JP2004538240A - Phosphoramidate and method therefor - Google Patents

Phosphoramidate and method therefor Download PDF

Info

Publication number
JP2004538240A
JP2004538240A JP2001572517A JP2001572517A JP2004538240A JP 2004538240 A JP2004538240 A JP 2004538240A JP 2001572517 A JP2001572517 A JP 2001572517A JP 2001572517 A JP2001572517 A JP 2001572517A JP 2004538240 A JP2004538240 A JP 2004538240A
Authority
JP
Japan
Prior art keywords
drug
formula
compound
group
phosphoramidate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001572517A
Other languages
Japanese (ja)
Inventor
ボーチ,リチャード,エフ.
トビアス,サンドラ,シー.
ガリド−エルナンデス,ヒューゴ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purdue Research Foundation
Original Assignee
Purdue Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purdue Research Foundation filed Critical Purdue Research Foundation
Publication of JP2004538240A publication Critical patent/JP2004538240A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/24Esteramides
    • C07F9/2454Esteramides the amide moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/2458Esteramides the amide moiety containing a substituent or a structure which is considered as characteristic of aliphatic amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/26Amides of acids of phosphorus containing P-halide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65515Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having sulfur atoms, with or without selenium or tellurium atoms, as the only ring hetero atoms
    • C07F9/655345Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having sulfur atoms, with or without selenium or tellurium atoms, as the only ring hetero atoms the sulfur atom being part of a five-membered ring

Abstract

アミノ酸、ペプチド、ペプチドミメティック、およびヌクレオチドアナログなどが含まれる水酸官能基またはアミノ官能基を有する化合物の新規ホスホラミデート誘導体を記載する。この化合物は、対応するリン酸塩エステルまたはアミドとしての薬剤の細胞内デリバリーを増強しうる。ホスホラミデート化合物は抗増殖活性を示す。医薬調剤を癌治療のために提供する。Novel phosphoramidate derivatives of compounds having a hydroxyl or amino function, including amino acids, peptides, peptidomimetics, and nucleotide analogs are described. This compound may enhance the intracellular delivery of the drug as the corresponding phosphate ester or amide. Phosphoramidate compounds show antiproliferative activity. A pharmaceutical preparation is provided for treating cancer.

Description

【0001】
<発明の属する技術分野>
本発明は、リン酸塩に置換した治療上の化合物の細胞内デリバリーに関する。特に、本発明は、ある特定のリン酸塩前駆体および方法およびそのための中間体を対象とする。
【0002】
<発明の背景および概要>
重要な研究努力が、生物学的に活性のあるペプチドおよびヌクレオチドのようなリン酸塩に置換された化合物の細胞内デリバリーを増強するためのシステムの開発を対象としているが、これらの化合物の高い負電荷のために、細胞浸透率が非常に低い。例えば、癌細胞の無秩序な増殖の阻害に使用するためのチロシンリン酸ペプチドおよびペプチドミメティックの細胞内デリバリーに大きな興味が持たれている。この点について、タンパク質チロシンキナーゼは、細胞周期進行の重要な調節因子であり、新規な抗癌物質の理論的デザインのための魅力的なターゲットの代表的なものである。タンパク質チロシンキナーゼは、キナーゼに特異的なチロシン残基のリン酸化で活性化し、そのリン酸化チロシン残基は3つの隣り合うアミノ酸とともに(pY−E−E−I)、細胞内シグナル伝達系タンパク質のSrc homology 2(SH2)ドメインの結合部位として働く。細胞内シグナル伝達系分子のSH2ドメインと、活性化されたタンパク質チロシンキナーゼ間の相互作用は、効果的な細胞周期進行において不可欠である。それゆえ、タンパク質チロシンキナーゼのリン酸チロシン成分を模倣し、SH2ドメインに対するタンパク質チロシンキナーゼの結合を阻害する分子は、癌治療のための有望な抗増殖性物質の代表的なものである。
【0003】
チロシンがリン酸化されたタンパク質チロシンキナーゼにおけるリン酸ジアニオンは、キナーゼとSH2ドメインの相互作用に重要である。多くのリガンド−SH2ドメインの結晶構造が報告されており、その相互作用はモデル化され、多くの異なる阻害剤が合成されている。これらのリン酸チロシンペプチドおよびペプチドミメティック阻害剤の全てにおいて、リン酸チロシン残基は、チロシンリン酸成分のリン酸ジアニオンとSH2ドメインの幅広い相互作用に必要な水素結合および電荷間の複雑なネットワークに関与している。このジアニオン相互作用の重要性は、リン酸基を幅広い種類の他の陰イオンや中性の水素結合の置換基に置換すると、結合親和性の著しい損失を招くことである。したがって、リン酸塩が重要なジアニオンの形状をしているチロシンリン酸ペプチドおよびペプチドミメティックの細胞内デリバリーは重要である。
【0004】
ヌクレオチドアナログは、無秩序なウイルスまたは細胞の複製によって引き起こされた疾病を治療する際に用いるための他のクラスの有望な作用物質の代表的なものである。チロシンリン酸ペプチドミメティックのように、ヌクレオチドアナログのリン酸ジアニオンは、ウイルスや細胞の複製を阻害するため、これらの化合物の能力に重要である。治療物質として、最も広く用いられているヌクレオチドアナログの使用方法は、プロドラッグとしてのヌクレオチドアナログを細胞膜を横切って輸送し、細胞内機構に依存して、対応するヌクレオシドアナログを形成するため、プリンまたはピリミジンにリン酸基を結合させるというものである。しかしながら、治療上の期待がかかる多くのヌクレオシドは、既存の細胞内伝達により、対応するヌクレオチドに改変することができない。さらに、癌細胞またはウイルス感染細胞は、ヌクレオシドキナーゼの活性を低下させることにより、処理に対し耐性になるかもしれないし、以前開発された多くのヌクレオチドプロドラッグにとっては、細胞内で有効なヌクレオチド濃度が蓄積できないほど、細胞内活性化プロセスの効率が悪い。
【0005】
本発明において利用されるリン酸塩を含む化合物の細胞内デリバリーのための一般的な方法がスキーム1に概略されている。
【0006】
【式1】

