内部を嫌気性部分に夫々形成できるスポンジ厚さは、約12mmであることを知得した。
【0020】
本発明は、上記連続気泡体から成る板状濾材を用いた各試験により得られた知見に基づいて創作されたものであり、請求項1の発明は、微生物による汚水処理槽の内部に40mm以上100mm以下の間隔を置いて板状の濾材を平行に配列し、汚水内の有機物の除去と脱窒素の両方又は何れか一方を行う汚水処理槽の固定床用濾材に於いて、前記板状濾材を厚さが10mm以上100mm以下の連続気泡体から形成すると共に、当該連続気泡体の気泡の数を1インチ当り10〜40個としたことを発明の基本構成とするものである。
【0021】
請求項2の発明は、微生物による汚水処理槽の内部に40mm以上100mm以下の間隔を置いて筒状の濾材を縦向きに配列し、汚水内の有機物の除去と脱窒素の両方又は何れかを行う汚水処理槽の固定床用濾材に於いて、前記筒状の濾材を厚さが10mm以上100mm以下の連続気泡体から成る内径が40mm以上100mm以下の円筒体又は対向する内辺間の距離が40mm以上100mm以下の角筒体から形成すると共に、前記連続気泡体の気泡の数を1インチ当り10〜40個としたことを発明の基本構成とするものである。
【0022】
請求項3の発明は、請求項1又は請求項2の発明に於いて、汚水処理槽を、底部に散気装置を設けた曝気処理機能を有する処理槽とするようにしたものである。
【0023】
請求項4の発明は、請求項1乃至請求項3の固定床用濾材を用いて汚水中の窒素を除去するようにしたことを発明の基本構成とするものである。
【0024】
【発明の実施の形態】
図1は、本発明に係る板状の固定床用濾材の実施形態を示す斜面図であり、図に於いて1は連続気泡体から成る板状濾材、2は保形支持体、2aは縦桟、2bは横桟である。
【0025】
前記板状濾材1はスポンジ等の連続気泡体(連続気泡多孔体)により製作されており、厚さTが10〜100mm長さLが300〜1500mm、横幅Wが800〜1500mmに選定されている。
尚、上記L、Wは固定濾床を適用する処理槽の容量に応じて適宜に選定可能なものである。
また、連続気泡体の材質は如何なるものであってもよくポリエチレンやポリウレタン等の合成樹脂製連続気泡体が望ましい。
更に、板状濾材1の気泡の大きさは、1インチ当り10〜40個(10〜40PPi)に選定されている。
【0026】
前記板状濾材1の厚さが10mm以下及び気泡の大きさが10PPi以下では、嫌気性菌を多量に保持出来ないだけでなく、好気性環境下で使用する場合に於いては、その内部に所望量の嫌気性菌を保持することが困難となり、所謂嫌気部分を内部に形成することが出来なくなる。その結果脱窒素反応を効率よく行うことが不可能となる。
また、逆に、厚さTが100mmを越えると、汚水中の固形物や内部に保持された嫌気性菌等による閉塞が発生し易くなる。
その結果、汚水中の固形物濃度や濾材通過速度等を考慮して、板状濾材の前記厚さTは10〜100mm、気泡の大きさは10〜40PPi位が最適となる。
【0027】
前記保形支持体2は適宜のピッチで配設した縦桟2aと横桟2bとから形成されており、板状濾材1の形状を保持すると共に、これ等の板状濾材1を複数枚並列状に且つ一定の間隔(40〜100mm)で配列・組合せして固定濾床を形成する際に、支持枠の機能を果すものである。
尚、保形支持体2は合成樹脂により形成されているが、その材質や形状は任意に選定可能なものである。
また、保形支持体2は、板状体の一側面のみに設けて、その一側面だけを保持する構造としてもよい。
【0028】
図2は本発明の第2実施形態に依る連続気泡体から成る筒形濾材を示す斜面図である。図2に於いて、1’は筒形濾材、2’は保形支持体であり、連続気泡体から成る筒形濾材1’の厚さT及び気泡の大きさは、前記板状体1の場合と同じ理由により、厚さTは10〜100mm、気泡の大きさは10〜40PPiに選定されている。
【0029】
また、筒形濾材1’の内径は40〜100mmに選定されている。内径を40mm以下とした場合には、前述したように好気性環境下で使用した場合に内部に閉塞を生ずる虞れがあるからであり、また、100mm以上とした場合には、汚水と濾材表面との接触性が低下するからである。
【0030】
尚、図2の実施形態では保形支持体2’を筒状濾材1’の内方へ挿着しているが、これを外側のみへ挿着してもよく、或いは内側と外側の両方へ挿着するようにしてもよい。
