JP2005000521A - Blood processing apparatus - Google Patents

Blood processing apparatus Download PDF

Info

Publication number
JP2005000521A
JP2005000521A JP2003169542A JP2003169542A JP2005000521A JP 2005000521 A JP2005000521 A JP 2005000521A JP 2003169542 A JP2003169542 A JP 2003169542A JP 2003169542 A JP2003169542 A JP 2003169542A JP 2005000521 A JP2005000521 A JP 2005000521A
Authority
JP
Japan
Prior art keywords
housing
linear
thermal
fixing material
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003169542A
Other languages
Japanese (ja)
Inventor
Michio Abe
道夫 安部
Yoshizumi Matsumoto
嘉純 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SB Kawasumi Laboratories Inc
Original Assignee
Kawasumi Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasumi Laboratories Inc filed Critical Kawasumi Laboratories Inc
Priority to JP2003169542A priority Critical patent/JP2005000521A/en
Publication of JP2005000521A publication Critical patent/JP2005000521A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blood processing apparatus which can omit a pretreatment (wet heat shrinkage) for a hollow fiber, and at the same time, by which there is no danger for a leakage caused by the cracking or peeling from a housing of a fixing material. <P>SOLUTION: The hollow fiber bundle (6) is arranged in the length direction in the housing (5), and the end section of the hollow fiber bundle (6) is fixed to the internal surface of the end section of the housing (5) by a fixing member (3). In the end section of the housing (5), a port (1) having a blood flowing-in/out port (1A) is fitted for this blood processing apparatus. In the blood processing apparatus, the ratio B/A between the thermal (linear) expansion coefficient A of the housing (5) and thermal (linear) expansion coefficient B of the fixing member (3) is 1.4 or lower. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、血液透析、血液ろ過、血液透析ろ過、血漿分離用に用いる血液処理装置であって、中空糸をハウジングの内部に装填した血液処理装置の改良に関し、中空糸が湿熱により収縮する材料で形成され、高圧蒸気滅菌される血液処理装置に関する。
【0002】
【従来技術及び発明が解決しようとする課題】
血液処理装置の滅菌方法には高圧蒸気滅菌、放射線滅菌、エチレンオキサイドガス滅菌による3種類の滅菌方法がある。3種類の滅菌方法は各々の特徴があるが、中空糸が耐熱性を有する場合は高圧蒸気滅菌が好まれて利用され、耐熱性の不安な中空糸を用いる場合は放射線やエチレンオキサイドガス滅菌が利用されている。
これに対して、高圧蒸気滅菌した時、性能面・物性面では使用可能であるが、若干の収縮が認められる場合、モジュール化する前に中空糸をあらかじめ湿熱処理により収縮させた後に、ハウジングに組込む手段が取られる場合もある。この場合、前処理(湿熱収縮)を怠ると滅菌時または保管時に中空糸が収縮を起こし、固定材に亀裂が生じたり、ハウジングから剥がれたりして臨床使用中に血液洩れを起こす危険があった。
【0003】
高圧蒸気滅菌を施した血液処理装置の固定材には一般的に主材と硬化材の2液を混合硬化させるポリウレタンが使われており、混合硬化させると発熱し、硬化と同時に若干の収縮を起こす性質がある。
また、ハウジングには熱可塑プラスチックの中でも耐熱性を有するポリカーボネートが一般的に使われており、その熱(線)膨張係数は6〜7×10(superscript:−5)(/℃)と比較的に小さい数値である。一方、ポリウレタンの熱(線)膨張係数は10〜20×10(superscript:−5)(/℃)とポリカーボネートに比べて大きい。
すなわちハウジングの熱(線)膨張係数をA、固定材の熱(線)膨張係数をBとすると、これらの熱(線)膨張係数の比B/Aは、従来の血液処理装置では、少なくとも1.4を超えている。
ハウジングに内接したポリウレタンは比較的高温で硬化した時点ですでに収縮が起きており、更に温度の低下と共に熱(線)膨張係数に応じて収縮する。一方、ポリウレタン(固定材)の外側に接着固定しているポリカーボネート(ハウジング)は熱(線)膨張係数が小さいため、温度の低下による収縮もポリウレタンに比べて小さく、ポリウレタン(固定材)はハウジングから剥がれる方向に応力が働いている。
更に、洗浄・滅菌等で加熱、冷却が繰り返されるたびに、熱(線)膨張係数の違いにより固定材とハウジングの間に無理な応力がかかり剥離や亀裂は進行することになる。
【0004】
従来の血液処理装置においても、洗浄あるいは滅菌時に生じる固定材の亀裂を防止するためや剥離による血液漏れを防止するために固定材とハウジングとの間に固定材に対して接着性の低いリングを配置して固定材のハウジングへの付着を除去する発明(特許文献1参照。)や、固定材の外周をハウジングとは接触させずに、型内で硬化させ硬化後型を取り除くことにより、固定材が応力を受けずに収縮できる配慮を施している発明(特許文献2参照。)が知られている。
【0005】
【特許文献1】
特許第2887347号公報(1頁、図3)
【特許文献2】
特開平10−211421号公報(1頁、図1)
【0006】
これらの文献1、2も、固定材の亀裂を無くすための発明ではあるが、固定材の硬化時の収縮や洗浄・滅菌時の膨張・収縮に耐えるためのものであり、これに加えて中空糸が湿熱により収縮する材料で形成され、高圧蒸気滅菌される血液処理装置のためのものではない。
【0007】
血液処理装置に使用される固定材、ハウジング及び中空糸の各構成材料並びに固定材とハウジングの接続形態等の各組み合わせにより、以下の1から3に示すケースが想定される。
