JP2004537892A - 混合波形構成を用いて通信するための無線通信システム - Google Patents

混合波形構成を用いて通信するための無線通信システム Download PDF

Info

Publication number
JP2004537892A
JP2004537892A JP2003511486A JP2003511486A JP2004537892A JP 2004537892 A JP2004537892 A JP 2004537892A JP 2003511486 A JP2003511486 A JP 2003511486A JP 2003511486 A JP2003511486 A JP 2003511486A JP 2004537892 A JP2004537892 A JP 2004537892A
Authority
JP
Japan
Prior art keywords
wireless communication
communication system
kernel
carrier
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003511486A
Other languages
English (en)
Inventor
エイ ウェブスター,マーク
ジェイ シールズ,マイケル
Original Assignee
インターシル アメリカス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26840710&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2004537892(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by インターシル アメリカス インコーポレイテッド filed Critical インターシル アメリカス インコーポレイテッド
Publication of JP2004537892A publication Critical patent/JP2004537892A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

混合波形構成301を用いて通信するための無線通信システム103。混合波形はプリアンブル303とヘッダ305をもつシングルキャリアスキームにしたがって変調される第1部分2101、およびマルチキャリアスキームにしたがって変調される第2部分2103を含む。波形は、第1部分から得られるCIR評価が受信器による第2部分の捕捉のために再使用可能であるように指定される。送信器1601は、第1カーネル1605、第2カーネル1603およびスイッチ1607を含むことが可能であり、スイッチは送信波形を生成するために第1部分のための第1カーネルと第2部分のための第2カーネルとを選択する。受信器201は、シングルキャリア受信器207、マルチキャリア受信器209、およびシングルキャリア受信器に受信される信号の第1部分とマルチキャリア受信器に受信される信号の第2部分とを供給するスイッチを含む。

Description

【技術分野】
【0001】
本発明は、無線通信に関し、さらに詳細には、マルチキャリア混合波形構成にシングルキャリアを用いて通信するために構成された無線通信システムに関する。
【背景技術】
【0002】
米国の電気電子技術者協会(IEEE)の規格802.11は、無許可の2.4GHzおよび5GHz帯域における無線ローカルエリアネットワーク(WLAN)のための一群の規格のである。最新の802.11b規格は、1Mbps(Megabits per second)、2Mbps、5.5Mbpsおよび11Mbpsのデータ信号速度を含む2.4GHz帯域の種々のデータ信号速度を規定している。802.11b規格は、シリアル変調技術である、11MHzのチップレートをもつDSSS(Direct Sequence Spread Spectrum)を使用する。802.11a規格は、5MHz帯域における6Mbps、12Mbps、18Mbps、24Mbps、36Mbpsおよび54Mbpsの種々の高いデータ信号速度を規定している。802.11aおよび802.11bにしたがって実行されるシステムは互換性がなく、一緒に機能することはない。
【0003】