また、図2の実施形態では筒状濾材を円筒形としているが、円筒形に替えて角筒形(例えば四角筒)としてもよいことは勿論であり、その場合には、閉塞を防止する観点から対向する内側辺間の寸法を40〜100mmにする必要がある。
【0031】
更に、図1に図2の実施形態に於いては、保形保持体2、2’を使用しているが、当該保形保持体2、2’の使用を排しても良いことは勿論である。
【0032】
図3は本発明に依る固定床用濾材を適用した小形合併処理槽の縦断面概要図であり、図3に於いて3は槽本体、4は夾雑物除去槽、5は汚泥貯留槽(又は嫌気槽)、6は嫌気・好気曝気槽、7は消毒槽、8は処理水槽、9は汚水入口、10は放流管、11は散気管、12は清掃口、13は嫌気濾材、14は固定床濾材である。
尚、図3に示した合併処理槽そのものは公知であるため、ここではその構造及び作用についての詳細な説明は省略する。
【0033】
本発明に依る板状濾材1は、嫌気・好気曝気槽6の固定床濾材14の形成に使用されており、図3の実施形態に於いては、6枚の板状濾材を40mm以上100mm以下(現実には約80mm)の間隔を置いて縦向きに平行に配列し、形成されている。
【0034】
尚、筒形濾材1’を組み合せて固定床濾材を形成する場合には、筒形濾材1’相互間の最狭部の寸法を40mm〜100mmの間に選定しなければならないことは、閉塞の防止及び接触効率の維持を図る上から当然のことである。
また、図3の実施形態に於いては、汚泥貯留槽5内に濾材を配置していないが、ここに点線で示すように嫌気固定濾床13を配置しても良いことは勿論であり、この場合には嫌気固定濾床13の構成材として、従前の嫌気濾材に替えて本願発明の板状濾材1や筒状濾材1’を使用することが可能である。
【0035】
図3の小型合併処理槽(5人槽)を用いた実稼動試験の結果によれば、嫌気・好気曝気槽6内へ装着した本発明に依る板状濾材1からなる固定濾床により、流入汚水のBOD濃度を93%以上除去することができると共に、約80%以上の脱窒素が可能なことが確認されている。
【0036】
【発明の効果】
本発明に於いては、気泡の大きさを適宜に選定した連続気泡体から成る板状濾材や筒状濾材を所定の間隔で組付けるだけで、極めて安価に固定用濾床を形成することができ、合併処理槽の製造コストの大幅な引き下げが可能となる。
また、本発明に於いては、前記板状濾材や筒状濾材を所定の間隔で組付けるようにしているため、固定床濾材を好気性環境下で使用しても濾材に閉塞が起生せず、しかも濾材の内部を確実に嫌気性領域として保持することができるため、脱窒素反応を効率よく行わせることが出来る。その結果、合併処理槽の大幅な小型化と低コスト化が可能となる。
更に、本発明に依る固定床用濾材は、好気性濾床だけでなく嫌気濾床にも適用することができ、優れた実用的効用を有するものである。
【図面の簡単な説明】
【図1】本発明に依る板状濾材の一実施形態を示す斜面図である。
【図2】本発明に依る筒状濾材の一実施形態を示す斜面図である。
【図3】本発明に依る板状濾材を用いて形成した固定床濾材を用いた合併処理槽の一例を示す縦断面概要図である。
【図4】従前の嫌気性濾床槽を好気性処理槽を組み合せた汚水処理ユニットの説明図である。
【図5】従前のスポンジ型担体を用いた脱窒素式好気性処理ユニットの説明図である。
【図6】先願に依る連続気泡体を用いた嫌気濾材の斜面図である。
【符号の説明】
1 連続気泡体から成る板状濾材
1’ 連続気泡体から成る筒状濾材
2 保形支持体
2’ 保形支持体
2a 縦桟
2a’〃
2b 横桟
2b’〃
3 槽本体
4 夾雑物除去槽
5 汚泥貯留槽
6 嫌気・好気曝気槽
7 消毒槽
8 処理水槽
9 汚水入口
10 放流管
11 散気管
12 清掃口
13 嫌気濾材
14 固定床濾材(嫌気・好気濾材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fixed bed filter medium for forming a fixed filter bed such as a combined treatment tank for sewage, for example, and an improvement in a method for removing nitrogen in sewage using the filter medium.