[ケース1]
▲1▼固定材とハウジングに熱(線)膨張係数の比B/Aが少なくとも1.4を超える材料の組み合わせを使用し、かつ▲2▼中空糸に高圧蒸気滅菌で径収縮する材料を使用し、かつ▲3▼固定材とハウジングを相互に接着した形態
《固定材硬化時》
▲1▼固定材(ポリウレタン)の硬化は収縮反応であるため小さくなり、ハウジングから剥がれる作用を示す。
▲2▼固定材(ポリウレタン)の硬化は発熱反応であるため、硬化直後は高温であり、以後室温まで低下する。ハウジングと固定材は熱(線)膨張係数が大きく異なるため、ハウジングの収縮率は小さいが固定剤の収縮率は大きく、固定材はハウジングから剥がれる作用を示す。
《高圧蒸気滅菌》
▲3▼120℃の環境下では固定材は熱(線)膨張係数が大きく、ハウジングは熱(線)膨張係数が小さいため、固定材は大きく膨らみ、ハウジングに規制されてゆがんだ形となり同時に固定材に植込まれた中空糸も真円を保持できずに変形する。
▲4▼冷却されればハウジングは元に戻るが、固定材は中空糸の収縮に伴い収縮し、ハウジングから剥がれる作用を示す。
【0008】
[ケース2]
▲1▼固定材とハウジングに熱(線)膨張係数の比B/Aが少なくとも1.4を超える材料の組み合わせを使用し、▲2▼中空糸に高圧蒸気滅菌で径収縮する材料を使用し、かつ▲3▼固定材とハウジングが相互に接着しにくい形態
《固定材硬化時》
▲1▼固定材(ポリウレタン)の硬化は収縮反応であるため小さくなるが、最初からハウジングから剥がれているのでポリウレタンに亀裂が入るようなことはない。
▲2▼固定材(ポリウレタン)の硬化は発熱反応であるため、硬化直後は高温であり、以後室温まで低下する。ハウジングと固定材は線膨張係数が大きく異なるため、ハウジングの収縮率は小さいが固定剤の収縮率は大きく、隙間は大きくなる傾向を示すが固定材(ポリウレタン)に亀裂が入るようなことはない。
《高圧蒸気滅菌》
▲3▼120℃の環境下では固定材は線膨張係数が大きく、ハウジングは線膨張係数が小さいため、固定材は大きく膨張し、ハウジングに規制されてひずみが発生し、同時に固定材に植込まれた中空糸も真円を保持できずに変形する。
▲4▼冷却されればハウジングは元に戻るが、固定材は中空糸の収縮に伴い収縮するため、隙間は更に大きくなる傾向を示す。
【0009】
[ケース3]
▲1▼固定材とハウジングに熱(線)膨張係数が接近している材料(熱(線)膨張係数の比B/Aが0.7〜1.4)の組み合わせを使用し、▲2▼中空糸に高圧蒸気滅菌で径収縮する材料を使用し、かつ▲3▼固定材とハウジングを相互に接着した形態
《固定材硬化時》
▲1▼固定材(ポリウレタン)の硬化は収縮反応であるため小さくなり、ハウジングから剥がれる作用を示す。
▲2▼固定材(ポリウレタン)の硬化は発熱反応であるため、硬化直後は高温であり、以後室温まで低下する。ハウジングと固定材は線膨張係数が接近しているため、固定材がハウジングから剥がれるような作用は起こらない。
《高圧蒸気滅菌》
▲3▼120℃の環境下でも線膨張係数が接近しているため、固定材とハウジングは同程度に膨張しひずみは発生しない。
▲4▼冷却された時固定材は中空糸の収縮に伴い収縮し、ハウジングから剥がれる作用を示す。
【0010】
高圧蒸気滅菌時に径方向に収縮する性質を有する中空糸を使用した血液処理装置の場合、前記特許文献1及び特許文献2(前記[ケース2])では十分とは言えない。さらにケース1から3の発明は、前記したように《固定材硬化時》及び/又は《高圧蒸気滅菌》時に、固定材とハウジングの剥がれ等が発生し、満足のゆくものではない。
【0011】
【課題を解決するための手段】
そこで本発明者らは、以上の課題を解決するために鋭意検討を重ねた結果、以下の(a)から(b)、さらに好ましくは(c)、(d)により、固定材に発生する応力を極力小さくすると共に、中空糸径が収縮し結果として固定材の径が縮んだ場合でも洩れの発生しない高圧蒸気滅菌した血液処理装置の発明に到達した。
(a)ハウジングと固定材に用いる材料の熱(線)膨張係数の比B/Aを1.4以下とする(好ましくは0.7〜1.4、更に好ましくは0.9〜1.1)こと[(注)1.4以下であれば固定材(ポリウレタン)の弾力により固定材(ポリウレタン)の亀裂の発生を抑えることができるが、もっとも好ましいのは熱(線)膨張係数が実質的に等しく(熱(線)膨張係数の比B/Aが0.9〜1.1)、温度変化に対しても同程度に膨張・収縮する状態である]、(b)ハウジング自体を固定材と接着しにくい材質とすること(前記[ケース4]参照)、(c)ハウジングの固定材が充填される部分にフランジを溶着固定して、当該フランジを固定材に埋設すること、(d)当該固定材をポートとフランジとで締付けシールすること。
【0012】
すなわち、▲1▼固定材とハウジングに熱(線)膨張係数が接近している材料(熱(線)膨張係数の比B/Aが0.7〜1.4)の組み合わせを使用し、▲2▼中空糸に高圧蒸気滅菌で径収縮する材料を使用し、かつ▲3▼固定材とハウジングが相互に接着しにくい形態にした本発明では、
《固定材硬化時》
▲1▼固定材(ポリウレタン)の硬化は収縮反応であるため小さくなるが、最初からハウジングから剥がれているため硬化材に亀裂が入るような事はない。
▲2▼固定材(ポリウレタン)の硬化は発熱反応であるため、硬化直後は高温であり、以後室温まで低下する。ハウジングと固定材は線膨張係数が接近しているため、固定材がハウジングから剥がれるような作用は起こらない。
《高圧蒸気滅菌》
▲3▼120℃の環境下でも線膨張係数が接近しているため、固定材とハウジングは同程度に膨張しひずみは発生しない。
▲4▼冷却された時固定材は中空糸の収縮に伴い大きく収縮するが、固定材とハウジングが相互に接着しにくい接続形態であるため、固定材に亀裂が入るような事はない。
以上のように本願発明では、《固定材硬化時》及び/又は《高圧蒸気滅菌》時に、固定材とハウジングの剥がれ等が発生することがない。
【0013】
[1]本発明は、ハウジング(5)の内部に長さ方向に沿って中空糸束(6)を配置し、
中空糸束(6)端部を固定材(3)によりハウジング(5)端部内面に固定し、
前記ハウジング(5)端部に、血液流出入口(1A)を有するポート(1)を装着した血液処理装置において、
前記ハウジング(5)の熱(線)膨張係数Aと、前記固定材(3)の熱(線)膨張係数Bの比B/Aが1.4以下である血液処理装置を提供する。
[2]本発明は、前記ハウジング(5)の熱(線)膨張係数Aと、前記固定材(3)の熱(線)膨張係数Bの比B/Aが0.7〜1.4である[1]に記載の血液処理装置を提供する。
[3]本発明は、前記ハウジング(5)の熱(線)膨張係数Aと、前記固定材(3)の熱(線)膨張係数Bの比B/Aが0.9〜1.1である[1]ないし[2]に記載の血液処理装置を提供する。
[4]本発明は、前記ハウジング(5)を(a)固定材(3)が接着しにくい極性の低い材料、又は(b)表面を離型処理した材料より形成した[1]ないし[3]に記載の血液処理装置を提供する。
[5]本発明は、ハウジング(5)端部より間隔をあけて、フランジ(4)をハウジング(5)に装着し、当該フランジ(4)を前記固定材(3)内に埋設した[1]ないし[4]に記載の血液処理装置を提供する。
[6]本発明は、前記固定材(3)を、前記ポート(1)と前記フランジ(4)により締付シールした[1]ないし[5]に記載の血液処理装置を提供する。
[7]本発明は、前記フランジ(4)、前記ハウジング(5)及び前記ポート(1)を同一材料により形成した[1]ないし[6]に記載の血液処理装置を提供する。
【0014】
【発明の実施の形態】
本発明の血液処理装置の一例の概略図を図1に示し、拡大図を図2に示す。
本発明の血液処理装置は、ハウジング5の内部に長さ方向に沿って中空糸束6を配置し、当該中空糸束6端部を固定材3によりハウジング5端部内面に固定し、当該ハウジング5端部に、血液流出入口1Aを有するポート1を装着(溶着または接着固定)している。
[ハウジング5]