2.4GHzにおける802.11b規格の大きいデータ信号速度の拡張である802.11g(“802.11gプロポーザル”)と呼ばれる新しい規格が提案されている。現在のところ、802.11gプロポーザルは単にプロポーザルであって、まだ完全に確定された規格ではない。幾つかの重要な技術的挑戦が、その新しい802.11gプロポーザルのための提案されている。802.11gによる装置は2.4GHz帯域において規格802.11bの速度より大きいデータ信号速度で通信することが可能であることが要望されている。一部の構成においては、802.11bによる装置と802.11gによる装置とが互いに通信することが可能であるかどうかに拘わらず、互いに著しい干渉または障害を伴うことなく、同じWLAN環境または範囲において、802.11bによる装置と802.11gによる装置とが共存することが可能であることが求められている。さらに、802.11bによる装置と802.11gによる装置とが、何れかの規格802.11bのデータ信号速度において、互いに通信可能であることが求められている。
無線通信のための二重化パケット構成は、“A Dual Packet Configuration for Wireless Communications”と題された、2000年6月2日に出願された米国特許出願公開第09/586,571号明細書において以前に開示されており、この文献の援用によって発明の説明を一部代替する。この以前のシステムは、シングルキャリア部分と直交周波数分割多重方式(Orthogonal Frequency Division Multiplexing:OFDM)部分が柔軟結合することを可能にした。柔軟結合とは、それら(例えば、データ信号速度とパケット長)の間の情報の軽い伝達を伴うそれらの間の簡単なスイッチングを用いて既存のシングルキャリアモデムとOFDMモデムの両方を可能にすることにより実行を簡単にするために遷移の厳密な制御がなされないことを意味した。特に、厳密な位相、周波数、タイミング、スペクトル(周波数応答)および遷移の時点でのパワー連続性(パワーステップは適度に限界があるが)を維持することは必要ではない。したがって、OFDMシステムは、位相、周波数、タイミング、スペクトルおよびパワー(自動利得制御(AGC))の再捕捉を含む、シングルキャリア捕捉から分離されたそれ自身の捕捉を実行することが必要であった。シングルキャリアに続く短いOFDMのプリアンブルが、再捕捉を提供するために一実施形態において用いられた。
【0004】
WLANを含む無線通信に対する障害は、信号の複数のエコー(反射)が受信器に到達するところにおけるマルチパス歪みである。シングルキャリアシステムとOFDMシステムの両方は、この歪みに対処するためにデザインされたイコライザを含む必要がある。シングルキャリアシステムは、そのプリアンブルとヘッダにおいてイコライザをデザインしている。二重化パケット構成においては、このイコライザの情報はOFDMの受信器により再使用されなかった。それ故、OFDMの受信器が信号を再捕捉できるように、OFDM部分はプレミアブルまたはヘッダを採用した。特に、OFDMの受信器は、パワー、キャリア周波数、キャリア位相、信号のイコライザおよびタイミングパラメータを再捕捉する必要があった。
【0005】
干渉はWLANを用いる場合には深刻な問題である。多くの異なる信号の種類が急増し始めている。ブルートゥース(Bluetooth)規格にしたがって実行されるシステムが、802.11ベースのシステムについての干渉の主なソースを与えている。ブルートゥース規格は、低価格、短距離、周波数ホッピングWLANを規定する。プリアンブルは良好な受信器捕捉のために需要である。それ故に、シングルキャリアからマルチキャリアに遷移するときに失われる全ての情報は、干渉の存在下では好ましくない。
【0006】
特に古くから用いられている装置を用いる場合に、信号の遷移に伴う幾つかの潜在的な問題点がある。送信器は、アナログ現象(例えば、パワー、位相、フィルタデルタ(filter delta))、パワー振幅バックオフ(例えば、パワーデルタ)およびパワー振幅パワーフィードバック変化と直面する可能性がある。受信器は、マルチパスの影響によるAGC摂動、チャンネルインパルス応答(TIR)(マルチパス)見積もりの損失、キャリア移送の損失、キャリア周波数の損失およびタイミングアライメントの損失に直面する可能性がある。
【発明の開示】
【課題を解決するための手段】
【0007】
混合波形構成を用いて通信するための無線通信システムを開示し、そのシステムは 混合波形構成をもつパケットを捕捉し且つ受信するための受信器と混合波形構成にしたがって送信されるための送信器とを含む。混合波形は、プリアンブルとヘッダをもつシングルキャリアスキームにしたがって変調される第1部分とマルチキャリアスキームにしたがって変調される第2部分とを含む。波形は、第1部分から得られるチャンネルインパルス応答(CIR)が第2部分の捕捉のために再使用可能であるように指定される。
【0008】