Figure 2004538240
簡単に説明すると、細胞内で輸送されるリン酸塩に置換された化合物が合成され(上記スキーム1において付加されたリン酸を有するR)、輸送基(DELIVERY)およびマスキング基(MASK)と結合している。マスキング基は、細胞内において加水分解され輸送基が完全である限り安定であるが輸送基の細胞内活性化で解離される中間体を生成するハロアルキルアミンの成分からなる。輸送基は、ニトロフリル基またはペルヒドロオキサジンのように、細胞内で加水分解して中間体を生成し、細胞内環境でその中間体を環化しP−N結合を切断して(すなわち、自発的加水分解)、望ましいリン酸含有化合物を放出する基であってもよい。
【0007】
前記スキーム1に記載されたものに関連する化学的作用を利用するアルキル化剤とヌクレオチドの細胞内デリバリーシステムは、以前開発されている。しかしながら、以前の方法では、生物学的に不活性な加溶媒分解生産物として50%のプロドラッグは“失われ”、望ましいヌクレオチドへの細胞内転化率は、およそ50%しかなかった。本発明は、上記化学的作用の新たに発見された改良を対象とし、これは、チロシンリン酸ペプチドおよびペプチドミメティックに必須の構成要素であるヌクレオチドアナログやフェノールリン酸基の両方に適用を広げる。本発明は、ハロエチルからハロブチル(又は、ハロペンチル)基にマスキング基の構造を変更すると、望まれるヌクレオチドまたはリン酸含有ペプチドに対して、迅速でかつ定量的な細胞内転化(例えば、およそ100%の転化率)が生じるという発見に基づく。本発明の新たな化学的作用は、ヌクレオチドアナログ、リン酸チロシンペプチド、およびペプチドミメティックに適用でき、リン酸成分を含有する幅広い他の医薬的に重要な化合物にも適用できる。
【0008】
保護されたリン酸チロシン前駆体のホスホラミデートの開発により、ホスホチロシンペプチドおよびペプチドミメティックの合成を容易に行うことができるようになる。したがって、本発明は、保護されたリン酸チロシン前駆体や、例えば、N−BOCおよびフルオレニルメタオキシカルボニル基を有する保護された関連ペプチドをも対象とする。
【0009】
本発明の一実施態様において、ホスホラミデートプロドラッグ化合物が提供され、水酸基の官能基を有する生物学的に活性な化合物が、その水酸基の官能基と共有結合し、細胞内において対応する薬剤のリン酸塩に転換する生物学上不安定なホスホラミデート基を形成する。生物学上不安定なホスホラミデート基は、薬剤物質のより効率的な細胞内デリバリーを可能にし、対応するリン酸エステルの形状で薬剤物質の生物学上重要な細胞内濃度を達成するための手段となる。他の実施態様では、生物学上活性のある化合物がアミノ官能基を有し、それは、そのアミノ官能基と共有結合して、細胞内でホスホラミドに(−OPONH−Drug)転換する生物学上不安定なホスホラミデートを形成する。
【0010】
本発明は、他の実施態様では、化学式
CHOP(halo)NR(CH
の中間体ハロホスホラミダイトを提供する。式中、nは4または5であり、Rは低級アルキル又は(CHXであり、Xは結合している炭素原子から求核的に置換されることができる求電子基であり、RCH−基は生物学上不安定なエステル形成基であり、特に、細胞内で容易に加水分解されるエステル形成基である。この化合物は、本発明の方法の実施態様を用いて、前記記載のホスホラミデートプロドラッグ化合物を調製するための中間体薬剤として用いることができる。この本発明の実施態様においては、生物学的に活性のある化合物(Drug−OH)は、ハロホスホラミダイト中間体と反応し、対応する薬剤薬剤と反応した中間体である
CHOP(O−Drug)NR(CH
を形成し、その後、酸化してホスホラミデートプロドラッグを形成する。この方法は、標準の保護基で保護された、カルボキシル官能基およびアミノ官能基を有する水酸基を持つ官能アミノ酸で始めたり、活性ペプチド、ペプチドミメティック、又はヌクレオチドアナログから始めたりして、細胞内薬剤のリン酸塩のホスホラミダイト前駆体を形成するために用いることができる。本発明に従って、ホスホラミデートプロドラッグは、RCH−エステル形成基の加水分解の後、対応するリン酸塩に転化される。ひきつづき、環化された5員環又は6員環の(−N(CHX基の環化で生成された)両性中間体の加水分解により、唯一のリン含有生成物として、対応するリン酸塩が生じる。類似した合成手順が、本明細書中では一般にDrugNHとして表されるアミノ官能基を有する活性化合物で行うことができる。
【0011】
<発明の詳細な説明>
本発明は、ペプチド、ペプチドミメティックリン酸塩、ヌクレオチドまたはヌクレオチドアナログを、細胞膜を透過して細胞内に移行する新規プロドラッグの化学的作用を対象とする。本発明の一実施態様は、化学式
CHOP(halo)NR(CH
の中間体化合物を提供することにある。
【0012】
式中の
Rは、C−Cのアルキル又は(CHXであり;
nは、4または5であり;
Xは、Xに結合している炭素原子から求核的に置換され得る求電子基であり;
haloは、塩素、臭素、またはヨウ素であり;および
CH−基は、生物学上不安定なエステル形成基である。
【0013】
求電子基Xはハロゲンが好ましく、例えば、塩素、臭素、ヨウ素が挙げられる。しかしながら、本発明によるホスホラミダイトプロドラッグの投与後、in vivoでリン結合窒素原子の環化や同時に起こる四分割を可能にする優れた離脱基になるのであれば、その基の性質は重要ではない。他の求電子離脱基としては、酢酸塩、メタンスルホン酸塩、トリフロロメタンスルホン酸塩、ハロ酢酸塩、などを用いることができる。
【0014】
本発明を定義する際用いられる用語“生物学上不安定なエステル形成基”とは、エステル誘導体を形成するアルコールに由来するエステル形成基を意味し、薬剤製造や保存状態において安定なものであるが、in vivoで生物学的状態にさらされるときには、加水分解される。特に、本発明に従って用いられるエステル形成基は、細胞外の体液中では加水分解に対し最低限の感受性しか示さないが、エステルを分解する還元状態が顕著な細胞内では加水分解されるのが好ましい。従って、本発明の一実施態様において、本発明のホスホラミデートプロドラッグ上の生物学上不安定なエステル形成基は、Rがニトロフリル、ニトロチエニル、ニトロピローイル(nitropyrroyl)、ニトロイミダゾール、およびその類似体、インダニル、ナフトクイノリル(napthoquinolyl)、並びにペルヒドロオキサジンなどの基を含むニトロアリルである基を含む弱い還元状態において加水分解されやすいエステル形成基である。エステル形成基RCH−としては、その基が細胞内において加水分解されやすければ、つまり典型的には、還元能を示す生物学的状態であれば、その基の性質は重要ではない。
【0015】
治療用化合物は、ホスホラミデートプロドラッグ化合物を生成できるように、本発明に従って変化できるものであって、必ず二重に保護された(カルボキシル基の保護およびアミノ基の保護)形状のアミノ酸、ペプチド、タンパク質、ペプチドミメティック、ヌクレオチドアナログ、および、対応するリン酸塩としての生物学的活性を示す他の水酸基を含む機能的薬剤化合物を含む。本発明の好ましい一実施態様としては、本発明による、対応するホスホラミデートに変化する薬剤は、フルオロデオキシウリジンのようなヌクレオチドアナログであり、それは、対応するモノリン酸塩誘導体として抗癌活性を示す。その他の実施態様においては、薬剤はアミノ酸、ペプチド、ペプチドミメティックなどである。
【0016】
本発明によるホスホラミデートプロドラッグ化合物は、いくつかの合成手順により、対応する水酸基を含む機能的薬剤から調製することができる。好ましい一実施態様において、ホスホラミデートプロドラッグは、化学式
CHOP(O−Drug)NR(CH
の中間化合物の生成につながる条件下で、化学式
CHOP(O)(O−Drug)NR(CH
の化合物に対して水酸基を含む機能性薬剤を反応させ、その後、その中間体を酸化して、化学式
CHOP(halo)NR(CH
のホスホラミデートプロドラッグを生成する。式中のR,R,n,およびXは、前記定義と同じである。化学式
CHOP(O−Drug)NR(CH
の中間化合物を形成する条件は、さまざまな条件をとることができるが、反応を第3アミン塩基のような酸捕捉剤(acid scavenger)の存在下で低温度にて行うことが好ましい。一実施態様として、反応媒体として無水ピリジンを用いて低温度(−70℃から−10℃ぐらい)で反応が行われる。化学式
CHOP(O−Drug)NR(CH
中間体化合物の、化学式
CHOP(O)(O−Drug)NR(CH
のホスホラミデートプロドラッグ化合物への酸化は、様々な弱い酸化状態の下で同様に行うことができる。リン原子を+5の酸化状態にするという、要求される酸化に影響することができるものであれば、酸化剤の性質は、重要ではない。酸化剤としては、例えば、過酸、過酸化物、ヒドロペルオキシド、等が含まれる。酸化は、通常、約0℃以下の温度で行うが、それほど重要ではない。
【0017】
化学式
CHOP(O−Drug)NR(CH
の中間体ハロホスホラミダイトは、通常、第三アミン塩基の存在下で不活性の有機溶媒中で、化学式
CHOH
のアルコールと共に低温度でホスホラストリクロライドを反応させることにより調製することができ、その生成物を、化学式
HNR(CH
のアミンと反応させる。本件のホスホラミデートプロドラッグを形成するために、通常は、酸スカベンジャーの存在下で、水酸基を含む機能的薬剤化合物との反応の前に、直ちに中間体を生成することが好ましい。
【0018】
本発明のホスホラミデートプロドラッグの調製の他の方法において、水酸基を含む機能的薬剤化合物を、同様の一般的反応物を用いて、最後の酸化ステップを省略する他は前記記載の条件で、(ホスホラストリクロライドに対するものとして)ホスホラスオキシトリクロライドで反応を開始することから得られるクロロホスホラミデート中間体と反応させる。
【0019】
前述した各反応は、対応する化合物
CHOP(O)(NH Drug)NR(CH
を提供するために、アミノ官能基を含む薬剤(Drug NH)を用いて同様の手順で行うことができる。
【0020】
本発明の他の実施態様において、化学式
CHOP(O)(halo)NR(CH
の化合物を調製方法し、それぞれ酸スカベンジャーの存在下で、1)化学式RCHOHのアルコールと、2)化学式HNR(CHXのアミンと、 化学式
P(O)halo
の化合物との反応ステップを含む方法を提供する。ここで、上記化学式中、
mは0または1であり;
RはC−Cアルキル又は(CHXであり;
nは4または5であり;
Xは、Xに結合している炭素原子から求核的に置換され得る求電子基であり;
haloは、塩素、臭素、またはヨウ素であり;
CH−基は、生物学上不安定なエステル形成基である。
【0021】
また、本発明の他の実施態様において、一般式Drug−OPOの化合物の細胞内薬剤デリバリーを増強させるための化学式
CHOP(O)(O−Drug)NR(CH
のホスホラミデートプロドラッグの調製方法を提供する。この方法は、プロドラッグの形成を誘導する条件の下で、化学式
CHOP(O)(halo)NR(CH
の化合物と化学式Drug−OHの治療用の化合物とを反応するステップを含む。
【0022】
ここで、上記化学式中、
RはC−Cアルキル又は(CHX;
nは4または5であり;
Xは、Xに結合している炭素原子から求核的に置換され得る求電子基であり;
haloは、塩素、臭素、またはヨウ素であり;
CH−基は、生物学上不安定なエステル形成基である。
【0023】
上記に述べたように、ここに記載された化学作用は、一般式Drug−NHの生物学的に活性のある化合物と中間化合物
CHOP(O)(halo)NR(CH
との反応による、化学式
CHOP(O)(NH−Drug)NR(CH
のプロドラッグホスホラミデートの調製に、同じまたは同様の条件を用いて適用することができる。なお、式中のRr,halo,R,n,およびXは前記記載で定義されたものである。この化学作用は、化学式Drug−NHPOの治療用上の化合物の細胞内デリバリーのための方法を提供する。したがって、例えば、5′−アミノ ヌクレオチドまたはヌクレオチドアナログは、対応する5’−NHPO誘導体の高効率細胞内デリバリーのための、対応するプロドラッグホスホラミデートとして誘導することができる。
【0024】
本件発明のホスホラミダイト化合物はそれ自身プロドラッグか、または、例えば、チロシンホスホラミデートの場合には、ペプチドまたはペプチドミメティックプロドラッグの合成に用いることができる。本件発明のホスホラミダイトの合成に関与する化学作用は、ホスホラミデート合成の化学作用に関与するようには意図されていない反応開始薬剤化合物上に存在するヒドロキシ、カルボキシ、チオール、アミンの官能基が、当業者が認める保護基で保護されるべきであるというようなものであるということは、当業者には認識されるだろう。そのような保護基、さまざまな官能基保護するための応用およびこれらの除去条件に対する参考文献は満ちあふれている。そのような保護基の使用は、当業者によく知られており、ホスホラミダイトプロドラッグおよび中間体の合成を実行する際に保護基を使用することは本件発明に含まれない。
【0025】
本件発明に従って調製されるホスホラミダイトプロダクトは、その分野で認められている技術を用いて、誘導されない薬剤化合物と同じまたは同様の調剤形で調剤し、用いることができる。
【0026】
本発明の一実施態様において、スキーム2に示された反応を行う。
【0027】
【式2】
Figure 2004538240
この反応では、プロドラッグ3Aを、ホスホラミディックジクロロライド1に、ニトロフリルアルコールとp−クレゾールを順次加えることにより合成した。それから、プロドラッグ3を、エタノール/水溶液バッファー中、亜ジオチン酸ナトリウムで還元することにより活性化したが、そこではニトロフリル基が還元され、ホスホラミデートアニオン4Aが放出されることになる。この中間体の次に続く反応を31PNMRによりモニターした。中間体4Aは、スムーズに環化して5員環の両性中間体になり、水に攻撃されることにより、唯一のリン含有生成物としてのリン酸クレゾールを得たことが、NMRによりわかった。
【0028】
本発明の他の実施態様をスキーム3に示す。
【0029】
【式3】
Figure 2004538240
この反応は、ホスホラミデート11Aの合成を目的とし、p−ヒドロキシ安息香酸9Aのニトロフリルホスホラミデートの調製、および5−アセチルサリチルアミドから調製したベンジルアミン10Aとこの生成物とのカップリングを含む。簡単に説明すると、安息香酸誘導体9Aを合成するために、p−ヒドロキシ安息香酸を、そのカリウム塩とアリルブロマイドとの反応により、アリルエステル6Aに転化した。アリルエステルを、POClと反応させ、中間体ホスホリルジクロライドを、トリエチルアミンの存在下で、メチルクロロブチルアミンで処理し、ホスホラミディッククロライド7Aを得た。5−ニトロ−2ヒドロキシメチルフランのリチウム塩と7Aとの反応により、ホスホラミデート8Aを得た。アリルエステルの脱保護が、Pd(PhP)/p−トルエンスルフィン酸ナトリウムとの反応で行われ、安息香酸ホスホラミデート9Aを得た。トリエチルアミンの存在下で、クロロギ酸イソブチルと9Aを反応させ、続いて、ベンジルアミン10Aを添加し、望んでいたペプチドミメティックプロドラッグ11Aを作製した。12Aへの11Aの活性化化学作用が、予測どおりに進行することを確認するために、11Aをエタノール/水中で、次亜硫酸塩ナトリウムによって還元し、反応を31PNMRによりモニターした。11からホスホラミデート陰イオンへの転化は数分以内で完了した;ホスホラミデートアニオンを、スムーズに、かつ、排他的に37℃で21分の半分の時間でリン酸塩12Aに転化した。11Aの活性化に対応するリン酸塩12Aを合成し、5.6μMの結合親和性でpp60src SH2ドメインに結合することを示した。
【0030】
本発明のさらに他の実施態様において、異なる中間体を、チロシンリン酸塩ホスホラミデートを形成するためのスキーム3に示した一連の反応に組み込むために用いた。スキーム3で示された反応が行われたとき、その結果として生じる生成物とともに、中間体17Aを以下に示した。
【0031】
【式4】
Figure 2004538240
中間体17Aを、反応系の3番目のステップにおいて5−ニトロ−2−ヒドロキシメチルフランの代わりに2−ヒドロキシメチル−1,4−ジメトキシナフタレンを用いるほかは、スキーム3で化合物9Aに対して記載したように調製した。それから、化合物17Aをアミン10A(スキーム3)と結合させ、数分で精製物が高収率で得られる新たな条件を用いて、アミド18Aを得た。最後に、ジメトキシナフタレン18Aを、硝酸セリウムアンモニウムで酸化させることにより、ナフトキノン19Aにスムーズに転化した。
【0032】
さらに、本発明の他の実施態様においては、マスクされたホスホチロシン含有ペプチドを、スキーム化学式4に示したように合成した:
【0033】
【式5】
Figure 2004538240
N−BOC−チロシンカリウム塩をアリルブロマイドと反応させ、BOC−チロシンアリルエステル13Aを得た。エステルをそのセリウムフェノール塩に転化し,N−メチル−N−クロロブチルホスホラミディックジクロライドと反応させ、アダクト(adduct)14Aを得た。最後に、ホスホラミディッククロライドを5−ニトロ−2−ヒドロキシメチルフランのリチウム塩と反応させ、チロシンホスホラミデートエステル15Aを得た。アリル保護基の除去により、優秀な純収率でBOC−保護されたチロシンホスホラミデート16Aを得た。このアナログは、全体的にさまざまなアミンをカップリングするのに適しているであろうし、自動化されたペプチド合成における試薬としても有用であるだろう。
【0034】
スキーム4で示された合成反応は、フルオレニルメトキシカルボニル(FMOC)保護基で保護されたチロシンホスホラミデートの開発にまで広げられた。FOMCで保護されたアミノ酸は、ペプチド合成で広く用いられ、保護基を塩基で触媒されるする条件のもとで迅速にかつきれいに取り除くことができるという利点がある。チロシンホスホラミデート16AのFMOCアナログ、すなわちスキーム4の上記化合物20Aは、スキーム4と同様な反応系により調製することができる。FMOC保護基は、ジクロロメタン中で、ジアザビシクロアンデカン(diazabicycloundecane)と5分間反応させることにより、迅速にかつきれいに取り除くことができる。最後に、16Aと20Aをメチルグリシン酸塩とカップリング反応が行われ、これらの化合物をペプチド合成反応に用いることができることを明らかにした。
【0035】
本件発明の他の実施態様において、ニトロフリルクロロブチルヌクレオシド3の合成が、スキーム5に示すように中間体の単離なしで、1つの操作で行われた。
【0036】
【式6】
Figure 2004538240
メチレンクロライド中のホスホラストリクロライドを、−78℃において1等量のニトロフリルアルコールと反応させ、中間体ジクロライドを、N−メチル−N−クロロブチルアミンの塩酸塩で処理し、モノクロライド中間体Aを得た。この中間体に5−フルオロ−2’−デオキシウリジンを含むピリジン溶液を添加した。その結果として生じるホスホラミデートを、t−ブチルヒドロペルオキサイドで酸化し、ヌクレオシドホスホラミデート3を得た。この合成の収率は低く、また値にばらつきがあった(20−60%)。
【0037】
本発明の代替実施態様において、類似したチミジン化合物質を調製した(即ち、3においてF=CH)。チミジンホスホラミデートを、37℃で水系バッファー/アセトニトリル中、亜ジチオン酸ナトリウムでニトロフリル基を還元することにより活性化し、反応物を31PNMRでモニターした。10分以内でホスホラミデートアニオンに対する共鳴が消失し、31PNMRにより唯一のリン含有生成物としてのチミジン−5’−ホスフェートに対応する新たなピークが現れた。それから、ヌクレオシドホスホラミデート3を、in vivoでL1210白血病細胞の増殖阻害能に対して評価した。細胞は、2,8,24,および48時間、薬剤にさらされた;結果を以下に要約する:
【表1】
Figure 2004538240
クロロブチルホスホラミデート3は、類似したブロモエチル化合物に比べ、有意に効き目がよく、調製したヌクレオチドプロドラックで最も効き目のよい1つである。
【0038】
本発明の関連ある実施態様において、中間体4を前記記載の反応スキーム中に組み込み、新たな薬剤5を製造した:
【0039】
【式7】
Figure 2004538240
ジメトキシナフタレン類似体4を、最初のステップにおいて2−ヒドロキシメチル−1,4−ジメトオキシナフアレンアナログ4を、5−ニトロ−2−ヒドロオキシメチルフランに代えて用いるほかは、スキーム5で示される方法と同様の方法で合成した。ジメトオキシナフタレン4を硝酸セリウムアンモニウムで酸化することにより、スムーズにナフトキノン5に転化した。化合物5を前記化合物3と比較して、L1210白血病細胞増殖阻害剤として評価した。
【0040】
【表2】
Figure 2004538240
両方の化合物は、L1210細胞の増殖の非常によい阻害剤であり、化合物5は、この分析で化合物3よりおよそ3倍の効能を示した。
【0041】
本発明の一態様において、ホスホラミデートプロドラッグは、化学式
【化8】
Figure 2004538240
の化合物であり、 化学式
CHOP(O)(Z−Drug)NR(CH
の水酸官能基またはアミノ官能基を含むペプチドミメティック(Drug ZH)を用いて形成した。
【0042】
なお、式中のZは、OまたはNであり;
qおよびkは、独立に選ばれた1または0であり、そして
Bは、H,アミノ,保護されたアミノ,またはC−Cのアルカノイルアミノである。
【0043】
前記化合物の1群は式中のqおよびkがそれぞれ0であるベンズアミド化合物であり、例えば、以下のものがある。
【化9】
Figure 2004538240
【0044】
前記化合物の他の群はqが1でkが0のフェニルアセチル化合物であり、例えば、以下のものがある。
【化10】
Figure 2004538240
【0045】
また、ペプチドミメティック(DrugZH)の他の群はqが1でkが1のチロシル誘導体であり、例えば、以下のものがある。
【化11】
Figure 2004538240
【0046】
前記化合物のいくつかは、抗増殖活性が予測され、トランスフェクトしたJ77細胞においてルシフェラーゼ発現の阻害を著しく示すことがわかった。
【0047】
本発明に従って、”DrugZH”をヌクレオチドアナログとしたいくつかのホスホラミデート化合物を調製し、L1210マウス白血病細胞において、著しく増殖抑制を示すことを見い出した。前記化合物は、本発明の抗増殖性物質の好ましい一群の一部である。多数のヌクレオチドアナログは抗増殖性活性を示すことが文献で報告されており、本件のホスホラミデートと、水酸官能基またはアミノ官能基によって共有結合することができるものを含め、それらどの化合物も、本件化合物の調製に用いることができる。
【0048】
また、本発明の他の実施態様において、ホスホラミデート化合物はアミノ酸または化学式
【化12】
Figure 2004538240
のアミノ酸エステルの誘導体である。ここで、式中のZ,q,k,およびBは、前記記載で定義され、Rは水素またはカルボキシルの保護基、特にエステル形成基を意味する。前記チロシンまたはチロシンアナログは、ペプチドリン酸塩またはペプチドミメティックリン酸塩の細胞内での材料として、容易な膜輸送が可能なペプチドまたはペプチドミメティック化合物の調製に役立つ。もう1つの方法として、前記化合物は、対応するアミノ酸またはアミノ酸アナログを細胞内に提供することができる。
【0049】
例えば、以下の化合物がある。
【化13】
Figure 2004538240
【0050】
さらに、本件発明は癌治療のためのプロドラッグホスホラミデート化合物の有効量を含有する医療調剤を提供する。ここで用いられるプロドラッグ化合物の有効量は、患者に投与する際に、腫瘍細胞の成長/増殖を阻害するか、悪性細胞を殺すか、腫瘍の量若しくはサイズを減少させるか、または治療を受けた患者において腫瘍を完全に除去する化合物の量として定義される。
【0051】
患者に投与する有効量は、通常、身体表面積、患者の体重、および患者の状態に基づく。動物およびヒトの投与量の相互関係(身体表面積の平方メー トルあたりのミリグラムに基づく)は、Freireich, E.J., et al., Cancer Chemother.Rep.,50(4):219(1966)に記載されている。身体表面積は、患者の身長および体重からおおよそ決定してもよい(例えば、Scientific Tables, Geigy Pharmaceuticals, Ardley, New York 537−538ページ(1970)参照)。本件発明のホスホラミデート化合物の有効量は、一投与量当たり、約0.05mg/kgから約100mg/kgの範囲であり、約0.25mg/kgから約50mg/kgの範囲であり、最も典型的には、約0.1から約10mg/kgの範囲である。また、有効量は、当業者に認識されているように、投与ルート、賦形剤の使用、他の化学療法薬および放射線療法を含む他の治療処置を併用する可能性に依存して変わる。
【0052】
治療調剤は、皮下注射、腹腔内投与、筋肉内投与、および静脈注射を含む非経口ルートで投与してもよい。非経口投与形態の例としては、等張食塩水、5%のグルコースまたは他のよく知られた医薬上許容可能な液体キャリアー中の活性薬剤の水溶液または懸濁液が挙げられる。本件医薬組成の一態様においては、ホスホラミデート化合物を5%のジメチルスルホキシドおよび約10%のCremphor EL(Sigma Chemical Company)を含有する食塩水に溶解する。より可溶性の本件化合物との複合体を形成することができるシクロデキストリンのような可溶化剤や、あるいは、当業者によく知られた他の可溶化剤を癌治療のための本件化合物のデリバリーに医薬賦形剤として用いることもできる。
【0053】
あるいは、本件化合物は、よく知られた方法を用いて、他の投与ルートのための投与形態形状に製剤化することもできる。医薬組成物は、例えば、カプセル、ゲルシール,または錠剤といった経口投与のための投与形態で調剤されることもできる。カプセルは、ゼラチンまたはセルロース誘導体のようなよく知られている医薬上許容可能などんな材料を含んでいてもよい。錠剤は、活性ホスホラミデート、および当業者によく知られた固形キャリアーや潤滑剤の混合物を圧縮することにより、従来の方法に従って、製剤化することとしてもよい。固形キャリアーの例としては、でんぷん、糖、ベントナイトなどを挙げることができる。本発明の化合物は、また、例えば、結合剤としてのラクトース若しくはマンニトール、および従来の増量剤および錠剤化剤を含有する硬殻錠剤またはカプセルの形態で投与することもできる。
【0054】
<実験手順および実施例>
【化14】
Figure 2004538240
5−フルオロ−2’−デオキシウラジル5−ニトロフルフリルN−メチル−N−(4−クロロブチル)ホスホラミデート(3):
ホスホラストリクロライド(2M CHCl溶液;0.81 mL;1.63 mmol)をアルゴンの下で−78℃に冷却した。5−ニトロフルフリルアルコール(233 mg;1.63 mmol)を無水のCHCl 12 mLに溶解し、冷やしたPClを加えた後、純粋でかつ無水のiPrNet(0..57 mL; 3.25 mmol)を滴下添加した。反応は−78℃ から−70℃の間で15分間攪拌して行った。無水のCHCl 16 mLにN−メチル−N−(4−クロロブチル)アミンヒドロクロライド(257 mg; 1.63 mmol)を溶解し、反応混合物に加えた後、上記無水でかつ純粋なiPrNet(1.13 mL; 6.50 mmol)を滴下添加し、この反応混合物を−78℃ から−70℃の間で30分間攪拌した。この反応混合物を、あらかじめ−65℃で冷やした、2 mLの無水CHClと2 mLの無水ピリジンに溶解した5−フルオロ−2’−デオキシウリジン(200 mg; 0.812 mmol)溶液に、カニューレで注入した。反応は、−65℃ から−60℃の間で1時間攪拌して行った。この反応混合物にt−ブチルヒドロペルオキサイド(4.6分 decane; 0.44 mL)を、−65℃で攪拌しながら加えた。温度を−40℃まで上昇させ、30分以上−40℃から0℃まで上昇させながら攪拌した。この反応混合物をセライトに流し込み、減圧濃縮した。粗生成物(1:1のCHCl/アセトン)のカラムクロマトグラフィーにより、黄色の泡状の物質1(155 mg; 34%)を得た。
H NMR (CDCl): d 9.68 (m, 1H); 7.80 and 7.74 (d, 1H, J = 6.22 Hz and 6.41 Hz); 7.30 (d, 1H, J = 3.48 Hz); 6.71 (d, 1H, J = 3.30); 6.22 (m, 1H); 5.03 (m, 2H); 4.52 (m, 1H); 4.24 (m, 2H); 4.07 (m, 1H); 3.57 (m, 2H); 3.07 (m, 2H); 2.68 (d, 3H, J = 10.25 Hz); 2.49 (m, 1H); 2.18 (m, 1H), 1.74 (m, 4H).
31P NMR (CDCl, TPPO): d −15.59 and −15.78.
HPLC (35:65 CHCN/HO [0.1%TFA]): 8.667分., 92%.
ESI MS(高分解能): C1935ClFN10Pについて計測: m/z 555.1059 (M+H); 実測値: 555.1059.
【0055】
【化15】
Figure 2004538240
5−フルオロ−2’−デオキシウリジル2−(1,4−ジメタオキシナフチル)メチルN−メチル−N−(4−クロロブチル)ホスホラミデート(4):
ホスホラミデート4を、前記コンパウンド3と同様に無水のトリクロライド(2分 CHCl; 0.41 mL; 0.812 mmol)、1,4−ジメタオキシ−2−ヒドロキシメチルナフタレン(177 mg, 0.823 mmol)、N−メチル−N−(4−クロロブチル)アミンヒドロクロライド(128 mg, 0.812 mmol)、5−フルオロ−2’−デオキシウリジン(100 mg, 0.406 mmol)およびt−ブチルヒドロペルオキサイド(4.6分 decane; 0.23 mL)から調製した。粗生成物(1:1のCHCl/アセトン)のカラムクロマトグラフィーにより、薄いオレンジ色の泡状の物質4(134 mg; 52%)を得た。
H NMR (CDCl): d 8.22 (dd, 1H); 8.04 (dd, 1H); 7.74 and 7.66 (d, 1H, J = 6.23 & 6.39); 7.55 (m, 2H); 6.83 (s, 1H); 6.16 (m, 1H); 5.26 (m, 2H); 4.51 (m, 1H); 4.23 (m, 2H); 4.05 (m, 1H); 3.99 (s, 3H); 3.93 (s, 3H); 3.50 (m, 2H); 3.08 (m, 2H); 2.65 (d, 3H, J = 9.70 Hz); 2.42 (m, 2H); 1.66 (m, 4H).
31P NMR (CDCl, TPPO): d −12.82 and −12.90
HPLC (50:50 CHCN/HO [0.1%TFA]): 7.017分.; 95%.
FAB MS (high resolution): C2734ClFNPについて計測: m/z 630.1784 (M+H); 実測値: 630.1760.
【0056】
【化16】
Figure 2004538240
5−フルオロ−2’−デオキシウリジル2−(1,4−napthoquinonyl)メチル N−メチル−N−(4−クロロブチル)ホスホラミデート(5):
硝酸セリウムアンモニウム(225 mg, 0.41 mmol)水溶液(3 mL)を、4(100 mg, 0.16 mmol)のCHCN溶液 (3 mL)に15分間以上かけて滴下添加した。反応は室温で1時間攪拌して行い、CHCl で3回抽出した。有機層を一つにまとめ、NaSOで脱水し、減圧濃縮した。シリカゲルクロマトグラフィー(5% MeOH:CHCl)により精製し、黄色の泡状の物質5(87.6 mg, 93%)を得た。
H NMR (CDCl): d 8.10 (m, 2H); 7.77 (m, 2H); 7.72 (m, 1H); 7.03 (s, 1H); 6.18 (m, 1H); 5.02 (m, 2H); 4.58 (m, 1H); 4.29 (m, 2H); 4.05 (m, 1H); 3.57 (m, 2H); 2.73 (d, 3H, J = 10.07 Hz); 2.47 (m, 1H); 2.31 (m, 1H); 1.75 (m, 4H).
31P NMR (CDCl, TPPO): d −12.67 and −12.99.
HPLC (50:50 CHCN/HO [0.1%TFA]): 4.650分.; 100%.
FAB MS(高分解能): C2528ClFNPについて計測: m/z 600.1314 (M+H); 実測値: 600.1327.
【0057】
【化17】
Figure 2004538240
5−フルオロ−2’−デオキシウリジル2−(5−メタオキシ−N−methylindoloquinone)メチルN−メチル−N−(4−クロロブチル)ホスホラミデート(6):
ホスホラストリクロライド(2M CHCl 溶液; 0.13 mL; 0.258 mmol)をアルゴン中で−60℃に冷却した。2−ヒドロキシメチル−5−メタオキシ−N−メチルインドロキノン(57 mg; .258 mmol)を無水CHCN 1 mLを添加した無水CHCl 6 mLに溶解し、あらかじめ冷却したPClに加えた後、純粋なi−PrNEt(0.07 mL; 0.386 mmol)を滴下添加した。反応は−60℃で25分間攪拌して行った。 無水のCHCl 1 mLに、N−メチル−N−(4−クロロブチル)アミンヒドロクロライド(40.7 mg; 0.258 mmol)を溶解させ、反応混合物に添加した後、純粋なi−PrNEt(0.14 mL; 0.773 mmol) を滴下添加し、−60℃で25分間攪拌した。5−フルオロ−2’−デオキシウリジン(31.7 mg; 0.129 mmol)を無水ピリジンと共に蒸発させ、無水のピリジン 2 mL中に溶解し、−45℃に冷却した。FUdRが消失するまで、このピリジン溶液を、以前に作成した混合液で滴定した。FUdRの消失は、30%のメタノールを含むクロロホルムを用いてTLCによりモニターした。1時間後、反応を−40℃でt−ブチルヒドロペルオキサイド(4.6 M decane 溶液; 0.06 mL)により酸化させ、30分以上かけて−40℃から0℃まで上昇させながら攪拌した。飽和させたNHCl(3 mL)を加え、いくつかの層を分離させ、無水の層をCHCl(5回 5mL)で抽出した。有機層を一つに混合し、NaSOで脱水し、減圧濃縮した。この粗反応混合物を、15%のメタノールを含むクロロホルムを用いてシリカゲルのプラグを通過させた。シリカゲル(1:9 MeOH/CHCl)クロマトグラフィーにより、さらに精製し、黄オレンジ色の泡状の物質6(33 mg; 41%)を得た。
H NMR (CDCl): d 8.99 (br, 1H); 7.62 (m, 1H); 6.62 (d, 1H, J = 3.76 Hz); 6.11 (1H, J = 4.30); 5.64 (s, 1H); 4.95 (m, 2H); 4.46 (m, 1H); 4.13 (m, 2H); 3.95 (d, 3H, J = 4.03 Hz); 3.86 (m, 1H); 3.76 (s, 3H); 3.47 (m, 2H); 3.95 (m, 2H); 2.58 (m, 3H); 2.41 (m, 1H); 2.11 (m, 1H); 1.65 (m, 4H).
31P NMR (CDCl, TPPO): d −14.65 及び −14.71.
HPLC(0%から70%のCHCN/HO [0.1%TFA]のグラジエントで30分以上):20.32分.; 80%.
FAB MS(高分解能): C2531ClFN10Pについて測定: m/z 633.1529 (M+H); 実測値: 633.1506.
【0058】
【化18】
Figure 2004538240
N−アリルオキシカルボニルアラビノシルサイトシン(7):
ピロ炭酸ジエチル(86.8 mg, 0.452 mmol)を1,4−ジオキサン(5 mL)で希釈し、室温でアラビノシルシトシン(100 mg, 1.61 mmol)の水溶液 (ddHO 1 mL)に加えた。この反応混合物をオイルバスに浸し、2時間還流した後、溶媒を減圧除去し、得られた白い残留物に無水のピリジン(3回、 5mL)を加え、蒸発させた。シリカゲルクロマトグラフィー(CHCl中15% MeOH )により精製し、白い泡状物質7(91 mg, 出発原料を基準にした回収率76%)を得た。
H NMR (DMSO): d 10.75 (br, 1H); 8.04 (d, 1H, J = 7.51 Hz); 7.00 (d, 1h, J = 7.51 Hz); 6.04 (d, 1H, J = 3.85 Hz); 5.95 (m, 1H); 5.46 (m, 1H); 5.39 & 5.25 (dd, 1H, J = 1.47 & 35.34 Hz); 5.32 & 5.21 (dd, 1H, J = 1.1 & 23.32 Hz), 5.11 (m, 1H); 4.62 (d, 2H, J = 5.31 Hz); 4.04 (m, 1H); 3.91 (m, 1H); 3.81 (m, 1H); 3.60 (m, 2 H).
HPLC(0%から70%のCHCN/HO [0.1%TFA]のグラジエントで30分以上):12.18分.; 99%. ESI MS (低分解能): (M+H) = 328 m/z; C1317のMW = 327.
【0059】
【化19】
Figure 2004538240
N−アリルオキシカルボニルアラビノシルサイトシル5−ニトロフルフリルN−メチル−N−(4−クロロブチル)ホスホラミデート(8):
ホスホラミデート8を、前記記載のコンパウンド6と同様に、ホスホラストリクロライド(2M CHCl溶液; 1.14 mL; 2.28 mmol)、5−ニトロフルフリルアルコール(326 mg, 2.28 mmol)、N−メチル−N−(4−クロロブチルアミン)ヒドロクロライド(360 mg, 2.28 mmol)、N−アリルオキシカルボニルアラビノシルサイトシン(240 mg, 0.733 mmol)およびt−ブチルヒドロペルオキサイド(4.6 M デカン 溶液; 0.48 mL)から調製した。粗生産物(10% メタノールを含むCHCl)のカラムクロマトグラフィーを行い、薄黄色の泡状物質8(227 mg; 50%)を得た。
H NMR (CDCl): d 8.23 (d, 1H, J = 7.33 Hz); 7.23 (d, 1H, J = 1.33 Hz); 6.69 (m, 1H); 6.15 (1H); 5.91 (m, 1H); 5.34 (m, 3H); 5.02 (m, 2H); 4.55 (m, 4H); 4.23 (m, 2H); 3.55 (t, 2H, J = 5.68 Hz); 3.03 (m, 2H); 2.67 (d, 3H, J = 10.26 Hz); 1.73 (m, 4H).
31P NMR (CDCl, TPPO): d −15.54 および −15.76.
HPLC(0%から70%のCHCN/HO [0.1%TFA]のグラジエントで30分以上): 20.01分.; 95%.
ESI MS(高分解能): C2331ClN12Pについて計測: m/z 636.1474 (M+H); 実測値: 636.1474.
【0060】
【化20】
Figure 2004538240
アラビノシルサイトシル5−ニトロフルフリルN−メチル−N−(4−クロロブチル)ホスホラミデート:
テトラキス(トリフェニルフォスフィリン)パラジウム(3.45 mg, 29.9 mmol)を、 にホスホラミデート8(38 mg, 59.8 mmol) のTHF溶液(400 mL)に加え、続いてにp−トルエンスルフィン酸(11.71 mg, 65.7 mmol)水溶液 (ddHO、240 mL)を加えた。この反応混合物を室温で2.5時間攪拌し、その後、それをシリカゲル(20% methanol in chloroform)のプラグを通過させ、薄黄色の泡状物質(25.1 mg, 76%)を得た。
H NMR (CDOD): d 7.85 (m, 2H); 7.49 (m, 1H); 6.89 (m, 1H); 6.57 (m, 1H); 5.95 (m, 1H); 5.11 (m, 2H); 4.19 (m, 5H); 3.66 (m, 2 H); 3.11 (m, 2H); 2.72 (m, 3H); 1.79 (m, 4H).
31P NMR (CDOD, TPPO): d −14.18 and −14.37
HPLC(0%から70%のCHCN/HO [0.1%TFA]のグラジエントで30分以上):21.43 分.; 95%.
ESI MS(高分解能): C1927ClN10Pについて計測: m/z 552.1262 (M+H); Found: 552.1251.
【0061】
【化21】
Figure 2004538240
2’,3’−ジデオキシ−2’,3’−ジデヒドロチミジル5−ニトロフルフリルN−メチル−N−(4−クロロブチル)ホスホラミデート(10):
ホスホラミデート10を前記記載のコンパウンド6と同様に、ホスホラストリクロライド(2分 CHCl; 0.45 mL; 0.892 mmol)、5−ニトロフルフリルアルコール(128 mg, 0.892 mmol)、N−メチル−N−(4−クロロブチルアミン)ヒドロクロライド(141 mg, 0.892 mmol)、2’,3’−ジデオキシ−2’,3’−ジデヒドロチミジル(100 mg, 0.446 mmol)およびt−ブチルヒドロペルオキサイド(4.6 M デカン溶液; 0.48 mL)から調製した。粗生産物(5% メタノール含有CHCl)のカラムクロマトグラフィーにより、白い泡状物質10(80.5 mg; 出発原料を基準にした回収率48%)を得た。
H NMR (CDCl): d 8.19 (s, 1H); 7.29 (m, 1H); 7.19 (s, 1H); 6.98 (m, 1H); 6.66 (m, 1H); 6.34 (m, 1H); 5.91 (m, 1H); 4.99 (d, 3H, J = 9.97 Hz); 4.16 (m, 2H); 3.56 (t, 2H, J = 5.59 & 6.13 Hz); 3.06 (m, 2H); 2.63 (m, 3H); 1.87 (2s, 3H); 1.71 (m, 4H).
31P NMR (CDCl, TPPO): d −13.58および−13.99.
HPLC(0%から70%のCHCN/HO [0.1%TFA]のグラジエントを30分以上):22.75および23.18分.; 90%.
ESI MS(高分解能): C2026ClNPについて計測: m/z 533.1358 (M+H); 実測値: 533.1350.
【0062】
【化22】
Figure 2004538240
2’,3’−ジデオキシ−2’,3’−ジデヒドロチミジル2−(1,4−ジメタオキシナフチル)メチルN−メチル−N−(4−クロロブチル)ホスホラミデート(11):
ホスホラミデート11を前記記載のコンパウンド6と同様に、ホスホラストリクロライド(2分 CHCl; 0.45 mL; 0.892 mmol)、1,4−ジメタオキシ−2−ヒドロオキシメチルナフタレン(195 mg, 0.892 mmol)、N−メチル−N−(4−クロロブチルアミン)ヒドロクロライド(141 mg, 0.892 mmol)、2’,3’−ジデオキシ−2’,3’−ジデヒドロチミジル(100 mg, 0.446 mmol)およびt−ブチルヒドロペルオキサイド(4.6分 decane; 0.45 mL)から調製した。粗生産物(5% methanol 含有CHCl)のカラムクロマトグラフィーにより、白い泡状物質11(121 mg; 出発原料を基準にした回収率56%)を得た。
H NMR (CDCl): d 8.24 (d, 1H, J = 8.06 Hz); 8.05 ( m, 2H); 7.54 (m, 2H); 7.19 (s, 1H); 6.98 (s, 1H); 6.84 (s, 1H); 6.31 (m, 1H); 5.58 (m, 1H); 5.24 (d, 2H, J = 7.69 Hz); 4.98 (m, 1H); 4.15 (m, 2H); 4.98 (m, 6H); 3.50 (t, 2H, J = 5.86 & 6.31 Hz); 3.04, m, 2H); 2.61 (m, 3H); 1.86 (s, 3H); 1.71 (m, 4H).
31P NMR (CDCl, TPPO): d −13.44および−13.88.
HPLC(0%から70%のCHCN/HO [0.1%TFA]のグラジエントで30分以上):28.08および28.30 分.; 87%.
ESI MS(低分解能): C2835ClNPについて計測: 608 (M+H); 実測値: 630 (Na付加).
【0063】
【化23】
Figure 2004538240
2’,3’−ジデオキシ−2’,3’−ジデヒドロチミジル 2−(1,4−ナプトキノニル)メチルN−メチル−N−(4−クロロブチル)ホスホラミデート(12):
硝酸セリウムアンモニウム(225 mg, 0..411 mmol)水溶液(3 mL)を、11(100 mg, 0.164 mmol)のCHCN溶液(3 mL)に15分以上かけて滴下添加した。反応を1時間、室温で攪拌して行い、CHClで抽出した(3回)。有機層を一つに混合し、NaSOで脱水し、減圧濃縮した。シリカゲルクロマトグラフィー(5% MeOH:CHCl)による精製を行い、黄色の泡状物質12(78 mg, 82%)を得た。
H NMR (CDCl): d 8.09 (m, 2H); 8.01 (s, 1H); 7.79 (m, 2H); 7.17 (s, 1H); 6.99 (m, 2H); 6.35 (m, 1H); 5.93 (m, 1H); 5.00 (m, 3H); 4.24 (m, 2H); 3.56 (t, 2H, J = 5.86 & 6.31 Hz); 3.11 (m, 2H); 2.71 (d, 3H, J = 10.07 Hz); 1.90 (s, 3H); 1.74 (m, 4H).
31P NMR (CDCl, TPPO): d −13.49および−13.84.
HPLC(0%から70%のCHCN/HO [0.1%TFA]を30分以上かけたグラジエント):24.82および25.02 分.; 95%.
FAB MS(高分解能): C2529ClNPについて計測: m/z 600.1279 (Na adduct); 実測値: 600.1297 (Na付加).
【0064】
【化24】
Figure 2004538240
N−メチル−N−(4−ブロモブチル)アミンヒドロブロマイド:
臭化水素酸(20 mL, 0.38 mmol, 48重量%)を0℃でN−メチル−N−ブタン−4−オル(4.0 g, 0.39 mmol)にゆっくりと攪拌しながら加えた。この反応混合物を2時間、還流して温めた。蒸留装置を設置し、蒸留物10 mLを回収し、48% HBrを10 mL(0.18 mmol)加えた。4時間還流した後、蒸留によって10 mL減少したため、48% HBrを10 mL(0.18 mmol)加え、反応を一晩還流して行った。この反応混合物を蒸留し(およそ20 mLの蒸留物)、蒸留容器の残留物を−78℃のアセトンを注いだ。白い沈殿物が形成され、濾過により回収した(4.24 g, 44%)。
H NMR: CDCl: d 9.08 (s, 1H); 3.46 (t, 2H, J = 5.95 Hz); 3.04 (m, 2H); 2.72 (t, 3H, J = 5.67 Hz); 2.05 (m, 4H); 1.70 (s, 1H).
O: 2.84 (t, 2H, J = 6.13 Hz); 2.39 (t, 2H, J = 7.32 Hz); 2.04 (s, 3H); 1.23 (m, 4H).
【0065】
【化25】
Figure 2004538240
N−メチル−N−(4−クロロブチル)アミンヒドロクロライド:
室温で攪拌しながらの、N−メチル−N−ブタン−4−オル(2.0 g, 19.38 mmol)の CHCl溶液10 mL に、リトマス紙が赤(pH=2)に変わるまでHClガスを泡立たせた。この反応混合物を0℃に冷却し、塩化チオニル(1.41 mL, 19.38 mmol)を滴下添加し、反応を室温で一晩攪拌して行った。溶媒を減圧除去して白い固体(2.9 g, 95%)を得た。
H NMR: CDCl: d 8.79 (s, 1H); 3.59 (t, 2H, J = 5.95); 2.97 (m, 2H); 2.70 (s, 3H); 2.06 (m, 2H); 1.95 (m, 2H); 1.63 (s, 1H).
O: d 3.50 (m, 2H); 2.75 (m, 2H); 2.55 (s, 3H); 1.70 (m, 4H).
CI MS(低分解能): (M+H) = 122 m/z; C12NCl についてのMW = 121.
【0066】
【化26】
Figure 2004538240
N−メチル−N−(4−クロロブチル)ホスホラミディックジクロライド:
N−メチル−N−(4−クロロブチル)アミンヒドロクロライド(2.0 g, 12.73 mmol)を20 mLの無水CHClに溶解して−40℃に冷却した。ホスホラスオキシクロライド(1.2 mL, 12.73 mmol)を適当に加えた後、トリエチルアミン(3.6 mL, 25.46 mmol) のCHCl溶液5 mLを添加した。この反応物を0℃に加温し、室温までゆっくりと戻した。そして、室温で6時間、攪拌しながら反応させた。この反応混合物を氷に注ぎ、飽和塩化物アンモニウムを加えて層を分離した。水層をCHClで3回抽出し、有機層を一つに混合し、無水硫酸ナトリウムで脱水し、減圧濃縮した。シリカゲルフラッシュクロマトグラフィー(3:1 Hex/ EtOAc)により精製し、透明なオイル(2.57 g, 85%)を得た。
H NMR (CDCl): d 3.58 (t, 2H, J = 5.95 Hz); 3.29 (m, 2H); 2.84 (d, 3H, J = 15.93 Hz); 1.79 (m, 4H).
31P NMR (CDCl, TPPO): d −6.6.
【0067】
【化27】
Figure 2004538240
N−メチル−N−(4−ブロモブチル)ホスホラミディックジブロマイド:
N−メチル−N−(4−ブロモブチル)アミンヒドロブロミド(2.0 g, 8.09 mmol)を用いて、前記記載のように(一晩攪拌して反応を行うことを除いて)同様の手順を行った。シリカゲルクロマトグラフィー(3:1 Hex/EtOAc)を用いて精製し、透明なオイル(2.0 g, 92%)を得た。
H NMR (CDCl): d 3.46 (t, 2H, J = 6.05 Hz); 3.30 (q, 2H); 2.85 (d, 3H, J = 16.11 Hz); 1.88 (m, 4H).
31P NMR (CDCl, TPPO): d −6.75.
【0068】
【化28】
Figure 2004538240
5−ニトロ−2−フリルメチルN−メチル−N−(4−クロロブチル)ホスホラミディッククロライド:
テトラヒドロフルフリルアルコール(240 mg, 1.68 mmol)を無水のTHF 10 mL中に溶解し、−78℃に冷却した。リチウムヘキサメチルジシラザン(1.84 mL, 1.84 mmol)を滴下添加し、−78℃で10分間攪拌して反応を行った。この反応混合物に、ホスホラミディックジクロライド(400 mg, 1.68 mmol)の無水THF溶液10 mL を滴下添加した。−78℃から−60℃までゆっくりと加温して反応を行い、−60℃で1時間攪拌した。飽和NHClで急冷し、層を分離し、水層を3回EtOAcで抽出した。有機層を一つに混合し、無水硫酸ナトリウムで脱水し、減圧濃縮した。フラッシュシリカゲルクロマトグラフィー(10:1 CHCl/アセトン)を用いて精製し、薄茶色のオイル(320 mg, 55%)を得た。
H NMR (CDCl): d 7.29, (d, 1H, J = 3.66 Hz); 6.72 (d, 1H, J = 3.66 Hz); 5.14 (dd, 2H); 3.56 (t, 2H, J = 5.86); 3.20 (m, 2H); 2.71 (d, 3H, J = 13.58 Hz), 1.79 (m, 4H).
31P NMR (CDCl, TPPO): d −7.88 .
【0069】
【化29】
Figure 2004538240
5−ニトロ−2−フリルメチルN−メチル−N−(4−ブロモブチル)ホスホラミディッククロライド:
出発原料としてニトロフルフリルアルコール(245 mg, 1.78 mmol)およびホスホラミディックジクロライド(500 mg, 1.78 mmol)を用いて、前記記載と同様の手順を行った。フラッシュシリカゲルクロマトグラフィー(10:1, CHCl/アセトン)を用いて精製し、薄茶色のオイル(360 mg, 52%)を回収した。
H NMR (CDCl): d 7.29, (d, 1H, J = 3.67 Hz); 6.72 (d, 1H, J = 3.66 Hz); 5.14 (dd, 2H); 3.43 (t, 2H, J = 6.32); 3.19 (m, 2H); 2.72 (d, 3H, J = 13.73 Hz), 1.79 (m, 4H).
31P NMR (CDCl, TPPO): d −7.88.
【0070】
【化30】
Figure 2004538240
ホスホラミディックジクロライドの合成.
ジイソプロピルアミン(8.82 mL, 50.61 mmol)を無水ジクロロメタン20 mLで希釈し、あらかじめ冷やした、POCl(2.36 mL, 25.31 mmol)とN−メチル−4−クロロブチルアミンヒドロクロライド(4g, 24.31 mmol)とを含む 無水ジクロロメタン 溶液40 mLに、−20℃でゆっくりと加えた。反応混合物を10℃に徐々に加温しながら、3.5時間攪拌した。反応混合物を飽和塩化物アンモニウムで急冷させ、ジクロロメタンで抽出した。有機層を回収し、食塩水で洗浄し、MgSOで脱水して、蒸発乾固し、黄色の液体を回収した。粗生成物を3:1 Hexanes/EtOAcの混合液を用いてクロマトグラフィーにかけ、透明な液体としてのホスホラミディックジクロライド(5.07g, 回収率84%)を回収した。
H NMR (CDCl, TMS) d: 3.59 (t, 2H), 3.29 (m, 2H), 2.85 (d, 3H, j = 16.11 Hz), 1.80 (m, 4H) ppm.
31P NMR (CDCl, TPPO) d: −6.63 ppm.
【0071】
【化31】
Figure 2004538240
1−プロペニルベンゾエート12aの合成.
4−ヒドロキシ安息香酸(5g, 36.20 mmol) の臭化アリル懸濁液 86 mLに、ジイソプロピルアミン(6.31 mL, 36.20 mmol)を適当に添加した。この反応混合物を2時間還流しながら攪拌し、室温に冷却した。過剰な臭化アリルを減圧蒸留して取り除き、残ったオイルをEtOAcで希釈し、水、塩水で洗浄し、MgSOで脱水し、蒸発乾固して黄色のオイルを回収した。 粗生産物を10:1 CHCl/EtOAcの混合液を用いてクロマトグラフィーにかけ、白い固体物である安息香酸エステル(5.03g, 回収率78 %)を回収した。
H NMR (CDCl, TMS) d: 7.99 (d, 2H, j = 8.79 Hz), 6.86 (d, 2H, j = 8.79 Hz), 6.0 (m, 1H), 5.30 (m, 2H), 4.80 (d, 2H, j = 5.68 Hz).
HPLC (50:50 CHCN/HO−0.1% TFA): 6.17 分 (97.2%).
MS (ESI) m/z :179 (M+H)
GCMS m/z: 179 (M+H).
【0072】
【化32】
Figure 2004538240