ハウジング5は、(a)固定材3が接着しにくい極性の低い材料、又は(b)表面を離型処理した材料より形成している。
前記固定材3が接着しにくい極性を有しない材料として、例えばポリプロピレン、メチルペンテン樹脂等の材料を使用することができ、対応樹脂の中で熱(線)膨張係数が固定材3(例えばポリウレタン)と同程度(熱(線)膨張係数の比B/Aが、0.7〜1.4の範囲のもの)の熱膨張係数を有するの材料を選ぶことが望ましい。
前記表面が離型処理されている材料とは、固定材3との接触面が離型処理されている材料であり、当該材料として例えばポリカーボネート等高圧蒸気滅菌に絶えうる材料であれば何でも使用することができる。また前記離型処理剤としては例えばシリコーン樹脂やグリス又はオイルを使用することができる。
ハウジング5の側面には、血液処理液(透析液)出入口5Aが形成されている。
[フランジ4]
フランジ4を前記ハウジング5端部より間隔をあけて、ハウジング5に装着(溶着または接着固定)し、当該フランジ4を前記固定材3内に埋設している。
フランジ4はリング状に形成され、上部に固定材注型時の気泡抜きのためのテーパー部4Aが形成されていることが好ましい。
フランジ4内周により前記中空糸束6の端部外周形状を規制している。
フランジ4も、前記ハウジング5と同様の材料、例えばポリプロピレン、メチルペンテン樹脂等の材料を使用することができ、対応樹脂の中で固定材3(例えばポリウレタン)と同程度(熱(線)膨張係数の比B/Aが、0.7〜1.4の範囲のもの)の熱(線)膨張係数を有する材料を選ぶことが望ましい。
【0015】
[固定材3]
固定材3により前記中空糸束6の端部を前記ハウジング5端部内面に固定している。固定材3はハウジング5に溶着されたフランジ4を内包(埋設)することでハウジング5への長手方向への支持を行っている。
固定材3は、例えばポリウレタン等が使用され、ハウジング5の熱(線)膨張係数を考慮しながら、熱(線)膨張係数の比B/Aが、0.7〜1.4の範囲のものを選ぶことが望ましい。
前記固定材3は、前記ポート1と前記フランジ4により締付シールされている。さらに詳述すれば前記固定材3は、前記ハウジング5端部内面及びフランジ4とは軽く接着しているだけで滅菌後においては剥離している場合もあり、前記固定材3は、前記ポート1下部1B、前記フランジ4のテーパー部4Aにて締付けシールすることにより、液密性を保持している。
[ポート1]
ポート1下部1Bには、溝1Mが形成され、当該溝1MにOリング2が配置され、ポート1下部1Bと固定材3の切断面の間はOリング2により、液密状態に維持される。
ポート1も、前記フランジ4及び前記ハウジング5と同様の材料、例えばポリプロピレン、メチルペンテン樹脂等の材料を使用することができ、対応樹脂の中で固定材3(例えばポリウレタン)と同程度(後述する熱(線)膨張係数の比B/Aが、0.7〜1.4の範囲のもの)の熱(線)膨張係数を有する材料を選ぶことが望ましい。
前記Oリング2は、シリコーン樹脂、合成ゴム等が使用されるが、高圧蒸気滅菌による熱や長時間の圧縮にも変形しにくいものが望ましい。
【0016】
[ポート1、固定材3、フランジ4、ハウジング5材料の相互関係]
前記フランジ4、前記ハウジング5及び前記ポート1を同一材料により形成するのが良い。
前記ハウジング5の熱(線)膨張係数Aと、前記固定材3の熱(線)膨張係数Bの比B/Aが1.4以下(好ましくは0.7〜1.4、更に好ましくは0.9〜1.1)になる材料を組み合わせて使用するのが良い。
熱(線)膨張係数の比B/Aが、1.4を超えると洗浄・滅菌等で加熱、冷却が繰り返されると、熱(線)膨張係数の違いにより固定材3に無理な応力がかかることになるため好ましくない。
またB/Aがあまり小さいと(0.7未満)滅菌時(高温時)にハウジングと固定材間に隙間が生じ好ましくない。
本発明では、前記フランジ4及び/又は前記ポート1の熱(線)膨張係数Aと、前記固定材3の熱(線)膨張係数Bの比B/Aが、1.4以下、好ましくは0.7〜1.4、より好ましくは0.9〜1.1となる材料を組み合わせて使用するのが良い。
【0017】
[各構成部材の溶着等]
フランジ4の外面とハウジング5端部内面の溶着は、例えば超音波溶着、レーザ溶着、ヒートシール、溶接等により行うことができる。
ハウジング5端部とポート1下部1Bは超音波溶着、レーザ溶着、ヒートシール、溶接等で溶着することができる。
【0018】
本発明の血液処理装置は例えば、以下のように組立てることができる。
(1)ハウジング5両端部内面にフランジ4を超音波で溶着する。
(2)前記ハウジング5内に中空糸束6を装填し、中空糸束6の外周形状をリング4の内周で規制する。
(3)前記中空糸束6両端部を所定の長さに切断し、開口端部を密封シールする。
(4)前記ハウジング5の両端部に、固定材充填用のキャップを装着し、血液処理液(透析液)出入口5Aより、固定材3を注入しながら遠心力を付与する。
(固定材の硬化は高温でキュアさせるほど収縮は大きくなるため35℃以下でキュアさせることが望ましい。)
(5)前記固定材3を硬化させた後充填用のキャップを取り外し、固定材3で固定した中空糸束6の両端部を切断し、中空糸束6の端部を開口する。
(6)前記ハウジング5の両端部に、Oリング2を組込んだポート1を超音波で溶着し、前記固定材3を、前記ポート1下部1B、前記フランジ4のテーパー部4Aにより締付けシールする。
(7)組立てられた血液処理装置に水を充填して、血液流出入口1A、血液処理液(透析液)出入口5Aに栓をした後、高圧蒸気滅菌をする。
【0019】
【実施例】
図1、図2の形態の血液処理装置(実施例1)と図3の形態の血液処理装置(比較例1、2)の各構成部品に以下の材料を使用し、当該血液処理装置のモジュールを各10セット組立て、水を充填して121℃、20分の高圧蒸気滅菌を行った後、外観検査及び洩れ試験を行った。
実施例1
中空糸束6:ポリスルホン(前処理(湿熱収縮)無し)
固定材3:ポリウレタン〔熱(線)膨張係数:14×10(superscript:−5)(/℃)〕
ハウジング5:ポリプロピレン〔熱(線)膨張係数:14×10(superscript:−5)(/℃)〕
リング4:ポリプロピレン〔熱(線)膨張係数:14×10(superscript:−5)(/℃)〕
ポート1:ポリプロピレン〔熱(線)膨張係数:14×10(superscript:−5)(/℃)〕(Oリング2:シリコーン樹脂)
比較例1
中空糸膜16:ポリスルホン(前処理(湿熱収縮)無し)
固定材13:ポリウレタン〔熱(線)膨張係数:14×10(superscript:−5)(/℃)〕
ハウジング15:ポリカーボネート〔熱(線)膨張係数:6.6×10(superscript:−5)(/℃)〕
ポート11:ポリカーボネート〔熱(線)膨張係数:6.6×10(superscript:−5)(/℃)〕(Oリング12:シリコーン樹脂)
比較例2
中空糸膜16:ポリスルホン(前処理(湿熱収縮)実施)
固定材13:ポリウレタン〔熱(線)膨張係数:14×10(superscript:−5)(/℃)〕
ハウジング15:ポリカーボネート〔熱(線)膨張係数:6.6×10(superscript:−5)(/℃)〕
ポート11:ポリカーボネート〔熱(線)膨張係数:6.6×10(superscript:−5)(/℃)〕(Oリング12:シリコーン樹脂)
結果
実施例:10セットとも固定材3に亀裂が生じることもなく、洩れ試験の結果洩れが認められる事はなかった。
比較例1:10セット中6セットにハウジング15からの固定剤13の剥がれが発生し、洩れ試験の結果洩れが認められた。
比較例2:10セットとも固定剤13の亀裂や、ハウジング15からの剥がれは発生せず、洩れ試験の結果洩れが認められる事はなかった。
【0020】
【発明の作用効果】
(1)本発明では固定材の硬化時や洗浄・滅菌時の加熱、冷却が繰り返されることによる応力を、熱膨張係数の差をその比が1.4以下(好ましくは0.7〜1.4、更に好ましくは0.9〜1.1)となる材料を選択することで小さくすることができる。