1つの構成においては、送信器は、パワー、キャリア位相、キャリア周波数、タイミングおよび波形の第1部分と第2部分との間のマルチパススペクトルを保つ。送信器は第1カーネル、第2カーネルおよびスイッチを含むことが可能である。第1カーネルはシングルキャリア変調スキームにしたがって第1部分を変調し、第2カーネルはマルチキャリア変調スキームにしたがって第2部分を生成する。スイッチは、第1部分のために第1カーネルを選択し、送信波形を生成する第2部分のために選択する。第1実施形態においては、第1カーネルは第1サンプルレートにおいて動作し、第2カーネルは第2サンプルレートにおいて動作する。第1カーネルは、マルチキャリア変調スキームのマルチキャリアスペクトルに似ているシングルキャリアスペクトルを用いることが可能である。
【0009】
第1カーネルは連続する時間において指定される時間整形パルスを用いることが可能である。時間整形パルスは、複雑性を最小化するために十分短く且つ所定のスペクトル特性を達成するために十分長い連続時間ウィンドウを用いて切られるレンガ壁近時の無限インパルス応答を用いることにより導かれることが可能である。第1カーネルはナイキスト(Nyquist)基準にしたがって時間整形パルスをサンプリングすることが可能である。第1カーネルの平均出力信号パワーと第2カーネルの平均出力信号パワーは実質的に等しく保たれることが可能である。第1カーネルは第1サンプルレートクロックを用い、第2カーネルは第2サンプルレートクロックを用いることが可能である。この後者の場合、第1サンプルレートクロックと第2サンプルレートクロックは所定のタイミングインターバルにおいてアライメントされる。また、マルチキャリア変調スキームの第1フルサンプルは、第1キャリア変調スキームの最後のサンプルの開始の後、1つのタイミングインターバルを開始する。
【0010】
第1カーネルからの第1シングルキャリア信号は、802.11a規格において規定されるOFDM信号整形のために指定されるウィンドウ関数にしたがって終了されることが可能である。キャリア周波数は、第1カーネルと第2カーネルとの間でコヒーレントであることが可能である。キャリア位相は、第1カーネルと第2カーネルとの間でコヒーレントであることが可能である。コヒーレントな位相を実現するための1つの実施形態においては、第2カーネルマルチキャリア信号のキャリア位相は第2カーネルシングルキャリア信号の最後の部分のキャリア位相により決定される。第2カーネルマルチキャリア信号のキャリア位相は、複数の回転倍数に対応する1つによりさらに回転されることが可能であり、各々の回転倍数は、第2カーネルシングルキャリア信号の最後の部分の複数の所定の位相の1つに対応する。特定の実施形態においては、第1カーネルシングルキャリア変調スキームは、各々のバーカーワードが第1、第2、第3および第4可能位相である802.11bバーカー(Barkers)にしたがい、第2カーネルマルチキャリア変調スキームは802.11a基準のAnnex Gに規定されるようなOFDMにしたがう。この場合に、最後のバーカーワードが第1位相を有する場合OFDMシンボルは第2カーネルにより0度回転され、最後のバーカーワードが第2位相を有する場合90度回転され、最後のバーカーワードが第3位相を有する場合180度回転され、最後のバーカーワードが第4位相を有する場合−90度回転される。
【0011】
全体の混合波形構成の必要な忠実度はマルチキャリアスキームのために指定される必要な忠実度により指定されることが可能である。1つの実施形態においては、必要な忠実度は第2部分のデータレートの関数であり、802.11a規格のOFDMのために指定されるような信号パワーにより規格化される平均2乗誤差により決定される。
【0012】
シンボルレートクロックおよび波形のキャリア周波数は同じ基準クロックから導かれることが可能である。シンボルレートについてのクロック基本波のPPM(Part Per Million)エラーおよびキャリア周波数についてのクロック基本波のPPMエラーは実質的に等しいことが可能である。
【0013】
受信器は、シングルキャリア受信器、マルチキャリア受信器、およびシングルキャリア受信器に受信される信号の第1部分を供給し且つマルチキャリア受信器に受信される信号の第2部分を供給するスイッチを含むことが可能である。シングルキャリア受信器は、プリアンブルとヘッダを含む入力信号の第1部分を捕捉し、CIR評価を決定し、マルチキャリア受信器は入力信号の第2部分のためのCIR評価を用いる。特定の構成においては、信号キャリア受信器はCIR評価に基づく第1イコライザのタップをプログラムし、マルチキャリア受信器は第2イコライザを含み、マルチキャリア受信器は第1イコライザにより決定されるCIR評価に基づく第2イコライザのタップを変調する。
【発明を実施するための最良の形態】
【0014】
