JP2005000270A - Magnetic resonance imager - Google Patents

Magnetic resonance imager Download PDF

Info

Publication number
JP2005000270A
JP2005000270A JP2003164581A JP2003164581A JP2005000270A JP 2005000270 A JP2005000270 A JP 2005000270A JP 2003164581 A JP2003164581 A JP 2003164581A JP 2003164581 A JP2003164581 A JP 2003164581A JP 2005000270 A JP2005000270 A JP 2005000270A
Authority
JP
Japan
Prior art keywords
pulse
flip angle
magnetic field
frequency pulse
gradient magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003164581A
Other languages
Japanese (ja)
Other versions
JP4137709B2 (en
JP2005000270A5 (en
Inventor
Yumiko Tanii
由美子 谷井
Tetsuhiko Takahashi
哲彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003164581A priority Critical patent/JP4137709B2/en
Publication of JP2005000270A publication Critical patent/JP2005000270A/en
Publication of JP2005000270A5 publication Critical patent/JP2005000270A5/ja
Application granted granted Critical
Publication of JP4137709B2 publication Critical patent/JP4137709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To implement an SSFP pulse sequence in which the vibration of a nuclear spin in a transient state is restrained and the TR is short even in an MRI apparatus whose rated output of an inclined magnetic field power supply is small. <P>SOLUTION: An impressing time interval between a high-frequency pulse of a flip angle α/2 and a high-frequency pulse of a first flip angle α is TR/2+ΔT, an impressing time interval between a high-frequency pulse of a first flip angle α and a high-frequency pulse of a second flip angle α is TR+ΔT and an impressing time interval among high-frequency pulses of a flip angle α continuously applied more than one time after the high-frequency pulse of a second flip angle α is TR, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気共鳴イメージング装置(以下、MRI装置という。) に関し、特に傾斜磁場発生系の性能が低い装置においても繰り返し時間(TR)の短いSSFPシーケンスを用いることが出来るようにしたMRI装置に関するものである。
【0002】
【従来の技術】
MRI装置は、所定の均一な強度を有した静磁場空間へ置かれた被検体へ高周波磁場(RF磁場)を照射することにより、被検体の組織を構成する原子の原子核、例えばプロトンに核磁気共鳴現象を起こさせ、被検体から放出される電磁波信号を計測並びに信号処理して画像化するものである。前記核磁気共鳴現象を起こさせ、その信号を検出するためには、均一な静磁場に置かれた被検体へRF磁場、スライス傾斜磁場、位相エンコード傾斜磁場及びリードアウト傾斜磁場を所定のパルスシーケンスに則って印加する。
【0003】
従来から、パルスシーケンスとして各種のものが開発され、実用化されているが、大きく分けて、スピンエコー系に属するものとグラジェントエコー系に属するものがある。グラジェントエコー系のパルスシーケンスは励起された核スピンの位相反転を行うための反転RFパルスを印加しないので、エコー時間TE及びシーケンスの繰返し時間TRをスピンエコー系パルスシーケンスより短くすることができる。その反面、TRを短くすると各シーケンスを終え次のシーケンスを開始するまでに核スピンの横磁化が消失せずに残留し、その残留横磁化が次のシーケンス内に持ち越されてしまう。
【0004】
この残留横磁化が次のシーケンスに持ち込まれることを積極的に利用する計測方法がある。すなわち、TRを短くして繰返し核スピンを励起すると、励起開始からしばらくの間核スピンは振動し、その後ほぼT1あるいはT2の時間経過後に定常状態に移行する。この定常状態を定常状態自由歳差運動(Steady State Free Precession:以下、SSFPという。)の状態という。このSSFP状態に達するまでの過程を過渡状態というが、この過渡状態の間は前記のように核スピンが振動するために計測される信号が安定したものとはならないために、この過渡状態の信号を画像形成に用いることは好ましくないと考えられている。
【0005】