1−プロペニルエステル12bの合成.
エステル12bを12aについての記載と同様に合成し、白い固体として得た(回収率78%)。
H NMR (CDCl, TMS) d: 7.77 (d, 2H, j = 7.41 Hz), 7.56 (d, 2H, j = 7.41 Hz), 7.43−7.28 (m, 4H), 6.96 (d, 2H, j = 8.28 Hz), 6.73 (d, 2H, j = 8.28 Hz), 5.94−5.80 (m, 1H), 5.35−5.24 (m, 3H), 4.91 (s, 1H), 4.62 (m, 3H), 4.48−4.31 (m, 2H), 4.20 (t, 1H), 3.06 (t, 2H).
HPLC (50:50 CHCN/HO−0.1% TFA): 11.75 分 (99.99%)
【0073】
【化33】
Figure 2004538240
1−プロペニルエステル12cの合成.
エステル12cを12aについての記載と同様に合成し、白い固体として得た(回収率80 %)。
H NMR (CDCl, TMS) d: 6.99 (d, 2H, j = 8.42 Hz), 6.73 (d, 2H, j = 8.42 Hz), 5.84 (m, 1H), 5.27 (m, 2H), 4.60 (d, 2H, j = 5.86 Hz), 3.02 (m, 1H), 1.42 (s, 9H).
HPLC (30:70 CHCN/HO−0.1% TFA): 8.95 分 (97%).
【0074】
【化34】
Figure 2004538240
1−プロペニルエステル12dの合成.
エステル12dを12aについての記載と同様に合成し、白い固体として得た(回収率80%)。
H NMR (CDCl, TMS) d: 7.20−7.09 (m, 4H), 5.99−5.78 (m, 2H), 5.35−5.25 (m, 2H), 4.93−4.85 (m, 1H), 4.61 (d, 2H, j = 5.86 Hz), 3.26−3.13 (m, 2H), 2.00 (s, 3H) ppm.
HPLC (30:70, CHCN/HO−0.1% TFA): 5.63, 5.8 分.
MS (ESI) m/z: 286 (M+Na).
【0075】
【化35】
Figure 2004538240
1−プロペニルエステル12eの合成.
エステル12eを12aについての記載と同様に合成し、緑色のオイルとして得た。
H NMR (CDCl, TMS) d: 7.32−7.19 (m, 4H), 5.98−5.82 (m, 1H), 5.31−5.20 (m, 2H), 4.60 (d, 2H, j = 5.68 Hz), 3.64 (s, 2H) ppm.b
HPLC (30:70, CHCN/HO−0.1% TFA): 4.33 分.
【0076】
【化36】
Figure 2004538240
1−プロペニルエステル13の合成.
p−アミノ安息香酸カリウム(2g, 11.41 mmol) のDMF 懸濁液40 mL に、臭化アリル(0.99 mL, 11.41 mmol)を添加した。反応を一晩攪拌して行い、それから水で急冷し、数回EtOAcで抽出した。有機抽出物を一つに混合し、塩水で洗浄して、MgSOで脱水し、蒸発乾固して黄色液体を回収した。 粗生産物を10:1 CHCl/EtOAcの混合液を用いてクロマトグラフィーにかけ、 黄色の固体物として13を回収した。
H NMR (CDCl, TMS) d: 7.99 (d, 2H, j = 8.7 Hz), 7.08 (d, 2H, j = 8.7 Hz), 6.05−5.97 (m, 1H), 5.51−5.30 (m, 2H), 4.82−4.78 (m, 2H) ppm.
HPLC (グラジエント 30−100% CHCN:HO−0.1% TFA 35 分以上): 7.68 分
MS (ESI) m/z : 178 (M+H), 200 (M+Na).
【0077】
【化37】
Figure 2004538240
ホスホラミディックモノクロライド14aの合成.
ホスホラミディックジクロライド(0.2 g, 0.84 mmol)とエステルアリル12a(0.15g, 0.84 mmol)を含む、あらかじめ冷やした無水DCM溶液 3 mL に、ジイソプロピルエチルアミン(0.3 mL, 1.68 mmol)を−15℃で適当に添加した。反応は、−15℃で1時間、−5℃で3時間攪拌して行い、飽和塩化アンモニウムで急冷した。得られた層を分離した。それから、有機層を塩水で洗浄し、MgSOで脱水し、蒸発乾固して黄色の液体を回収した。粗生産物を10:1 CHCl/EtOAcの混合液を用いてクロマトグラフィーにかけ、透明の液体として14aを回収した。
H NMR (CDCl, TMS) d: 8.10 (d, 2H, j = 8.33 Hz), 7.34 (d, 2H, j = 8.33 Hz), 6.09−5.98 (m, 1H), 5.45−5.28 (m, 2H), 4.84−4.81 (m, 2H), 3.57 (t, 2H), 3.35−3.17 (m, 2H), 2.84 (d, 3H, j = 13.55), 1.82−1.79 (m, 4H) ppm.
31P NMR (TPPO) d: −13.07 ppm.
HPLC (グラジエント 30−100%, CHCN/HO−0.1% TFA, 35 分以上): 16.05 分.
【0078】
【化38】
Figure 2004538240
ホスホラミディックモノクロライド14bの合成.
ホスホラミディックジクロライド11(0.45g, 1.89 mmol)を無水のTHF 2 mL中に溶解させ、−20℃であらかじめ冷やした、 12b(0.84g, 1.89 mmol)とLiHMDS(2.08 mmol)を含む無水THF溶液2 mLにカニューレで添加した。反応を0℃まで加温し、5時間攪拌して行った。続いて、反応を飽和塩化アンモニウムで急冷し、酢酸エチルで抽出した。有機抽出物を一つに混合し、塩水で洗浄し、MgSOで脱水して蒸発乾固し黄色のオイルを回収した。 粗生産物を10:1 CHCl/EtOAcの混合液を用いてクロマトグラフィーにかけ、黄色のオイルとして14b(0.85g, 回収率70%)を回収した。
H NMR (CDCl, TMS) d: 7.77 (d, 2H, j = 7.42 Hz), 7.57 (d, 2H, j = 7.42 Hz), 7.44−7.29 (m, 4H), 7.19−7.08 (m, 4H), 5.91−5.81 (m, 1H), 5.34−5.25 (m, 3H), 4.66−4.60 (m, 3H), 4.49−4.33 (m, 2H), 4.21 (t, 1H), 3.58 (t, 2H), 3.27−3.20 (m, 2H), 3.17−3.10 (m, 2H), 2.82 (d, 3H, j = 13.54 Hz), 1.81−1.78 (m, 4H) ppm.
31P NMR (CDCl, TPPO) d: −12.64 ppm.
HPLC (70:3O CHCN/HO−0.1% TFA溶液): 6.833 分.
MS (ESI) m/z: 645/647 (M+H), 667/669 (M+Na).
【0079】
【化39】
Figure 2004538240
ホスホラミディックモノクロライド14cの合成.
14cを14bについての記載と同様に合成し薄黄色のオイルとして得た。
H NMR (CDCl, TMS) d: 7.16 (m, 4H), 5.8 (m, 1H), 5.3 (m, 2H), 4.6 (d, 2H, j = 5.68 Hz), 3.58 (t, 2H), 3.2 (m, 2H), 3.05 (m, 1H), 2.82 (d, 3H), 1.79 (m, 4H), 1.42 (s, 9H).
31P NMR (CDCl, TPO) d: −12.5 ppm.
HPLC (gradient 30−100%, CHCN/HO−0.1% TFA, over 35 分): 9.83 分.
【0080】
【化40】
Figure 2004538240
ホスホラミディックモノクロライド14dの合成.
14dを14aと同様の手順で合成した。この反応混合物を一晩攪拌し、薄黄色のオイルを回収した。
H NMR (CDCl, TMS) d: 7.20−7.09 (m, 4H), 5.99−5.78 (m, 2H), 5.35−5.25 (m, 2H), 4.93−4.85 (m, 1H), 4.61 (d, 2H, j = 5.86 Hz), 3.58 (t, 2H), 3.26−3.13 (m, 4H), 2.83 (d, 3H, j = 13.55 Hz), 2.00 (s, 3H), 1.96−1.75 (m, 4H) ppm.
31P NMR (TPPO) d: 12.71
MS (ESI) m/z: 465/467 (M+H).
【0081】
【化41】
Figure 2004538240
ホスホラミディックモノクロライド14eの合成.
14eを13aと同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.32−7.19 (m, 4H), 5.98−5.82 (m, 1H), 5.31−5.20 (m, 2H), 4.60 (d, 2H, j = 5.68 Hz), 3.64 (s, 2H), 3.58 (t, 2H), 3.25−3.18 (m, 2H), 2.83 (d, 3H, j = 13.55 Hz), 1.80−1.78 (m, 4H) ppm.
31P NMR (TPPO) d: −12.66 ppm.
MS (ESI) m/z: 394/396 (M+H).
【0082】
【化42】
Figure 2004538240
ホスホラミディックモノクロライド15の合成.
ホスホラミディックジクロライド11(0.7 g, 2.94 mmol)とエステルアリル13(0.52 g, 2.94 mmol)を含む無水ジクロロメタン溶液10 mL に、ジイソプロピルエチルアミン(0.51mL, 2.94 mmol)を適当に添加した。反応を10日間還流しながら攪拌し、室温まで冷却し、ジクロロメタンで希釈して飽和塩化アンモニウムで急冷した。層を分離して、有機層を塩水で洗浄し、MgSOで脱水して、蒸発乾固して黄色のオイルを回収した。 粗生産物を10:1 CHCl/EtOAcの混合液を用いてクロマトグラフィーにかけ、 薄緑色のオイル(0.22 g, 回収率20%)を回収した。
H NMR (CDCl, TMS) d: 7.99 (d, 2H, j = 8.7 Hz), 7.08 (d, 2H, j = 8.7 Hz), 6.05−5.97 (m, 1H), 5.57 (d, 1H, j = 2.29 Hz), 5.51−5.30 (m, 2H), 4.82−4.78 (m, 2H), 3.54 (t, 2H), 3.36−3.13 (m, 2H), 2.74 (d, 3H, j = 14.37 Hz), 1.87−1.64 (m, 4H) ppm.
31P NMR (TPPO) d: −11.28 ppm.
HPLC (30−100%, CHCN/HO−0.1% TFA, 35 分以上): 12.60 分.
MS (ESI) m/z : 379/381 (M+H), 401/403 (M+Na).
【0083】
【化43】
Figure 2004538240
ホスホラミデート16の合成.
ホスホラミディックモノクロライド14a(0.63g, 1.21 mmol)を無水のTHF 2 mL中に溶解し、−78℃であらかじめ冷却したニトロフリルアルコール(0.19g, 1.33 mmol)とLiHMDS(1.46 mmol)の無水THF溶液 2 mL にカニューレで添加した。反応を−40℃にし、5.5時間攪拌して行った。飽和塩化アンモニウムを反応混合物に加え、酢酸エチルで抽出した。有機抽出物を一つに混合し、塩水で洗浄し、過剰のMgSOで脱水し、蒸発乾固して黒っぽいオイルを回収した。 粗生産物を10:1 CHCl/EtOAcの混合液を用いてクロマトグラフィーにかけ、 濃いオレンジ色のオイルとしてホスホラミデート16(0.30g, 回収率52%)を回収した。
H NMR (CDCl, TMS) d: 8.05 (d, 2H, j = 8.6 Hz), 7.26 (m, 3H), 6.64 (d, 1H, j = 3.48 Hz), 6.05 (m, 1H), 5.31 (m, 2H), 5.09 (d, 2H, j = 9.15 Hz), 4.82 (d, 2H, j = 5.49 Hz), 3.53 (t, 2H), 3.1 (m, 2H), 2.72 (d, 3H, j = 10.25 Hz), 1.67 (m, 4H).
31P NMR (TPPO) d: −21.7
HPLC (60:4O CHCN/HO−0.1% solution of TFA): 7.117 分.
【0084】
【化44】
Figure 2004538240
ホスホラミデート17の合成.
ホスホラミデート17を16についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 8.23 (d, 1H, j = 7.14 Hz), 8.07−7.91 (m, 3H), 7.66−7.50 (m, 2H), 7.30 (d, 2H, j = 8.7 Hz), 6.80 (s, 1H), 6.19−5.88 (m, 1H), 5.44−5.20 (m, 4H), 4.92−4.79 (m, 2 H), 3.94 (s, 3H), 3.92 (s, 3H), 3.48 (t, 2H), 3.24−2.97 (m, 2H), 2.71 (d, 3H, j = 10.25 Hz), 2.84−1.83 (m, 4H) ppm.
31P NMR (TPPO) d: −18.94 ppm.
HPLC (70:30 CHCN/HO−0.01% TFA 溶液): 7.967 分
MS (ESI) m/z : 584/586 (M+Na).
【0085】
【化45】
Figure 2004538240
ホスホラミデート18の合成.
ホスホラミデート18を16についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.77 (d, 2H, j = 7.42 Hz), 7.57 (d, 2H, j = 7.42 Hz), 7.44−7.24 (m, 5H), 7.13−6.93 (m, 4H), 6.59 (d, 1H, j = 3.67 Hz), 6.07−5.70 (m, 1H), 5.47−5.23 (m, 4H), 5.05 (d, 2H, j = 9.16 Hz), 4.74−4.61 (m, 3H), 4.56−4.28 (m, 2H), 4.20 (t, 1H), 3.51 (t, 2H), 3.20−2.99 (m, 4H), 2.70 (d, 3H, j = 10.34 Hz), 1.82−1.53 (m, 4H) ppm.
31P NMR (TPPO) d: −18.92
HPLC (70:30 CHCN/HO−0.1% TFA溶液): 6.12 分.
【0086】
ホスホラミデート19の合成.
【化46】
Figure 2004538240
ホスホラミデート19を16と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.28 (d, 1H, j = 3.66 Hz), 7.16 (m, 4H), 6.63 (d, 1H, j = 3.66 Hz), 5.8 (m, 1H), 5.3 (m, 2H), 5.05 (d, 2H, j = 8.98 Hz), 4.6 (d, 2H), 3.58 (t, 2H), 3.2 (m, 2H), 3.05 (m, 1H), 2.82 (d, 3H), 1.79 (m, 4H), 1.42 (s, 9H).
31P NMR (TPPO) d: −19.2
HPLC (60:40 CHCN/HO−0.1% TFA): 8.2 分.
【0087】
【化47】
Figure 2004538240
ホスホラミデート20の合成.
ホスホラミデート20を16についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.28 (d, 1H, j = 3.75 Hz), 7.21−6.98 (m, 4H), 6.63 (d, 1H, j = 3.75 Hz), 6.05−5.77 (m, 2H), 5.44−5.19 (m, 2H), 5.06 (d, 2H, j = 9.15 Hz), 5.01−4.78 (m, 1H), 4.72−4.52 (m, 2H), 3.66−3.42 (m, 2H), 3.23−2.99 (m, 4H), 2.71 (d, 3H, j = 10.34 Hz), 2.00 (s, 3H), 1.83−1.60 (m, 4H) ppm.
31P NMR (TPPO) d: −19.03 ppm.
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 15.70 分
MS (ESI) m/z: 572/574 (M+H).
【0088】
【化48】
Figure 2004538240
ホスホラミデート21の合成.
ホスホラミデート21を16についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.81 (d, 1H, j = 4.12 Hz), 7.22−7.05 (m, 4H), 6.99 (d, 1H, j = 4.12 Hz), 6.02−5.72 (m, 2H), 5.45−5.10 (m, 4H), 5.00−4.79 (m, 1H), 4.63−4.49 (m, 2H), 3.53 (t, 2H), 3.23−2.95 (m, 4H), 2.72 (d, 3H, j = 10.35 Hz), 2.00 (s, 3H), 1.85−1.58 (m, 4H) ppm.
31P NMR (TPPO) d: −19.21 ppm.
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 17.20 分
MS (ESI) m/z: 588/590 (M+H), 610/612 (M+Na).
【0089】
【化49】
Figure 2004538240
ホスホラミデート22の合成.
ホスホラミデート22を16についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.26−7.04 (m, 5H), 6.60 (d, 1H, j = 3.58 Hz), 5.99−5.75 (m, 1H), 5.43−5.19 (m, 2H), 5.06 (d, 2H, j = 9.16 Hz), 4.72−4.48 (m, 2H), 3.62 (s, 2H), 3.51 (t, 2H), 3.18−2.96 (m, 2H), 2.71 (d, 3H, j = 10.26 Hz), 1.77−1.55 (m, 4H) ppm.
31P NMR (TPPO) d: −19.01 ppm.
HPLC (30−100%, CHCN/HO−0.1% TFA, 35 分以上): 15.50 分.
MS (ESI) m/z: 501/503 (M+H), 523/525 (M+Na).
【0090】
【化50】
Figure 2004538240
ホスホラミデート23の合成.
ホスホラミデート23を16についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.80 (d, 1H, j = 4.12 Hz), 7.33−7.09 (m, 4H), 6.99 (d, 1H, j = 4.12 Hz), 6.08−5.68 (m, 1H), 5.46−5.07 (m, 4H), 4.78−4.39 (m, 2H), 3.63 (s, 2H), 3.51 (t, 2H), 3.30−2.96 (m, 2H), 2.72 (d, 3H, j = 10.34 Hz), 1.87−1.48 (m, 4H) ppm.
31P NMR (TPPO) d: −19.21 ppm.
HPLC (グラジエント 30−100%, CHCN/HO−0.1% TFA, 35 分以上): 20.17 分.
【0091】
【化51】
Figure 2004538240
ホスホラミデート24の合成.
ホスホラミデート24を16についての記載と同様の手順で合成した。
【0092】
H NMR (CDCl, TMS) d: 7.96 9d, 2H, j = 8.6 Hz), 7.26 (d, 1H, j = 3.67 Hz), 6.99 (d, 2H, j = 8.6 Hz), 6.65 (d, 1H, j = 3.67 Hz), 6.16−5.84 (m, 1H), 5.51−5.19 (m, 3H), 5.09 (d, 2H, j = 9.43 Hz), 4.92−4.73 (m, 2H), 3.52 (t, 2H), 3.22−2.99 (m, 2H), 2.69 (d, 3H, j = 10.53 Hz), 1.85−1.61 (m, 4H) ppm.
31P NMR (TPPO) d: −15.60 ppm
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 12.60 分.
MS (ESI) m/z : 486/488 (M+H), 508/510 (M+Na).
【0093】
【化52】
Figure 2004538240
ホスホラミデート25の合成.
TolSONa(0.29g, 1.61 mmol)を水 2.5 mL中に溶解し、ホスホラミデート16(0.71g, 1.47 mmol)とPd(PPh(0.08g, 73.41mmol) のTHF 溶液6mLに加えた。反応を室温で30分間攪拌して行った。ジエチルエーテルを反応混合物に添加し、水で数回洗浄した。水性の抽出物を一つに混合し、エーテルで洗浄し、2%のHClでpH 3に酸性にしてEtOAcで抽出した。有機抽出物を混合し、塩水で洗浄し、MgSOで脱水して、蒸発乾固してオレンジ色の泡状物質としてホスホラミデート25(0.51g, 回収率78%)を回収した。
H NMR (CDCl, TMS) d: 8.08 (d, 2H, j = 8.6Hz), 7.31 (m, 3H), 6.66 (d, 1H, J = 3.67 Hz), 5.11 (d, 2H, j = 9.16 Hz), 3.53 (t, 2H), 3.13 (m, 2H), 2.74 (d, 3H, j = 10.44 Hz), 1.7 (m, 4H).
31P NMR (TPPO) d: −20.4
HPLC (60:40 CHCN/HO−0.1% TFA溶液): 4.017 分.
【0094】
【化53】
Figure 2004538240
ホスホラミデート26の合成.
ホスホラミデート26を25についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 8.32−8.22 (m, 1H), 8.13−7.98 (m, 3H), 7.64−7.45 (m, 2H), 7.33 (d, 2H, j = 8.7 Hz), 6.81 (s, 1H), 5.35 (d, 2H, j = 8.05 Hz), 3.95 (s, 3H), 3.93 (s, 3H), 3.49 (t, 2H), 3.25−2.97 (m, 2H), 2.73 (d, 3H, j = 10.25 Hz), 1.80−1.52 (m, 4H) ppm.
31P NMR (TPPO) d: −18.99 ppm
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 18.60 分.
MS (ESI) m/z : 544/546 (M+Na).
【0095】
【化54】
Figure 2004538240
ホスホラミデート27の合成.
ホスホラミデート27を25についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.77 (d, 2H, j = 7.23 Hz), 7.58 (d, 2H, j = 7.23 Hz), 7.43−7.23 (m, 5H), 7.18−6.89 (m, 4H), 6.67−6.47 (m, 1H), 5.48−5.30 (m, 1H), 5.18−4.97 (m, 2H), 4.79−4.07 (m, 4H), 3.60−3.37 (m, 2H), 3.27−2.98 (m, 4H), 2.82−2.59 (m, 3H), 1.79−1.56 (m, 4H) ppm.
31P NMR (TPPO) d: −19.44, −19.63 ppm.
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 17.93 分.
【0096】
【化55】
Figure 2004538240
ホスホラミデート28の合成.
ホスホラミデート28を25についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.28 (d, 1H, j = 3.66 Hz), 7.16 (m, 4H), 6.63 (d, 1H, j = 3.66 Hz), 5.05 (d, 2H, j = 8.98 Hz), 3.58 (t, 2H), 3.2 (m, 2H), 3.05 (m, 1H), 2.82 (d, 3H), 1.79 (m, 4H), 1.42 (s, 9H).
31P NMR (TPPO) d: −19.2 ppm.
HPLC (60:40 CHCN/HO−0.1% TFA): 4.65 分.
【0097】
【化56】
Figure 2004538240
ホスホラミデート29の合成.
ホスホラミデート29を25についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.30−7.25 (m, 1H), 7.23−6.83 (m, 4H), 6.80−6.47 (m, 1H), 5.09 (d, 2H, j = 9.25 Hz), 5.01−4.59 (m, 2H), 3.76−3.33 (m, 2H), 3.36−2.98 (m, 4H), 2.98−2.55 (m, 3H), 2.14−1.77 (d, 3H), 1.89−1.55 (m, 4H) ppm.
31P NMR (TPPO) d: −19.25, −19.43 ppm.
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 11.68 分.
MS (ESI) m/z : 554/556 (M+Na), 532/534 (M+H).
【0098】
【化57】
Figure 2004538240
ホスホラミデート30の合成.
ホスホラミデート30を25についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.87−7.73 (m, 1H), 7.14−7.04 (m, 4H), 7.03−6.95 (m, 1H), 5.34−5.18 (m, 2H), 5.11−4.96 (m, 1H), 4.95−4.81 (m, 1H), 3.60−3.46 (m, 2H), 3.26−3.03 (m, 4H), 2.85−2.67 (m, 3H), 2.05−1.92 (m, 3H), 1.84−1.62 (m, 4H) ppm.
31P NMR (TPPO) d: −19.41, −19.61 ppm.
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 13.10 分.
MS (ESI) m/z : 548/550 (M+H).
【0099】
【化58】
Figure 2004538240
ホスホラミデート31の合成.
ホスホラミデート31を25についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.26−7.04 (m, 5H), 6.60 (d, 1H, j = 3.58 Hz), 5.43−5.19 (m, 2H), 5.06 (d, 2H, j = 9.16 Hz), 3.62 (s, 2H), 3.51 (t, 2H), 3.18−2.96 (m, 2H), 2.71 (d, 3H, j = 10.26 Hz), 1.77−1.55 (m, 4H) ppm.
31P NMR (TPPO) d: −19.01 ppm.
【0100】
【化59】
Figure 2004538240
ホスホラミデート32の合成.
ホスホラミデート32を25についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.80 (d, 1H, j = 4.12 Hz), 7.33−7.09 (m, 4H), 6.99 (d, 1H, j = 4.12 Hz), 5.22 (d, 2H, j = 8.52 Hz), 3.63 (s, 2H), 3.48 (t, 2H), 3.30−2.96 (m, 2H), 2.73 (d, 3H, j = 10.25 Hz), 1.92−1.40 (m, 4H) ppm.
31P NMR (TPPO) d: −19.29 ppm.
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 15.13 分.
【0101】
【化60】
Figure 2004538240
ホスホラミデート33の合成.
ホスホラミデート33を25についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 7.96 (d, 2H, j = 8.6 Hz), 7.26 (d, 1H, j = 3.67 Hz), 6.99 (d, 2H, j = 8.6 Hz), 6.65 (d, 1H, j = 3.67 Hz), 6.45−6.25 (m, 1H), 5.09 (d, 2H, j = 9.43 Hz), 3.52 (t, 2H), 3.22−2.99 (m, 2H), 2.69 (d, 3H, j = 10.53 Hz), 1.85−1.61 (m, 4H) ppm.
31P NMR (TPPO) d: −15.40 ppm
HPLC (30−100%のグラジエント CHCN/HO−0.1% TFA, 35 分以上): 9.13, 9.37 分.
MS (ESI) m/z : 444/446 (M−H).
【0102】
【化61】
Figure 2004538240
プロドラッグ35の合成.
ホスホラミデート25(0.105g, 0.23 mmol)を2 mLの無水DMFに溶解し、ベンジルアミン34(0.0735g, 0.23 mmol)、4−メチルモルフォリン(0.06 mL, 0.588 mmol)、およびHOBT(0.0382g, 0.28 mmol)を含む無水DMF溶液3 ml に0℃でカニューレで添加した後、EDCI(0.0541g, 0.28 mmol)を添加した。反応は、室温まで加温し、一晩攪拌して行った。この反応混合液に水を加え、酢酸エチルで抽出した。抽出した有機物を一つに混合し、飽和重炭酸ナトリウム、水、食塩水で洗浄し、MgSOで脱水し、蒸発乾固して濃いオレンジ色のオイルを回収した。生成物を、MeOH:HOが75:25の混合溶液を用いて逆相シリカでクロマトグラフィーにかけ、 白い泡状の35を得た(58.7 mg ,回収率35%)。
H NMR (CDCl, TMS) d: 8.25 (d, 1H), 7.72 (d, 2H, j = 8.42Hz), 7.50 (d, 1H), 7.24 (m, 3H), 6.95 (d, 2H, j = 8.42Hz), 6.63 (d, 1H, j = 3.66Hz), 5.28 (t, 1H), 5.07 (d, 2H, j = 9.16 Hz), 3.93 (d, 2H), 3.52 (t, 2H), 3.09 (m, 2H), 2.70 (d, 3H), 1.87−1.58 (m, 14H), 1.48−0.85 (m, 4H).
31P NMR (TPPO) d: −21.2 ppm.
HPLC (60:4O CHCN/HO−0.1% solution of TFA): 8.817 分.
MS (ESI) m/z : 727/729 (M+Na), 705/707 (M+H).
MS high resolution (ESI) m/z: 計算値: 705.2456; 実測値: 705.2432.
【0103】
【化62】
Figure 2004538240
ホスホラミデート36の合成.
ジイソプロピルエチルアミン(0.11 mL, 0.61 mmol)をあらかじめ冷却した、ホスホラミデート26(0.14g, 0.28 mmol)、ベンジルアミン34(0.08g, 0.31 mmol)、およびPyBOP(0.14g, 0.28 mmol)の無水DCM溶液2 mL に0℃で加えた。反応は、0℃で10分間、および室温で30分間攪拌して行った。反応を、飽和塩化アンモニウムおよびDCMで急冷した。層を分離し、有機層は塩水で洗浄し、MgSOで脱水し、蒸発乾固して薄黄色いオイルを回収した。粗生成物を9:1 EtOAc/MeOHの混合液を用いてクロマトグラフィーにかけ、白い泡状の36(0.16g, 75% yield)を得た。
H NMR (CDCl, TMS) d: 8.34−8.20 (m, 2H), 8.11−8.04 (m, 1H), 7.92−7.78 (bs, 1H), 7.71 (d, 2H, j = 8.60 Hz), 7.63−7.43 (m, 3H), 7.28−7.24 (m, 2H), 6.95 (d, 1H, j = 8.6 Hz), 6.8 (s, 1H), 6.27 (d, 1H, j = 7.79 Hz), 5.84−5.67 (bs, 1H), 5.43−5.16 (m, 3H), 3.94 (s, 3H), 3.92 (s, 3H), 3.47 (t, 2H), 3.21−2.94 (m, 2H), 2.69 (d, 3H, j = 10.52 Hz), 1.96−1.49 (m, 14H), 1.41−0.93 (m, 5H).
31P NMR (TPPO) d: −18.82 ppm.
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 24.05 分.
MS (ESI) m/z : 802/804 (M+Na), 780/782 (M+H).
MS High Resolution (ESI) m/z: 計算値: 780.3181; 実測値: 780.3168.
【0104】
【化63】
Figure 2004538240
プロドラッグ37の合成.
硝酸セリウムアンモニウム(0.11g, 0.21 mmol)を1 mLのHO中に溶解し、3.7 mLのアセトニトリルおよび1.9 mLのHOにホスホラミデート36(0.08g, 99.83 umol)を含有した溶液をゆっくりと加えた。反応を1.5時間攪拌して行い、それから飽和塩化アンモニウムを加えて急冷し、EtOAcで抽出した。有機層を一つにまとめ、食塩水で洗浄して、MgSOで脱水し、蒸発乾固して薄黄色いオイルを回収した。粗生成物を9:1 EtOAc/MeOHの混合液を用いてクロマトグラフィーにかけ、薄黄色い泡状の37を得た(0.03g, 回収率65%)。
H NMR (CDCl, TMS) d: 8.34−8.21 (m, 2H), 8.11−8.04 (m, 1H), 7.92−7.78 (bs, 1H), 7.72 (d, 2H, j = 8.60 Hz), 7.28−7.24 (m, 2H), 6.95 (d, 2H, j = 8.60 Hz), 6.94 (d, 1H, j = 8.6 Hz), 6.9 (s, 1H), 6.41 (d, 1H, j = 8.6 Hz), 5.84−5.67 (bs, 1H), 5.43−5.16 (m, 3H), 3.93 (s, 3H), 3.91 (s, 5H), 3.47 (t, 2H), 3.21−2.94 (m, 2H), 2.69 (d, 3H, j = 10.52 Hz), 1.96−1.49 (m, 14H), 1.41−0.93 (m, 5H).
31P NMR (TPPO) d: −19.0
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 21.45 分.
MS (ESI) m/z : 772/774 (M+Na), 750/752 (M+H).
MS high resolution (ESI) m/z: 計算値: 750.2711; 実測値: 750.2708.
【0105】
【化64】
Figure 2004538240
プロドラッグ38の合成.
プロドラッグ38を36についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 8.26−8.11 (m, 1H), 8.09−7.99 (m, 1H), 7.95−7.76 (m, 1H), 7.24−7.09 (m, 2H), 7.08−6.99 (m, 2H), 6.96−6.82 (m, 1H), 6.72−6.55 (m, 1H), 6.50−6.20 (m, 1H), 6.18−6.54 (m, 1H), 5.16−4.82 (m, 3H), 4.79−4.46 (m, 1H), 4.03−3.78 (m, 2H), 3.62−3.43 (m, 2H), 3.15−2.81 (m, 5H), 2.80−2.51 (m, 3H), 2.04−1.89 (m, 3H), 1.87−1.56 (m, 10H), 1.49−0.90 (m, 8H) ppm.
31P NMR (TPPO) d: −18.94 ppm.
HPLC (30−100%グラジエント, CHCN/HO−0.1% TFA, 35 分以上): 19.03, 19.25 分.
MS (ESI) m/z : 790/792 (M+H), 812/814 (M+Na)
MS High Resolution (ESI) m/z: 計算値: 790.2984; 実測値: 790.2981.
【0106】
【化65】
Figure 2004538240
プロドラッグ39の合成.
プロドラッグ39を35についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 8.21−8.09 (m, 1H), 8.08−7.98 (m, 1H), 7.93−7.71 (m, 2H), 7.23−7.04 (m, 6H), 6.66−6.47 (m, 1H), 6.36−6.16 (m, 1H), 6.11−5.80 (m, 1H), 5.30−5.15 (m, 2H), 5.14−4.81 (m, 1H), 4.75−4.48 (m, 1H), 4.02−3.85 (m, 2H), 3.62−3.42 (m, 2H), 3.13−2.82 (m, 5H), 2.82−2.58 (m, 3H), 2.04−1.92 (m, 3H), 1.84−1.53 (m, 9H), 1.51−0.87 (m, 9H) ppm.
31P NMR (TPPO) d: −19.16 ppm.
HPLC (30−100%グラジエント, CHCN/HO−0.1% TFA, 35 分以上): 20.17, 20.35 分.
MS (ESI) m/z : 806/808 (M+H), 828/830 (M+Na)
MS High Resolution (ESI) m/z: 計算値: 806.2755; 実測値: 806.2758.
【0107】
【化66】
Figure 2004538240
プロドラッグ40の合成.
プロドラッグ40を35についての記載と同様の手順で合成した。
H NMR (CDCl, TMS) d: 8.10−8.00 (m, 1H), 7.99−7.86 (m, 1H), 7.45−7.09 (m, 7H), 6.98−6.85 (m, 1H), 6.69−6.56 (m, 1H), 6.05−5.89 (m, 1H), 5.87−5.69 (m, 1H), 5.19−4.95 (m, 3H), 4.02−3.81 (m, 2H), 3.64−3.29 (m, 4H), 3.26−2.92 (m, 2H), 2.87−2.52 (m, 3H), 2.02−1.57 (m, 11H), 1.54−0.89 (m, 6H).
31P NMR (TPPO) d: −18.91, −18.99 ppm.
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 20.65 分.
MS (ESI) m/z : 719/721 (M+H), 741/743 (M+Na)
MS High Resolution (ESI) m/z: 計算値: 719.2613; 実測値: 719.2600.
【0108】
【化67】
Figure 2004538240
プロドラッグ41の合成.
プロドラッグ41を35についての記載と同様に合成した。
H NMR (CDCl, TMS) d: 8.14−8.00 (m, 1H), 7.93−7.80 (m, 1H), 7.81−7.69 (m, 1H), 7.42−7.30 (m, 1H), 7.27−7.06 (m, 5H), 7.04−6.93 (m, 1H), 6.93−6.81 (m, 1H), 6.23−5.99 (m, 2H), 5.27−5.15 (m, 2H), 5.13−4.93 (m, 1H), 3.99−3.81 (m, 2H), 3.60−3.38 (m, 4H), 3.21−2.98 (m, 2H), 2.85−2.62 (m, 3H), 1.92−1.59 (m, 11H), 1.50−0.97 (6H).
31P NMR (CDCl, TPPO) d: −19.26
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 21.77 分.
MS (ESI) m/z : 735/737 (M+H), 757/759 (M+Na).
MS High Resolution (ESI) m/z: 計算値: 735.2384; 実測値: 735.2358.
【0109】
【化68】
Figure 2004538240
プロドラッグ42の合成.
プロドラッグ42を35についての記載と同様に合成した。
H NMR (CDCl, TMS) d: 8.22 (d , 1H, j = 2.01 Hz), 7.96−7.81 9m, 1H), 7.61 (d, 2H, j= 8.15 Hz), 7.56−7.40 (m, 1H), 7.25−7.13 (m, 1H), 6.92 (d, 2H, j= 8.15 Hz), 6.82−6.66 (m, 1H), 6.66−6.53 (m, 1H), 6.27−6.00 (m, 2H), 5.35−5.10 (m, 1H), 5.03 (d, 2H, j=9.25 Hz), 3.90 (d, 2H, j= 5.86 Hz), 3.48 (t, 2H), 3.18−2.92 (m, 2H), 2.64 (d, 3H, j= 10.53 Hz), 1.94−1.47 (m, 10H), 1.38−0.98 (m, 7H) ppm.
31P NMR (CDCl, TPPO) d: −14.96 ppm.
HPLC (30−100%のグラジエント, CHCN/HO−0.1% TFA, 35 分以上): 17.28 分.
MS (ESI) m/z : 704/706 (M+H), 726/728 (M+Na).
MS High Resolution (ESI) m/z: 計算値: 704.2616; 実測値: 704.2633.
L1210マウス白血病細胞の増殖抑制
薬剤の原液を無水エタノールで調製し、段階的に希釈された薬剤をエタノールで調製した。また、L1210細胞を、10%のウマ血清、1%のグルタミン、および1%の抗生物質溶液を添加したFisher’s培地に懸濁し、最終濃度3−6×10細胞/mLの細胞懸濁液10mLを作製した。薬剤溶液の適切な量を細胞懸濁液に加え、2、8、24、または48時間インキュベートした。この細胞を遠心機で沈降させ、薬剤を添加していない新たな培地で再び懸濁し、インキュベーターに戻した。薬剤で処理開始後、48時間後に最終の細胞数を測定した。このデータを細胞数 vs . Log(薬剤の濃度)のS字形カーブフィットにより分析し、その結果をIC50(コントロール値に対し、50%まで細胞増殖を阻害するのに必要な薬剤濃度)で表した。
【0110】
【表3】
Figure 2004538240
【0111】
トランスフェクトされたJ77細胞におけるルシフェラーゼ阻害
J77細胞(500 mLのFBSを含まないRPMI培地中、2×10個の細胞)に、15 mgのNF−AT−ルシフェラーゼ・プラスミドをトランスフェクトした。細胞を、10 mLの完全RPMI培地の入ったフラスコに移し、24時間インキュベートした。その後、細胞を遠心機で沈降させ、12 mLの完全RPMI培地で再び懸濁し、6−ウエルプレート(2 mL/ウエル)に分割した。DMSOに溶解した薬剤の原液を調製し、異なった濃度で各ウエルを処理し、2時間インキュベートした。それから、各ウエルを、1.25 mgのPMAおよび9 mgのイオノマイシンを加えたFBS を含まないRPMI 115 mLのうちの10 mLで処理し、その後、2 mgの抗CD3抗体を添加した。細胞を6時間インキュベートし、遠心機で沈降させ、PBSで洗浄し、15分間溶解し、遠心した。上澄み液を回収し、−78℃で一晩保存した。50 mLのルシフェラーゼ基質と10 mLの上澄み液との混合液に対してルミノメーターを用い、ルシフェラーゼ活性を測定した。
【0112】
【表4】
Figure 2004538240
【0113】
L1210、LM、およびLM( TK −)細胞のトリチウムアッセイ
薬剤の原液を無水エタノールで調製した。L1210細胞をFisher’s培地に懸濁し、LMおよびLM(TK−)細胞を、MEM(分imum essential medium)に懸濁し、最終濃度11.24×10細胞/mLになるように調製した。この細胞懸濁液(445 μL)をエッペンドルフチューブに入れた後、5 μLの薬剤溶液を加え、37℃で2時間インキュベートした。トリチウム放出反応(Tritium release reaction)は、1 mCi [5−H]dCytを添加した0.5 mMのdCyt溶液を含む無血清培地 50 μLを加えて開始した。その後、37℃の撹拌装置付きウォーターバス(shaking water bath)で、60分間インキュベートした。4%の過塩素酸溶液に活性炭を懸濁した20%の混合液 100 μLを含むエッペンドルフチューブに、反応混合液 100 μLを添加して反応を終了させた。そのチューブを激しくボルテックスし、それから小型遠心機で遠心した。
【0114】
その後、上澄み液 100 μLの放射能を、シンチエレーション・スペクトロメーターを用いて測定した。このデータをCMP vs . Log(薬剤の濃度)のS字形カーブフィットにより分析し、その結果をIC50(コントロール値の50%まで細胞増殖を阻害する薬剤濃度)で表した。
【0115】
【表5】
Figure 2004538240
【0116】
医薬調剤
癌治療に用いるために以下の非経口調剤を調製した。
【0117】
Figure 2004538240
[0001]
<Technical field to which the invention belongs>
The present invention relates to intracellular delivery of therapeutic compounds substituted for phosphate. In particular, the present invention is directed to certain phosphate precursors and methods and intermediates therefor.
[0002]
<Background and Summary of the Invention>
Significant research efforts have been directed at developing systems to enhance the intracellular delivery of phosphate-substituted compounds such as biologically active peptides and nucleotides, but with high levels of these compounds. Due to the negative charge, cell penetration is very low. For example, there is great interest in intracellular delivery of tyrosine phosphopeptides and peptidomimetics for use in inhibiting the unregulated growth of cancer cells. In this regard, protein tyrosine kinases are important regulators of cell cycle progression and represent attractive targets for the theoretical design of new anticancer agents. Protein tyrosine kinases are activated by phosphorylation of tyrosine residues specific for the kinase, and the phosphorylated tyrosine residues, along with three adjacent amino acids (pY-EEI), are responsible for the intracellular signaling protein Serves as a binding site for the Src homology 2 (SH2) domain. Interactions between the SH2 domain of intracellular signaling molecules and activated protein tyrosine kinases are essential for effective cell cycle progression. Therefore, molecules that mimic the phosphate tyrosine component of protein tyrosine kinases and inhibit protein tyrosine kinase binding to the SH2 domain are representative of potential anti-proliferative agents for cancer therapy.
[0003]
The phosphate dianion in tyrosine phosphorylated protein tyrosine kinases is important for the interaction of the kinase with the SH2 domain. The crystal structures of many ligand-SH2 domains have been reported, their interactions modeled, and many different inhibitors have been synthesized. In all of these phosphotyrosine peptides and peptidomimetic inhibitors, the phosphotyrosine residue is a complex network between hydrogen bonds and charges required for the broad interaction of the phosphate dianion of the tyrosine phosphate component with the SH2 domain. Are involved in The importance of this dianion interaction is that replacing the phosphate group with a wide variety of other anions or neutral hydrogen bond substituents results in a significant loss of binding affinity. Therefore, intracellular delivery of tyrosine phosphopeptides and peptidomimetics in which phosphate is in the form of an important dianion is important.
[0004]
Nucleotide analogs represent another class of potential agents for use in treating diseases caused by unregulated virus or cell replication. Like tyrosine phosphopeptide mimetics, the phosphate dianion of the nucleotide analog is important for the ability of these compounds to inhibit viral and cellular replication. The most widely used method of using nucleotide analogs as therapeutic agents is to transport nucleotide analogs as prodrugs across cell membranes and to form the corresponding nucleoside analog, depending on the intracellular mechanism, purine or purine. In this method, a phosphate group is bonded to pyrimidine. However, many nucleosides with therapeutic promise cannot be modified to the corresponding nucleotide by existing intracellular communication. In addition, cancer cells or virus-infected cells may become resistant to treatment by reducing the activity of nucleoside kinases, and for many previously developed nucleotide prodrugs, the effective concentration of nucleotides in the cell may be reduced. The less efficient it is, the less efficient the intracellular activation process is.
[0005]
A general method for intracellular delivery of a phosphate-containing compound utilized in the present invention is outlined in Scheme 1.
[0006]
(Equation 1)
Figure 2004538240