本発明にしたがった構成は、信号のシングルキャリア部分の捕捉の間に得られるイコライザ情報を再使用する。この方法において、OFDMプリアンブルは必要とされないが、それは利便性と微調整の両方のためになることが可能である。以下の本発明の開示においては、シングルキャリアセグメントとOFDM(マルチキャリア)セグメントとの間の完全な連続性を提供するための技術について説明する。この連続性は、シングルキャリアセグメントとOFDMセグメントの両方のため送信波形を完全に特定することおよび遷移を特定することにより与えられる。これは、AGC(パワー)、キャリア位相、キャリア周波数、タイミングおよびスペクトル(マルチパス)を含む2つの信号セグメント間の完全な連続性を可能にする。この方法においては、シングルキャリア部分(プリアンブル/ヘッダ)の間に生成された情報は有効であり、マルチキャリア部分の捕捉を開始するために用いられるため、信号は受信器のマルチパス部分により再捕捉される必要はない。保持され且つ蓄積された情報は、無線通信における一般的な干渉に直面する場合に非常に強力な信号を生成する。
【0015】
図1は、特定の部屋または範囲101内で動作する無線ローカルエリアネットワーク(WLAN)システムのブロック図であって、範囲101内には位置する4つのWLAN装置103、105、107および109(103乃至109)が含まれている。WLAN装置103および105は、802.11gプロポーザルを用いる本発明の幾つかの実施形態の少なくとも1つにしたがって実行され、WLAN装置107および109は802.11規格にしたがって実行される。全てのWLAN装置103乃至109は2.4GHzにおいて動作する。WLAN装置103乃至109は、何れかのタイプのコンピュータ(デスクトップ、ポータブル、ラップトップ等)、何れかのタイプの互換性のある通信装置、何れかのタイプの携帯端末(PDA)、またはプリンタ、ファックス装置、スキャナ、ハブ、スイッチ、ルータ等のような何れかの他のタイプのネットワーク装置、等の何れかのタイプの無線通信装置とすることが可能である。本発明は、802.11gプロポーザル、802.11b規格、802.11a規格または2.4GHz周波数帯域に限定されないが、これらの規格および周波数を特定の実施形態において利用することが可能である。
【0016】
WLAN装置107および109は、1、2、5.5および11Mbpsを含む802.11規格の何れかの速度において互いに通信する。WLAN装置103および105は、6、9、12、18、24、36、48または54Mbpsの802.11a規格のデータ信号速度のような幾つかの実施形態にしたがった混合信号構成を用いる、種々の且つ大きいデータ信号速度において、互いに通信する混合信号モードの装置である。ここでは、代替のデータ信号速度の群を考慮する。第2群は、2つの802.11b規格のデータ信号速度、即ち5.5および11Mbpsを含むために、好都合である。
【0017】
1つのまたはそれ以上の第1実施形態においては、混合信号のWLAN装置103乃至109は、互いに重大な干渉を伴わずに同じ範囲101において動作または共存することが可能であり、WLAN装置103、105は、802.11bのWLAN装置107、109に比べて大きいデータ信号速度または種々のデータ信号速度において互いに通信する。第1実施形態においては、WLAN装置103、105は互いに通信することが可能であり、また、WLAN装置107、109は互いに通信することが可能であるが、WLAN装置103、105はWLAN装置107、109と通信することはできない。1つまたはそれ以上の第2実施形態においては、混合信号の装置103、105の少なくとも1つは、802.11bのデータ信号速度の何れか1つまたはそれ以上において、WLAN装置107、109のどちらかと通信することができる規格モードが組み込まれている。少なくとも1つの第3実施形態においては、混合信号の装置103、105は、種々のまたは大きいデータ信号速度において通信し、WLAN装置107、109と互換性がない。それ故、WLAN装置103乃至109は同じ範囲101内に共存することができない。混合信号の装置103,105は2.4GHz帯域において動作を実行されることが可能であるが、他の周波数帯域は検討される。
【0018】
第1または第2実施形態においては、WLAN装置103、105はまた、WLAN装置107、109のどちらかからの妨害または干渉を伴うことなく、互いに通信することができる。WLAN装置103、105は互いに通信しているときに異なるデータにおいて動作するため、これは重要な技術的課題を提供する。本発明は、802.11bの装置107、109と同じ範囲にあるとき、より大きいまたは種々のデータ信号速度において互いに通信することができるように、WLAN装置103、105を実行可能にすることにより、この問題を解決する。さらに、第2の実施形態においては、WLAN装置103、105はまた、802.11bのデータ信号速度においてWLAN装置107、109のどちらかと通信することが可能である。
【0019】