[0002]
[Prior art]
Conventionally, in a merger processing tank of a medium scale or smaller, a method in which an upstream (front stage) anaerobic filter bed tank A and a downstream (back stage) aerobic processing tank B as shown in FIG. 4 are combined. The anaerobic filter bed tank A in the previous stage is filled with a plastic anaerobic filter medium D such as a three-dimensional skeleton-like or three-dimensional net-like, and solubilizes organic solids in sewage In addition, low molecular weight and sludge reduction by methane gasification, etc. are performed, and part C 2 of the sewage in which ammonia nitrogen component is nitrified is received in the aerobic treatment tank B in the subsequent stage, and the anaerobic treatment filter medium The nitrogen component is removed by gasifying and decomposing nitrate nitrogen or nitrite nitrogen, which is a nitrification product of the ammonia nitrogen component in sewage, by the action of denitrifying bacteria attached to the sewage.
[0003]
The aerobic treatment tank B in the latter stage is a contact aeration method filled with a filter bed material made of plastic corrugated plate, a carrier flow aeration method for flowing a fluid carrier, a biofiltration method in which a biofiltration layer is formed, etc. The various methods are used appropriately, and in any method, the air is supplied by supplying air from the blower into the processing tank B by providing an air diffuser at the lower part of the processing tank B. deposited grow aerobic microorganisms on the surface of the aerobic filter bed material, by creating perform nitrification like decomposition and ammonia nitrogen component of the organic material in the sewage C 1, BOD, nitrogen if COD and necessary given after having reduced the concentration below, so that to release the treated water C 3 to public waters.
[0004]
Furthermore, in the merger processing tank of medium or larger scale, as shown in FIG. 5, the anaerobic processing tank A is omitted and only the aerobic processing tank B is provided, the processing tank B is filled with the sponge carrier S, and this is aerated and flowed. At the same time, the aerobic part (outer surface part) and the anaerobic part (inward part) are allowed to coexist in the sponge carrier S so that the organic substance can be decomposed and removed in the treatment tank B simultaneously. A system of the above type is used (JP-A-4-94800, etc.).
[0005]
By the way, no matter which method is adopted, in order to remove nitrogen in sewage by biological treatment, ammonia nitrogen as shown in Formula 1 is converted to nitrate nitrogen or nitrite nitrogen. It is necessary to proceed simultaneously with a reaction (step) for nitrification (oxidation) and a reaction (step) for reducing nitrated nitrate or nitrite nitrogen under anaerobic conditions to perform denitrification.
(Equation 1)
NH 4 - + O 2 → NO X - N + H 2 O + 2H + ( nitrification)
NO X + C 6 H 12 O 5 → N 2 + CO 2 + H 2 O (denitrogenation reaction)
[0006]
By the way, the rate of the nitrification reaction of Equation 1 is proportional to the amount of nitrifying bacteria. The rate of denitrification reaction is proportional to the amount of anaerobic bacteria. Therefore, how many cells (microorganisms) can be held in each of the treatment tanks A and B greatly affects the reaction efficiency.
[0007]
However, in the anaerobic treatment filter medium D that has been generally used in the past, it is difficult to effectively retain anaerobic bacteria. In particular, in the front part (upstream part) of the anaerobic filter bed A, the inflow sewage C 0 Due to the dissolved oxygen contained in itself and the large amount of dissolved oxygen contained in the sewage C 2 returned from the aerobic treatment tank B, the dissolved oxygen contained in the sewage is as high as about 0.1 mg / l. Become. As a result, the inside of the anaerobic filter bed tank A cannot be maintained in a complete anaerobic state, and it becomes difficult to effectively retain the necessary amount of anaerobic bacteria as described above.
[0008]
Similarly, in the rear part (downstream part) in the anaerobic filter bed tank A, the dissolved oxygen in the sewage brought from the front part remains and the sludge trapping performance of the anaerobic filter medium D is low. For this reason, the oxidation-reduction potential cannot be maintained on the negative side even in the inner portion of the anaerobic filter medium D. As a result, there is a problem that an efficient denitrification ability is exhibited and cannot be maintained.
[0009]
In the treatment method of FIG. 5 as well, although the removal of organic substances and denitrification can be performed simultaneously by the sponge carrier S filled in the aerobic treatment tank B, the sponge carrier itself flows. For this reason, there is a problem that it is difficult to perform stable sewage treatment due to wear of the carrier due to collision or contact and peeling of the aerobic microorganism film.