Briefly, a compound substituted with a phosphate that is transported intracellularly is synthesized (R with an added phosphate in Scheme 1 above) and coupled with a transport group (DELIVERY) and a masking group (MASK). are doing. The masking group consists of a haloalkylamine component that hydrolyzes in the cell and produces an intermediate that is stable as long as the transport group is intact but is dissociated by intracellular activation of the transport group. The transport group, like a nitrofuryl group or perhydrooxazine, hydrolyzes intracellularly to form an intermediate, cyclizes the intermediate in the intracellular environment and cleaves the PN bond (ie, spontaneous). Hydrolytic hydrolysis) to release the desired phosphoric acid-containing compound.
[0007]
Intracellular delivery systems for alkylating agents and nucleotides utilizing the chemistry associated with those described in Scheme 1 above have been previously developed. However, in the previous method, 50% of the prodrug was "lost" as a biologically inactive solvolysis product, and the intracellular conversion to the desired nucleotide was only about 50%. The present invention is directed to newly discovered improvements in the above chemistry, which extends its application to both nucleotide analogs and phenolic phosphate groups that are essential components of tyrosine phosphopeptides and peptidomimetics. . The present invention provides a method for changing the structure of a masking group from a haloethyl to a halobutyl (or halopentyl) group to achieve rapid and quantitative intracellular conversion (eg, approximately 100%) of the desired nucleotide or phosphate-containing peptide. Conversion) occurs. The novel chemistry of the present invention is applicable to nucleotide analogs, tyrosine phosphate peptides, and peptidomimetics, as well as a wide range of other pharmaceutically important compounds that contain a phosphate moiety.
[0008]
The development of protected phosphotyrosine precursor phosphoramidates facilitates the synthesis of phosphotyrosine peptides and peptidomimetics. Thus, the present invention is also directed to protected tyrosine phosphate precursors and related protected peptides having, for example, N-BOC and fluorenyl metaoxycarbonyl groups.
[0009]
In one embodiment of the present invention, there is provided a phosphoramidate prodrug compound, wherein a biologically active compound having a hydroxyl functional group is covalently bonded to the hydroxyl functional group to form a corresponding drug in a cell. Forms a biologically unstable phosphoramidate group that converts to phosphate. Biologically labile phosphoramidate groups enable more efficient intracellular delivery of drug substances and achieve the biologically important intracellular concentrations of drug substances in the corresponding phosphate ester form. Means. In another embodiment, the biologically active compound has an amino function, which is covalently linked to the amino function to allow the phosphoramide to become (-OPO) intracellularly.2NH-Drug) forms a converting biologically unstable phosphoramidate.
[0010]
The invention provides, in another embodiment, a compound of the formula
RrCH2OP (halo) NR (CH2)nX
To provide an intermediate halophosphoramidite. Wherein n is 4 or 5, and R is lower alkyl or (CH2)nX is an electrophilic group that can be nucleophilically displaced from the carbon atom to which it is attached,rCH2The group is a biologically labile ester-forming group, in particular an ester-forming group which is easily hydrolyzed in cells. This compound can be used as an intermediate drug to prepare a phosphoramidate prodrug compound as described above using embodiments of the method of the present invention. In this embodiment of the invention, the biologically active compound (Drug-OH) is an intermediate that has reacted with the halophosphoramidite intermediate and has reacted with the corresponding drug agent.
RrCH2OP (O-Drug) NR (CH2)nX
And then oxidized to form the phosphoramidate prodrug. This method starts with a functional amino acid having a hydroxyl group with carboxyl and amino functions, protected with standard protecting groups, or starting with an active peptide, peptidomimetic, or nucleotide analog, to produce an intracellular drug. Can be used to form a phosphoramidite precursor of phosphate. In accordance with the present invention, the phosphoramidate prodrug comprises RrCH2-After hydrolysis of the ester-forming group, it is converted to the corresponding phosphate. The cyclized 5- or 6-membered ring (-N (CH2)nHydrolysis of the amphoteric intermediate (formed by cyclization of the X group) gives the corresponding phosphate as the only phosphorus-containing product. A similar synthetic procedure is generally described herein for DrugNH.2Can be carried out with active compounds having an amino function represented by
[0011]
<Detailed Description of the Invention>
The present invention is directed to the chemical action of novel prodrugs that transfer peptides, peptidomimetic phosphates, nucleotides or nucleotide analogs across cell membranes and into cells. One embodiment of the present invention is a compound of the formula
RrCH2OP (halo) NR (CH2)nX
To provide an intermediate compound.
[0012]
In the formula
R is C1-C4Alkyl or (CH2)nX;
n is 4 or 5;
X is an electrophilic group that can be nucleophilically displaced from the carbon atom attached to X;
halo is chlorine, bromine, or iodine; and
RrCH2A group is a biologically labile ester-forming group.
[0013]
The electrophilic group X is preferably a halogen, and examples thereof include chlorine, bromine and iodine. However, if the phosphoramidite prodrug according to the present invention results in a superior leaving group that allows in vivo cyclization of the phosphorus-bonded nitrogen atom and concomitant quadrant splitting, the nature of the group is not critical. Absent. As other electrophilic leaving groups, acetate, methanesulfonate, trifluoromethanesulfonate, haloacetate and the like can be used.
[0014]
The term "biologically unstable ester-forming group" used in defining the present invention means an ester-forming group derived from an alcohol forming an ester derivative, which is stable in drug production and storage conditions. Are hydrolyzed when exposed to biological conditions in vivo. In particular, the ester-forming groups used in accordance with the present invention exhibit minimal sensitivity to hydrolysis in extracellular body fluids, but are preferably hydrolyzed in cells where the reduced state of degrading the ester is significant. . Thus, in one embodiment of the present invention, the biologically labile ester forming group on the phosphoramidate prodrug of the present invention isrHydrolyzing in the weakly reduced state comprising a group in which is a nitroallyl containing group such as nitrofuryl, nitrothienyl, nitropyrroyl, nitroimidazole and analogs thereof, indanyl, naphthoquinolyl, and perhydrooxazine This is an ester-forming group that is apt to be used. Ester forming group RrCH2The nature of the group is not critical as long as the group is susceptible to hydrolysis in the cell, ie, typically in a biological state that exhibits reducing ability.
[0015]
Therapeutic compounds can be modified in accordance with the present invention to produce phosphoramidate prodrug compounds, and are necessarily double protected (carboxyl group protected and amino group protected) forms of amino acids, peptides. , Proteins, peptidomimetics, nucleotide analogs, and the corresponding drug compounds containing other hydroxyl groups that exhibit biological activity as phosphate. In a preferred embodiment of the invention, the agent which converts to the corresponding phosphoramidate according to the invention is a nucleotide analogue such as fluorodeoxyuridine, which exhibits anti-cancer activity as the corresponding monophosphate derivative . In other embodiments, the agent is an amino acid, peptide, peptidomimetic, and the like.
[0016]
Phosphoramidate prodrug compounds according to the present invention can be prepared from the functional agent containing the corresponding hydroxyl group by several synthetic procedures. In one preferred embodiment, the phosphoramidate prodrug has the formula
RrCH2OP (O-Drug) NR (CH2)nX
Under conditions that lead to the formation of an intermediate compound of the formula
RrCH2OP (O) (O-Drug) NR (CH2)nX
Is reacted with a functional agent containing a hydroxyl group, and then the intermediate is oxidized to give a chemical formula
RrCH2OP (halo) NR (CH2)nX
To produce a phosphoramidate prodrug. R in the formular, R, n, and X are the same as defined above. Chemical formula
RrCH2OP (O-Drug) NR (CH2)nX
The conditions for forming the intermediate compound can vary, but it is preferable to carry out the reaction at a low temperature in the presence of an acid scavenger such as a tertiary amine base. In one embodiment, the reaction is carried out at a low temperature (about -70 ° C to about -10 ° C) using anhydrous pyridine as a reaction medium. Chemical formula
RrCH2OP (O-Drug) NR (CH2)nX
Chemical formula of the intermediate compound
RrCH2OP (O) (O-Drug) NR (CH2)nX
Oxidation to a phosphoramidate prodrug compound can be similarly performed under various weak oxidation conditions. The nature of the oxidizing agent is not critical, as long as it can affect the required oxidation of the phosphorus atom to the +5 oxidation state. Oxidizing agents include, for example, peracids, peroxides, hydroperoxides, and the like. The oxidation is usually performed at a temperature of about 0 ° C. or less, but is not critical.
[0017]
Chemical formula
RrCH2OP (O-Drug) NR (CH2)nX
The intermediate halophosphoramidite of the general formula is typically prepared in an organic solvent inert in the presence of a tertiary amine base,
RrCH2OH
Can be prepared by reacting phosphorous trichloride at low temperature with an alcohol of the formula
HNR (CH2)nX
With amine. To form the phosphoramidate prodrugs of the present invention, it is preferred to generate the intermediate immediately prior to reaction with the functional drug compound containing a hydroxyl group, usually in the presence of an acid scavenger.
[0018]
In another method of preparing the phosphoramidate prodrug of the present invention, a functional drug compound containing a hydroxyl group is prepared using the same general reactants and omitting the last oxidation step, except that the preceding oxidation step is omitted. Reaction with a chlorophosphoramidate intermediate resulting from initiating the reaction with phosphorous oxytrichloride (as opposed to phosphorous trichloride).
[0019]
Each of the above reactions is performed by the corresponding compound
RrCH2OP (O) (NH Drug) NR (CH2)nX
To provide a drug containing an amino function (Drug NH2) Can be performed in a similar procedure.
[0020]
In another embodiment of the present invention,
RrCH2OP (O)m(Halo) NR (CH2)nX
To prepare a compound of formula 1) in the presence of an acid scavenger,rCH2OH alcohol and 2) a chemical formula HNR (CH2)nAn amine of X and a chemical formula
P (O)mhalo3
A reaction step with a compound of formula (I). Here, in the above chemical formula,
m is 0 or 1;
R is C1-C4Alkyl or (CH2)nX;
n is 4 or 5;
X is an electrophilic group that can be nucleophilically displaced from the carbon atom attached to X;
halo is chlorine, bromine or iodine;
RrCH2A group is a biologically labile ester-forming group.
[0021]
In another embodiment of the present invention, a compound of the general formula Drug-OPO3Formula for Enhancing Intracellular Drug Delivery of a Compound of Formula
RrCH2OP (O) (O-Drug) NR (CH2)nX
The present invention provides a method for preparing a phosphoramidate prodrug. This method is based on the chemical formula under conditions that induce the formation of a prodrug.
RrCH2OP (O) (halo) NR (CH2)nX
Reacting a compound of formula with a therapeutic compound of the formula Drug-OH.
[0022]
Here, in the above chemical formula,
R is C1-C4Alkyl or (CH2)nX;
n is 4 or 5;
X is an electrophilic group that can be nucleophilically displaced from the carbon atom attached to X;
halo is chlorine, bromine or iodine;
RrCH2A group is a biologically labile ester-forming group.
[0023]
As mentioned above, the chemistry described herein has the general formula Drug-NH2Biologically active compounds and intermediate compounds
RrCHOP (O) (halo) NR (CH2)nX
By the reaction with
RrCHOP (O) (NH-Drug) NR (CH2)nX
The same or similar conditions can be applied to the preparation of the prodrug phosphoramidate. Here, Rr, halo, R, n, and X in the formula are as defined above. This chemistry is represented by the chemical formula Drug-NHPO3Methods for intracellular delivery of therapeutic compounds of the invention. Thus, for example, a 5'-amino nucleotide or nucleotide analog would have the corresponding 5'-NHPO3The derivative can be derived as the corresponding prodrug phosphoramidate for highly efficient intracellular delivery of the derivative.
[0024]
The phosphoramidite compounds of the present invention can be used as prodrugs themselves or, for example, in the case of tyrosine phosphoramidates, for the synthesis of peptides or peptidomimetic prodrugs. The chemistry involved in the synthesis of the phosphoramidite of the present invention may be a hydroxy, carboxy, thiol, amine functional group present on the initiator drug compound that is not intended to be involved in the chemistry of phosphoramidate synthesis. It will be appreciated by those skilled in the art that such should be protected with protecting groups recognized by those skilled in the art. References to such protecting groups, applications for protecting various functional groups and their removal conditions are abundant. The use of such protecting groups is well known to those skilled in the art, and the use of protecting groups in performing the synthesis of phosphoramidite prodrugs and intermediates is not included in the present invention.
[0025]
The phosphoramidite product prepared in accordance with the present invention can be formulated and used in the same or similar dosage form as the non-derived drug compound using art-recognized techniques.
[0026]
In one embodiment of the present invention, the reaction shown in Scheme 2 is performed.
[0027]
[Equation 2]
Figure 2004538240
In this reaction, prodrug 3A was synthesized by sequentially adding nitrofuryl alcohol and p-cresol to phosphoramidic dichlorolide 1. The prodrug 3 was then activated by reduction with sodium diotinate in an ethanol / water buffer, where the nitrofuryl group was reduced and the phosphoramidate anion 4A was released. The reaction following this intermediate follows31Monitored by PNMR. NMR showed that Intermediate 4A smoothly cyclized to a five-membered amphoteric intermediate and was attacked by water to give cresol phosphate as the only phosphorus-containing product.
[0028]
Another embodiment of the present invention is shown in Scheme 3.
[0029]
[Equation 3]
Figure 2004538240
This reaction was aimed at the synthesis of phosphoramidate 11A and involved the preparation of nitrofuryl phosphoramidate of p-hydroxybenzoic acid 9A and coupling of this product with benzylamine 10A prepared from 5-acetylsalicylamido. Including. Briefly, to synthesize benzoic acid derivative 9A, p-hydroxybenzoic acid was converted to allyl ester 6A by reaction of its potassium salt with allyl bromide. Allyl ester is converted to POCl3And the intermediate phosphoryl dichloride was treated with methylchlorobutylamine in the presence of triethylamine to give phosphoramidic chloride 7A. Reaction of the lithium salt of 5-nitro-2-hydroxymethylfuran with 7A yielded phosphoramidate 8A. The deprotection of the allyl ester is carried out by Pd (Ph3P)4/ Sodium p-toluenesulfinate to give phosphoramidate benzoate 9A. 9A was reacted with isobutyl chloroformate in the presence of triethylamine, followed by the addition of benzylamine 10A to produce the desired peptidomimetic prodrug 11A. To confirm that the activation chemistry of 11A to 12A proceeds as expected, reduce 11A with sodium hyposulfite in ethanol / water and allow the reaction to proceed.31Monitored by PNMR. The conversion of 11 to the phosphoramidate anion was completed within minutes; the phosphoramidate anion was smoothly and exclusively converted to phosphate 12A at 37 ° C. in half the time of 21 minutes. Phosphate 12A corresponding to the activation of 11A was synthesized and pp60 with a binding affinity of 5.6 μM.src It was shown to bind to the SH2 domain.
[0030]
In yet another embodiment of the present invention, different intermediates were used to incorporate into the sequence of reactions shown in Scheme 3 for forming tyrosine phosphate phosphoramidate. When the reaction shown in Scheme 3 was performed, Intermediate 17A was shown below, along with the resulting product.
[0031]
(Equation 4)
Figure 2004538240
Intermediate 17A was described in Scheme 3 for compound 9A except that in the third step of the reaction system, 2-hydroxymethyl-1,4-dimethoxynaphthalene was used instead of 5-nitro-2-hydroxymethylfuran. Prepared as described. Compound 17A was then coupled with amine 10A (Scheme 3) to give amide 18A using new conditions that provide a high yield of purified product in minutes. Finally, dimethoxynaphthalene 18A was smoothly converted to naphthoquinone 19A by oxidizing it with cerium ammonium nitrate.
[0032]
Further, in another embodiment of the present invention, a masked phosphotyrosine-containing peptide was synthesized as shown in Scheme 4:
[0033]
(Equation 5)
Figure 2004538240
N-BOC-tyrosine potassium salt was reacted with allyl bromide to obtain BOC-tyrosine allyl ester 13A. The ester was converted to its cerium phenol salt and reacted with N-methyl-N-chlorobutyl phosphoramidic dichloride to give adduct 14A. Finally, phosphoramidic chloride was reacted with lithium salt of 5-nitro-2-hydroxymethylfuran to obtain tyrosine phosphoramidate ester 15A. Removal of the allyl protecting group provided BOC-protected tyrosine phosphoramidate 16A in excellent net yield. This analog would be suitable for coupling a variety of amines overall, and would also be useful as a reagent in automated peptide synthesis.
[0034]
The synthetic reaction shown in Scheme 4 was extended to the development of tyrosine phosphoramidates protected with a fluorenylmethoxycarbonyl (FMOC) protecting group. FOMC protected amino acids are widely used in peptide synthesis and have the advantage that protecting groups can be quickly and cleanly removed under base catalyzed conditions. The FMOC analog of tyrosine phosphoramidate 16A, ie, the above compound 20A in Scheme 4, can be prepared by a reaction system similar to that in Scheme 4. The FMOC protecting group can be quickly and cleanly removed by reacting with diazabicycloclonedecane in dichloromethane for 5 minutes. Finally, coupling reactions of 16A and 20A with methyl glycinate were performed, revealing that these compounds can be used in peptide synthesis reactions.
[0035]
In another embodiment of the present invention, the synthesis of nitrofurylchlorobutyl nucleoside 3 was performed in one operation without isolation of the intermediate as shown in Scheme 5.
[0036]
(Equation 6)
Figure 2004538240
Phosphorus trichloride in methylene chloride is reacted at −78 ° C. with one equivalent of nitrofuryl alcohol, the intermediate dichloride is treated with the hydrochloride salt of N-methyl-N-chlorobutylamine to give the monochloride intermediate A. Obtained. A pyridine solution containing 5-fluoro-2'-deoxyuridine was added to this intermediate. The resulting phosphoramidate was oxidized with t-butyl hydroperoxide to give the nucleoside phosphoramidate 3. The yield of this synthesis was low and the values varied (20-60%).
[0037]
In an alternative embodiment of the invention, a similar thymidine compound was prepared (ie, F = CH at 3).3). The thymidine phosphoramidate was activated by reducing the nitrofuryl group with sodium dithionite in aqueous buffer / acetonitrile at 37 ° C.31Monitored by PNMR. Within 10 minutes the resonance for the phosphoramidate anion disappears,31PNMR revealed a new peak corresponding to thymidine-5'-phosphate as the only phosphorus-containing product. The nucleoside phosphoramidate 3 was then evaluated for its ability to inhibit the growth of L1210 leukemia cells in vivo. Cells were exposed to the drug for 2, 8, 24, and 48 hours; the results are summarized below:
[Table 1]
Figure 2004538240
Chlorobutyl phosphoramidate 3 is significantly more potent than similar bromoethyl compounds and is one of the most effective nucleotide prodrugs prepared.
[0038]
In a related embodiment of the invention, Intermediate 4 was incorporated into the reaction scheme described above to produce a new drug 5:
[0039]
[Equation 7]
Figure 2004538240
The dimethoxynaphthalene analog 4 is shown in Scheme 5 except that in the first step 2-hydroxymethyl-1,4-dimethoxynaphthalene analog 4 is used in place of 5-nitro-2-hydroxymethylfuran. It was synthesized in the same manner as described above. Dimethoxynaphthalene 4 was smoothly oxidized with cerium ammonium nitrate to smoothly convert to naphthoquinone 5. Compound 5 was evaluated as an L1210 leukemia cell growth inhibitor in comparison with Compound 3 described above.
[0040]
[Table 2]
Figure 2004538240
Both compounds are very good inhibitors of the growth of L1210 cells, with compound 5 showing approximately 3 times the potency of compound 3 in this assay.
[0041]
In one aspect of the invention, the phosphoramidate prodrug has the formula
Embedded image
Figure 2004538240
Is a compound of the formula
RrCH2OP (O) (Z-Drug) NR (CH2)nX
Formed using a peptidomimetic containing a hydroxyl or amino functional group (Drug ZH).
[0042]
Z in the formula is O or N;
q and k are independently selected 1 or 0; and
B is H, amino, protected amino, or C1-C4Is alkanoylamino.
[0043]
One group of the compounds is a benzamide compound in which q and k are each 0, and examples thereof include the following.
Embedded image
Figure 2004538240
[0044]
Another group of said compounds are phenylacetyl compounds wherein q is 1 and k is 0, for example:
Embedded image
Figure 2004538240
[0045]
Another group of peptidomimetics (Drug ZH) is a tyrosyl derivative in which q is 1 and k is 1, and examples thereof include the following.
Embedded image
Figure 2004538240
[0046]
Some of the compounds were predicted to have antiproliferative activity and were found to show significant inhibition of luciferase expression in transfected J77 cells.
[0047]
In accordance with the present invention, several phosphoramidate compounds using "DrugZH" as a nucleotide analog were prepared and found to exhibit remarkable growth inhibition in L1210 mouse leukemia cells. Said compounds are part of a preferred group of antiproliferative substances of the present invention. A number of nucleotide analogs have been reported in the literature to exhibit antiproliferative activity, and any of these compounds, including those that can be covalently linked to the phosphoramidates of the present invention by a hydroxyl or amino function, can be used. Can be used for preparing the present compound.
[0048]
In another embodiment of the present invention, the phosphoramidate compound is an amino acid or a compound of the formula
Embedded image
Figure 2004538240
Is a derivative of the amino acid ester. Here, Z, q, k, and B in the formula are defined as above, and R means a hydrogen or carboxyl protecting group, particularly an ester forming group. The tyrosine or tyrosine analog is useful as an intracellular material of peptide phosphate or peptidomimetic phosphate for preparing a peptide or peptidomimetic compound capable of easy membrane transport. Alternatively, the compound can provide the corresponding amino acid or amino acid analog into a cell.
[0049]
For example, there are the following compounds.
Embedded image
Figure 2004538240
[0050]
Further, the present invention provides a medical preparation containing an effective amount of a prodrug phosphoramidate compound for treating cancer. An effective amount of a prodrug compound as used herein, when administered to a patient, inhibits the growth / proliferation of tumor cells, kills malignant cells, reduces the amount or size of tumors, or receives treatment. Is defined as the amount of compound that completely eliminates the tumor in a patient.
[0051]
The effective amount to administer to a patient is usually based on body surface area, patient weight, and patient condition. The interrelationship of animal and human doses (based on milligrams per square meter of body surface area) is described by Freireich, E. et al. J. , Et al. , Cancer Chemother. Rep. , 50 (4): 219 (1966). Body surface area may be approximately determined from height and weight of the patient (see, eg, Scientific Tables, Geigy Pharmaceuticals, Ardley, New York, pages 537-538 (1970)). Effective amounts of the phosphoramidate compounds of the present invention per dose range from about 0.05 mg / kg to about 100 mg / kg, from about 0.25 mg / kg to about 50 mg / kg, Typically, it will range from about 0.1 to about 10 mg / kg. The effective amount will also vary depending on the route of administration, the use of excipients, the possibility of using other therapeutic treatments including other chemotherapeutic agents and radiation therapy, as will be recognized by those skilled in the art.