図2は、WLAN装置103、105のどちらかまたは両方において用いられることが可能である、本発明の実施形態にしたがった混合信号の受信器201のブロック図である。入力信号は、受信パワーを調節し且つスイッチ205に対応する信号を供給する自動利得制御器(AGD)203により受信される。スイッチ205は、初めに、シングルキャリア受信器207にその受信信号を供給する。シングルキャリア受信器207は、信号が伝搬されるマルチパス媒体に関連するパラメータを“学び”、既知のデータと比較される受信信号の所定のプリアンブルを分析するイコライザおよび他の回路を含む。シングルキャリア受信器207はまた、パケットが合成信号受信器201のために意図されているかどうか、およびパケットが混合パケットであるかどうかを決定するために、ヘッダを調べ、もしそうである場合、マルチキャリア受信器209に入力信号の残りの部分をスイッチ205が供給するようにする。ヘッダは、混合モードパケットのようなパケットを識別する、モードビットのような混合モード識別子を含むことに特筆する。したがって、1つの実施形態においては、シングルキャリア受信器207は、目的のアドレス等からパケットが混合信号受信器201のために意図されていることを決定し、パケットがモード識別子からの混合モードパケットであることを決定する。パケットは混合信号受信器201のために意図されているが混合モードパケット(例えば、規格802.11bのパケット)ではない場合、シングルキャリア受信器207はパケットの処理を継続する。長さフィールドはまた、混合モードのパケットの全長さを識別するレングス値を含むヘッダに供給される。したがって、混合モードまたは古くからの装置(例えば、802.11bの装置)を含む何れかの装置は、パケットがそのために意図されていることおよび長さ値に対応する時間量によるバックオフを決定することが可能である。
【0020】
マルチキャリア受信器209は、OFDM等により送信される信号を受信するために構成される。マルチキャリア受信器209は、シングルキャリア受信器207により決定されるマルチパス情報が入力信号のパケット部分の間でスムーズな遷移が可能であるように再使用されるように、シングルキャリア受信器207に結合される。特に、AGC(パワー)、キャリア周波数、キャリア位相、イコライザおよびシングルキャリア受信器207からのタイミングパラメータは、入力信号を受信するためにマルチキャリア受信器209により用いられる。OFDMマルチキャリア受信器209は、シングルキャリア受信器207により用いられる情報は得られ且つ用いられるため、信号を再捕捉する必要はない。
【0021】
図3は、本発明の実施形態にしたがって実行される混合信号パケット301の概念図である。パケット301は、1Mbpsにおいて送信されるバーカープリアンブル303を含み、1または2Mbpsにおいて送信されるバーカーヘッダ305が続き、20MHzの選択サンプルレートをもつ6、9、12、18、24、36、48または54Mbpsの代表的なデータ信号速度から選択される何れかのデータ信号速度において送信されるペイロードデータを組み込まれる1つまたはそれ以上のOFDMシンボル307が続く。プリアンブル303とヘッダ305は、11MHzの四位相偏移変調(QPSK:Quadrature Phase Shift Keying)シンボル速度においてシングルキャリアを送信される(そして、二位相偏移変調(BPSK:Binary Phase Shift Keying)がまた検討される)。同じ原理が適用される18.333MHz、22MHz等のような、異なるOFDMサンプルレートが検討される。送信信号が、相補型符号変調OFDMまたはCCC−OFDM(OFDM(マルチキャリア)の後のバーカー(シングルキャリア)を用いる802.11bプリアンブルおよびヘッダ)のために指定される。波形のOFDM部分は、任意に、幾つかの有効なサンプルレート(例えば、22、20または18.33MHz)の1つとすることができる。パケット301は、20MHzの802.11aのサンプルレートを用いるように示されている。目標は信号を指定することである故に、プリアンブルおよびヘッダにおいて得られるチャンネルインパルス応答(CIR)の評価はOFDMにおいて再使用可能である。それ故に、遷移は自由変数を用いることなく完全に指定され、これにより、重要なイコライザの情報が切り替えにおいて保たれるようになる。また、信号の遷移により受信器のパワー変動を排除することが好ましい。古くからの装置はOFDMの知識を有しておらず、それを受け入れる能力も有していないため、パワーステップは、古くからの装置を不確定な状況に置くこととなる。
【0022】