[0010]
[Problems to be solved by the invention]
The present invention has the above-mentioned problems in the filter medium for filter bed of this conventional combined treatment tank, that is, (1) the treatment of the method of combining the anaerobic filter bed tank A and the aerobic treatment tank B of FIG. In the apparatus, the anaerobic filter medium D of the anaerobic filter bed tank A has a low ability to retain microorganisms and is also affected by dissolved oxygen, so that the redox potential is maintained on the negative side even in the inner part of the anaerobic filter bed. It is difficult to maintain an efficient denitrification capacity, and (2) in the processing apparatus of the system in which the sponge carrier S is filled in the aerobic processing tank B shown in FIG. The sponge carrier S comes into contact with or collides with the fluid, and the carrier itself wears off and the aerobic microbial membrane peels off, making it difficult to perform stable sewage treatment. Fix a plate or cylinder consisting of open cells with a predetermined thickness When used in an anaerobic filter bed tank A, it can exhibit high denitrification performance due to its excellent anaerobic bacteria retention and sludge trapping power, and an aerobic treatment When used in tank B, it is possible to remove organic matter and denitrify with high efficiency by using a cheaper filter medium for filter bed, and to remove nitrogen using the filter medium for fixed bed of sewage treatment tank. A method is provided.
[0011]
[Means for Solving the Problems]
The inventor of the present application has previously developed a filter material for a fixed bed as shown in FIG. 6 as a solution to solve the problems of the anaerobic filter medium D used in the conventional anaerobic filter bed tank A. Released as 2002-239340.
That is, the filter medium 21 used for the anaerobic treatment filter bed is formed of a filter medium main body 22 and a reticulated skeleton body 23. The former filter medium main body 22 has an inner diameter D = 30 to 150 mm and a length L = 30 by an open cell body. It is formed in a cylindrical shape having a thickness of ˜200 mm and a thickness T = 5 to 50 mm.
As the open cell body, a sponge having 10 to 40 bubbles (10 to 40 PPi) per inch is used.
[0012]
The net-like skeleton body 23 is made of a synthetic resin and is provided on the outer side (or on the inner side) of the filter medium main body 2 and functions to maintain the shape of the filter medium main body 22.
[0013]
The filter medium 21 shown in FIG. 6 has been developed as a filter medium for anaerobic filter beds. From the results of various sewage treatment tests using the filter medium 21, the filter medium 21 has sewage on its external surface or internal surface. No matter how high the amount of dissolved oxygen in the inside (for example, the dissolved oxygen concentration in the aerobic aeration tank is equal to or higher than the dissolved oxygen concentration), the oxidation-reduction potential inside the filter medium It was found that an anaerobic part of −50 mv or less can be secured.
[0014]
The present invention is not only used as a filter medium for an anaerobic filter bed, but also for a filter bed of an aerobic treatment tank B by adding various improvements to the knowledge about the filter medium 21 developed as the anaerobic filter medium. The filter medium for filter bed which can be used also as a filter medium or as a filter medium of the aerobic processing tank B in which removal of organic substances and denitrification using a conventional sponge carrier are simultaneously performed has been developed.
[0015]
That is, in general, in the case of the anaerobic filter bed A, the sewage passing through the fixed filter bed is either an upward flow or a downward flow, and the flow rate of the sewage is 5 to 30 cm / Very slow with time. As a result, even if a filter medium such as a net-like cylinder, a skeleton sphere, or a porous material cylinder is irregularly packed as a filter medium of the fixed filter bed, the filter bed is hardly clogged with filth or microbial sludge. .
As a result, the fixed-bed filter medium according to the present invention can be applied as the filter medium of the anaerobic filter bed tank, similarly to the filter medium for anaerobic treatment of the conventional anaerobic filter bed tank A.
[0016]
On the other hand, in the case of the aerobic treatment tank B, when the plate-like bodies are arranged vertically in the treatment tank B and the sewage is made to flow while contacting the outer surface, microorganisms are formed on the surface of the plate-like filter medium. Membranes grow rapidly and clogging is likely to occur between so-called plate-shaped filter media.
Therefore, microorganisms can be obtained by supplying turbulent air evenly along the surface of the contact filter medium (plate-shaped filter medium) or circulating and flowing sewage containing sufficient dissolved oxygen at a flow rate of 10 cm / second or more. It is necessary to prevent rapid clogging (thickening) of the membrane and block the gap between the plate-like filter media.