[0052]
Therapeutic preparations may be administered by parenteral routes, including subcutaneous, intraperitoneal, intramuscular, and intravenous injections. Examples of parenteral dosage forms include aqueous solutions or suspensions of the active agents in isotonic saline, 5% glucose or other well-known pharmaceutically acceptable liquid carriers. In one embodiment of the present pharmaceutical composition, the phosphoramidate compound is dissolved in saline containing 5% dimethyl sulfoxide and about 10% Cremphor EL (Sigma Chemical Company). Solubilizing agents such as cyclodextrin, which can form complexes with the more soluble compounds, or other solubilizing agents well known to those skilled in the art, can be used to deliver the compounds for the treatment of cancer. It can also be used as a pharmaceutical excipient.
[0053]
Alternatively, the compounds can be formulated into dosage forms for other routes of administration using well known methods. Pharmaceutical compositions can also be formulated in dosage forms for oral administration such as capsules, gel seals, or tablets. Capsules may contain any of the well-known pharmaceutically acceptable materials such as gelatin or cellulose derivatives. Tablets may be formulated in accordance with conventional practice by compressing a mixture of active phosphoramidate and a solid carrier or lubricant well known to those skilled in the art. Examples of solid carriers include starch, sugar, bentonite, and the like. The compounds of the present invention can also be administered in the form of hard shell tablets or capsules containing, for example, lactose or mannitol as a binder and conventional bulking and tableting agents.
[0054]
<Experimental procedures and examples>
Embedded image
Figure 2004538240
5-Fluoro-2'-deoxyurazyl 5-nitrofurfuryl N-methyl-N- (4-chlorobutyl) phosphoramidate (3):
Phosphorus trichloride (2M CH2Cl2Solution; 0.81 mL; 1.63 mmol) was cooled to -78 C under argon. 5-Nitrofurfuryl alcohol (233 mg; 1.63 mmol) was added to anhydrous CH.2Cl2 Dissolved in 12 mL and cooled PCl3After addition of pure and anhydrous iPr2Net (0.57 mL; 3.25 mmol) was added dropwise. The reaction was carried out between -78 ° C and -70 ° C with stirring for 15 minutes. Anhydrous CH2Cl2 N-methyl-N- (4-chlorobutyl) amine hydrochloride (257 mg; 1.63 mmol) was dissolved in 16 mL and added to the reaction mixture, followed by the addition of the anhydrous and pure iPr.2Net (1.13 mL; 6.50 mmol) was added dropwise and the reaction mixture was stirred between -78 ° C and -70 ° C for 30 minutes. The reaction mixture was cooled to −65 ° C. beforehand with 2 mL of anhydrous CH.2Cl2And a solution of 5-fluoro-2'-deoxyuridine (200 mg; 0.812 mmol) in 2 mL of anhydrous pyridine was injected by cannula. The reaction was carried out between -65 ° C and -60 ° C with stirring for 1 hour. To this reaction mixture was added t-butyl hydroperoxide (4.6 minutes decane; 0.44 mL) at −65 ° C. with stirring. The temperature was raised to −40 ° C., and the mixture was stirred while being raised from −40 ° C. to 0 ° C. over 30 minutes. The reaction mixture was poured into Celite and concentrated under reduced pressure. Crude product (1: 1 CH2Cl2/ Acetone) to give a yellow foamy substance 1 (155 mg; 34%).
1H NMR (CDCl3): D 9.68 (m, 1H); 7.80 and 7.74 (d, 1H, J = 6.22 Hz and 6.41 Hz); 7.30 (d, 1H, J = 3.48). Hz); 6.71 (d, 1H, J = 3.30); 6.22 (m, 1H); 5.03 (m, 2H); 4.52 (m, 1H); 4.24 (m 4.07 (m, 1H); 3.57 (m, 2H); 3.07 (m, 2H); 2.68 (d, 3H, J = 10.25 Hz); 2.49 (M, 1H); 2.18 (m, 1H), 1.74 (m, 4H).
31P NMR (CDCl3, TPPO): d-15.59 and-15.78.
HPLC (35:65 CH3CN / H2O [0.1% TFA]): 8.667 min. , 92%.
ESI MS (high resolution): C19H35ClFN4O10Measured for P: m / z 555.159 (M + H)+Found: 555.1509.
[0055]
Embedded image
Figure 2004538240
5-Fluoro-2'-deoxyuridyl 2- (1,4-dimethaoxynaphthyl) methyl N-methyl-N- (4-chlorobutyl) phosphoramidate (4):
Phosphoramidate 4 was converted to anhydrous trichloride (2 min CH 2) in the same manner as Compound 3.2Cl20.41 mL; 0.812 mmol), 1,4-dimethoxy-2-hydroxymethylnaphthalene (177 mg, 0.823 mmol), N-methyl-N- (4-chlorobutyl) amine hydrochloride (128 mg) , 0.812 mmol), 5-fluoro-2'-deoxyuridine (100 mg, 0.406 mmol) and t-butyl hydroperoxide (4.6 minutes decane; 0.23 mL). Crude product (1: 1 CH2Cl2/ Acetone) column chromatography gave pale orange foam 4 (134 mg; 52%).
1H NMR (CDCl3): D 8.22 (dd, 1H); 8.04 (dd, 1H); 7.74 and 7.66 (d, 1H, J = 6.23 &6.39); 7.55 (m, 6.83 (s, 1H); 6.16 (m, 1H); 5.26 (m, 2H); 4.51 (m, 1H); 4.23 (m, 2H); 3.99 (s, 3H); 3.93 (s, 3H); 3.50 (m, 2H); 3.08 (m, 2H); 2.65 (d, 3H) , J = 9.70 Hz); 2.42 (m, 2H); 1.66 (m, 4H).
31P NMR (CDCl3, TPPO): d-12.82 and -12.90.
HPLC (50:50 CH3CN / H2O [0.1% TFA]): 7.017 min. 95%.
FAB MS (high resolution): C27H34ClFN3O4Measured for P: m / z 630.1784 (M + H)+Found: 630.1760.
[0056]
Embedded image
Figure 2004538240
5-Fluoro-2'-deoxyuridyl 2- (1,4-napthoquinonyl) methyl N-methyl-N- (4-chlorobutyl) phosphoramidate (5):
Cerium ammonium nitrate (225 mg, 0.41 mmol) aqueous solution (3 mL) was added to 4 (100 mg, 0.16 mmol) of CH3It was added dropwise over 15 minutes to the CN solution (3 mL). The reaction is carried out with stirring for 1 hour at room temperature and CHCl3 And extracted three times. Combine the organic layers and add Na2SO4And concentrated under reduced pressure. Silica gel chromatography (5% MeOH: CHCl3) To give yellow foamy substance 5 (87.6 mg, 93%).
1H NMR (CDCl3): D 8.10 (m, 2H); 7.77 (m, 2H); 7.72 (m, 1H); 7.03 (s, 1H); 6.18 (m, 1H); 4.5 (m, 1H); 4.29 (m, 2H); 4.05 (m, 1H); 3.57 (m, 2H); 2.73 (d, 3H) , J = 10.07 Hz); 2.47 (m, 1H); 2.31 (m, 1H); 1.75 (m, 4H).
31P NMR (CDCl3, TPPO): d-12.67 and-12.99.
HPLC (50:50 CH3CN / H2O [0.1% TFA]): 4.650 min. 100%.
FAB MS (high resolution): C25H28ClFN3O9Measured for P: m / z 600.1314 (M + H)+Found: 600.1327.
[0057]
Embedded image
Figure 2004538240
5-Fluoro-2'-deoxyuridyl 2- (5-methoxy-N-methylindoloquinone) methyl N-methyl-N- (4-chlorobutyl) phosphoramidate (6):
Phosphorus trichloride (2M CH2Cl2 Solution; 0.13 mL; 0.258 mmol) was cooled to −60 ° C. in argon. 2-hydroxymethyl-5-metaoxy-N-methylindoloquinone (57 mg; .258 mmol) was treated with anhydrous CH.3Anhydrous CH with addition of 1 mL CN2Cl2 6 mL dissolved and pre-cooled PCl3After addition to pure i-Pr2NEt (0.07 mL; 0.386 mmol) was added dropwise. The reaction was carried out with stirring at -60 ° C for 25 minutes. Anhydrous CH2Cl2 N-methyl-N- (4-chlorobutyl) amine hydrochloride (40.7 mg; 0.258 mmol) was dissolved in 1 mL and added to the reaction mixture, followed by pure i-Pr2NEt (0.14 mL; 0.773 mmol) was added dropwise and stirred at −60 ° C. for 25 minutes. 5-Fluoro-2'-deoxyuridine (31.7 mg; 0.129 mmol) was co-evaporated with anhydrous pyridine, dissolved in 2 mL of anhydrous pyridine and cooled to -45 <0> C. The pyridine solution was titrated with the previously prepared mixture until the FUdR disappeared. The disappearance of FUdR was monitored by TLC using chloroform containing 30% methanol. After 1 hour, the reaction was oxidized with t-butyl hydroperoxide (4.6 M decane solution; 0.06 mL) at -40 ° C and stirred while increasing from -40 ° C to 0 ° C over 30 minutes or more. . Saturated NH4Cl (3 mL) was added, some layers were separated and the anhydrous layer was CHCl3(5 times 5 mL). Combine the organic layers and add Na2SO4And concentrated under reduced pressure. The crude reaction mixture was passed through a plug of silica gel with chloroform containing 15% methanol. Silica gel (1: 9 MeOH / CHCl3) Further purification by chromatography to give a yellow-orange foam-like substance 6 (33 mg; 41%).
1H NMR (CDCl3): D 8.99 (br, 1H); 7.62 (m, 1H); 6.62 (d, 1H, J = 3.76 Hz); 6.11 (1H, J = 4.30); 5.64 (s, 1H); 4.95 (m, 2H); 4.46 (m, 1H); 4.13 (m, 2H); 3.95 (d, 3H, J = 4.03 Hz). ); 3.86 (m, 1H); 3.76 (s, 3H); 3.47 (m, 2H); 3.95 (m, 2H); 2.58 (m, 3H); (M, 1H); 2.11 (m, 1H); 1.65 (m, 4H).
31P NMR (CDCl3, TPPO): d -14.65 and -14.71.
HPLC (0 to 70% CH3CN / H2O [0.1% TFA] gradient over 30 min): 20.32 min. 80%.
FAB MS (high resolution): C25H31ClFN4O10Measured for P: m / z 633.1529 (M + H)+Found: 633.1506.
[0058]
Embedded image
Figure 2004538240
N-allyloxycarbonylarabinosyl cytosine (7):
Diethyl pyrocarbonate (86.8 mg, 0.452 mmol) was diluted with 1,4-dioxane (5 mL) and an aqueous solution of arabinosylcytosine (100 mg, 1.61 mmol) (ddH) was added at room temperature.2O 1 mL). After the reaction mixture was immersed in an oil bath and refluxed for 2 hours, the solvent was removed under reduced pressure, anhydrous pyridine (3 times, 5 mL) was added to the obtained white residue, and the mixture was evaporated. Silica gel chromatography (CHCl3(15% MeOH in) to give a white foam 7 (91 mg, 76% recovery based on starting material).
1H NMR (DMSO6): D 10.75 (br, 1H); 8.04 (d, 1H, J = 7.51 Hz); 7.00 (d, 1h, J = 7.51 Hz); 6.04 (d, 1H). 5.95 (m, 1H); 5.46 (m, 1H); 5.39 & 5.25 (dd, 1H, J = 1.47 & 35.34 Hz). ); 5.32 & 5.21 (dd, 1H, J = 1.1 & 23.32 Hz), 5.11 (m, 1H); 4.62 (d, 2H, J = 5.31 Hz). 4.04 (m, 1H); 3.91 (m, 1H); 3.81 (m, 1H); 3.60 (m, 2H).
HPLC (0 to 70% CH3CN / H2O [0.1% TFA] gradient over 30 min): 12.18 min. 99%. ESI MS (low resolution): (M + H) = 328 m / z; CThirteenH17N3O7MW = 327.
[0059]
Embedded image
Figure 2004538240
N-allyloxycarbonylarabinosyl cytosyl 5-nitrofurfuryl N-methyl-N- (4-chlorobutyl) phosphoramidate (8):
Phosphoramidate 8 was converted to phosphorous trichloride (2M CH 2) in the same manner as Compound 6 described above.2Cl2Solution; 1.14 mL; 2.28 mmol), 5-nitrofurfuryl alcohol (326 mg, 2.28 mmol), N-methyl-N- (4-chlorobutylamine) hydrochloride (360 mg, 2.28) mmol), N-allyloxycarbonylarabinosylcytosine (240 mg, 0.733 mmol) and t-butyl hydroperoxide (4.6 M decane solution; 0.48 mL). Crude product (CHCl containing 10% methanol)3)), And a pale yellow foam 8 (227 mg; 50%) was obtained.
1H NMR (CDCl3): D 8.23 (d, 1H, J = 7.33 Hz); 7.23 (d, 1H, J = 1.33 Hz); 6.69 (m, 1H); 6.15 (1H) 5.91 (m, 1H); 5.34 (m, 3H); 5.02 (m, 2H); 4.55 (m, 4H); 4.23 (m, 2H); 3.55 ( t, 2H, J = 5.68 Hz); 3.03 (m, 2H); 2.67 (d, 3H, J = 10.26 Hz); 1.73 (m, 4H).
31P NMR (CDCl3, TPPO): d -15.54 and -15.76.
HPLC (0 to 70% CH3CN / H2O [0.1% TFA] gradient over 30 min): 20.01 min. 95%.
ESI MS (high resolution): C23H31ClN5O12Measured for P: m / z 636.1474 (M + H)+Found: 636.1474.
[0060]
Embedded image
Figure 2004538240
Arabinosyl cytosyl 5-nitrofurfuryl N-methyl-N- (4-chlorobutyl) phosphoramidate:
Tetrakis (triphenylphosphine) palladium (3.45 mg, 29.9 mmol) was added to a solution of phosphoramidate 8 (38 mg, 59.8 mmol) in THF (400 mL) followed by p- Toluenesulfinic acid (11.71 mg, 65.7 mmol) aqueous solution (ddH2O, 240 mL). The reaction mixture was stirred at room temperature for 2.5 hours, after which it was passed through a plug of silica gel (20% methanol in chloroform) to give a pale yellow foam (25.1 mg, 76%).
1H NMR (CD3OD): d 7.85 (m, 2H); 7.49 (m, 1H); 6.89 (m, 1H); 6.57 (m, 1H); 5.95 (m, 1H); 4.11 (m, 2H); 4.19 (m, 5H); 3.66 (m, 2H); 3.11 (m, 2H); 2.72 (m, 3H); 1.79 (m , 4H).
31P NMR (CD3OD, TPPO): d -14.18 and -14.37
HPLC (0 to 70% CH3CN / H2O [0.1% TFA] gradient over 30 min): 21.43 min. 95%.
ESI MS (high resolution): C19H27ClN5O10Measured for P: m / z 552.1262 (M + H)+Found: 552.1251.
[0061]
Embedded image
Figure 2004538240
2 ', 3'-Dideoxy-2', 3'-didehydrothymidyl 5-nitrofurfuryl N-methyl-N- (4-chlorobutyl) phosphoramidate (10):
Phosphoramidate 10 was converted to phosphorous trichloride (2 min CH 2) in the same manner as Compound 6 described above.2Cl20.45 mL; 0.892 mmol), 5-nitrofurfuryl alcohol (128 mg, 0.892 mmol), N-methyl-N- (4-chlorobutylamine) hydrochloride (141 mg, 0.892 mmol) ) Prepared from 2 ', 3'-dideoxy-2', 3'-didehydrothymidyl (100 mg, 0.446 mmol) and t-butyl hydroperoxide (4.6 M solution in decane; 0.48 mL) did. Crude product (CHCl containing 5% methanol)3) Gave a white foam 10 (80.5 mg; 48% recovery based on starting material).
1H NMR (CDCl3): D 8.19 (s, 1H); 7.29 (m, 1H); 7.19 (s, 1H); 6.98 (m, 1H); 6.66 (m, 1H); 4.91 (m, 1H); 5.91 (m, 1H); 4.99 (d, 3H, J = 9.97 Hz); 4.16 (m, 2H); 3.56 (t, 2H, J = 5.59 & 6.13 Hz); 3.06 (m, 2H); 2.63 (m, 3H); 1.87 (2s, 3H); 1.71 (m, 4H).
31P NMR (CDCl3, TPPO): d -13.58 and -13.99.
HPLC (0 to 70% CH3CN / H2O [0.1% TFA] gradient over 30 min): 22.75 and 23.18 min. 90%.
ESI MS (high resolution): C20H26ClN4O9Measured for P: m / z 533.1358 (M + H)+Found: 533.1350.
[0062]
Embedded image
Figure 2004538240
2 ', 3'-Dideoxy-2', 3'-didehydrothymidyl 2- (1,4-dimethoxynaphthyl) methyl N-methyl-N- (4-chlorobutyl) phosphoramidate (11):
Phosphoramidate 11 was converted to phosphorous trichloride (2 min CH 2) in the same manner as Compound 6 described above.2Cl20.45 mL; 0.892 mmol), 1,4-dimethoxy-2-hydroxymethylnaphthalene (195 mg, 0.892 mmol), N-methyl-N- (4-chlorobutylamine) hydrochloride (141) mg, 0.892 mmol), 2 ', 3'-dideoxy-2', 3'-didehydrothymidyl (100 mg, 0.446 mmol) and t-butyl hydroperoxide (4.6 minutes decane; 45 mL). Crude product (CHCl containing 5% methanol)3)) Gave a white foam 11 (121 mg; 56% recovery based on starting material).
1H NMR (CDCl3): D 8.24 (d, 1H, J = 8.06 Hz); 8.05 (m, 2H); 7.54 (m, 2H); 7.19 (s, 1H); 6.98 ( 6.84 (s, 1H); 6.31 (m, 1H); 5.58 (m, 1H); 5.24 (d, 2H, J = 7.69 Hz); 4.15 (m, 2H); 4.98 (m, 6H); 3.50 (t, 2H, J = 5.86 & 6.31 Hz); 3.04, m 2.61 (m, 3H); 1.86 (s, 3H); 1.71 (m, 4H).
31P NMR (CDCl3, TPPO): d -13.44 and -13.88.
HPLC (0 to 70% CH3CN / H2O [0.1% TFA] gradient over 30 min): 28.08 and 28.30 min. 87%.
ESI MS (low resolution): C28H35ClN3O8Measured for P: 608 (M + H)+Found: 630 (with Na added).
[0063]
Embedded image
Figure 2004538240
2 ', 3'-Dideoxy-2', 3'-didehydrothymidyl 2- (1,4-naptoquinonyl) methyl N-methyl-N- (4-chlorobutyl) phosphoramidate (12):
An aqueous solution (3 mL) of cerium ammonium nitrate (225 mg, 0.411 mmol) was added to 11 (100 mg, 0.164 mmol) of CH.3It was added dropwise over 15 minutes to the CN solution (3 mL). The reaction is carried out for 1 hour with stirring at room temperature and CHCl3(3 times). Combine the organic layers and add Na2SO4And concentrated under reduced pressure. Silica gel chromatography (5% MeOH: CHCl3) To give a yellow foam 12 (78 mg, 82%).
1H NMR (CDCl3): D 8.09 (m, 2H); 8.01 (s, 1H); 7.79 (m, 2H); 7.17 (s, 1H); 6.99 (m, 2H); 5.93 (m, 1H); 5.00 (m, 3H); 4.24 (m, 2H); 3.56 (t, 2H, J = 5.86 & 6. 3.11 (m, 2H); 2.71 (d, 3H, J = 10.07 Hz); 1.90 (s, 3H); 1.74 (m, 4H).
31P NMR (CDCl3, TPPO): d -13.49 and -13.84.
HPLC (0 to 70% CH3CN / H2O [0.1% TFA] over 30 minutes gradient): 24.82 and 25.02 minutes. 95%.
FAB MS (high resolution): C25H29ClN3O8Measurement for P: m / z 600.1279 (Na+ add); found: 600.1297 (Na+Addition).
[0064]
Embedded image
Figure 2004538240
N-methyl-N- (4-bromobutyl) amine hydrobromide:
Hydrobromic acid (20 mL, 0.38 mmol, 48% by weight) is added to N-methyl-N-butan-4-ol (4.0 g, 0.39 mmol) at 0 ° C. with slow stirring. Was. The reaction mixture was warmed to reflux for 2 hours. A distillation apparatus was installed, 10 mL of distillate was collected, and 10 mL (0.18 mmol) of 48% HBr was added. After refluxing for 4 hours, 10 mL (0.18 mmol) of 48% HBr was added because the distillation reduced by 10 mL, and the reaction was refluxed overnight. The reaction mixture was distilled (approximately 20 mL of distillate) and the residue in the distillation vessel was poured into acetone at -78 ° C. A white precipitate formed and was collected by filtration (4.24 g, 44%).
11 H NMR: CDCl3: D 9.08 (s, 1H); 3.46 (t, 2H, J = 5.95 Hz); 3.04 (m, 2H); 2.72 (t, 3H, J = 5.67 Hz). ); 2.05 (m, 4H); 1.70 (s, 1H).
D2O: 2.84 (t, 2H, J = 6.13 Hz); 2.39 (t, 2H, J = 7.32 Hz); 2.04 (s, 3H); 1.23 (m, 4H) ).
[0065]
Embedded image
Figure 2004538240
N-methyl-N- (4-chlorobutyl) amine hydrochloride:
With stirring at room temperature, N-methyl-N-butan-4-ol (2.0 g, 19.38 mmol) in CH2Cl2HCl gas was bubbled through 10 mL of the solution until the litmus paper turned red (pH = 2). The reaction mixture was cooled to 0 ° C., thionyl chloride (1.41 mL, 19.38 mmol) was added dropwise and the reaction was stirred at room temperature overnight. The solvent was removed under reduced pressure to give a white solid (2.9 g, 95%).
11 H NMR: CDCl3: D 8.79 (s, 1H); 3.59 (t, 2H, J = 5.95); 2.97 (m, 2H); 2.70 (s, 3H); 2.06 (m, 1.95 (m, 2H); 1.63 (s, 1H).
D2O: d 3.50 (m, 2H); 2.75 (m, 2H); 2.55 (s, 3H); 1.70 (m, 4H).
CI MS (low resolution): (M + H)+ = 122 m / z; C5H12MW for NCl = 121.
[0066]
Embedded image
Figure 2004538240
N-methyl-N- (4-chlorobutyl) phosphoramidic dichloride:
N-methyl-N- (4-chlorobutyl) amine hydrochloride (2.0 g, 12.73 mmol) was added to 20 mL of anhydrous CH.2Cl2And cooled to -40 ° C. After appropriately adding phosphorous oxychloride (1.2 mL, 12.73 mmol), triethylamine (3.6 mL, 25.46 mmol) in CH was added.2Cl25 mL of the solution was added. The reaction was warmed to 0 ° C. and slowly returned to room temperature. Then, the mixture was reacted at room temperature for 6 hours with stirring. The reaction mixture was poured on ice, saturated ammonium chloride was added and the layers were separated. CH layer2Cl2, And the organic layers were combined, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Purification by flash chromatography on silica gel (3: 1 Hex / EtOAc) provided a clear oil (2.57 g, 85%).
1H NMR (CDCl3): D 3.58 (t, 2H, J = 5.95 Hz); 3.29 (m, 2H); 2.84 (d, 3H, J = 15.93 Hz); 1.79 (m, 4H).
31P NMR (CDCl3, TPPO): d-6.6.
[0067]
Embedded image
Figure 2004538240
N-methyl-N- (4-bromobutyl) phosphoramidic dibromide:
As described above (except that the reaction was stirred overnight) using N-methyl-N- (4-bromobutyl) amine hydrobromide (2.0 g, 8.09 mmol). Performed the procedure. Purification using silica gel chromatography (3: 1 Hex / EtOAc) provided a clear oil (2.0 g, 92%).
1H NMR (CDCl3): D 3.46 (t, 2H, J = 6.05 Hz); 3.30 (q, 2H); 2.85 (d, 3H, J = 16.11 Hz); 1.88 (m, 4H).
31P NMR (CDCl3, TPPO): d-6.75.
[0068]
Embedded image
Figure 2004538240
5-Nitro-2-furylmethyl N-methyl-N- (4-chlorobutyl) phosphoramidic chloride:
Tetrahydrofurfuryl alcohol (240 mg, 1.68 mmol) was dissolved in 10 mL of anhydrous THF and cooled to -78 ° C. Lithium hexamethyldisilazane (1.84 mL, 1.84 mmol) was added dropwise, and the mixture was stirred at -78 ° C for 10 minutes to perform a reaction. To this reaction mixture, 10 mL of a solution of phosphoramidic dichloride (400 mg, 1.68 mmol) in anhydrous THF was added dropwise. The reaction was carried out by slowly heating from −78 ° C. to −60 ° C., followed by stirring at −60 ° C. for 1 hour. Saturated NH4Quenched with Cl, the layers were separated and the aqueous layer was extracted three times with EtOAc. The organic layers were combined, dried over anhydrous sodium sulfate and concentrated under reduced pressure. Flash silica gel chromatography (10: 1 CH2Cl2/ Acetone) to give a light brown oil (320 mg, 55%).
1H NMR (CDCl3): D 7.29, (d, 1H, J = 3.66 Hz); 6.72 (d, 1H, J = 3.66 Hz); 5.14 (dd, 2H); 3.56 (t) , 2H, J = 5.86); 3.20 (m, 2H); 2.71 (d, 3H, J = 13.58 Hz), 1.79 (m, 4H).
31P NMR (CDCl3, TPPO): d-7.88.
[0069]
Embedded image
Figure 2004538240
5-Nitro-2-furylmethyl N-methyl-N- (4-bromobutyl) phosphoramidic chloride:
The same procedure as described above was performed using nitrofurfuryl alcohol (245 mg, 1.78 mmol) and phosphoramidic dichloride (500 mg, 1.78 mmol) as starting materials. Flash silica gel chromatography (10: 1, CH2Cl2/ Acetone) to recover a light brown oil (360 mg, 52%).
1H NMR (CDCl3): D 7.29, (d, 1H, J = 3.67 Hz); 6.72 (d, 1H, J = 3.66 Hz); 5.14 (dd, 2H); 3.43 (t) , 2H, J = 6.32); 3.19 (m, 2H); 2.72 (d, 3H, J = 13.73 Hz), 1.79 (m, 4H).
31P NMR (CDCl3, TPPO): d-7.88.
[0070]
Embedded image
Figure 2004538240
Synthesis of phosphoramidic dichloride.
Diisopropylamine (8.82 mL, 50.61 mmol) was diluted with 20 mL of anhydrous dichloromethane and cooled with POCl3(2.36 mL, 25.31 mmol) and N-methyl-4-chlorobutylamine hydrochloride (4 g, 24.31 mmol) in 40 mL of an anhydrous dichloromethane solution were slowly added at -20 ° C. The reaction mixture was stirred for 3.5 hours while gradually warming to 10 ° C. The reaction mixture was quenched with saturated ammonium chloride and extracted with dichloromethane. Collect the organic layer and wash with brine, MgSO4, And evaporated to dryness to recover a yellow liquid. The crude product was chromatographed using a 3: 1 Hexanes / EtOAc mixture to recover phosphoramidic dichloride (5.07 g, 84% recovery) as a clear liquid.
1H NMR (CDCl3, TMS) d: 3.59 (t, 2H), 3.29 (m, 2H), 2.85 (d, 3H, j = 16.11 Hz), 1.80 (m, 4H) ppm.
31P NMR (CDCl3, TPPO) d: -6.63 ppm.
[0071]
Embedded image
Figure 2004538240
Synthesis of 1-propenyl benzoate 12a.
To 86 mL of an allyl bromide suspension of 4-hydroxybenzoic acid (5 g, 36.20 mmol) was appropriately added diisopropylamine (6.31 mL, 36.20 mmol). The reaction mixture was stirred at reflux for 2 hours and cooled to room temperature. Excess allyl bromide was removed by distillation under reduced pressure, and the remaining oil was diluted with EtOAc, washed with water, brine, MgSO 44, And evaporated to dryness to recover a yellow oil. Crude product is 10: 1 CHCl3Chromatography was carried out using a mixture of MeOH / EtOAc to recover the benzoate (5.03 g, 78% recovery) as a white solid.
1H NMR (CDCl3, TMS) d: 7.99 (d, 2H, j = 8.79 Hz), 6.86 (d, 2H, j = 8.79 Hz), 6.0 (m, 1H), 5.30 ( m, 2H), 4.80 (d, 2H, j = 5.68 Hz).
HPLC (50:50 CH3CN / H2O-0.1% TFA): 6.17 min (97.2%).
MS (ESI) m / z: 179 (M + H)
GCMS m / z: 179 (M + H).
[0072]
Embedded image
Figure 2004538240
Synthesis of 1-propenyl ester 12b.
Ester 12b was synthesized as described for 12a and was obtained as a white solid (78% recovery).
1H NMR (CDCl3, TMS) d: 7.77 (d, 2H, j = 7.41 Hz), 7.56 (d, 2H, j = 7.41 Hz), 7.43-7.28 (m, 4H), 6.96 (d, 2H, j = 8.28 Hz), 6.73 (d, 2H, j = 8.28 Hz), 5.94-5.80 (m, 1H), 5.35-5 .24 (m, 3H), 4.91 (s, 1H), 4.62 (m, 3H), 4.48-4.31 (m, 2H), 4.20 (t, 1H), 06 (t, 2H).
HPLC (50:50 CH3CN / H2O-0.1% TFA): 11.75 minutes (99.99%)
[0073]
Embedded image
Figure 2004538240
Synthesis of 1-propenyl ester 12c.
Ester 12c was synthesized as described for 12a and was obtained as a white solid (80% recovery).
1H NMR (CDCl3, TMS) d: 6.99 (d, 2H, j = 8.42 Hz), 6.73 (d, 2H, j = 8.42 Hz), 5.84 (m, 1H), 5.27 ( m, 2H), 4.60 (d, 2H, j = 5.86 Hz), 3.02 (m, 1H), 1.42 (s, 9H).
HPLC (30:70 CH3CN / H2O-0.1% TFA): 8.95 minutes (97%).
[0074]
Embedded image
Figure 2004538240
Synthesis of 1-propenyl ester 12d.
Ester 12d was synthesized as described for 12a and was obtained as a white solid (80% recovery).
1H NMR (CDCl3, TMS) d: 7.20-7.09 (m, 4H), 5.99-5.78 (m, 2H), 5.35-5.25 (m, 2H), 4.93-4. 85 (m, 1H), 4.61 (d, 2H, j = 5.86 Hz), 3.26-3.13 (m, 2H), 2.00 (s, 3H) ppm.
HPLC (30:70, CH3CN / H2O-0.1% TFA): 5.63, 5.8 min.
MS (ESI) m / z: 286 (M + Na).
[0075]
Embedded image
Figure 2004538240
Synthesis of 1-propenyl ester 12e.
Ester 12e was synthesized as described for 12a to give a green oil.
1H NMR (CDCl3, TMS) d: 7.32-7.19 (m, 4H), 5.98-5.82 (m, 1H), 5.31-5.20 (m, 2H), 4.60 (d, 2H, j = 5.68 Hz), 3.64 (s, 2H) ppm. b
HPLC (30:70, CH3CN / H2O-0.1% TFA): 4.33 min.
[0076]
Embedded image
Figure 2004538240
Synthesis of 1-propenyl ester 13.
To a 40 mL suspension of potassium p-aminobenzoate (2 g, 11.41 mmol) in DMF was added allyl bromide (0.99 mL, 11.41 mmol). The reaction was stirred overnight, then quenched with water and extracted several times with EtOAc. Combine the organic extracts together, wash with brine, and add MgSO 44, And evaporated to dryness to recover a yellow liquid. Crude product is 10: 1 CHCl3Chromatography using a mixture of / EtOAc recovered 13 as a yellow solid.
1H NMR (CDCl3, TMS) d: 7.99 (d, 2H, j = 8.7 Hz), 7.08 (d, 2H, j = 8.7 Hz), 6.05-5.97 (m, 1H), 5.51-5.30 (m, 2H), 4.82-4.78 (m, 2H) ppm.
HPLC (Gradient 30-100% CH3CN: H2O-0.1% TFA 35 min or more): 7.68 min
MS (ESI) m / z: 178 (M + H), 200 (M + Na).
[0077]
Embedded image
Figure 2004538240
Synthesis of phosphoramidic monochloride 14a.
Diisopropylethylamine (0.3 mL, 0.3 mL, (1.68 mmol) at -15 ° C. The reaction was stirred at -15 ° C for 1 hour and at -5 ° C for 3 hours and quenched with saturated ammonium chloride. The resulting layers were separated. The organic layer is then washed with brine, MgSO4, And evaporated to dryness to recover a yellow liquid. Crude product is 10: 1 CHCl3Chromatography using a mixture of / EtOAc recovered 14a as a clear liquid.
1H NMR (CDCl3, TMS) d: 8.10 (d, 2H, j = 8.33 Hz), 7.34 (d, 2H, j = 8.33 Hz), 6.09-5.98 (m, 1H), 5.45-5.28 (m, 2H), 4.84-4.81 (m, 2H), 3.57 (t, 2H), 3.35-3.17 (m, 2H), 2. 84 (d, 3H, j = 13.55), 1.82-1.79 (m, 4H) ppm.
31P NMR (TPPO) d: -13.07 ppm.