図4Aおよび4Bは、それぞれ、802.11b バーカーチップのスペクトルおよび802.11aのプロットを示すグラフであり、単位は横軸においては規格化された周波数(freq)、縦軸においてはデシベル(dB)である。スペクトルにより、中心周波数、パワースペクトル密度および周波数応答を調べる。802.11b バーカーチップスペクトルは丸みを帯びた最高部を有する一方、802.11a OFDMスペクトルは平坦な最高部を有する。3dBの帯域幅がまた異なっている。図5Aおよび5Bは、802.11b QPSK バーカーチップおよび802.11a OFDMそれぞれのタイムドメインプロットを示すグラフである。たとえ波形が異なるとしても、プリアンブル/ヘッダのシングルキャリア部分303、305とOFDMシンボル部分307との間のスムーズな遷移を生成することが好ましい。1つの解決方法は、略同じ遷移スペクトルと略同じパワーとを用いることにより、802.11b(バーカー)BarkersのプリアンブルおよびヘッダをOFDMのようにすることである。
【0023】
図6Aは、802.11aにおいて規定された64個の有効なサブキャリアからのシングルサブキャリアのパワースペクトル密度(PSD)のプロットを示す図であり、縦軸をdB、横軸を周波数で示している。図6Bは、802.11aにおいて用いられる52個の非ゼロサブキャリアの合成PSDのプロットを示すグラフである。それらの曲線は、それぞれ、規格化された周波数(nfreq)に対してプロットされ、周波数の単位はMHzである。スペクトル/時間整形パルスをデザインすることが好ましく、それにより、OFDMに似た信号のシングルキャリア部分のスペクトルを生成する。このパルスは、受信器がパケットのOFDM部分のためにCIRを補償することができるように、示される。パルスは連続する時間において指定され、それ故、それは独立した実行である。デジタルの実行について、パルスは、何れかの好ましい適切な実行レートにおいてサンプリングされることが可能である。信号は、帯域端における十分急勾配のロールオフをもつ通過帯域において略平坦なスペクトルを提供する必要がある。送信パルスは802.11bの古くから用いられている受信器により簡単に操作されることが望ましい。それは主要なピーク、即ち、インパルス応答において広がり量の少ないピークを有する必要がある。これにより、802.11bの受信器がこのインパルス応答の構成要素を自動追尾することを可能にする。信号は複雑性を最小化するための期間が短いことが望ましい。
【0024】
図7Aは、0MHzを中心とする代表的な“レンガ壁状の”両側をもつスペクトルのプロットであって、2(8.5)=17MHzの選択帯域幅においては1の大きさであり、それ以外の部分においては0の大きさを有する、グラフを示している。レンガ壁スペクトルは、本質的には理想的なローパスフィルタである。代表的な周波数範囲は、示される実施形態においては、2(27)(20(MHz)/64)=16.875MHzとして選択される。図7Bは、レンガ壁スペクトルに対応する関連の無限継続時間応答の一部についてのグラフを示している。一般に、目的のスペクトルはシングルキャリアシステムについて選択される。これは、所望のスペクトルに対してレンガ壁近似を指定することによりなされる。レンガ壁スペクトルは、タイムドメイン(即ち、+/−無限からの期間)における無限インパルス応答を有する。十分広いウィンドウが、所望のスペクトル特性を与えるために選択され、十分狭いウィンドウが複雑性を最小化するために選択され、各々は、一般に技術的判断を用いる。
【0025】
図8は、代表的な連続時間ウィンドウのプロットを示すグラフであり、ハニングウィンドウの連続時間バージョンである。好適な結果を得るために成功裏に用いられることが可能である多くの異なるウィンドウ構成のうちの唯一のものであることが認識される。図9は、レンガ壁スペクトルに対応する無限継続時間応答の一部を用いてオーバーレイされたハニングウィンドウのプロットを示すグラフである。図10は、0+/−0.4μsであるように、約0.8μsに切られて得られる代表的なパルスp(t)のプロットを示すグラフである。パルスp(t)の短い継続は低い複雑性を与える。図11は、OFDMスペクトルに密接に適合することを示すパルスp(t)のスペクトル特性のプロットを示すグラフである。パルスp(t)のスペクトル特性は、OFDMが平坦である略平坦なスペクトルとOFDMがロールオフする早いロールオフを含む。連続時間パルスは、何れかのデジタルフィルタを明らかに構築するために用いられることができ且つ特定の実行に依存することはない。ナイキスト基準(連続時間パルスのサンプリング)は目的の忠実度のレベルにおいて満足する必要がある。パルスp(t)は、ナイキスト基準にしたがって“デジタル化”またはサンプル化される。一部の実施形態においては、サンプルは、以下に詳しく説明するように、そのとき分解される。
【0026】