(2)本発明では固定材はハウジングに軽く接着しているにすぎないため、湿熱により収縮する材料を中空糸に用いた場合でも中空糸を含む固定材のみが収縮するだけで亀裂等の危険が発生しないので、中空糸の前処理(湿熱収縮)を省略できる。このため中空糸の前処理による性能の変化も発生せず、組立てのコストも低減できる。
(3)固定材の亀裂やハウジングからの剥がれに起因する洩れの危険がなくなる。
(4)固定材の硬化時の収縮及び滅菌時の中空糸の収縮に伴う固定材の収縮に対して固定材が容易にハウジングから外れて収縮し、応力が緩和するようにすることができる。
(5)固定材をポートとフランジとの間で締付けることで液密性を保持することができる。
【図面の簡単な説明】
【図1】本発明の血液処理装置の概略図
【図2】本発明の血液処理装置の一部詳細拡大図
【図3】従来の血液処理装置の概略図
【符号の説明】
1 ポート
1A 血液出入口
1B ポート下部
1M 溝
2 Oリング
3 固定材
4 フランジ
4A テーパー部
5 ハウジング
5A 血液処理液(透析液)出入口
6 中空糸束
11 ポート
12 Oリング
13 固定材
15 ハウジング
16 中空糸束
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blood processing apparatus used for hemodialysis, blood filtration, hemodiafiltration, and plasma separation, and relates to an improvement of a blood processing apparatus in which a hollow fiber is loaded inside a housing. It is related with the blood processing apparatus which is formed in and autoclaved.
[0002]
[Prior Art and Problems to be Solved by the Invention]
There are three sterilization methods for sterilization of blood treatment apparatuses, such as high-pressure steam sterilization, radiation sterilization, and ethylene oxide gas sterilization. Each of the three types of sterilization methods has its own characteristics. When the hollow fiber has heat resistance, high-pressure steam sterilization is preferred and used. When the hollow fiber is uneasy about heat resistance, radiation or ethylene oxide gas sterilization can be used. It's being used.
On the other hand, it can be used in terms of performance and physical properties when sterilized with high-pressure steam, but if slight shrinkage is observed, the hollow fiber is shrunk beforehand by wet heat treatment before modularization, and then it is placed in the housing. In some cases, means of incorporation are taken. In this case, if the pretreatment (wet heat shrinkage) is neglected, the hollow fiber contracts during sterilization or storage, and there is a risk of blood leakage during clinical use due to cracks in the fixing material or peeling from the housing. .
[0003]
In general, polyurethane that cures and mixes two liquids, the main material and the curing material, is used as a fixing material for blood processing equipment that has been sterilized under high pressure steam. There is a nature to wake up.
In addition, heat-resistant polycarbonate is generally used for the housing, and its thermal (linear) expansion coefficient is relatively 6-7 × 10 (superscript: −5) (/ ° C.). It is a small number. On the other hand, the thermal (linear) expansion coefficient of polyurethane is 10 to 20 × 10 (superscript: −5) (/ ° C.), which is larger than that of polycarbonate.
That is, assuming that the thermal (linear) expansion coefficient of the housing is A and the thermal (linear) expansion coefficient of the fixing material is B, the ratio B / A of these thermal (linear) expansion coefficients is at least 1 in the conventional blood treatment apparatus. .4 is exceeded.
The polyurethane inscribed in the housing has already shrunk when cured at a relatively high temperature, and further shrinks according to the thermal (linear) expansion coefficient as the temperature decreases. On the other hand, the polycarbonate (housing) that is bonded and fixed to the outside of the polyurethane (fixing material) has a small coefficient of thermal (linear) expansion, so shrinkage due to a decrease in temperature is also smaller than that of polyurethane. Stress is acting in the peeling direction.