HPLC (Gradient 30-100%, CH3CN / H2O-0.1% TFA, over 35 min): 16.05 min.
[0078]
Embedded image
Figure 2004538240
Synthesis of phosphoramidic monochloride 14b.
Phosphoramidic dichloride 11 (0.45 g, 1.89 mmol) was dissolved in 2 mL of anhydrous THF and pre-cooled at -20 ° C. 12b (0.84 g, 1.89 mmol) and LiHMDS (2. 08 mmol) in 2 mL of anhydrous THF solution. The reaction was warmed to 0 ° C. and stirred for 5 hours. Subsequently, the reaction was quenched with saturated ammonium chloride and extracted with ethyl acetate. Combine the organic extracts together, wash with brine, and add MgSO 44And evaporated to dryness to recover a yellow oil. Crude product is 10: 1 CHCl3Chromatography was performed using a mixture of / EtOAc to recover 14b (0.85 g, 70% recovery) as a yellow oil.
1H NMR (CDCl3, TMS) d: 7.77 (d, 2H, j = 7.42 Hz), 7.57 (d, 2H, j = 7.42 Hz), 7.44-7.29 (m, 4H), 7.19-7.08 (m, 4H), 5.91-5.81 (m, 1H), 5.34-5.25 (m, 3H), 4.66-4.60 (m, 3H) ), 4.49-4.33 (m, 2H), 4.21 (t, 1H), 3.58 (t, 2H), 3.27-3.20 (m, 2H), 3.17- 3.10 (m, 2H), 2.82 (d, 3H, j = 13.54 Hz), 1.81-1.78 (m, 4H) ppm.
31P NMR (CDCl3, TPPO) d: -12.64 ppm.
HPLC (70: 3O CH3CN / H2O-0.1% TFA solution): 6.833 min.
MS (ESI) m / z: 645/647 (M + H), 667/669 (M + Na).
[0079]
Embedded image
Figure 2004538240
Synthesis of phosphoramidic monochloride 14c.
14c was synthesized as described for 14b to give a pale yellow oil.
1H NMR (CDCl3, TMS) d: 7.16 (m, 4H), 5.8 (m, 1H), 5.3 (m, 2H), 4.6 (d, 2H, j = 5.68 Hz), 3. 58 (t, 2H), 3.2 (m, 2H), 3.05 (m, 1H), 2.82 (d, 3H), 1.79 (m, 4H), 1.42 (s, 9H) ).
31P NMR (CDCl3, TPO) d: -12.5 ppm.
HPLC (gradient 30-100%, CH3CN / H2O-0.1% TFA, over 35 min): 9.83 min.
[0080]
Embedded image
Figure 2004538240
Synthesis of phosphoramidic monochloride 14d.
14d was synthesized in the same procedure as 14a. The reaction mixture was stirred overnight and a pale yellow oil was collected.
1H NMR (CDCl3, TMS) d: 7.20-7.09 (m, 4H), 5.99-5.78 (m, 2H), 5.35-5.25 (m, 2H), 4.93-4. 85 (m, 1H), 4.61 (d, 2H, j = 5.86 Hz), 3.58 (t, 2H), 3.26-3.13 (m, 4H), 2.83 (d , 3H, j = 13.55 Hz), 2.00 (s, 3H), 1.96-1.75 (m, 4H) ppm.
31P NMR (TPPO) d: 12.71
MS (ESI) m / z: 465/467 (M + H).
[0081]
Embedded image
Figure 2004538240
Synthesis of phosphoramidic monochloride 14e.
14e was synthesized in the same procedure as 13a.
1H NMR (CDCl3, TMS) d: 7.32-7.19 (m, 4H), 5.98-5.82 (m, 1H), 5.31-5.20 (m, 2H), 4.60 (d, 2H, j = 5.68 Hz), 3.64 (s, 2H), 3.58 (t, 2H), 3.25-3.18 (m, 2H), 2.83 (d, 3H, j) = 13.55 Hz), 1.80-1.78 (m, 4H) ppm.
31P NMR (TPPO) d: -12.66 ppm.
MS (ESI) m / z: 394/396 (M + H).
[0082]
Embedded image
Figure 2004538240
Synthesis of phosphoramidic monochloride 15.
Diisopropylethylamine (0.51 mL, 2.94) was added to 10 mL of an anhydrous dichloromethane solution containing phosphoramidic dichloride 11 (0.7 g, 2.94 mmol) and allyl ester 13 (0.52 g, 2.94 mmol). mmol) was added as appropriate. The reaction was stirred at reflux for 10 days, cooled to room temperature, diluted with dichloromethane and quenched with saturated ammonium chloride. Separate the layers and wash the organic layer with brine, MgSO 44, And evaporated to dryness to recover a yellow oil. Crude product is 10: 1 CHCl3A light green oil (0.22 g, 20% recovery) was collected by chromatography using a mixture of / EtOAc.
1H NMR (CDCl3, TMS) d: 7.99 (d, 2H, j = 8.7 Hz), 7.08 (d, 2H, j = 8.7 Hz), 6.05-5.97 (m, 1H), 5.57 (d, 1H, j = 2.29 Hz), 5.51-5.30 (m, 2H), 4.82-4.78 (m, 2H), 3.54 (t, 2H) , 3.36-3.13 (m, 2H), 2.74 (d, 3H, j = 14.37 Hz), 1.87-1.64 (m, 4H) ppm.
31P NMR (TPPO) d: -11.28 ppm.
HPLC (30-100%, CH3CN / H2O-0.1% TFA, 35 min or more): 12.60 min.
MS (ESI) m / z: 379/381 (M + H), 401/403 (M + Na).
[0083]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 16.
Phosphoramidic monochloride 14a (0.63 g, 1.21 mmol) was dissolved in 2 mL of anhydrous THF, nitrofuryl alcohol (0.19 g, 1.33 mmol) precooled at -78 ° C and LiHMDS ( (1.46 mmol) in 2 mL of anhydrous THF solution via cannula. The reaction was brought to −40 ° C. and stirred for 5.5 hours. Saturated ammonium chloride was added to the reaction mixture and extracted with ethyl acetate. Combine the organic extracts together, wash with brine, and add excess MgSO4And evaporated to dryness to recover a dark oil. Crude product is 10: 1 CHCl3Chromatography using a mixture of / EtOAc recovered phosphoramidate 16 (0.30 g, 52% recovery) as a dark orange oil.
1H NMR (CDCl3, TMS) d: 8.05 (d, 2H, j = 8.6 Hz), 7.26 (m, 3H), 6.64 (d, 1H, j = 3.48 Hz), 6.05 ( m, 1H), 5.31 (m, 2H), 5.09 (d, 2H, j = 9.15 Hz), 4.82 (d, 2H, j = 5.49 Hz), 3.53 ( t, 2H), 3.1 (m, 2H), 2.72 (d, 3H, j = 10.25 Hz), 1.67 (m, 4H).
31P NMR (TPPO) d: -21.7
HPLC (60:40 CH3CN / H2O-0.1% solution of TFA): 7.117 min.
[0084]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 17.
Phosphoramidate 17 was synthesized by a procedure similar to that described for 16.
1H NMR (CDCl3, TMS) d: 8.23 (d, 1H, j = 7.14 Hz), 8.07-7.91 (m, 3H), 7.66-7.50 (m, 2H), 7.30 (D, 2H, j = 8.7 Hz), 6.80 (s, 1H), 6.19-5.88 (m, 1H), 5.44-5.20 (m, 4H), 4. 92-4.79 (m, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 3.48 (t, 2H), 3.24-2.97 (m, 2H) ), 2.71 (d, 3H, j = 10.25 Hz), 2.84-1.83 (m, 4H) ppm.
31P NMR (TPPO) d: -18.94 ppm.
HPLC (70:30 CH3CN / H2O-0.01% TFA solution): 7.967 minutes
MS (ESI) m / z: 584/586 (M + Na).
[0085]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 18.
Phosphoramidate 18 was synthesized by a procedure similar to that described for 16.
1H NMR (CDCl3, TMS) d: 7.77 (d, 2H, j = 7.42 Hz), 7.57 (d, 2H, j = 7.42 Hz), 7.44-7.24 (m, 5H), 7.13-6.93 (m, 4H), 6.59 (d, 1H, j = 3.67 Hz), 6.07-5.70 (m, 1H), 5.47-5.23 ( m, 4H), 5.05 (d, 2H, j = 9.16 Hz), 4.74-4.61 (m, 3H), 4.56-4.28 (m, 2H), 4.20 (T, 1H), 3.51 (t, 2H), 3.20-2.99 (m, 4H), 2.70 (d, 3H, j = 10.34 Hz), 1.82-1. 53 (m, 4H) ppm.
31P NMR (TPPO) d: -18.92
HPLC (70:30 CH3CN / H2O-0.1% TFA solution): 6.12 min.
[0086]
Synthesis of phosphoramidate 19.
Embedded image
Figure 2004538240
Phosphoramidate 19 was synthesized in the same procedure as 16.
1H NMR (CDCl3, TMS) d: 7.28 (d, 1H, j = 3.66 Hz), 7.16 (m, 4H), 6.63 (d, 1H, j = 3.66 Hz), 5.8 ( m, 1H), 5.3 (m, 2H), 5.05 (d, 2H, j = 8.98 Hz), 4.6 (d, 2H), 3.58 (t, 2H), 3. 2 (m, 2H), 3.05 (m, 1H), 2.82 (d, 3H), 1.79 (m, 4H), 1.42 (s, 9H).
31P NMR (TPPO) d: -19.2
HPLC (60:40 CH3CN / H2O-0.1% TFA): 8.2 min.
[0087]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 20.
Phosphoramidate 20 was synthesized by a procedure similar to that described for 16.
1H NMR (CDCl3, TMS) d: 7.28 (d, 1H, j = 3.75 Hz), 7.21-6.98 (m, 4H), 6.63 (d, 1H, j = 3.75 Hz), 6.05-5.77 (m, 2H), 5.44-5.19 (m, 2H), 5.06 (d, 2H, j = 9.15 Hz), 5.01-4.78 (m m, 1H), 4.72-4.52 (m, 2H), 3.66-3.42 (m, 2H), 3.23-2.99 (m, 4H), 2.71 (d, 3H, j = 10.34 Hz), 2.00 (s, 3H), 1.83-1.60 (m, 4H) ppm.
31P NMR (TPPO) d: -19.03 ppm.
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, 35 minutes or more): 15.70 minutes
MS (ESI) m / z: 572/574 (M + H).
[0088]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 21.
Phosphoramidate 21 was synthesized by a procedure similar to that described for 16.
1H NMR (CDCl3, TMS) d: 7.81 (d, 1H, j = 4.12 Hz), 7.22-7.05 (m, 4H), 6.99 (d, 1H, j = 4.12 Hz), 6.02-5.72 (m, 2H), 5.45-5.10 (m, 4H), 5.00-4.79 (m, 1H), 4.63-4.49 (m, 2H) ), 3.53 (t, 2H), 3.23-2.95 (m, 4H), 2.72 (d, 3H, j = 10.35 Hz), 2.00 (s, 3H), 1 .85-1.58 (m, 4H) ppm.
31P NMR (TPPO) d: -19.21 ppm.
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, 35 minutes or more): 17.20 minutes
MS (ESI) m / z: 588/590 (M + H), 610/612 (M + Na).
[0089]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 22.
Phosphoramidate 22 was synthesized by a procedure similar to that described for 16.
1H NMR (CDCl3, TMS) d: 7.26-7.04 (m, 5H), 6.60 (d, 1H, j = 3.58 Hz), 5.99-5.75 (m, 1H), 5.43 −5.19 (m, 2H), 5.06 (d, 2H, j = 9.16 Hz), 4.72-4.48 (m, 2H), 3.62 (s, 2H), 51 (t, 2H), 3.18-2.96 (m, 2H), 2.71 (d, 3H, j = 10.26 Hz), 1.77-1.55 (m, 4H) ppm.
31P NMR (TPPO) d: -19.01 ppm.
HPLC (30-100%, CH3CN / H2O-0.1% TFA, over 35 min): 15.50 min.
MS (ESI) m / z: 501/503 (M + H), 523/525 (M + Na).
[0090]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 23.
Phosphoramidate 23 was synthesized by a procedure similar to that described for 16.
1H NMR (CDCl3, TMS) d: 7.80 (d, 1H, j = 4.12 Hz), 7.33-7.09 (m, 4H), 6.99 (d, 1H, j = 4.12 Hz), 6.08-5.68 (m, 1H), 5.46-5.07 (m, 4H), 4.78-4.39 (m, 2H), 3.63 (s, 2H), 3. 51 (t, 2H), 3.30-2.96 (m, 2H), 2.72 (d, 3H, j = 10.34 Hz), 1.87-1.48 (m, 4H) ppm.
31P NMR (TPPO) d: -19.21 ppm.
HPLC (Gradient 30-100%, CH3CN / H2O-0.1% TFA, 35 min or more): 20.17 min.
[0091]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 24.
Phosphoramidate 24 was synthesized by a procedure similar to that described for 16.
[0092]
1H NMR (CDCl3, TMS) d: 7.969d, 2H, j = 8.6 Hz), 7.26 (d, 1H, j = 3.67 Hz), 6.99 (d, 2H, j = 8.6 Hz) ), 6.65 (d, 1H, j = 3.67 Hz), 6.16-5.84 (m, 1H), 5.51-5.19 (m, 3H), 5.09 (d, 2H, j = 9.43 Hz), 4.92-4.73 (m, 2H), 3.52 (t, 2H), 3.22-2.99 (m, 2H), 2.69 (d , 3H, j = 10.53 Hz), 1.85-1.61 (m, 4H) ppm.
31P NMR (TPPO) d: -15.60 ppm
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, 35 min or more): 12.60 min.
MS (ESI) m / z: 486/488 (M + H), 508/510 (M + Na).
[0093]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 25.
TolSO2Na (0.29 g, 1.61 mmol) was dissolved in 2.5 mL of water, and phosphoramidate 16 (0.71 g, 1.47 mmol) and Pd (PPh3)4(0.08 g, 73.41 mmol) in 6 mL of a THF solution. The reaction was carried out with stirring at room temperature for 30 minutes. Diethyl ether was added to the reaction mixture and washed several times with water. The aqueous extracts were combined, washed with ether, acidified to pH 3 with 2% HCl and extracted with EtOAc. Combine the organic extracts, wash with brine, MgSO4, And evaporated to dryness to recover phosphoramidate 25 (0.51 g, 78% recovery) as an orange foam.
1H NMR (CDCl3, TMS) d: 8.08 (d, 2H, j = 8.6 Hz), 7.31 (m, 3H), 6.66 (d, 1H, J = 3.67 Hz), 5.11 (d , 2H, j = 9.16 Hz), 3.53 (t, 2H), 3.13 (m, 2H), 2.74 (d, 3H, j = 10.44 Hz), 1.7 (m , 4H).
31P NMR (TPPO) d: -20.4
HPLC (60:40 CH3CN / H2O-0.1% TFA solution): 4.017 min.
[0094]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 26.
Phosphoramidate 26 was synthesized by a procedure similar to that described for 25.
1H NMR (CDCl3, TMS) d: 8.32-8.22 (m, 1H), 8.13-7.98 (m, 3H), 7.64-7.45 (m, 2H), 7.33 (d, 2H, j = 8.7 Hz), 6.81 (s, 1H), 5.35 (d, 2H, j = 8.05 Hz), 3.95 (s, 3H), 3.93 (s, 1H) 3H), 3.49 (t, 2H), 3.25-2.97 (m, 2H), 2.73 (d, 3H, j = 10.25 Hz), 1.80-1.52 (m , 4H) ppm.
31P NMR (TPPO) d: -18.99 ppm
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, over 35 min): 18.60 min.
MS (ESI) m / z: 544/546 (M + Na).
[0095]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 27.
Phosphoramidate 27 was synthesized by a procedure similar to that described for 25.
1H NMR (CDCl3, TMS) d: 7.77 (d, 2H, j = 7.23 Hz), 7.58 (d, 2H, j = 7.23 Hz), 7.43-7.23 (m, 5H), 7.18-6.89 (m, 4H), 6.67-6.47 (m, 1H), 5.48-5.30 (m, 1H), 5.18-4.97 (m, 2H) ), 4.79-4.07 (m, 4H), 3.60-3.37 (m, 2H), 3.27-2.98 (m, 4H), 2.82-2.59 (m , 3H), 1.79-1.56 (m, 4H) ppm.
31P NMR (TPPO) d: -19.44, -19.63 ppm.
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, 35 min or more): 17.93 min.
[0096]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 28.
Phosphoramidate 28 was synthesized by a procedure similar to that described for 25.
1H NMR (CDCl3, TMS) d: 7.28 (d, 1H, j = 3.66 Hz), 7.16 (m, 4H), 6.63 (d, 1H, j = 3.66 Hz), 5.05 ( d, 2H, j = 8.98 Hz), 3.58 (t, 2H), 3.2 (m, 2H), 3.05 (m, 1H), 2.82 (d, 3H), 1. 79 (m, 4H), 1.42 (s, 9H).
31P NMR (TPPO) d: -19.2 ppm.
HPLC (60:40 CH3CN / H2O-0.1% TFA): 4.65 min.
[0097]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 29.
Phosphoramidate 29 was synthesized by a procedure similar to that described for 25.
1H NMR (CDCl3, TMS) d: 7.30-7.25 (m, 1H), 7.23-6.83 (m, 4H), 6.80-6.47 (m, 1H), 5.09 (d, 2H, j = 9.25 Hz), 5.01-4.59 (m, 2H), 3.76-3.33 (m, 2H), 3.36-2.98 (m, 4H), 2 .98-2.55 (m, 3H), 2.14 1.77 (d, 3H), 1.89-1.55 (m, 4H) ppm.
31P NMR (TPPO) d: -19.25, -19.43 ppm.
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, over 35 minutes): 11.68 minutes.
MS (ESI) m / z: 554/556 (M + Na), 532/534 (M + H).
[0098]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 30.
Phosphoramidate 30 was synthesized by a procedure similar to that described for 25.
1H NMR (CDCl3, TMS) d: 7.87-7.73 (m, 1H), 7.14-7.04 (m, 4H), 7.03-6.95 (m, 1H), 5.34-5. 18 (m, 2H), 5.11-4.96 (m, 1H), 4.95-4.81 (m, 1H), 3.60-3.46 (m, 2H), 3.26- 3.03 (m, 4H), 2.85-2.67 (m, 3H), 2.05-1.92 (m, 3H), 1.84-1.62 (m, 4H) ppm.
31P NMR (TPPO) d: -19.41, -19.61 ppm.
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, over 35 minutes): 13.10 minutes.
MS (ESI) m / z: 548/550 (M + H).
[0099]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 31.
Phosphoramidate 31 was synthesized by a procedure similar to that described for 25.
1H NMR (CDCl3, TMS) d: 7.26-7.04 (m, 5H), 6.60 (d, 1H, j = 3.58 Hz), 5.43-5.19 (m, 2H), 5.06 (D, 2H, j = 9.16 Hz), 3.62 (s, 2H), 3.51 (t, 2H), 3.18-2.96 (m, 2H), 2.71 (d, 3H, j = 10.26 Hz), 1.77-1.55 (m, 4H) ppm.
31P NMR (TPPO) d: -19.01 ppm.
[0100]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 32.
Phosphoramidate 32 was synthesized by a procedure similar to that described for 25.
1H NMR (CDCl3, TMS) d: 7.80 (d, 1H, j = 4.12 Hz), 7.33-7.09 (m, 4H), 6.99 (d, 1H, j = 4.12 Hz), 5.22 (d, 2H, j = 8.52 Hz), 3.63 (s, 2H), 3.48 (t, 2H), 3.30-2.96 (m, 2H), 2.73 (D, 3H, j = 10.25 Hz), 1.92-1.40 (m, 4H) ppm.
31P NMR (TPPO) d: -19.29 ppm.
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, over 35 min): 15.13 min.
[0101]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 33.
Phosphoramidate 33 was synthesized by a procedure similar to that described for 25.
1H NMR (CDCl3, TMS) d: 7.96 (d, 2H, j = 8.6 Hz), 7.26 (d, 1H, j = 3.67 Hz), 6.99 (d, 2H, j = 8.6). Hz), 6.65 (d, 1H, j = 3.67 Hz), 6.45-6.25 (m, 1H), 5.09 (d, 2H, j = 9.43 Hz), 52 (t, 2H), 3.22-2.99 (m, 2H), 2.69 (d, 3H, j = 10.53 Hz), 1.85-1.61 (m, 4H) ppm.
31P NMR (TPPO) d: -15.40 ppm
HPLC (30-100% gradient CH3CN / H2O-0.1% TFA, 35 min or more): 9.13, 9.37 min.
MS (ESI) m / z: 444/446 (M-H).
[0102]
Embedded image
Figure 2004538240
Synthesis of prodrug 35.
Phosphoramidate 25 (0.105 g, 0.23 mmol) was dissolved in 2 mL of anhydrous DMF, and benzylamine 34 (0.0735 g, 0.23 mmol), 4-methylmorpholine (0.06 mL, 0 .588 mmol) and HOBT (0.0382 g, 0.28 mmol) in 3 ml of anhydrous DMF at 0 ° C. via cannula, followed by EDCI (0.0541 g, 0.28 mmol). The reaction was warmed to room temperature and stirred overnight. Water was added to the reaction mixture, and extracted with ethyl acetate. Combine the extracted organics and wash with saturated sodium bicarbonate, water, brine, MgSO4, And evaporated to dryness to recover a dark orange oil. The product was washed with MeOH: H2Chromatography on reversed phase silica using a 75:25 mixed solution of O gave 35 as a white foam (58.7 mg, 35% recovery).
1H NMR (CDCl3, TMS) d: 8.25 (d, 1H), 7.72 (d, 2H, j = 8.42 Hz), 7.50 (d, 1H), 7.24 (m, 3H), 6.95 (D, 2H, j = 8.42 Hz), 6.63 (d, 1H, j = 3.66 Hz), 5.28 (t, 1H), 5.07 (d, 2H, j = 9.16 Hz) ), 3.93 (d, 2H), 3.52 (t, 2H), 3.09 (m, 2H), 2.70 (d, 3H), 1.87-1.58 (m, 14H). , 1.48-0.85 (m, 4H).
31P NMR (TPPO) d: -21.2 ppm.
HPLC (60:40 CH3CN / H2O-0.1% solution of TFA): 8.817 min.
MS (ESI) m / z: 727/729 (M + Na), 705/707 (M + H).
MS high resolution (ESI) m / z: Calculated: 705.2456; Found: 705.2432.
[0103]
Embedded image
Figure 2004538240
Synthesis of phosphoramidate 36.
Phosphoramidate 26 (0.14 g, 0.28 mmol), benzylamine 34 (0.08 g, 0.31 mmol) and PyBOP (pre-cooled diisopropylethylamine (0.11 mL, 0.61 mmol)) (0.14 g, 0.28 mmol) in 2 mL of anhydrous DCM at 0 ° C. The reaction was carried out with stirring at 0 ° C. for 10 minutes and at room temperature for 30 minutes. The reaction was quenched with saturated ammonium chloride and DCM. The layers were separated and the organic layer was washed with brine, MgSO4, And evaporated to dryness to recover a pale yellow oil. The crude product was chromatographed using a 9: 1 EtOAc / MeOH mixture to give 36 (0.16 g, 75% yield) as a white foam.
1H NMR (CDCl3, TMS) d: 8.34-8.20 (m, 2H), 8.11-8.04 (m, 1H), 7.92-7.78 (bs, 1H), 7.71 (d, 2H, j = 8.60 Hz), 7.63-7.43 (m, 3H), 7.28-7.24 (m, 2H), 6.95 (d, 1H, j = 8.6 Hz) ), 6.8 (s, 1H), 6.27 (d, 1H, j = 7.79 Hz), 5.84-5.67 (bs, 1H), 5.43-5.16 (m, 3H), 3.94 (s, 3H), 3.92 (s, 3H), 3.47 (t, 2H), 3.21-2.94 (m, 2H), 2.69 (d, 3H) , J = 10.52 Hz), 1.96-1.49 (m, 14H), 1.41-0.93 (m, 5H).
31P NMR (TPPO) d: -18.82 ppm.
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, 35 min or more): 24.05 min.
MS (ESI) m / z: 802/804 (M + Na), 780/782 (M + H).
MS High Resolution (ESI) m / z: Calculated: 780.3181; Found: 780.3168.
[0104]
Embedded image
Figure 2004538240
Synthesis of prodrug 37.
Cerium ammonium nitrate (0.11 g, 0.21 mmol) was added to 1 mL of H2Dissolve in O, 3.7 mL of acetonitrile and 1.9 mL of H2A solution of phosphoramidate 36 (0.08 g, 99.83 umol) in O was added slowly. The reaction was stirred for 1.5 hours, then quenched by the addition of saturated ammonium chloride and extracted with EtOAc. Combine the organic layers, wash with brine, and add MgSO4, And evaporated to dryness to recover a pale yellow oil. The crude product was chromatographed using a mixture of 9: 1 EtOAc / MeOH to give 37 as a pale yellow foam (0.03 g, 65% recovery).
1H NMR (CDCl3, TMS) d: 8.34-8.21 (m, 2H), 8.11-8.04 (m, 1H), 7.92-7.78 (bs, 1H), 7.72 (d, 2H, j = 8.60 Hz), 7.28-7.24 (m, 2H), 6.95 (d, 2H, j = 8.60 Hz), 6.94 (d, 1H, j = 8) 6.6 (s, 1H), 6.41 (d, 1H, j = 8.6 Hz), 5.84-5.67 (bs, 1H), 5.43-5.16 (M, 3H), 3.93 (s, 3H), 3.91 (s, 5H), 3.47 (t, 2H), 3.21-2.94 (m, 2H), 2.69 ( d, 3H, j = 10.52 Hz), 1.96-1.49 (m, 14H), 1.41-0.93 (m, 5H).
31P NMR (TPPO) d: -19.0
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, over 35 min): 21.45 min.
MS (ESI) m / z: 772/774 (M + Na), 750/752 (M + H).
MS high resolution (ESI) m / z: calc .: 750.2711; found: 750.2708.
[0105]
Embedded image
Figure 2004538240
Synthesis of prodrug 38.
Prodrug 38 was synthesized by a procedure similar to that described for 36.
1H NMR (CDCl3, TMS) d: 8.26-8.11 (m, 1H), 8.09-7.99 (m, 1H), 7.95-7.76 (m, 1H), 7.24--7. 09 (m, 2H), 7.08-6.99 (m, 2H), 6.96-6.82 (m, 1H), 6.72-6.55 (m, 1H), 6.50- 6.20 (m, 1H), 6.18-6.54 (m, 1H), 5.16-4.82 (m, 3H), 4.79-4.46 (m, 1H), 4. 03-3.78 (m, 2H), 3.62-3.43 (m, 2H), 3.15-2.81 (m, 5H), 2.80-2.51 (m, 3H), 2.04-1.89 (m, 3H), 1.87-1.56 (m, 10H), 1.49-0.90 (m, 8H) ppm.
31P NMR (TPPO) d: -18.94 ppm.
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, 35 min or more): 19.03, 19.25 min.
MS (ESI) m / z: 790/792 (M + H), 812/814 (M + Na)
MS High Resolution (ESI) m / z: Calculated: 790.2984; Found: 790.2981.
[0106]
Embedded image
Figure 2004538240
Synthesis of prodrug 39.
Prodrug 39 was synthesized by a procedure similar to that described for 35.
1H NMR (CDCl3, TMS) d: 8.21-8.09 (m, 1H), 8.08-7.98 (m, 1H), 7.93-7.71 (m, 2H), 7.23-7. 04 (m, 6H), 6.66-6.47 (m, 1H), 6.36-6.16 (m, 1H), 6.11-5.80 (m, 1H), 5.30- 5.15 (m, 2H), 5.14-4.81 (m, 1H), 4.75-4.48 (m, 1H), 4.02-3.85 (m, 2H), 3. 62-3.42 (m, 2H), 3.13-2.82 (m, 5H), 2.82-2.58 (m, 3H), 2.04-1.92 (m, 3H), 1.84-1.53 (m, 9H), 1.51-0.87 (m, 9H) ppm.
31P NMR (TPPO) d: -19.16 ppm.
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, 35 minutes or more): 20.17, 20.35 minutes.
MS (ESI) m / z: 806/808 (M + H), 828/830 (M + Na)
MS High Resolution (ESI) m / z: Calculated: 806.2755; Found: 806.2758.
[0107]
Embedded image
Figure 2004538240
Synthesis of prodrug 40.
Prodrug 40 was synthesized by a procedure similar to that described for 35.
1H NMR (CDCl3, TMS) d: 8.10-8.00 (m, 1H), 7.99-7.86 (m, 1H), 7.45-7.09 (m, 7H), 6.98-6. 85 (m, 1H), 6.69-6.56 (m, 1H), 6.05-5.89 (m, 1H), 5.87-5.69 (m, 1H), 5.19- 4.95 (m, 3H), 4.02-3.81 (m, 2H), 3.64-3.29 (m, 4H), 3.26-2.92 (m, 2H), 2. 87-2.52 (m, 3H), 2.02-1.57 (m, 11H), 1.54-0.89 (m, 6H).
31P NMR (TPPO) d: -18.91, -18.99 ppm.
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, 35 min or more): 20.65 min.
MS (ESI) m / z: 719/721 (M + H), 741/743 (M + Na)
MS High Resolution (ESI) m / z: Calculated: 719.2613; Found: 719.2600.
[0108]
Embedded image
Figure 2004538240
Synthesis of prodrug 41.
Prodrug 41 was synthesized as described for 35.
1H NMR (CDCl3, TMS) d: 8.14-8.00 (m, 1H), 7.93-7.80 (m, 1H), 7.81-7.69 (m, 1H), 7.42-7. 30 (m, 1H), 7.27-7.06 (m, 5H), 7.04-6.93 (m, 1H), 6.93-6.81 (m, 1H), 6.23- 5.99 (m, 2H), 5.27-5.15 (m, 2H), 5.13-4.93 (m, 1H), 3.99-3.81 (m, 2H), 3. 60-3.38 (m, 4H), 3.21-2.98 (m, 2H), 2.85-2.62 (m, 3H), 1.92-1.59 (m, 11H), 1.50-0.97 (6H).
31P NMR (CDCl3, TPPO) d: -19.26
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, 35 min or more): 21.77 min.
MS (ESI) m / z: 735/737 (M + H), 757/759 (M + Na).
MS High Resolution (ESI) m / z: Calculated: 735.2384; Found: 735.2358.
[0109]
Embedded image
Figure 2004538240
Synthesis of prodrug 42.
Prodrug 42 was synthesized as described for 35.
1H NMR (CDCl3, TMS) d: 8.22 (d, 1H, j = 2.01 Hz), 7.96-7.89 m, 1H), 7.61 (d, 2H, j = 8.15 Hz), 7 .56-7.40 (m, 1H), 7.25-7.13 (m, 1H), 6.92 (d, 2H, j = 8.15 Hz), 6.82-6.66 (m , 1H), 6.66-6.53 (m, 1H), 6.27-6.00 (m, 2H), 5.35-5.10 (m, 1H), 5.03 (d, 2H). , J = 9.25 Hz), 3.90 (d, 2H, j = 5.86 Hz), 3.48 (t, 2H), 3.18-2.92 (m, 2H), 2.64 (D, 3H, j = 10.53 Hz), 1.94-1.47 (m, 10H), 1.38-0.98 (m, 7H) ppm.
31P NMR (CDCl3, TPPO) d: -14.96 ppm.
HPLC (30-100% gradient, CH3CN / H2O-0.1% TFA, 35 min or more): 17.28 min.
MS (ESI) m / z: 704/706 (M + H), 726/728 (M + Na).
MS High Resolution (ESI) m / z: Calculated: 704.2616; Found: 704.2633.
L1210 Murine leukemia cell growth inhibition
Stock solutions of drug were prepared in absolute ethanol, and serially diluted drug was prepared in ethanol. Also, L1210 cells were suspended in Fisher's medium supplemented with 10% horse serum, 1% glutamine, and 1% antibiotic solution to a final concentration of 3-6 × 10410 mL of cell / mL cell suspension was made. Appropriate amounts of drug solution were added to the cell suspension and incubated for 2, 8, 24, or 48 hours. The cells were spun down in a centrifuge, resuspended in fresh medium without drug and returned to the incubator. 48 hours after the start of the treatment with the drug, the final cell number was measured. This data is expressed as the cell number vs.. Log (drug concentration) was analyzed by an S-shaped curve fit, and the results were analyzed by IC.50(Drug concentration required to inhibit cell growth by 50% relative to control value).
[0110]
[Table 3]
Figure 2004538240
[0111]
Luciferase inhibition in transfected J77 cells
J77 cells (2 × 10 5 in 500 mL of RPMI medium without FBS)7Cells) were transfected with 15 mg of NF-AT-luciferase plasmid. Cells were transferred to flasks containing 10 mL of complete RPMI medium and incubated for 24 hours. The cells were then spun down in a centrifuge, resuspended in 12 mL complete RPMI medium and split into 6-well plates (2 mL / well). Stock solutions of drug dissolved in DMSO were prepared, and each well was treated with different concentrations and incubated for 2 hours. Each well was then treated with 10 mL of 115 mL of FBS-free RPMI plus 1.25 mg of PMA and 9 mg of ionomycin before adding 2 mg of anti-CD3 antibody. Cells were incubated for 6 hours, spun down, washed with PBS, lysed for 15 minutes, and centrifuged. The supernatant was collected and stored at -78 C overnight. Luciferase activity was measured on a mixture of 50 mL of luciferase substrate and 10 mL of supernatant using a luminometer.
[0112]
[Table 4]
Figure 2004538240
[0113]
L1210, LM, and LM ( TK −) Cell tritium assay
Stock solutions of drug were prepared in absolute ethanol. L1210 cells were suspended in Fisher's medium, LM and LM (TK-) cells were suspended in MEM (min essential medium) to a final concentration of 11.24 × 106It was prepared to be cells / mL. After placing this cell suspension (445 μL) in an Eppendorf tube, 5 μL of the drug solution was added and incubated at 37 ° C. for 2 hours. Tritium release reaction is 1 mCi [5-3[H] The procedure was started by adding 50 μL of a serum-free medium containing a 0.5 mM dCyt solution to which dCyt was added. Thereafter, the mixture was incubated for 60 minutes in a shaking water bath with a stirring device at 37 ° C. The reaction was terminated by adding 100 μL of the reaction mixture to an Eppendorf tube containing 100 μL of a 20% mixture in which activated carbon was suspended in a 4% perchloric acid solution. The tube was vortexed vigorously and then centrifuged in a small centrifuge.
[0114]
Thereafter, the radioactivity of 100 μL of the supernatant was measured using a scintillation spectrometer. This data is referred to as CMP vs. Log (drug concentration) was analyzed by an S-shaped curve fit, and the results were analyzed by IC.50(Concentration of drug that inhibits cell growth to 50% of control value).
[0115]
[Table 5]
Figure 2004538240
[0116]
Pharmaceutical preparation
The following parenteral preparations were prepared for use in treating cancer.
[0117]
Figure 2004538240