図12は、連続時間パルスp(t)を用いるデジタル22MHz出力サンプルレートを実現するために用いられる代表的なデジタルフィルタ1201のブロック図である。この場合、代表的なQPSKシンボルジェネレータ1203は、一対の多相デジタルフィルタ1205および1207の各々のそれぞれの入力に11MHzの信号を供給する。説明のための代表的な送信器として用いられるQPSKシンボルジェネレータ1203は、11MHzのレートにおけるデジタルフィルタ1205および1207の両方に各々のシンボルを渡す。各々のデジタルフィルタ1205および1207は11MHzにおいて入力波形をサンプリングし且つ出力を生成する。デジタルフィルタタップ1205は偶数にナンバリングされたサンプルから構成され、デジタルフィルタタップ1207はパルスp(t)の奇数にナンバリングされたサンプルから構成される。マルチプレクサ(MUL)回路等のような選択ロジック1209は、2(11)=22MHzのサンプルレート信号を実現するために多相デジタルフィルタタップ1205および1207の全ての出力を選択する。図13は、連続時間パルスp(t)(マイクロ秒“μs”で時間に対してプロットされる)の多相分解およびサンプリングを示すグラフである。全てのフィルタの全ての出力が用いられるため、効率的なサンプリングレートは22MHzである。
【0027】
図14は、パルスp(t)を用いてデジタル20MHz出力サンプリングレートを達成するために用いられる他の代表的なデジタルフィルタ1401のブロック図である。この場合、ジェネレータ1203に類似している代表的なQPSKシンボルジェネレータ1403は、12の多相デジタルフィルタ1405、1407、1409、...、1411のそれぞれの入力に11MHzの信号を供給する。各々のデジタルフィルタ1405−1411は11MHzにおいて出力を生成し、それ故、サンプリングレートは11MHzから220MHzに増加される。各々のフィルタは、20サンプルだけ間隔を介するサンプルから成る。マルチプレクサ(MUX)等のような選択ロジック1413は、20MHzサンプル信号を実現するために多相デジタルフィルタの11出力毎の1つを選択する。例えば、第1QPSKのシンボルのために、フィルタ1および11のそれぞれの出力が用いられ、第2QPSKのシンボルのために、フィルタ19および10のそれぞれの出力が用いられる等である。また、11入力毎のうちの1つは1つの出力サンプルを生成し、残りの入力サンプル各々は2つの出力サンプルを生成する。図15は、時間に対してプロットされた連続時間パルスp(t)の多相分解およびサンプリングを示すグラフである。11出力毎の1つはフィルタ1405乃至1411の出力が結合された220MHzを用いるため、効率的なサンプリングレートは20MHzである。
【0028】
図16は、本発明の実施形態にしたがって実行される送信器1601のブロック図である。送信器1601は、ソフトスイッチブロック1607に信号のOFDM部分を供給するOFDMカーネルブロック1603を含み、802.11bのプリアンブル/ヘッダのカーネルブロック1605から802.11bのプリアンブルおよびヘッダ部分を受信する。ソフトスイッチブロック1607は、デジタル対アナログコンバータ(DAC)1609に802.11gの信号を供給し、ローパスフィルタ(LPF)1611に結果的に得られるアナログ信号を供給する。フィルタリングされた信号は、SAWフィルタに供給され、直線歪が両方の信号セグメントに誘導されることを示している。SAWフィルタ1613の出力はミキサ1615の1つの入力に供給され、ローカルオシレータ1617からのローカルオシレータ(LO)信号を受信する他の入力を有する。ミキサ1615はその出力において混合または結合された信号をアサートする。
【0029】
歪は送信器、マルチパスチャンネルおよび受信器に導入されることとなる。送信器における明らかな直線歪は、SAWフィルタ1613のようなSAWフィルタである。通信システムにおいては、直線歪は共通であり、波形シンボル(本質的に)に亘って時間的に変化しない。例えば、直線歪は、802.11aの通信と802.11bの通信の両方のためにプリアンブル/ヘッダ部分とペイロード部分との間で共通であると仮定される。同様に、送信無線の直線歪はシングルキャリアセグメントとマルチキャリアセグメントの両方に共通であると仮定される。この方法において、スペクトル結合要求は、イコライザおよびAGCがシングルキャリアからマルチキャリアに継続するようにする。
【0030】
さらに、送信器1601は、サンプル−パワーマッチングスキームが信号のシングルキャリア部分からマルチキャリア部分に継続することが可能であることを示す。特に、1620において示すように、OFDMカーネルブロック1603からの平均信号パワー出力が、1622に示すような802.11bのプリアンブル/ヘッダのカーネルブロック1605からの平均信号出力と略同じことが好適である。
【0031】