Further, every time heating and cooling are repeated for cleaning and sterilization, for example, an excessive stress is applied between the fixing member and the housing due to a difference in thermal (linear) expansion coefficient, and peeling and cracking progress.
[0004]
Even in the conventional blood treatment apparatus, a ring having low adhesion to the fixing material is provided between the fixing material and the housing in order to prevent cracking of the fixing material that occurs during cleaning or sterilization or to prevent blood leakage due to peeling. Fixing by removing the mold after it is hardened in the mold without placing the outer periphery of the fixing material in contact with the housing (see Patent Document 1) There has been known an invention (see Patent Document 2) in which a material can be shrunk without being stressed.
[0005]
[Patent Document 1]
Japanese Patent No. 2887347 (1 page, FIG. 3)
[Patent Document 2]
Japanese Patent Laid-Open No. 10-211421 (1 page, FIG. 1)
[0006]
Although these documents 1 and 2 are inventions for eliminating cracks in the fixing material, they are intended to withstand the shrinkage at the time of hardening of the fixing material and the expansion / shrinkage at the time of cleaning / sterilization. It is not intended for blood treatment devices where the yarn is made of a material that shrinks with wet heat and is autoclaved.
[0007]
The following cases 1 to 3 are assumed depending on the combination of the fixing material used in the blood processing apparatus, the constituent materials of the housing and the hollow fiber, and the connection form of the fixing material and the housing.
[Case 1]
(1) Use a combination of materials for which the ratio of thermal (linear) expansion coefficient B / A exceeds at least 1.4 for the fixing material and the housing, and (2) Use a material that shrinks in diameter by high-pressure steam sterilization for the hollow fiber. And (3) a form in which the fixing material and the housing are bonded to each other (when the fixing material is cured)
(1) Curing of the fixing material (polyurethane) is reduced due to a shrinkage reaction, and exhibits an action of peeling from the housing.
(2) Since the curing of the fixing material (polyurethane) is an exothermic reaction, the temperature is high immediately after curing and then decreases to room temperature. Since the housing and the fixing material have greatly different thermal (linear) expansion coefficients, the shrinkage of the housing is small, but the shrinkage of the fixing agent is large, and the fixing material exhibits an action of peeling from the housing.
《High-pressure steam sterilization》
(3) Under an environment of 120 ° C, the fixing material has a large coefficient of thermal (linear) expansion, and the housing has a small coefficient of thermal (linear) expansion. The hollow fiber implanted in the material also deforms without holding a perfect circle.
(4) The housing returns to its original state when cooled, but the fixing material contracts with the contraction of the hollow fiber and exhibits an action of peeling off from the housing.
[0008]
[Case 2]
(1) Use a combination of materials with a thermal (linear) expansion coefficient ratio B / A exceeding at least 1.4 for the fixing material and housing, and (2) Use a material that shrinks in diameter by high-pressure steam sterilization for the hollow fiber. And (3) Form in which the fixing material and the housing are difficult to adhere to each other (when the fixing material is cured)
(1) Curing of the fixing material (polyurethane) is small because it is a shrinkage reaction, but the polyurethane is not cracked because it is peeled off from the housing from the beginning.
(2) Since the curing of the fixing material (polyurethane) is an exothermic reaction, the temperature is high immediately after curing and then decreases to room temperature. Since the linear expansion coefficient of the housing and the fixing material are greatly different, the shrinkage rate of the housing is small, but the shrinkage rate of the fixing agent is large and the gap tends to be large, but the fixing material (polyurethane) does not crack. .
《High-pressure steam sterilization》
(3) In an environment of 120 ° C, the fixed material has a large coefficient of linear expansion and the housing has a small coefficient of linear expansion. Therefore, the fixed material expands greatly, and is restricted by the housing, causing distortion. The hollow fiber that has been deformed cannot hold a perfect circle and deforms.
(4) The housing returns to its original state when cooled, but the fixing material contracts as the hollow fiber contracts, so that the gap tends to become larger.
[0009]
[Case 3]
(1) Use a combination of materials (heat (linear) expansion coefficient ratio B / A is 0.7 to 1.4) with a thermal (linear) expansion coefficient approaching the fixing material and housing. (2) (3) Form in which the hollow fiber is made of a material that shrinks in diameter by high-pressure steam sterilization and the fixing material and the housing are bonded to each other (when the fixing material is cured)
(1) Curing of the fixing material (polyurethane) is reduced due to a shrinkage reaction, and exhibits an action of peeling from the housing.
(2) Since the curing of the fixing material (polyurethane) is an exothermic reaction, the temperature is high immediately after curing and then decreases to room temperature. Since the linear expansion coefficient of the housing and the fixing material are close to each other, there is no effect that the fixing material is peeled off from the housing.
《High-pressure steam sterilization》
(3) Since the linear expansion coefficients are close to each other even under an environment of 120 ° C., the fixing member and the housing expand to the same extent and no strain is generated.
(4) When cooled, the fixing material contracts with the contraction of the hollow fiber and exhibits an action of peeling off from the housing.
[0010]
In the case of a blood treatment apparatus using a hollow fiber having a property of contracting in the radial direction during high-pressure steam sterilization, it cannot be said that Patent Document 1 and Patent Document 2 ([Case 2]) are sufficient. Furthermore, as described above, the inventions of cases 1 to 3 are not satisfactory because the fixing material and the housing are peeled off during << fixing material curing >> and / or << high pressure steam sterilization >>.
[0011]
[Means for Solving the Problems]
Accordingly, as a result of intensive studies in order to solve the above problems, the present inventors have found that stress generated in the fixing material by the following (a) to (b), more preferably (c) and (d). As a result, the inventors have arrived at the invention of a blood processing apparatus sterilized by high-pressure steam that does not leak even when the hollow fiber diameter shrinks and, as a result, the diameter of the fixing material shrinks.
(A) The ratio of thermal (linear) expansion coefficient B / A of the materials used for the housing and the fixing material is set to 1.4 or less (preferably 0.7 to 1.4, more preferably 0.9 to 1.1. [Note] If it is 1.4 or less, it is possible to suppress the occurrence of cracks in the fixing material (polyurethane) by the elasticity of the fixing material (polyurethane), but the most preferable is the thermal (linear) expansion coefficient. (Thermal (linear) expansion coefficient ratio B / A is 0.9 to 1.1) and expands and contracts to the same extent with respect to temperature change], (b) the housing itself is a fixing material (C) The flange is welded and fixed to the portion of the housing filled with the fixing material, and the flange is embedded in the fixing material, (d) Tighten and seal the fixing material with the port and flange.