これを改善するために、繰り返して実行されるグラジェントエコーシーケンスの最初のシーケンスにおけるRF励起パルスよりTR/2時間前に、RF励起パルス(励起角αとする)の1/2の励起角(α/2)のRFパルスをプリパルスとして印加することが、〔非特許文献1〕に提案されている。このプリパルスの印加により、過渡状態における強い振動を抑制することができるとされ、プリパルスを用いない場合に比べ、早く信号の取得を開始することができるとされている。
【0006】
【非特許文献1】
M. Deimling and O. Heid: Magnetization Prepared True FISP Imaging, Proc., SMRM, 2nd Annual Meeting, p495 ,1994
【0007】
シーケンスの実行前に印加されるプリパルスとしては、脂肪抑制パルスや反転回復パルスなども挙げられるが、プリパルス印加後は、時間の経過と共にその効果が低下するため、プリパルスの印加後速やかに信号計測を行うことが望まれる。
【0008】
前記非特許文献1に記載されたTrue FISPシーケンスを臨床に用いる場合、例えば心臓のイメージングを行う場合には、静磁場強度が1.5Tの装置ではTR≦3msが好ましいとされる。その理由として、TR≦3msでは血液と心筋の良好なコントラストが得られるからとされ、またTRが長くなると静磁場不均一の影響によるダークバンドアーチファクトが生じるため、これを避けるためにもTRの短縮が必要とされている。
【0009】
【発明が解決しようとする課題】
前記非特許文献1に記載されたTrue FISPシーケンスを実行するには励起角α/2のプリパルスを印加するためにTR/2だけ時間を要することになる。しかし、TR/2の間にプリパルスの印加、スライス選択傾斜磁場の印加、スライス選択傾斜磁場の印加に対するスライス方向リフェーズ用傾斜磁場の印加を行わなければならず、TRを短縮すればするほどに傾斜磁場の印加時間を短縮する必要が生じる。傾斜磁場の印加時間を短縮するということは、傾斜磁場の強度を高くすることが必要であることを意味する。
【0010】
したがって、True FISPを実行するためには、傾斜磁場発生系の能力が高いことが求められる。すなわち、電源容量が大きく、高速のスイッチング性能を有した傾斜磁場発生系が要求される。
このために、True FISPシーケンスはハイエンド機にしか導入されず、傾斜磁場発生系の性能がさほど高くないMRI装置では、そのような短TRのSSFPシーケンスで、過渡状態のスピンの振動をおさえる技術は実現されておらず、その開発が要望されている。
【0011】
本発明は、上記に鑑みて成されたもので、傾斜磁場発生系の性能がさほど高くないMRI装置においても短TRのSSFPシーケンスを実行でき、また過渡状態における核スピンの振動を抑制し早期に信号計測ができるようにしたMRI装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために本発明は、フリップ角α/2の高周波パルスを印加した後、フリップ角αの高周波パルスを交互に正負に極性を反転しながら短い繰返し時間TRで連続的に印加し、磁化が過度振動状態から定常状態自由歳差運動に達した後にエコー信号を取得して画像を得る磁気共鳴イメージング装置において、第(i−1)番目のフリップ角αの高周波パルスと第i番目のフリップ角αの高周波パルスとの印加時間間隔をT(i)(ただし0番目の高周波パルスはフリップ角α/2の高周波パルスとする)としたときに、特定のn(n≧2)番目のフリップ角αの高周波パルスの印加に対して、T(i)は
【数2】

Figure 2005000270
を満たすようにしたものであり、
特に、n=2のとき、
T(1)=TR/2+ΔT
T(2)=TR+ΔT (ΔT>0)
を満たすことを特徴とする請求項1に記載の磁気共鳴イメージング装置。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を、図面を参照して説明する。図3は本実施形態で用いられるMRI装置の概略構成を示すブロック図である。図3において、301は被検体、302は被検体301を含む所定の大きさの空間へ所定の強度でかつ均一な静磁場を発生する静磁場発生用磁石で、公知の永久磁石タイプ、常電導磁石タイプ、あるいは超電導磁石タイプの物が用いられる。303は傾斜磁場コイルで、前記被検体301を含む空間において前記静磁場へ重畳されほぼリニアな磁場勾配を形成するもので、基本的にはX,Y,Xの直交する3軸方向へそれぞれが傾斜磁場を発生する3組の傾斜磁場コイルから構成されている。304は前記被検体301へ高周波(RF)磁場をパルス状に照射する高周波コイルであり、RF送信コイルとここでは称する。305は前記RF送信コイル304から被検体へRFパルスを照射したときに被検体内の組織を構成する原子の原子核、例えばプロトンが核磁気共鳴現象を起こすことにより放出される電磁波を電磁誘導によって検出するRF受信コイルである。なお、RF送信コイルとRF受信コイルは別個に設けても、両者を兼用する構成としても良い。
【0014】
306は信号検出部で、増幅器と直交検波器とA/D変換器とから成り、前記RF受信コイルで検出された信号を増幅、直交検波、A/D変換の順に処理し、画像を形成する信号に変換するもの、307は信号処理部で、信号検出部306から入力した信号に対して画像再構成演算や各種解析演算等を行うもの、308は表示部で、信号処理部307で再構成された画像データや解析データをディスプレイの画面へ表示したり、それらのデータを記録保存するもの、309は前記傾斜磁場コイル303へ電流を供給する傾斜磁場電源である。
【0015】
311は中央演算処理装置(CPU)であり、上記各構成要件を所定のタイミングチャート(これをパルスシーケンスと称す。)に則り動作制御するものである。なお、図示を省略されているが、撮像の各種パラメータや解析条件等の他に装置の起動のオン/オフ指令を入力するコンソールがCPU311へ接続されている。
【0016】
次に、上記の構成になるMRI装置で動作させられるパルスシーケンスの一実施形態を説明する。図1は本実施形態のパルスシーケンスを示し、図2は図1に示すパルスシーケンスが進行中のオフレゾナンス状態にある核スピンの挙動を示す。図1に示すパルスシーケンスにおいては、先ずスライス選択傾斜磁場201の印加と共にフリップ角(−α/2)のプリパルス101が照射される。すると、スライス選択傾斜磁場201の傾斜とプリパルス101の周波数帯域によって決まるスライス内の核スピンは図2(a)に示すようにX軸上でX−Y平面方向へ励起される。プリパルスによる励起が終了後、極性を反転されたスライス方向傾斜磁場202が印加され、励起された核スピンのスライス方向における位相合わせが行われる。RFパルス101によって励起された核スピンのうちオフレゾナンス状態にある核スピンは位相回転を生じ、図2(a)の状態から図2(b)の状態へ時間の経過とともに位相回転をする。オフレゾナンスは静磁場不均一や磁気感受率の相違によって生ずる。