Claims (20)

化学式
CHOP(halo)NR(CH
である化合物。
(前記式中、
Rは、C−Cのアルキル又は(CHXであり;
nは、4または5であり;
Xは、Xに結合している炭素原子から求核的に置換され得る求電子基であり;
haloは、塩素、臭素、またはヨウ素であり;
CH−基は、生物学上不安定なエステル形成基である。)
Chemical formula R r CH 2 OP (halo) NR (CH 2 ) n X
A compound that is
(In the above formula,
R is C 1 -C 4 alkyl or (CH 2 ) n X;
n is 4 or 5;
X is an electrophilic group that can be nucleophilically substituted from the carbon atom attached to X;
halo is chlorine, bromine or iodine;
The R r CH 2 — group is a biologically unstable ester forming group. )
前記nは4であることを特徴とする請求項1に記載の化合物。The compound according to claim 1, wherein n is 4. 前記nは5であることを特徴とする請求項1に記載の化合物。The compound according to claim 1, wherein n is 5. 前記Rはメチル基であることを特徴とする請求項1に記載の化合物。The compound according to claim 1, wherein R is a methyl group. 前記haloは塩素であることを特徴とする請求項1に記載の化合物。The compound of claim 1, wherein halo is chlorine. 前記Xは塩素または臭素であることを特徴とする請求項1に記載の化合物。The compound of claim 1, wherein X is chlorine or bromine. リン酸塩エステルまたはアミドとして、薬剤の細胞内デリバリーを増強するためのホスホラミデートプロドラッグの調製方法であって、
化学式
CHOP(Z−Drug)NR(CH)X
の中間体化合物の形成につながる条件下で、化学式
CHOP(halo)NR(CH
の化合物と水酸官能基またはアミノ官能基を有する薬剤化合物(Drug−ZH)とを反応させるステップと、
前記中間体を酸化させ、化学式
CHOP(O)(Z−Drug)NR(CH
のホスホラミデートプロドラッグを形成するステップからなる調製方法。
(前記式中、
Rは、C−Cのアルキルまたは−(CHXであり;
nは、4または5であり;
Zは、OまたはNであり;
Xは、Xに結合している炭素原子から求核的に置換され得る求電子基であり;
haloは、塩素、臭素、またはヨウ素であり;
CH−基は、生物学上不安定なエステル形成基である。)
A method of preparing a phosphoramidate prodrug to enhance intracellular delivery of a drug, as a phosphate ester or amide,
Formula R r CH 2 OP (Z- Drug) NR (CH 2) X
Under conditions that lead to the formation of an intermediate compound of formula R r CH 2 OP (halo) NR (CH 2 ) n X
Reacting a compound of formula (I) with a drug compound having a hydroxyl or amino functional group (Drug-ZH);
The intermediate is oxidized to form the chemical formula R r CH 2 OP (O) (Z-Drug) NR (CH 2 ) n X
A method of forming a phosphoramidate prodrug of
(In the above formula,
R is alkyl or C 1 -C 4 - be (CH 2) n X;
n is 4 or 5;
Z is O or N;
X is an electrophilic group that can be nucleophilically substituted from the carbon atom attached to X;
halo is chlorine, bromine or iodine;
The R r CH 2 — group is a biologically unstable ester forming group. )
前記Drug−ZH はアミノ酸、または活性ペプチドもしくはペプチドミメティックであることを特徴とする請求項7に記載の方法。The method of claim 7, wherein said Drug-ZH is an amino acid, or an active peptide or peptidomimetic. 前記Drug−ZH は化学式
Figure 2004538240
のペプチドミメティックであることを特徴とする請求項8に記載の方法。
(前記式中、
ZはOまたはNであり;
qおよびkは、それぞれ1または0から独立に選択され、
Bは、H,アミノ,保護されたアミノ,またはC−Cのアルカノイルアミノである。)
The Drug-ZH has the chemical formula
Figure 2004538240
The method according to claim 8, wherein the peptide mimetic is
(In the above formula,
Z is O or N;
q and k are each independently selected from 1 or 0;
B is, H, amino, protected amino or alkanoylamino of C 1 -C 4,. )
前記Drug−ZH は生物学的に活性のあるヌクレオチドアナログであることを特徴とする請求項7に記載の方法。The method of claim 7, wherein said Drug-ZH is a biologically active nucleotide analog. 一般式Drug−ZHの水酸官能基またはアミノ官能基から形成されるホスホラミデート化合物であって、
当該プロドラッグが化学式
CHOP(O)(Z−Drug)NR(CH
の化合物であることを特徴とするホスホラミデート化合物。
(前記式中、
Rは、C−Cのアルキルまたは−(CHXであり;
nは、4または5であり;
Zは、OまたはNであり;
Xは、Xに結合している炭素原子から求核的に置換され得る求電子基であり;
haloは、塩素、臭素、またはヨウ素であり;
CH−基は、生物学上不安定なエステル形成基である。)
A phosphoramidate compound formed from a hydroxyl function or an amino function of the general formula Drug-ZH,
The prodrug has the chemical formula R r CH 2 OP (O) (Z-Drug) NR (CH 2 ) n X
A phosphoramidate compound, which is a compound of the formula:
(In the above formula,
R is alkyl or C 1 -C 4 - be (CH 2) n X;
n is 4 or 5;
Z is O or N;
X is an electrophilic group that can be nucleophilically substituted from the carbon atom attached to X;
halo is chlorine, bromine or iodine;
The R r CH 2 — group is a biologically unstable ester forming group. )
前記Drugはアミノ酸、または活性ペプチドもしくはペプチドミメティックであることを特徴とする請求項11に記載のプロドラッグ。The prodrug of claim 11, wherein the Drug is an amino acid, or an active peptide or peptidomimetic. 前記Drug−ZH は化学式
Figure 2004538240
のペプチドミメティックであることを特徴とする請求項12記載の方法。
(前記式中、
ZはOまたはNであり;
qおよびkは、独立に1または0から選択され、
Bは、H,アミノ,保護されたアミノ,またはC−Cのアルカノイルアミノである。)
The Drug-ZH has the chemical formula
Figure 2004538240
The method according to claim 12, wherein the peptide mimetic is
(In the above formula,
Z is O or N;
q and k are independently selected from 1 or 0;
B is, H, amino, protected amino or alkanoylamino of C 1 -C 4,. )
前記Drugは生物学的に活性のあるヌクレオチドアナログであることを特徴とする請求項11に記載のプロドラッグ。12. The prodrug of claim 11, wherein said Drug is a biologically active nucleotide analog. 化学式
CHOP(O)(halo)NR(CH
の化合物の調製方法であって、
それぞれ酸スカベンジャーの存在下で、化学式
P(O)halo
の化合物を、1)化学式RCHOHのアルコール、及び、2)化学式HNR(CHXのアミンと反応するステップからなることを特徴とする調製方法。
(前記式中、
mは、0または1であり;
Rは、C−Cのアルキルまたは−(CHXであり;
nは、4または5であり;
Xは、Xに結合している炭素原子から求核的に置換され得る求電子基であり;
haloは、塩素、臭素、またはヨウ素であり;
CH−基は、生物学上不安定なエステル形成基である。)
Chemical formula R r CH 2 OP (O) m (halo) NR (CH 2 ) n X
A method for preparing a compound of the formula
In each case in the presence of an acid scavenger, the chemical formula P (O) m halo 3
A compound of formula 1) with 1) an alcohol of formula R r CH 2 OH and 2) an amine of formula HNR (CH 2 ) n X.
(In the above formula,
m is 0 or 1;
R is alkyl or C 1 -C 4 - be (CH 2) n X;
n is 4 or 5;
X is an electrophilic group that can be nucleophilically substituted from the carbon atom attached to X;
halo is chlorine, bromine or iodine;
The R r CH 2 — group is a biologically unstable ester forming group. )
一般式Drug−ZPO の化合物の細胞内デリバリーの増強のための化学式
CHOP(O)(Z−Drug)NR(CH
のホスホラミデートプロドラッグの調製方法であって、
前記プロドラッグ形成につながる条件下で、化学式
CHOP(O)(halo)NR(CH
の化合物と、化学式Drug−ZHの水酸官能基またはアミノ官能基を有する薬剤化合物を反応するステップを含む方法。
(前記式中、
Rは、C−Cのアルキルまたは−(CHXであり;
nは、4または5であり;
Zは、OまたはNであり;
Xは、Xに結合している炭素原子から求核的に置換され得る求電子基であり;
haloは、塩素、臭素、またはヨウ素であり;
CH−基は、生物学上不安定なエステル形成基である。)
Formula Drug-ZPO 3 - formula R r CH 2 OP for enhancing intracellular delivery of compounds (O) (Z-Drug) NR (CH 2) n X
A method for preparing a phosphoramidate prodrug of
Under the conditions leading to the formation of the prodrug, the chemical formula R r CH 2 OP (O) (halo) NR (CH 2 ) n X
And a drug compound having a hydroxyl or amino functional group of the formula Drug-ZH.
(In the above formula,
R is alkyl or C 1 -C 4 - be (CH 2) n X;
n is 4 or 5;
Z is O or N;
X is an electrophilic group that can be nucleophilically substituted from the carbon atom attached to X;
halo is chlorine, bromine or iodine;
The R r CH 2 — group is a biologically unstable ester forming group. )
一般式Drug−ZHの水酸官能基またはアミノ官能基を有する薬剤化合物から形成されるホスホラミデート化合物と、そのための医薬上許容可能なキャリアーとを含む医薬組成物であって、
前記プロドラッグが、化学式
CHOP(O)(Z−Drug)NR(CH
の化合物であることを特徴とする医薬組成物。
(前記式中、
Rは、C−Cのアルキルまたは−(CHXであり;
nは、4または5であり;
Zは、OまたはNであり;
Xは、Xに結合している炭素原子から求核的に置換され得る求電子基であり;
haloは、塩素、臭素、またはヨウ素であり;
CH−基は、生物学上不安定なエステル形成基である。)
A pharmaceutical composition comprising a phosphoramidate compound formed from a drug compound having a hydroxyl or amino function of the general formula Drug-ZH, and a pharmaceutically acceptable carrier therefor,
The prodrug has the formula R r CH 2 OP (O) (Z-Drug) NR (CH 2 ) n X
A pharmaceutical composition, which is a compound of the formula:
(In the above formula,
R is alkyl or C 1 -C 4 - be (CH 2) n X;
n is 4 or 5;
Z is O or N;
X is an electrophilic group that can be nucleophilically substituted from the carbon atom attached to X;
halo is chlorine, bromine or iodine;
The R r CH 2 — group is a biologically unstable ester forming group. )
Drug−ZH はアミノ酸、または生物学的に活性のあるペプチドまたはペプチドミメティックであることを特徴とする請求項17に記載の医薬組成物。18. The pharmaceutical composition according to claim 17, wherein Drug-ZH is an amino acid, or a biologically active peptide or peptidomimetic. Drug−ZH は化学式
【式3】
Figure 2004538240
のペプチドミメティックであることを特徴とする請求項18記載の医薬組成物。(前記式中、
ZはOまたはNであり;
qおよびkは、1または0から独立に選択され、
Bは、H,アミノ,保護されたアミノ,またはC−Cのアルカノイルアミノである。)
Drug-ZH has the chemical formula:
Figure 2004538240
The pharmaceutical composition according to claim 18, which is a peptidomimetic of the formula: (In the above formula,
Z is O or N;
q and k are independently selected from 1 or 0;
B is, H, amino, protected amino or alkanoylamino of C 1 -C 4,. )
前記Drug−ZH はヌクレオチドアナログであることを特徴とする請求項17に記載の医薬組成物。18. The pharmaceutical composition according to claim 17, wherein said Drug-ZH is a nucleotide analog.
JP2001572517A 2000-03-31 2001-03-30 Phosphoramidate and method therefor Withdrawn JP2004538240A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19391800P 2000-03-31 2000-03-31
PCT/US2001/010163 WO2001074827A1 (en) 2000-03-31 2001-03-30 Phosphoramidate prodrugs