[0012]
That is, (1) Use a combination of a material having a thermal (linear) expansion coefficient close to the fixing material and the housing (thermal (linear) expansion coefficient ratio B / A is 0.7 to 1.4), 2) In the present invention in which the hollow fiber is made of a material that shrinks in diameter by high-pressure steam sterilization, and (3) the fixing material and the housing are difficult to adhere to each other,
<When fixing material is cured>
(1) Curing of the fixing material (polyurethane) is small because it is a shrinkage reaction, but since it has been peeled off from the housing from the beginning, there will be no cracks in the curing material.
(2) Since the curing of the fixing material (polyurethane) is an exothermic reaction, the temperature is high immediately after curing and then decreases to room temperature. Since the linear expansion coefficient of the housing and the fixing material are close to each other, there is no effect that the fixing material is peeled off from the housing.
《High-pressure steam sterilization》
(3) Since the linear expansion coefficients are close to each other even under an environment of 120 ° C., the fixing member and the housing expand to the same extent and no strain is generated.
{Circle around (4)} When cooled, the fixing material contracts greatly with the shrinkage of the hollow fiber, but since the fixing material and the housing are in a connection form in which they are difficult to adhere to each other, the fixing material is not cracked.
As described above, in the present invention, there is no occurrence of peeling between the fixing material and the housing during << fixing material curing >> and / or << high pressure steam sterilization >>.
[0013]
[1] In the present invention, the hollow fiber bundle (6) is disposed along the length direction inside the housing (5),
The end of the hollow fiber bundle (6) is fixed to the inner surface of the end of the housing (5) by the fixing material (3),
In the blood processing apparatus in which a port (1) having a blood outflow inlet (1A) is attached to the end of the housing (5),
Provided is a blood processing apparatus in which a ratio B / A of a thermal (linear) expansion coefficient A of the housing (5) and a thermal (linear) expansion coefficient B of the fixing member (3) is 1.4 or less.
[2] In the present invention, the ratio B / A of the thermal (linear) expansion coefficient A of the housing (5) and the thermal (linear) expansion coefficient B of the fixing member (3) is 0.7 to 1.4. A blood processing apparatus according to [1] is provided.
[3] In the present invention, the ratio B / A of the thermal (linear) expansion coefficient A of the housing (5) and the thermal (linear) expansion coefficient B of the fixing member (3) is 0.9 to 1.1. A blood processing apparatus according to [1] or [2] is provided.
[4] In the present invention, the housing (5) is formed from (a) a material having a low polarity that is difficult to adhere to the fixing material (3), or (b) a material obtained by releasing the surface. The blood processing apparatus according to claim 1 is provided.
[5] In the present invention, the flange (4) is mounted on the housing (5) at a distance from the end of the housing (5), and the flange (4) is embedded in the fixing member (3) [1. ] To [4] are provided.
[6] The present invention provides the blood processing apparatus according to [1] to [5], wherein the fixing member (3) is tightened and sealed by the port (1) and the flange (4).
[7] The present invention provides the blood processing apparatus according to [1] to [6], wherein the flange (4), the housing (5), and the port (1) are formed of the same material.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A schematic view of an example of the blood processing apparatus of the present invention is shown in FIG. 1, and an enlarged view is shown in FIG.
In the blood processing apparatus of the present invention, the hollow fiber bundle 6 is arranged along the length direction inside the housing 5, and the end of the hollow fiber bundle 6 is fixed to the inner surface of the end of the housing 5 by the fixing material 3. A port 1 having a blood outflow inlet 1A is attached (welded or fixed by adhesion) to the five ends.
[Housing 5]
The housing 5 is made of (a) a material having a low polarity that is difficult to bond the fixing material 3 or (b) a material obtained by releasing the surface.
For example, a material such as polypropylene or methylpentene resin can be used as a material that does not adhere to the fixing material 3 and has no polarity. Among the corresponding resins, the heat (linear) expansion coefficient is the fixing material 3 (for example, polyurethane). It is desirable to select a material having the same thermal expansion coefficient (having a thermal (linear) expansion coefficient ratio B / A in the range of 0.7 to 1.4).
The material whose surface has been subjected to the mold release treatment is a material whose contact surface with the fixing material 3 has been subjected to the mold release treatment, and any material can be used as long as it can be used for high-pressure steam sterilization, such as polycarbonate. be able to. Moreover, as said mold release processing agent, a silicone resin, grease, or oil can be used, for example.
On the side surface of the housing 5, a blood treatment liquid (dialysate) inlet / outlet 5 </ b> A is formed.
[Flange 4]
The flange 4 is mounted (welded or bonded and fixed) to the housing 5 with a gap from the end of the housing 5, and the flange 4 is embedded in the fixing material 3.
It is preferable that the flange 4 is formed in a ring shape, and a tapered portion 4A is formed on the upper part for removing air bubbles when casting the fixing material.
The outer peripheral shape of the end of the hollow fiber bundle 6 is regulated by the inner periphery of the flange 4.
The flange 4 can also be made of the same material as the housing 5, for example, a material such as polypropylene or methylpentene resin, and is comparable to the fixing material 3 (for example, polyurethane) in the corresponding resin (thermal (linear) expansion coefficient). It is desirable to select a material having a thermal (linear) expansion coefficient (with a ratio B / A of 0.7 to 1.4).
[0015]
[Fixing material 3]
The end of the hollow fiber bundle 6 is fixed to the inner surface of the end of the housing 5 by a fixing material 3. The fixing member 3 supports the housing 5 in the longitudinal direction by including (embedding) the flange 4 welded to the housing 5.
For example, polyurethane is used as the fixing material 3, and the thermal (linear) expansion coefficient ratio B / A is in the range of 0.7 to 1.4 while taking into account the thermal (linear) expansion coefficient of the housing 5. It is desirable to choose.
The fixing member 3 is tightly sealed by the port 1 and the flange 4. More specifically, the fixing material 3 may be lightly adhered to the inner surface of the end of the housing 5 and the flange 4 and may be peeled off after sterilization. Liquid tightness is maintained by tightening and sealing at the lower portion 1B and the tapered portion 4A of the flange 4.
[Port 1]
A groove 1M is formed in the lower portion 1B of the port 1, and an O-ring 2 is disposed in the groove 1M, and a liquid-tight state is maintained between the cut surface of the lower portion 1B of the port 1 and the fixing member 3 by the O-ring 2. .
The port 1 can also be made of the same material as the flange 4 and the housing 5, for example, a material such as polypropylene or methylpentene resin, and is equivalent to the fixing material 3 (for example, polyurethane) among the corresponding resins (described later). It is desirable to select a material having a thermal (linear) expansion coefficient (having a thermal (linear) expansion coefficient ratio B / A in the range of 0.7 to 1.4).