【0017】
そしてプリパルス101の印加から信号計測時のシーケンスの繰返し時間TRの1/2の時間すなわちTR/2と、ΔT時間とが経過した時刻(TR/2+ΔT)にフリップ角αのRFパルス102を201と同様なスライス選択傾斜磁場203と共に印加する。これによってスライス内の核スピンの位相は図2(b)及び図2(c)に示すように、TR/2+ΔTの待ち時間にディフェーズされ(図2(b))、RFパルス102の印加によって核スピンはその位相がz軸周りにαだけ進められる(図2(c))。なお、スライス選択傾斜磁場203の後半分とスライス選択傾斜磁場203の前半分とは印加量が等しく、核スピンのスライス方向の位相回転をキャンセルするようになっている。
【0018】
次に、RFパルス102とスライス選択傾斜磁場203を印加したことによって励起された核スピンのスライス方向の位相ずれを修正するリフェージング用傾斜磁場204を印加する。
【0019】
さらに次のRFパルス103とスライス方向傾斜磁場206の印加に対する核スピンの位相ずれを事前にリフェージングするスライス方向傾斜磁場205とを印加し、RFパルス102の印加からTR+ΔTの経過後にスライス選択傾斜磁場206の印加の下にRFパルス103(フリップ角−α)を印加する。このとき核スピンの位相はTR+ΔTの待ち時間によって図2(d)にあった位置からRFパルス103の印加により図2(e)の位置に移動する。
【0020】
その後、繰返し時間TRの間に、スライス方向のリフェーズ、ディフェーズのための傾斜磁場207,208の印加、位相エンコード傾斜磁場301(エンコード用),302(リフェーズ用)及びリードアウト傾斜磁場401(ディフェーズ用)、402(エンコード用)、403(リフェーズ用)を順次印加し、A/D変換器のサンプリング期間501の間にエコー信号601を計測する。このエコー信号計測中に核スピンの位相は図2(e)から図2(f)へ変化する。
【0021】
以後、同様に位相エンコード量を変化させながら繰返し時間TRで極性が交互に反転するRFパルスを印加してエコー信号を計測する。
なお、上記実施形態はn=2のときを説明したものであるが、本発明はn≧3にも適用することが可能であり、n=2,3,4のときのT(i)の値を表1に示す。
【0022】
【表1】
Figure 2005000270
本実施形態では、RFパルス102と103の間に生ずるエコー信号は計測せず、RFパルス103と104の間、104と105の間、…に生ずるエコー信号しか計測しない。したがって、計測時間の延長が懸念されるが、実際の撮影では、最初の10エコー程度は過度状態の振動の影響を避けるために画像再構成には用いないために撮影時間の延長やデータ取得効率の低下にはほとんど影響はないと考えてよい。
【0023】
本発明は心電同期計測にも用いることができる。以下、その実施形態を図4を用いて説明する。図4は1心拍中に4枚の画像を得る、すなわち、1心拍中に1から4までの4つの心時相画像を取得する例を示している。図には、第1心周期の第1心時相についてシーケンスの詳細を示しているが、このシーケンスは、プリパレーションパルスRFpとそれに続き図1に示すパルスシーケンスとから成っている。プリパレーションパルスRFpは、例えば脂肪組織の核スピンを選択的に飽和するもので、各時相の始めに印加される。このプリパレーションパルスRFpを印加すると各時相で定常状態が崩れている。そこで、プリパレーションパルスの印加後に図1のパルスシーケンスを適用するようにして、TRの短縮と、所望の画像コントラストを得られるようにした。なお、ここにTRとΔTの具体的な数値を示すと、TR=4.0ms、ΔT=1.5msである。
【0024】
また、本発明はα/2ポストパルスにも適用できる。ここで、α/2ポストパルスとは、SSFPシーケンスの途中にプリパレーションパルスを挿入したいときなどに印加するもので、SSFP状態にある核スピンの横磁化を縦磁化に戻すRFパルスを言い、〔非特許文献2〕に記載されている。本発明をα/2ポストパルスに用いた実施形態を図5に示す。図5は図1に記載したシーケンスを時間経過を逆転したもので、α/2ポストパルス703を印加するには、その2つ前のRFパルス701の印加後にTR+ΔTの時間を置いてRFパルス702を印加し、RFパルス702の印加からTR/2+ΔTの時間経過後にα/2ポストパルスを印加するようにする。これによりスライス方向のリワインド傾斜磁場801の印加時間に余裕を生じさせることができるので、リワインド傾斜磁場801の印加強度を下げることができる。
【0025】
【非特許文献2】
K.Scheffler et al.: Magnetization Preparation during the Steady State: Fat Saturated 3D True FISP, Proc., ISMAM, 9th Annual Meeting, 440(2001)
【0026】
【発明の効果】
以上述べたように本発明によれば、傾斜磁場電源の定格が小さなMRI装置でも過度状態での磁化の振動を抑制したTRの短いSSFPシーケンスを実施することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態のパルスシーケンスを示す図。
【図2】図1のパルスシーケンスの進行中におけるオフレゾナンス状態にある核スピンの挙動を示す図。
【図3】本発明が適用されるMRI装置の概略構成を示すブロック図。
【図4】本発明を心電同期撮影法へ適用した実施形態を示す図。
【図5】本発明をα/2ポストパルスへ適用した実施形態を示す図。
【符号の説明】
101…フリップ角α/2のRFパルス
102〜105…フリップ角αのRFパルス
201〜213…スライス選択傾斜磁場
301〜305…位相エンコード傾斜磁場
401〜407…リードアウト傾斜磁場
501〜503…サンプリング期間
601〜603…エコー信号[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus), and more particularly to an MRI apparatus that can use an SSFP sequence with a short repetition time (TR) even in an apparatus with a low gradient magnetic field generation system performance. Is.