Note that the growth rate of the microbial membrane on the surface of the plate-shaped filter medium in the aerobic environment increases as the BOD concentration of the wastewater to be treated increases.
[0017]
The inventor of the present application conducts a test using sewage having the most common sewage BOD concentration of 200 to 300 mg / l in the combined treatment tank, so that clogging occurs when the plate-like open cell body of the present invention is used as a filter medium. The optimum value of the interval between the plate-like filter media that does not occur is about 80 mm, and in the case of sewage with a BOD concentration of 20 to 50 mg / l in the tertiary treatment, the optimum interval between the plate-like filter media is about 40 mm. I found out.
[0018]
That is, when applying a plate-shaped filter medium composed of continuous foams to the aerobic processing tank B of the combined processing tank, by setting the interval of the plate-shaped filter medium to 40 to 100 mm and arranging them in parallel in the vertical direction, It has been found that forming the contact filter medium of the aerobic treatment tank is the best policy.
Needless to say, the aerobic contact filter medium composed of the plate-like bodies of open cells arranged in parallel at intervals of 40 to 100 mm is, of course, only as the contact filter medium of the aerobic treatment tank B of FIGS. The anaerobic filter medium D of the anaerobic filter bed tank A in FIG.
[0019]
In addition, the rate of dissolved oxygen (ie, diffusion rate) in the sewage passing through the plate-shaped filter medium made of open cells is proportional to the size of the open cells. Based on the results of the above tests, the inventor of the present invention has a case of urethane foam having a cell size (cell size) of 30 to 40 PPi (a size of cells in which 30 to 40 cells per inch are continuously arranged). It has been found that the thickness of the sponge that can most efficiently form the outside of the plate-like body into the aerobic part and the inside into the anaerobic part is about 12 mm.
[0020]
The present invention was created based on the knowledge obtained by each test using the plate-shaped filter medium composed of the above-mentioned open cell body, and the invention of claim 1 is 40 mm or more inside the sewage treatment tank by microorganisms. In a filter medium for a fixed bed of a sewage treatment tank in which plate-like filter media are arranged in parallel at intervals of 100 mm or less, and organic substances in sewage are removed and / or denitrified, the plate-like filter media Is formed from an open cell having a thickness of 10 mm or more and 100 mm or less, and the number of bubbles in the open cell is set to 10 to 40 per inch.
[0021]
The invention of claim 2 arranges the cylindrical filter media in a vertical direction with an interval of 40 mm or more and 100 mm or less inside the sewage treatment tank by microorganisms, and removes or removes organic matter in the sewage or any one of them. In the fixed bed filter medium of the sewage treatment tank to be performed, the cylindrical filter medium has a cylindrical body having an inner diameter of 40 mm or more and 100 mm or less, or a distance between opposing inner sides of the cylindrical filter medium having a thickness of 10 mm or more and 100 mm or less. The basic structure of the present invention is to form a square cylinder of 40 mm or more and 100 mm or less and to set the number of bubbles in the open cell to 10 to 40 per inch.
[0022]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the sewage treatment tank is a treatment tank having an aeration function provided with a diffuser at the bottom.
[0023]
According to a fourth aspect of the present invention, the basic constitution of the present invention is that nitrogen in the sewage is removed by using the fixed-bed filter medium according to the first to third aspects.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a perspective view showing an embodiment of a plate-shaped fixed-bed filter medium according to the present invention. In the figure, 1 is a plate-shaped filter medium composed of open-cell bodies, 2 is a shape-retaining support, and 2a is a vertical support. The crosspieces 2b are horizontal crosspieces.
[0025]
The plate-shaped filter medium 1 is made of an open cell body (open cell porous body) such as a sponge, and the thickness T is selected to be 10 to 100 mm, the length L is 300 to 1500 mm, and the lateral width W is 800 to 1500 mm. .
In addition, said L and W can be suitably selected according to the capacity | capacitance of the processing tank to which a fixed filter bed is applied.
Moreover, any material may be used for the open cell, and an open cell made of synthetic resin such as polyethylene or polyurethane is desirable.
Furthermore, the size of the bubbles of the plate-shaped filter medium 1 is selected to be 10 to 40 (10 to 40 PPi) per inch.
[0026]
When the thickness of the plate-shaped filter medium 1 is 10 mm or less and the size of the bubbles is 10 PPi or less, not only a large amount of anaerobic bacteria can be retained, but also when used in an aerobic environment, It becomes difficult to retain a desired amount of anaerobic bacteria, and so-called anaerobic portions cannot be formed inside. As a result, it becomes impossible to perform the denitrification reaction efficiently.