Publications (1)

Publication Number Publication Date
JP2004538240A true JP2004538240A (en) 2004-12-24

Family

ID=22715556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001572517A Withdrawn JP2004538240A (en) 2000-03-31 2001-03-30 Phosphoramidate and method therefor

Country Status (8)

Country Link
US (2) US6903081B2 (en)
EP (1) EP1268493B1 (en)
JP (1) JP2004538240A (en)
AT (1) ATE317846T1 (en)
AU (1) AU784462B2 (en)
CA (1) CA2397203A1 (en)
DE (1) DE60117247D1 (en)
WO (1) WO2001074827A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004130A1 (en) 1999-07-14 2001-01-18 Purdue Research Foundation Phosphoramide compounds
CA2397203A1 (en) * 2000-03-31 2001-10-11 Sandra C. Tobias Phosphoramidate prodrugs
US8707406B2 (en) * 2002-07-26 2014-04-22 Sierra Wireless, Inc. Always-on virtual private network access
ZA200507752B (en) * 2003-03-28 2007-01-31 Threshold Pharmaceuticals Inc Compositions and methods for treating cancer
NZ554783A (en) * 2004-11-15 2010-12-24 Ceptyr Inc Protein tyrosine phosphatase inhibitors and methods of use thereof
US8399428B2 (en) * 2004-12-09 2013-03-19 Regents Of The University Of Minnesota Nucleosides with antiviral and anticancer activity
WO2006099313A2 (en) * 2005-03-14 2006-09-21 Purdue Research Foundation Phosphate conjugates of prenylation inhibitors
RU2414475C2 (en) 2005-06-29 2011-03-20 Трешолд Фармасьютикалз, Инк. Phosphoramidate alkylator prodrug
WO2007020193A2 (en) * 2005-08-15 2007-02-22 F. Hoffmann-La Roche Ag Antiviral phosphoramidates of 4 ' -substituted pronucleotides
US8197545B2 (en) 2005-10-27 2012-06-12 Depuy Spine, Inc. Nucleus augmentation delivery device and technique
US8552048B2 (en) * 2006-12-26 2013-10-08 Threshold Pharmaceuticals, Inc. Phosphoramidate alkylator prodrugs for the treatment of cancer
US20090118031A1 (en) * 2007-11-01 2009-05-07 Qualizza Gregory K Shaft Structure with Configurable Bending Profile
MX2016011897A (en) 2014-03-14 2017-04-27 Alltech Inc Compositions of selenoorganic compounds and methods of use thereof.
WO2017048252A1 (en) 2015-09-15 2017-03-23 Alltech, Inc. Compositions of selenoorganic compounds and methods of use thereof
US11447764B2 (en) * 2017-02-13 2022-09-20 The Regents Of The University Of California Site-specific generation of phosphorylated tyrosines in proteins

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3303189A (en) * 1965-03-11 1967-02-07 Smith Kline French Lab 2, 1-benzothiazine-2, 2-dioxides
US5011846A (en) * 1988-02-23 1991-04-30 Merrell Dow Pharmaceuticals Inc. Medicament compositions derived from quinolizine and quinolizinone and methods of use thereof
US5106855A (en) * 1989-12-20 1992-04-21 Merrell Dow Pharmaceuticals Inc. Method for the treatment of glaucoma
US5153192A (en) * 1990-04-09 1992-10-06 Alcon Laboratories, Inc. Thiophene sulfonamides useful as carbonic anhydrase inhibitors
US5233031A (en) 1991-09-23 1993-08-03 University Of Rochester Phosphoramidate analogs of 2'-deoxyuridine
GB9216380D0 (en) * 1992-07-31 1992-09-16 Glaxo Group Ltd Medicaments
US5290781A (en) * 1993-01-05 1994-03-01 Iolab Corporation Ketaneserinol as an agent to reduce intraocular pressure
US5344929A (en) * 1993-02-18 1994-09-06 Alcon Laboratories, Inc. Preparation of carbonic anhydrase inhibitors
US5306727A (en) 1993-04-30 1994-04-26 Research Corporation Technologies, Inc. Phosphoramidates useful as antitumor agents
TW270114B (en) * 1993-10-22 1996-02-11 Hoffmann La Roche
TW334423B (en) * 1993-10-22 1998-06-21 Hoffmann La Roche Tricyclic 1-aminoethylpyrrole-derivatives
US5874429A (en) * 1993-12-24 1999-02-23 Suntory Limited Benzothiazine derivative
US5538966A (en) * 1994-01-21 1996-07-23 Alcon Laboratories, Inc. Carbonic anhydrase inhibitors
US5538974A (en) * 1994-01-27 1996-07-23 Senju Pharamceutical Co., Ltd. Ophthalmic composition for lowering intraocular pressure
ATE166227T1 (en) * 1994-03-18 1998-06-15 Senju Pharma Co OPTHALMOLOGICAL PREPARATIONS CONTAINING SARPOGRELATE FOR LOWERING INTRAOCULAR PRESSURE
KR970702267A (en) * 1994-03-31 1997-05-13 야마구찌 가즈시로 Alkylenediamine derivatives (ALKYLENEDIAMINE DERIVATIVE)
TW403738B (en) * 1994-08-12 2000-09-01 Hoffmann La Roche Tricyclic pyrazole derivatives
US5470973A (en) * 1994-10-03 1995-11-28 Alcon Laboratories, Inc. Synthesis of sulfonamide intermediates
JP3232365B2 (en) * 1995-02-20 2001-11-26 トキコ株式会社 Disc brake
US5880134A (en) * 1996-03-20 1999-03-09 Eli Lilly And Company Method for using ergoline compounds to effect physiological and pathological functions at the 5-HT7 receptor
JPH11193289A (en) * 1997-12-26 1999-07-21 Suntory Ltd Pyrrole sulfonamide derivative
AU764766B2 (en) * 1998-04-14 2003-08-28 Arena Pharmaceuticals, Inc. Non-endogenous, constitutively activated human serotonin receptors and small molecule modulators thereof
US6664286B1 (en) * 1998-09-18 2003-12-16 Alcon Manufacturing, Ltd. Serotonergic 5ht2 agonists for treating glaucoma
US6660870B1 (en) * 2000-03-17 2003-12-09 Alcon, Inc. 2-acylaminobenzimidazole derivatives for treating glaucoma
US6806285B1 (en) * 2000-03-17 2004-10-19 Alcon, Inc. 5-Hydroxyl indole derivatives for treating glaucoma
CA2397203A1 (en) * 2000-03-31 2001-10-11 Sandra C. Tobias Phosphoramidate prodrugs
PT1392292E (en) * 2001-06-01 2006-05-31 Alcon Inc PIRANOINDAZOLES AND THEIR USE FOR THE TREATMENT OF GLAUCOMA
US6884816B2 (en) * 2001-08-31 2005-04-26 Alcon, Inc. Hydroxy substituted fused naphthyl-azoles and fused indeno-azoles and their use for the treatment of glaucoma

Also Published As

Publication number Publication date
CA2397203A1 (en) 2001-10-11
EP1268493B1 (en) 2006-02-15
US7173020B2 (en) 2007-02-06
DE60117247D1 (en) 2006-04-20
AU784462B2 (en) 2006-04-06
US6903081B2 (en) 2005-06-07
AU4961601A (en) 2001-10-15
US20020004594A1 (en) 2002-01-10
WO2001074827A1 (en) 2001-10-11
US20050171060A1 (en) 2005-08-04
EP1268493A1 (en) 2003-01-02
ATE317846T1 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
US20050171060A1 (en) Phosphoramidates and methods therefor
AU2012223012C1 (en) Phosphoramidate derivatives of 5 - fluoro - 2 &#39; - deoxyuridine for use in the treatment of cancer
Kim et al. Regiospecific and highly stereoselective electrophilic addition to furanoid glycals: synthesis of phosphonate nucleotide analogs with potent activity against HIV
EP2955190B1 (en) Chemical compounds
JP5030998B2 (en) Nucleoside analogues and oligonucleotide derivatives containing the nucleotide analogues thereof
JP4514242B2 (en) Antiviral pyrimidine nucleoside analogues
JP6889180B2 (en) Diastereoselective synthesis of phosphate derivatives and gemcitabine prodrug NUC-1031
CN103052646A (en) Methods for the preparation of diasteromerically pure phosphoramidate prodrugs
JPH09500120A (en) Cyclic hydrazine compound
WO2013063417A1 (en) Methyltransferase inhibitors for treating cancer
WO2006037090A2 (en) Drug-phosphate conjugates as prodrugs
Cho et al. Efficient synthesis of nucleoside aryloxy phosphoramidate prodrugs utilizing benzyloxycarbonyl protection
Romanowska et al. Aryl H-phosphonates. 19. New anti-HIV pronucleotide phosphoramidate diesters containing amino-and hydroxypyridine auxiliaries
US20120035362A1 (en) Phosphoramidite derivatives of folic acid
JP2011504489A (en) Non-hydrolyzable nucleoside di- or triphosphate derivatives and uses thereof
Meier et al. O-Alkyl-5', 5'-dinucleoside phosphates as prodrugs of 3'-azidothymidine and cordycepin
WO2009029849A1 (en) Prodrugs and conjugates of prenylation inhibitors
Lewandowska et al. Synthesis and anticancer activity of some 5-fluoro-2′-deoxyuridine phosphoramidates
WO1990004602A1 (en) Nucleoside derivatives
FI82473B (en) FOERFARANDE FOER FRAMSTAELLNING AV FARMAKOLOGISKT VAERDEFULLA GLYCERO-3 (2) -FOSFO-L-CERINDERIVAT.
EP4151646A1 (en) 5-fluorouracil derivatives as prodrugs for cancer treatment
Balgobin et al. Use of 2‐Phenylsulfonylethyl as a Phosphate Protecting Group in DNA Synthesis Using the Phosphite‐Triester Approach.
KR0170079B1 (en) Phospholipid derivatives of acyclic nucleoside and their preparation
FR2781229A1 (en) Osidic nucleotide analogs having antiviral and antitumor activity, and intermediates for their preparation
KR20200043407A (en) Diarylthiohydantoin compound as an androgen receptor antagonist

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040922

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603