[0002]
[Prior art]
An MRI apparatus irradiates a subject placed in a static magnetic field space having a predetermined uniform intensity with a high-frequency magnetic field (RF magnetic field), thereby nucleating magnetic nuclei of atoms constituting the subject's tissue, for example, protons. A resonance phenomenon is caused, and an electromagnetic wave signal emitted from the subject is measured and processed to be imaged. In order to cause the nuclear magnetic resonance phenomenon and to detect the signal, an RF magnetic field, a slice gradient magnetic field, a phase encoding gradient magnetic field, and a readout gradient magnetic field are applied to a subject placed in a uniform static magnetic field with a predetermined pulse sequence. Apply in accordance with.
[0003]
Conventionally, various types of pulse sequences have been developed and put into practical use. However, there are two types that belong to the spin echo system and those that belong to the gradient echo system. Since the gradient echo pulse sequence does not apply an inversion RF pulse for phase inversion of the excited nuclear spin, the echo time TE and the sequence repetition time TR can be made shorter than the spin echo pulse sequence. On the other hand, if TR is shortened, the transverse magnetization of the nuclear spin remains without disappearing until the end of each sequence and the start of the next sequence, and the residual transverse magnetization is carried over into the next sequence.
[0004]
There is a measurement method that positively utilizes the fact that this residual transverse magnetization is brought into the next sequence. In other words, when TR is shortened and the nuclear spin is repeatedly excited, the nuclear spin oscillates for a while from the start of excitation, and then shifts to a steady state after a lapse of time T1 or T2. This steady state is referred to as a state of steady state free precession (hereinafter referred to as SSFP). The process until the SSFP state is reached is referred to as a transient state. During this transient state, the signal measured due to the oscillation of the nuclear spin as described above is not stable. Is considered to be undesirable for image formation.
[0005]
In order to improve this, an excitation angle (1/2) of the RF excitation pulse (excitation angle α) is TR / 2 hours before the RF excitation pulse in the first sequence of the gradient echo sequence executed repeatedly. It has been proposed in [Non-Patent Document 1] to apply an α / 2) RF pulse as a pre-pulse. By applying this pre-pulse, it is said that strong vibrations in a transient state can be suppressed, and signal acquisition can be started earlier than when no pre-pulse is used.