On the other hand, when the thickness T exceeds 100 mm, clogging due to solid matter in the sewage or anaerobic bacteria held inside tends to occur.
As a result, considering the solid matter concentration in the sewage, the filter medium passing speed, etc., the thickness T of the plate-shaped filter medium is 10 to 100 mm, and the bubble size is optimally about 10 to 40 PPi.
[0027]
The shape-retaining support 2 is formed of vertical bars 2a and horizontal bars 2b arranged at an appropriate pitch, and maintains the shape of the plate-like filter medium 1 and a plurality of these plate-like filter media 1 are arranged in parallel. When the fixed filter bed is formed by arranging and combining them at regular intervals (40 to 100 mm), the function of the support frame is achieved.
In addition, although the shape-retaining support 2 is made of a synthetic resin, the material and shape thereof can be arbitrarily selected.
Further, the shape-retaining support 2 may be provided on only one side of the plate-like body and hold only one side.
[0028]
FIG. 2 is a perspective view showing a cylindrical filter medium made of open cell bodies according to a second embodiment of the present invention. In FIG. 2, 1 ′ is a cylindrical filter medium, 2 ′ is a shape-retaining support, and the thickness T of the cylindrical filter medium 1 ′ composed of open cells and the size of the bubbles are the same as those of the plate-shaped body 1. For the same reason as above, the thickness T is selected to be 10 to 100 mm, and the bubble size is selected to be 10 to 40 PPi.
[0029]
The inner diameter of the cylindrical filter medium 1 ′ is selected to be 40 to 100 mm. If the inner diameter is set to 40 mm or less, there is a possibility of clogging inside when used in an aerobic environment, as described above. This is because the contact property with the lowers.
[0030]
In the embodiment of FIG. 2, the shape-retaining support 2 ′ is inserted inward of the cylindrical filter medium 1 ′, but it may be inserted only on the outer side, or both on the inner side and the outer side. You may make it insert.
Further, in the embodiment of FIG. 2, the cylindrical filter medium is cylindrical, but it is needless to say that the cylindrical filter medium may be a rectangular tube (for example, a rectangular tube) instead of the cylindrical shape. It is necessary to make the dimension between the inner sides facing each other from 40 to 100 mm.
[0031]
Further, in the embodiment of FIG. 2 in FIG. 1, the shape retaining body 2, 2 ′ is used, but it is needless to say that the use of the shape retaining body 2, 2 ′ may be omitted. It is.
[0032]
FIG. 3 is a schematic vertical sectional view of a small merged processing tank to which a fixed bed filter medium according to the present invention is applied. In FIG. 3, 3 is a tank body, 4 is a contaminant removal tank, and 5 is a sludge storage tank (or (Anaerobic tank), 6 is an anaerobic / aerobic aeration tank, 7 is a disinfection tank, 8 is a treated water tank, 9 is a sewage inlet, 10 is a discharge pipe, 11 is an aeration pipe, 12 is a cleaning port, 13 is an anaerobic filter medium, 14 It is a fixed bed filter medium.
Since the merge processing tank itself shown in FIG. 3 is publicly known, detailed description of its structure and operation is omitted here.
[0033]
The plate-like filter medium 1 according to the present invention is used for forming the fixed-bed filter medium 14 of the anaerobic / aerobic aeration tank 6. In the embodiment of FIG. 3, the six plate-like filter mediums are 40 mm or more and 100 mm. It is formed by being arranged in parallel in the vertical direction at intervals of below (actually about 80 mm).
[0034]
In addition, when the fixed filter medium is formed by combining the cylindrical filter media 1 ′, the size of the narrowest portion between the cylindrical filter media 1 ′ must be selected between 40 mm and 100 mm. It is natural from the viewpoint of prevention and maintenance of contact efficiency.
Moreover, in the embodiment of FIG. 3, the filter medium is not arranged in the sludge storage tank 5, but of course, the anaerobic fixed filter bed 13 may be arranged as shown by the dotted line, In this case, as the constituent material of the anaerobic fixed filter bed 13, it is possible to use the plate-like filter medium 1 or the tubular filter medium 1 'of the present invention instead of the conventional anaerobic filter medium.
[0035]
According to the result of the actual operation test using the small merged treatment tank (five-person tank) in FIG. 3, the fixed filter bed comprising the plate-like filter medium 1 according to the present invention mounted in the anaerobic / aerobic aeration tank 6 It has been confirmed that the BOD concentration of the inflowing sewage can be removed by 93% or more and denitrification of about 80% or more is possible.