The O-ring 2 is made of silicone resin, synthetic rubber, or the like, but it is preferable that the O-ring 2 is not easily deformed even by heat by high-pressure steam sterilization or long-time compression.
[0016]
[Interrelationship of port 1, fixing material 3, flange 4, housing 5 material]
The flange 4, the housing 5 and the port 1 may be formed of the same material.
The ratio B / A between the thermal (linear) expansion coefficient A of the housing 5 and the thermal (linear) expansion coefficient B of the fixing member 3 is 1.4 or less (preferably 0.7 to 1.4, more preferably 0). .9 to 1.1) are preferably used in combination.
When the ratio B / A of the thermal (linear) expansion coefficient exceeds 1.4, if heating and cooling are repeated for cleaning and sterilization, for example, excessive stress is applied to the fixing material 3 due to the difference in thermal (linear) expansion coefficient. This is not preferable.
If B / A is too small (less than 0.7), a gap is generated between the housing and the fixing material during sterilization (at high temperature), which is not preferable.
In the present invention, the ratio B / A of the thermal (linear) expansion coefficient A of the flange 4 and / or the port 1 and the thermal (linear) expansion coefficient B of the fixing member 3 is 1.4 or less, preferably 0. .7 to 1.4, more preferably 0.9 to 1.1 are used in combination.
[0017]
[Welding of each component, etc.]
The outer surface of the flange 4 and the inner surface of the end portion of the housing 5 can be welded by, for example, ultrasonic welding, laser welding, heat sealing, welding, or the like.
The end portion of the housing 5 and the lower portion 1B of the port 1 can be welded by ultrasonic welding, laser welding, heat sealing, welding, or the like.
[0018]
The blood processing apparatus of the present invention can be assembled as follows, for example.
(1) The flange 4 is ultrasonically welded to the inner surfaces of both ends of the housing 5.
(2) The hollow fiber bundle 6 is loaded into the housing 5 and the outer peripheral shape of the hollow fiber bundle 6 is regulated by the inner periphery of the ring 4.
(3) Both ends of the hollow fiber bundle 6 are cut into a predetermined length, and the open end is hermetically sealed.
(4) Caps for filling a fixing material are attached to both ends of the housing 5, and centrifugal force is applied while injecting the fixing material 3 from the blood treatment solution (dialysis solution) inlet / outlet 5A.
(The curing of the fixing material is preferably cured at 35 ° C. or lower because the shrinkage increases as the temperature is cured.)
(5) After the fixing material 3 is cured, the cap for filling is removed, both ends of the hollow fiber bundle 6 fixed with the fixing material 3 are cut, and the ends of the hollow fiber bundle 6 are opened.
(6) Ports 1 incorporating O-rings 2 are welded to both ends of the housing 5 by ultrasonic waves, and the fixing member 3 is tightened and sealed by the port 1 lower part 1B and the tapered part 4A of the flange 4. .
(7) The assembled blood processing apparatus is filled with water, the blood outflow inlet 1A and the blood processing liquid (dialysate) inlet / outlet 5A are plugged, and then autoclaved.
[0019]
【Example】
The following materials are used for each component of the blood processing apparatus (Example 1) in the form of FIGS. 1 and 2 and the blood processing apparatus (Comparative Examples 1 and 2) in the form of FIG. 10 sets of each were assembled, filled with water and sterilized at 121 ° C. for 20 minutes under high pressure steam sterilization, and then subjected to appearance inspection and leakage test.
Example 1
Hollow fiber bundle 6: Polysulfone (no pretreatment (wet heat shrinkage))
Fixing material 3: Polyurethane [thermal (linear) expansion coefficient: 14 × 10 (superscript: −5) (/ ° C.)]
Housing 5: Polypropylene [thermal (linear) expansion coefficient: 14 × 10 (superscript: −5) (/ ° C.)]
Ring 4: Polypropylene [thermal (linear) expansion coefficient: 14 × 10 (superscript: −5) (/ ° C.)]
Port 1: Polypropylene [thermal (linear) expansion coefficient: 14 × 10 (superscript: −5) (/ ° C.)] (O-ring 2: silicone resin)
Comparative Example 1
Hollow fiber membrane 16: Polysulfone (no pretreatment (wet heat shrinkage))
Fixing material 13: Polyurethane [thermal (linear) expansion coefficient: 14 × 10 (superscript: −5) (/ ° C.)]
Housing 15: Polycarbonate [Coefficient of thermal (linear) expansion: 6.6 × 10 (superscript: −5) (/ ° C.)]
Port 11: Polycarbonate [thermal (linear) expansion coefficient: 6.6 × 10 (superscript: −5) (/ ° C.)] (O-ring 12: silicone resin)
Comparative Example 2
Hollow fiber membrane 16: Polysulfone (Pretreatment (wet heat shrinkage))
Fixing material 13: Polyurethane [thermal (linear) expansion coefficient: 14 × 10 (superscript: −5) (/ ° C.)]
Housing 15: Polycarbonate [Coefficient of thermal (linear) expansion: 6.6 × 10 (superscript: −5) (/ ° C.)]
Port 11: Polycarbonate [thermal (linear) expansion coefficient: 6.6 × 10 (superscript: −5) (/ ° C.)] (O-ring 12: silicone resin)
Results Example: In all 10 sets, there was no crack in the fixing material 3, and no leakage was found as a result of the leakage test.
Comparative Example 1: Peeling of the fixing agent 13 from the housing 15 occurred in 6 out of 10 sets, and leakage was found as a result of the leakage test.
Comparative Example 2: In all 10 sets, cracking of the fixing agent 13 and peeling from the housing 15 did not occur, and no leakage was found as a result of the leakage test.
[0020]
[Effects of the invention]
(1) In the present invention, the stress due to repeated heating and cooling at the time of hardening of the fixing material, washing and sterilization, the difference in thermal expansion coefficient is 1.4 or less (preferably 0.7-1. 4, more preferably 0.9 to 1.1) by selecting a material.
(2) In the present invention, since the fixing material is merely lightly bonded to the housing, even when a material that shrinks by wet heat is used for the hollow fiber, only the fixing material containing the hollow fiber contracts and there is a risk of cracking or the like. Therefore, the pretreatment (wet heat shrinkage) of the hollow fiber can be omitted. For this reason, there is no change in performance due to the pretreatment of the hollow fiber, and the assembly cost can be reduced.
(3) There is no risk of leakage due to cracking of the fixing material or peeling from the housing.
(4) The fixing material can be easily detached from the housing and contracted against the contraction of the fixing material due to shrinkage when the fixing material is cured and shrinkage of the hollow fiber during sterilization, and the stress can be relaxed.
(5) The liquid tightness can be maintained by tightening the fixing member between the port and the flange.