[0006]
[Non-Patent Document 1]
M.M. Deimling and O.D. Heid: Magnetization Prepared True FISP Imaging, Proc. , SMRM, 2 nd Annual Meeting, p495, 1994
[0007]
Examples of prepulses applied before the execution of a sequence include fat suppression pulses and inversion recovery pulses.However, the effects of the prepulses decrease with time, so signal measurement is performed immediately after the prepulses are applied. It is desirable to do so.
[0008]
When the True FISP sequence described in Non-Patent Document 1 is used clinically, for example, when performing cardiac imaging, TR ≦ 3 ms is preferable for an apparatus having a static magnetic field strength of 1.5 T. The reason is that a good contrast between blood and myocardium is obtained when TR ≦ 3 ms, and when TR becomes long, dark band artifacts due to the effect of static magnetic field inhomogeneity occur. Is needed.
[0009]
[Problems to be solved by the invention]
In order to execute the True FISP sequence described in Non-Patent Document 1, it takes time TR / 2 to apply the pre-pulse with the excitation angle α / 2. However, during TR / 2, it is necessary to apply a pre-pulse, a slice selective gradient magnetic field, and a slice-direction rephasing gradient magnetic field to the slice selective gradient magnetic field, and the more TR is shortened It is necessary to shorten the application time of the magnetic field. Shortening the application time of the gradient magnetic field means that it is necessary to increase the strength of the gradient magnetic field.
[0010]
Therefore, in order to execute True FISP, it is required that the capability of the gradient magnetic field generation system is high. That is, a gradient magnetic field generation system having a large power supply capacity and high-speed switching performance is required.
For this reason, the True FISP sequence is introduced only in high-end machines, and the MRI system that does not have a very high performance of the gradient magnetic field generation system uses such a short-TR SSFP sequence to suppress the transient spin oscillation. It has not been realized and its development is desired.
[0011]
The present invention has been made in view of the above, and it is possible to execute a short TR SSFP sequence even in an MRI apparatus in which the performance of a gradient magnetic field generation system is not so high, and to suppress nuclear spin oscillation in a transient state and thereby at an early stage. An object of the present invention is to provide an MRI apparatus capable of signal measurement.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, after applying a high-frequency pulse with a flip angle α / 2, a high-frequency pulse with a flip angle α is continuously applied with a short repetition time TR while reversing the polarity between positive and negative. In the magnetic resonance imaging apparatus for obtaining an image by acquiring an echo signal after the magnetization reaches a steady-state free precession from the excessive vibration state, the (i−1) th high-frequency pulse of the flip angle α and the i th When the application time interval with the high-frequency pulse with the flip angle α is T (i) (where the 0th high-frequency pulse is the high-frequency pulse with the flip angle α / 2), the specific n (n ≧ 2) th T (i) is given by the following equation when a high-frequency pulse with a flip angle α of
Figure 2005000270
Is to satisfy
In particular, when n = 2
T (1) = TR / 2 + ΔT
T (2) = TR + ΔT (ΔT> 0)
The magnetic resonance imaging apparatus according to claim 1, wherein:
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a block diagram showing a schematic configuration of the MRI apparatus used in the present embodiment. In FIG. 3, reference numeral 301 denotes a subject, 302 denotes a static magnetic field generating magnet that generates a uniform static magnetic field with a predetermined strength in a space of a predetermined size including the subject 301, and is a known permanent magnet type, normal conduction A magnet type or a superconducting magnet type is used. A gradient magnetic field coil 303 is superimposed on the static magnetic field in the space including the subject 301 to form a substantially linear magnetic field gradient. It is composed of three sets of gradient magnetic field coils that generate a gradient magnetic field. Reference numeral 304 denotes a high-frequency coil that irradiates the subject 301 with a high-frequency (RF) magnetic field in a pulse form, and is referred to as an RF transmission coil here. 305 detects by electromagnetic induction the electromagnetic waves emitted by the nuclear magnetic resonance phenomenon of atomic nuclei, eg, protons constituting the tissue in the subject when the subject is irradiated with an RF pulse from the RF transmitter coil 304. RF receiving coil. Note that the RF transmission coil and the RF reception coil may be provided separately or may be configured to use both.
[0014]
A signal detection unit 306 includes an amplifier, a quadrature detector, and an A / D converter. The signal detected by the RF receiving coil is processed in the order of amplification, quadrature detection, and A / D conversion to form an image. What is converted into a signal, 307 is a signal processing unit, which performs image reconstruction calculation and various analysis calculations on the signal input from the signal detection unit 306, 308 is a display unit, and is reconstructed by the signal processing unit 307 309 is a gradient magnetic field power source for supplying current to the gradient magnetic field coil 303, which displays the image data and analysis data on the display screen and records and saves the data.