[0036]
【The invention's effect】
In the present invention, a fixed filter bed can be formed at a very low cost simply by assembling plate-shaped filter media or cylindrical filter media made of open-cell bodies with appropriately selected bubble sizes at predetermined intervals. It is possible to significantly reduce the manufacturing cost of the merger tank.
In the present invention, since the plate-like filter medium and the cylindrical filter medium are assembled at a predetermined interval, even when the fixed-bed filter medium is used in an aerobic environment, the filter medium is blocked. Moreover, since the inside of the filter medium can be reliably retained as an anaerobic region, the denitrification reaction can be performed efficiently. As a result, the merger processing tank can be significantly reduced in size and cost.
Furthermore, the fixed-bed filter medium according to the present invention can be applied not only to an aerobic filter bed but also to an anaerobic filter bed, and has excellent practical utility.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a plate-like filter medium according to the present invention.
FIG. 2 is a perspective view showing an embodiment of a cylindrical filter medium according to the present invention.
FIG. 3 is a schematic longitudinal sectional view showing an example of a combined treatment tank using a fixed bed filter medium formed using a plate-shaped filter medium according to the present invention.
FIG. 4 is an explanatory diagram of a sewage treatment unit in which a conventional anaerobic filter bed tank is combined with an aerobic treatment tank.
FIG. 5 is an explanatory view of a denitrification type aerobic treatment unit using a conventional sponge type carrier.
FIG. 6 is a perspective view of an anaerobic filter medium using an open cell body according to a previous application.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plate-shaped filter medium which consists of an open cell body 1 'Cylindrical filter medium which consists of an open cell body 2 Shape retention support body 2' Shape retention support body 2a Vertical beam 2a'〃
2b 2b '
3 Tank body 4 Contaminant removal tank 5 Sludge storage tank 6 Anaerobic / aerobic aeration tank 7 Disinfection tank 8 Treated water tank 9 Sewage inlet 10 Drain pipe 11 Aeration pipe 12 Cleaning port 13 Anaerobic filter medium 14 Fixed bed filter medium (anaerobic / aerobic filter medium) )

Claims (4)

微生物による汚水処理槽の内部に40mm以上100mm以下の間隔を置いて板状の濾材を平行に配列し、汚水内の有機物の除去と脱窒素の両方又は何れか一方を行う汚水処理槽の固定床用濾材に於いて、前記板状濾材を厚さが10mm以上100mm以下の連続気泡体から形成すると共に、当該連続気泡体の気泡の数を1インチ当り10〜40個としたことを特徴とする汚水処理槽の固定床用濾材。A fixed bed of a sewage treatment tank in which plate-like filter media are arranged in parallel with an interval of 40 mm or more and 100 mm or less inside a sewage treatment tank by microorganisms, and both and / or one of removal of organic substances in the sewage is performed. In the filter medium for use, the plate-shaped filter medium is formed from an open cell having a thickness of 10 mm or more and 100 mm or less, and the number of bubbles in the open cell is set to 10 to 40 per inch. Filter media for fixed floor of sewage treatment tank. 微生物による汚水処理槽の内部に40mm以上100mm以下の間隔を置いて筒状の濾材を縦向きに配列し、汚水内の有機物の除去と脱窒素の両方又は何れか一方を行う汚水処理槽の固定床用濾材に於いて、前記筒状の濾材を厚さが10mm以上100mm以下の連続気泡体から成る内径が40mm以上100mm以下の円筒体又は対向する内辺間の距離が40mm以上100mm以下の角筒体から形成すると共に、前記連続気泡体の気泡の数を1インチ当り10〜40個としたことを特徴とする汚水処理槽の固定床濾材。Fixing of the sewage treatment tank that removes organic substances in the sewage and / or denitrifies them by arranging the cylindrical filter media vertically in the sewage treatment tank by microorganisms with an interval of 40 mm or more and 100 mm or less. In the floor filter medium, the cylindrical filter medium is a cylinder having an inner diameter of 40 mm or more and 100 mm or less, or a distance between the inner sides of 40 mm or more and 100 mm or less. A fixed bed filter medium for a sewage treatment tank, which is formed from a cylinder and has 10 to 40 bubbles per inch. 汚水処理槽を、底部に散気装置を設けた曝気処理機能を有する処理槽とした請求項1又は請求項2に記載の汚水処理槽の固定床用濾材。The filter medium for a fixed bed of a sewage treatment tank according to claim 1 or 2, wherein the sewage treatment tank is a treatment tank having an aeration function provided with a diffuser at the bottom. 請求項1乃至請求項3の固定床用濾材を用いて汚水中の窒素を除去するようにしたことを特徴とする窒素の除去方法。A method for removing nitrogen, characterized in that nitrogen in sewage is removed using the fixed-bed filter medium according to claim 1.