[Brief description of the drawings]
FIG. 1 is a schematic view of a blood processing apparatus of the present invention. FIG. 2 is a partially enlarged view of a blood processing apparatus of the present invention. FIG. 3 is a schematic view of a conventional blood processing apparatus.
DESCRIPTION OF SYMBOLS 1 Port 1A Blood inlet / outlet 1B Port lower part 1M Groove 2 O-ring 3 Fixing material 4 Flange 4A Tapered part 5 Housing 5A Blood processing fluid (dialysis solution) inlet / outlet 6 Hollow fiber bundle 11 Port 12 O-ring 13 Fixing material 15 Housing 16 Hollow fiber bundle

Claims (7)

ハウジング(5)の内部に長さ方向に沿って中空糸束(6)を配置し、
中空糸束(6)端部を固定材(3)によりハウジング(5)端部内面に固定し、
前記ハウジング(5)端部に、血液流出入口(1A)を有するポート(1)を装着した血液処理装置において、
前記ハウジング(5)の熱(線)膨張係数Aと、前記固定材(3)の熱(線)膨張係数Bの比B/Aが1.4以下であることを特徴とする血液処理装置。
The hollow fiber bundle (6) is arranged along the length direction inside the housing (5),
The end of the hollow fiber bundle (6) is fixed to the inner surface of the end of the housing (5) by the fixing material (3),
In the blood processing apparatus in which a port (1) having a blood outflow inlet (1A) is attached to the end of the housing (5),
The blood processing apparatus, wherein a ratio B / A of a thermal (linear) expansion coefficient A of the housing (5) and a thermal (linear) expansion coefficient B of the fixing member (3) is 1.4 or less.
前記ハウジング(5)の熱(線)膨張係数Aと、前記固定材(3)の熱(線)膨張係数Bの比B/Aが0.7〜1.4であることを特徴とする請求項1に記載の血液処理装置。A ratio B / A of a thermal (linear) expansion coefficient A of the housing (5) and a thermal (linear) expansion coefficient B of the fixing member (3) is 0.7 to 1.4. Item 2. The blood processing apparatus according to Item 1. 前記ハウジング(5)の熱(線)膨張係数Aと、前記固定材(3)の熱(線)膨張係数Bの比B/Aが0.9〜1.1であることを特徴とする請求項1ないし請求項2に記載の血液処理装置。A ratio B / A of a thermal (linear) expansion coefficient A of the housing (5) and a thermal (linear) expansion coefficient B of the fixing member (3) is 0.9 to 1.1. The blood processing apparatus according to claim 1 or 2. 前記ハウジング(5)を(a)固定材(3)が接着しにくい極性の低い材料、又は(b)表面を離型処理した材料より形成した、ことを特徴とする請求項1ないし請求項3に記載の血液処理装置。The housing (5) is formed of (a) a material having low polarity that is difficult to adhere to the fixing material (3), or (b) a material obtained by releasing the surface of the housing (5). The blood processing apparatus according to 1. ハウジング(5)端部より間隔をあけて、フランジ(4)をハウジング(5)に装着し、当該フランジ(4)を前記固定材(3)内に埋設した、ことを特徴とする請求項1ないし請求項4に記載の血液処理装置。The flange (4) is mounted on the housing (5) at a distance from the end of the housing (5), and the flange (4) is embedded in the fixing member (3). The blood processing apparatus of Claim 4 thru | or 4. 前記固定材(3)を、前記ポート(1)と前記フランジ(4)により締付シールした、ことを特徴とする請求項1ないし請求項5に記載の血液処理装置。The blood processing apparatus according to any one of claims 1 to 5, wherein the fixing member (3) is tightly sealed by the port (1) and the flange (4). 前記フランジ(4)、前記ハウジング(5)及び前記ポート(1)を同一材料により形成したことを特徴とする請求項1ないし請求項6に記載の血液処理装置。The blood processing apparatus according to any one of claims 1 to 6, wherein the flange (4), the housing (5), and the port (1) are formed of the same material.
JP2003169542A 2003-06-13 2003-06-13 Blood processing apparatus Pending JP2005000521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169542A JP2005000521A (en) 2003-06-13 2003-06-13 Blood processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169542A JP2005000521A (en) 2003-06-13 2003-06-13 Blood processing apparatus

Publications (1)

Publication Number Publication Date
JP2005000521A true JP2005000521A (en) 2005-01-06

Family

ID=34094655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169542A Pending JP2005000521A (en) 2003-06-13 2003-06-13 Blood processing apparatus

Country Status (1)

Country Link
JP (1) JP2005000521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056013A (en) * 2009-09-09 2011-03-24 Nikkiso Co Ltd Hemodialyzer
WO2022168778A1 (en) * 2021-02-05 2022-08-11 テルモ株式会社 Artificial lung and method for manufacturing artificial lung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056013A (en) * 2009-09-09 2011-03-24 Nikkiso Co Ltd Hemodialyzer
WO2022168778A1 (en) * 2021-02-05 2022-08-11 テルモ株式会社 Artificial lung and method for manufacturing artificial lung
EP4272856A4 (en) * 2021-02-05 2024-05-01 TERUMO Kabushiki Kaisha Artificial lung and method for manufacturing artificial lung

Similar Documents

Publication Publication Date Title
JP3077020B2 (en) Hollow fiber type separation membrane module
JP5837928B2 (en) Rigid disposable channel
JPH06296834A (en) Hollow yarn type filter
JP6725238B2 (en) External pressure type hollow fiber membrane module and manufacturing method thereof
JP4343522B2 (en) Blood treatment equipment
JP2005000521A (en) Blood processing apparatus
JP2017104869A (en) Membrane module
JP3626505B2 (en) Sanitary piping gasket and manufacturing method thereof
JP5291530B2 (en) Hollow fiber membrane module and manufacturing method thereof
JP6853836B2 (en) Hollow fiber membrane module and filtration method
JPS61157309A (en) Hollow yarn type module
JP5289251B2 (en) Hemodialyzer
JP2004105419A (en) Blood treatment apparatus
JPS6329566B2 (en)
JPH0410374B2 (en)
JPH0410373B2 (en)
JP6552317B2 (en) Hollow fiber membrane module and leak durability test method for hollow fiber membrane module
JPH02119923A (en) Hollow fiber membrane type module
CN111032323B (en) Method for sealing a medical device
JP4369848B2 (en) Body fluid treatment device
JP2790617B2 (en) Hollow fiber blood purification device
JPH09276667A (en) Solvent-resistant hollow yarn semipermeable membrane type cartridge and semipermeable membrane type module therefor
JPH01224008A (en) Heat-resistant filter module
JP4497681B2 (en) Filtration module
JP5702539B2 (en) Hollow fiber membrane module