[0015]
Reference numeral 311 denotes a central processing unit (CPU) that controls the operation of each of the above-described constituent elements in accordance with a predetermined timing chart (referred to as a pulse sequence). Although not shown, a console for inputting an on / off command for starting the apparatus in addition to various imaging parameters and analysis conditions is connected to the CPU 311.
[0016]
Next, an embodiment of a pulse sequence operated by the MRI apparatus configured as described above will be described. FIG. 1 shows the pulse sequence of this embodiment, and FIG. 2 shows the behavior of nuclear spins in the off-resonance state in which the pulse sequence shown in FIG. 1 is in progress. In the pulse sequence shown in FIG. 1, first, a pre-pulse 101 having a flip angle (−α / 2) is irradiated with application of the slice selective gradient magnetic field 201. Then, the nuclear spin in the slice determined by the gradient of the slice selective gradient magnetic field 201 and the frequency band of the prepulse 101 is excited in the XY plane direction on the X axis as shown in FIG. After the excitation by the pre-pulse is completed, a slice direction gradient magnetic field 202 having a reversed polarity is applied, and phase alignment of the excited nuclear spin in the slice direction is performed. Of the nuclear spins excited by the RF pulse 101, the nuclear spins in the off-resonance state undergo phase rotation, and phase rotation occurs from the state of FIG. 2A to the state of FIG. 2B over time. The off-resonance is caused by a non-uniform static magnetic field and a difference in magnetic susceptibility.
[0017]
Then, the RF pulse 102 with the flip angle α is set to 201 at the time (TR / 2 + ΔT) when 1/2 of the repetition time TR of the sequence at the time of signal measurement from the application of the pre-pulse 101, that is, TR / 2, and ΔT time have elapsed. The same slice selective gradient magnetic field 203 is applied. As a result, the phase of the nuclear spin in the slice is dephased with a waiting time of TR / 2 + ΔT (FIG. 2 (b)) as shown in FIGS. 2 (b) and 2 (c). The phase of the nuclear spin is advanced by α around the z-axis (FIG. 2C). Note that the application amount of the rear half of the slice selective gradient magnetic field 203 is equal to that of the front half of the slice selective gradient magnetic field 203 so that the phase rotation of the nuclear spin in the slice direction is canceled.
[0018]
Next, a rephasing gradient magnetic field 204 for correcting a phase shift in the slice direction of the nuclear spin excited by applying the RF pulse 102 and the slice selective gradient magnetic field 203 is applied.
[0019]
Further, a slice direction gradient magnetic field 205 for rephasing the phase shift of the nuclear spin with respect to the application of the next RF pulse 103 and the slice direction gradient magnetic field 206 is applied in advance, and the slice selection gradient magnetic field is applied after TR + ΔT has elapsed since the application of the RF pulse 102. Under the application of 206, the RF pulse 103 (flip angle -α) is applied. At this time, the phase of the nuclear spin moves from the position shown in FIG. 2D by the waiting time of TR + ΔT to the position shown in FIG.
[0020]
Thereafter, during the repetitive time TR, application of gradient magnetic fields 207 and 208 for rephasing and dephasing in the slice direction, phase encoding gradient magnetic fields 301 (for encoding), 302 (for rephasing), and readout gradient magnetic field 401 (dephasing) Phase (for phase), 402 (for encoding), and 403 (for rephase) are sequentially applied, and the echo signal 601 is measured during the sampling period 501 of the A / D converter. During this echo signal measurement, the phase of the nuclear spin changes from FIG. 2 (e) to FIG. 2 (f).
[0021]
Thereafter, the echo signal is measured by applying RF pulses whose polarities are alternately inverted at the repetition time TR while changing the phase encoding amount.
Although the above embodiment has been described when n = 2, the present invention can also be applied to n ≧ 3, and T (i) when n = 2, 3, 4 Values are shown in Table 1.