JP2003170360A 2003-06-16 2003-06-16 Filter medium for fixed bed of sewage treatment tank and nitrogen removal method using the same Pending JP2005000889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003170360A JP2005000889A (en) 2003-06-16 2003-06-16 Filter medium for fixed bed of sewage treatment tank and nitrogen removal method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003170360A JP2005000889A (en) 2003-06-16 2003-06-16 Filter medium for fixed bed of sewage treatment tank and nitrogen removal method using the same

Publications (1)

Publication Number Publication Date
JP2005000889A true JP2005000889A (en) 2005-01-06

Family

ID=34095174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003170360A Pending JP2005000889A (en) 2003-06-16 2003-06-16 Filter medium for fixed bed of sewage treatment tank and nitrogen removal method using the same

Country Status (1)

Country Link
JP (1) JP2005000889A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101955294B (en) * 2009-12-01 2013-06-05 南京大学 Integrated bioreactor and method for treating high-concentration organic wastewater
WO2013084711A1 (en) * 2011-12-09 2013-06-13 栗田工業株式会社 Oscillating support, and method and device for biologically treating organic wastewater using the oscillating support
JP2016150332A (en) * 2015-02-19 2016-08-22 栗田工業株式会社 Method and apparatus for biologically treating organic waste water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101955294B (en) * 2009-12-01 2013-06-05 南京大学 Integrated bioreactor and method for treating high-concentration organic wastewater
WO2013084711A1 (en) * 2011-12-09 2013-06-13 栗田工業株式会社 Oscillating support, and method and device for biologically treating organic wastewater using the oscillating support
JP2016150332A (en) * 2015-02-19 2016-08-22 栗田工業株式会社 Method and apparatus for biologically treating organic waste water
WO2016132882A1 (en) * 2015-02-19 2016-08-25 栗田工業株式会社 Method and device for biologically treating organic wastewater
CN107250058A (en) * 2015-02-19 2017-10-13 栗田工业株式会社 The bioremediation and device of organic wastewater
CN107250058B (en) * 2015-02-19 2020-11-13 栗田工业株式会社 Method and apparatus for biological treatment of organic wastewater

Similar Documents

Publication Publication Date Title
JP3863995B2 (en) Water treatment device with denitrification function
JP3391057B2 (en) Biological nitrogen removal equipment
JP2007237158A (en) Process for biological purification of waste water with simultaneous decomposition of organic and nitrogen-containing compounds
JP2005000889A (en) Filter medium for fixed bed of sewage treatment tank and nitrogen removal method using the same
KR100458764B1 (en) Method and apparatus for the treatment of contaminated water by submersible biological aerated filter
CN210559922U (en) Sewage treatment system
JP2000246272A (en) Method for removing nitrogen of sewage
KR100497744B1 (en) An apparatus containing bio modules for puryfing the river and a method for puryfing the river using the same
JP2002159245A (en) Purifying device of fish or shellfish-keeping device
KR100887760B1 (en) Water treatment system using fluidized bed media
JP2012110854A (en) Purification apparatus and purification method using the same
JPH06312196A (en) Water purifying apparatus for rivers
JP2609195B2 (en) Organic wastewater purification method and apparatus
JP4261700B2 (en) Wastewater treatment equipment
JP2002065106A (en) Rearing apparatus
JP7351739B2 (en) Aeration tank, sewage treatment equipment and sewage treatment method
JP2525711B2 (en) Advanced purification equipment for organic wastewater
JP7376342B2 (en) Sewage treatment equipment
JP3407342B2 (en) Biological denitrification / phosphorus removal equipment
KR200171727Y1 (en) Processing system for excretions of animals
JP3627402B2 (en) Wastewater treatment method using microorganism-immobilized carrier
JP2609181B2 (en) Biological nitrification denitrification method and apparatus for organic wastewater
JP3300123B2 (en) Septic tank
JPH07171587A (en) Method and apparatus for treating organic sewage
JPH0884998A (en) Organic sewage treatment device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060605