[0022]
[Table 1]
Figure 2005000270
In this embodiment, an echo signal generated between the RF pulses 102 and 103 is not measured, and only an echo signal generated between the RF pulses 103 and 104, between 104 and 105, and so on is measured. Therefore, although there is a concern about extending the measurement time, in actual shooting, the first 10 echoes are not used for image reconstruction in order to avoid the influence of excessive vibration, so that the shooting time is extended and the data acquisition efficiency is increased. It can be considered that there is almost no effect on the decline in
[0023]
The present invention can also be used for electrocardiographic synchronization measurement. The embodiment will be described below with reference to FIG. FIG. 4 shows an example in which four images are acquired during one heartbeat, that is, four cardiac phase images from 1 to 4 are acquired during one heartbeat. The figure shows the details of the sequence for the first cardiac time phase of the first cardiac cycle, and this sequence consists of the preparation pulse RFp followed by the pulse sequence shown in FIG. The preparation pulse RFp selectively saturates the nuclear spin of adipose tissue, for example, and is applied at the beginning of each time phase. When this preparation pulse RFp is applied, the steady state is broken in each time phase. Accordingly, the pulse sequence shown in FIG. 1 is applied after the preparation pulse is applied so that TR can be shortened and a desired image contrast can be obtained. Here, specific values of TR and ΔT are shown as TR = 4.0 ms and ΔT = 1.5 ms.
[0024]
The present invention can also be applied to α / 2 post pulses. Here, the α / 2 post pulse is applied when a preparation pulse is to be inserted in the middle of the SSFP sequence. The α / 2 post pulse refers to an RF pulse that returns the transverse magnetization of the nuclear spin in the SSFP state to the longitudinal magnetization. Patent Document 2]. FIG. 5 shows an embodiment in which the present invention is used for an α / 2 post pulse. FIG. 5 is a sequence obtained by reversing the time lapse of the sequence shown in FIG. 1. In order to apply the α / 2 post pulse 703, a time TR + ΔT is applied after the application of the RF pulse 701 two times before the RF pulse 702. And an α / 2 post pulse is applied after the time TR / 2 + ΔT has elapsed from the application of the RF pulse 702. Accordingly, a margin can be generated in the application time of the rewind gradient magnetic field 801 in the slice direction, so that the application intensity of the rewind gradient magnetic field 801 can be lowered.
[0025]
[Non-Patent Document 2]
K. Scheffler et al. : Magnetization Preparation the Steady State: Fat Saturated 3D True FISP, Proc. , ISMAM, 9 th Annual Meeting, 440 (2001)
[0026]
【The invention's effect】
As described above, according to the present invention, it is possible to implement an SSFP sequence with a short TR that suppresses vibration of magnetization in an excessive state even with an MRI apparatus having a small gradient magnetic field power supply rating.
[Brief description of the drawings]
FIG. 1 is a diagram showing a pulse sequence according to an embodiment of the present invention.
FIG. 2 is a diagram showing the behavior of nuclear spins in an off-resonance state during the progress of the pulse sequence of FIG.
FIG. 3 is a block diagram showing a schematic configuration of an MRI apparatus to which the present invention is applied.
FIG. 4 is a diagram showing an embodiment in which the present invention is applied to an electrocardiogram synchronous imaging method.
FIG. 5 is a diagram showing an embodiment in which the present invention is applied to an α / 2 post pulse.
[Explanation of symbols]
101 ... RF pulses 102 to 105 with a flip angle α / 2 ... RF pulses 201 to 213 with a flip angle α ... Slice selection gradient magnetic fields 301 to 305 ... Phase encoding gradient magnetic fields 401 to 407 ... Lead-out gradient magnetic fields 501 to 503 ... Sampling period 601-603 ... Echo signal

Claims (2)

フリップ角α/2の高周波パルスを印加した後、フリップ角αを持つ複数nの高周波パルスを交互に正負に極性を反転しながら短い繰返し時間TRで連続的に印加し、磁化が過度振動状態から定常状態自由歳差運動に達した後にエコー信号を取得して画像を得る磁気共鳴イメージング装置において、
第(i−1)番目のフリップ角αの高周波パルスと第i番目のフリップ角αの高周波パルスとの印加時間間隔をT(i) (ただし0番目の高周波パルスはフリップ角α/2の高周波パルスとする)
としたときに、特定のn(n≧2)番目のフリップ角αの高周波パルスの印加に対して、T(i)は
Figure 2005000270
を満たすことを特徴とする磁気共鳴イメージング装置。
After applying a high-frequency pulse with a flip angle α / 2, a plurality of high-frequency pulses with a flip angle α are continuously applied with a short repetition time TR while reversing the polarity between positive and negative, so that the magnetization is in a state of excessive vibration. In a magnetic resonance imaging apparatus that obtains an image by acquiring an echo signal after reaching steady-state free precession,
The application time interval between the (i-1) th high-frequency pulse with the flip angle α and the i-th high-frequency pulse with the flip angle α is T (i) (where the 0th high-frequency pulse has a high frequency with the flip angle α / 2) Pulse)
, T (i) is given by applying a specific n (n ≧ 2) th high-frequency pulse of flip angle α.
Figure 2005000270
The magnetic resonance imaging apparatus characterized by satisfy | filling.
n=2のとき、
T(1)=TR/2+ΔT
T(2)=TR+ΔT (ΔT>0)
を満たすことを特徴とする請求項1に記載の磁気共鳴イメージング装置。
When n = 2
T (1) = TR / 2 + ΔT
T (2) = TR + ΔT (ΔT> 0)
The magnetic resonance imaging apparatus according to claim 1, wherein:
JP2003164581A 2003-06-10 2003-06-10 Magnetic resonance imaging system Expired - Lifetime JP4137709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164581A JP4137709B2 (en) 2003-06-10 2003-06-10 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164581A JP4137709B2 (en) 2003-06-10 2003-06-10 Magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2005000270A true JP2005000270A (en) 2005-01-06
JP2005000270A5 JP2005000270A5 (en) 2006-07-27
JP4137709B2 JP4137709B2 (en) 2008-08-20

Family

ID=34091311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164581A Expired - Lifetime JP4137709B2 (en) 2003-06-10 2003-06-10 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4137709B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068798A (en) * 2005-09-08 2007-03-22 Ge Medical Systems Global Technology Co Llc Rf pulse applying method and mri apparatus
JP2009165817A (en) * 2007-12-20 2009-07-30 Toshiba Corp Magnetic resonance imaging apparatus
KR101458557B1 (en) 2013-02-20 2014-11-07 삼성전자주식회사 The method and apparatus for obtaining main magnetic field information and radio pulse related information in magnetic resonance system with different flip angles
WO2014185521A1 (en) * 2013-05-17 2014-11-20 学校法人北里研究所 Magnetic resonance imaging device, image processing device, image diagnosis device, image analysis device, and mri image creation method and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068798A (en) * 2005-09-08 2007-03-22 Ge Medical Systems Global Technology Co Llc Rf pulse applying method and mri apparatus
JP2009165817A (en) * 2007-12-20 2009-07-30 Toshiba Corp Magnetic resonance imaging apparatus
KR101458557B1 (en) 2013-02-20 2014-11-07 삼성전자주식회사 The method and apparatus for obtaining main magnetic field information and radio pulse related information in magnetic resonance system with different flip angles
US9500733B2 (en) 2013-02-20 2016-11-22 Samsung Electronics Co., Ltd. Method and apparatus for obtaining main magnetic field information and radio pulse related information in a magnetic resonance imaging system with different flip angles
WO2014185521A1 (en) * 2013-05-17 2014-11-20 学校法人北里研究所 Magnetic resonance imaging device, image processing device, image diagnosis device, image analysis device, and mri image creation method and program
JPWO2014185521A1 (en) * 2013-05-17 2017-02-23 学校法人北里研究所 Magnetic resonance imaging apparatus, image processing apparatus, diagnostic imaging apparatus, image analysis apparatus, MRI image creation method and program

Also Published As

Publication number Publication date
JP4137709B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
US10226192B2 (en) Magnetic resonance imaging apparatus and image processing apparatus
JP5632022B2 (en) Magnetic resonance imaging system
JP3153574B2 (en) Magnetic resonance imaging
JP3515643B2 (en) Nuclear spin tomography equipment
US8159221B2 (en) Magnetic resonance imaging apparatus and method using SSFP having non-zero first moment gradients within the repetition time
JPH08308811A (en) Spin resonance device for local overhaul of object region including nuclear spin
US9687171B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JPH1075937A (en) Method and instrument for measuring mr angiography
KR20140001159A (en) A system for simultaneous dual-slab acquisition of mr images
JP2013078562A (en) Magnetic resonance imaging apparatus
US8542016B2 (en) Magnetic resonance imaging apparatus and method
JP3847554B2 (en) Magnetic resonance imaging system
KR101282124B1 (en) Magnetic resonance imaging device and method for constructing mr image using the same
JP4230875B2 (en) Magnetic resonance imaging system
JP4137709B2 (en) Magnetic resonance imaging system
JPH06237910A (en) Mri device
JP4263015B2 (en) Magnetic resonance imaging system
JP4076655B2 (en) Magnetic resonance imaging system
JP2003325477A (en) Magnetic resonance imaging apparatus
JP7320145B2 (en) Magnetic resonance imaging with T1-compensated B1 mapping
JP3996431B2 (en) Magnetic resonance imaging system
JP2002052005A (en) Magnetic resonance imaging method
JP3205061B2 (en) Magnetic resonance imaging equipment
JPH0779949A (en) Magnetic resonance imaging apparatus
JP2006000478A (en) Magnetic resonance imaging apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R150 Certificate of patent or registration of utility model

Ref document number: 4137709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term