図17は、1703で示す20MHzのOFDMサンプルクロックに対して1701で示す11MHzのバーカーチップクロックを比較するグラフを示している。8002.11bの通信スキームは11MHzのチップレートを用いる。802.11bのプリアンブル/ヘッダは11個のチップバーカーワードを用い、それ故、11チップ/μsがある。802.11aのOFDMは20MHzのサンプルレートを用いる。示された実施形態においては、遷移時間のアライメントを達成するために、802.11b(11MHz)と802.11a(20MHz)の信号セグメントとプリアンブル/ヘッダの信号セグメントは、各々のインターバルにおいてアライメントエポック1705により示される1μsインターバル毎の1MHzの境界においてアライメントされる。図18は、シングルキャリア部分のヘッダの最後のバーカーワードを用いてOFDM信号部分のアライメントを示す概念的なグラフである。1803で示す各々のバーカーワードの第1チップは、1μsのアライメントに重点を置いている。1801で示すOFDM信号の第1フル20MHzサンプルは、ヘッダの最後のバーカーワードの第1チップのゼロ位相ピークの後、1μs存在する。効率的には、1805で示す半分のスケールのOFDMサンプルは、フルスケールのサンプルの前に存在する(スムージングのために)。そのような遷移時間のアライメントは、イコライザ情報とタイミング情報とが信号のシングル位相部分と複数位相部分との間で継続することを可能にする。
【0032】
図19は普通のOFDMシンボルの重なりを示すグラフである。図20は、代表的な802.11aのOFDMシンボルのオフセットと終端を示すグラフである。図21は、代表的なシングルキャリアの終了であって、2101で示すような802.11aと整合性が取れるように整形された終了と、2103で示すような802,11aに一致するように整形されたOFDMのオフセットを示すグラフである。これらのグラフに示すように、シングルキャリアは、シングルキャリアからマルチキャリアに遷移するとき、制御された方法で終了される。このシングルキャリアの終了は、シングルパワーギャップを最小化し、次にはその他により1つの信号の改悪を最小化するように、その遷移のポイントでAGCを保つ。802.11bセグメントのシングルキャリアの終了は、802.11aのOFDM整形のために用いられるシングルキャリアの終了と類似している。802.11aは、シングルキャリアセグメントの終了を規定するために用いられる、OFDMシンボルのためのウィンドウ関数を特定する。シングルキャリア信号は、名目上100ミリ秒(ns)のような時間の所定ウィンドウにおいて終了される。シングルキャリアパルス整形フィルタを完全に機能させる必要はない。ヘッダにおける最後のバーカーワードに対して結果的に得られる歪は、11個のチップが処理する利得、熱ノイズおよびマルチパス歪に比べて僅かである。その終了は、デジタル信号処理においてまたはアナログフィルタリングにより明らかに実現されることが可能である。
【0033】
キャリア周波数は両方の波形セグメントのためにコヒーレントであり、それはローカルオシレータ1617によりシングルLO信号を用いることにより実現されることは、さらに好適である。このことはイコライザ情報が継続することを可能にする。キャリア周波数ロックは、位相ロックループ(PPL)回路等を用いて保たれることが可能である。
【0034】
キャリア位相がアライメントされ、それがイコライザ情報を継続することは、さらに好適である。図22Aは、BPSKが2つの四分区間の実数部と虚数部の両方(2位相の1つ)を組み込むことを示すBPSKプロットの単純化されたグラフである。図22Bは,GPSKが4つの全ての四分区間における実数部と虚数部の両方(4位相の1つ)を組み込むことを示すQPSKプロットの単純化されたグラフである。直接シーケンススプレッドスペクトル(DSSS)を用いるシングルキャリア信号は、OFDM信号フォーマットおよび変調スキームと比較して、基本的に異なっている。802.11gのCCK−ODFMについては、これらのフォーマットのどちらかがヘッダのために再使用される。
【0035】
図23は、802.11gのヘッダにおける、最後のチップではなく、バーカーワードとその後のOFDMシンボルサンプルとの間の位相関係を示す一連のグラフである。802.11a規格のAnnex Gは、実数成分および虚数成分を示すOFDMシンボルをどのように送信するかを記載している。2301、2303、2305および2307で示す矢印は最後のバーカーワードの4つの可能な位相を示している。最後のバーカーワードの移送に基づいて、各々のOFDMサンプルは同じであって所定の量だけ回転されるか回転されないことから、OFDMシンボルの位相は最後のバーカーワードの位相により決定される。2302、2304、2306および2308で示す矢印は、⇒2301、2303、2305および2307それぞれにより示されるバーカー位相に対応するOFDMシンボルに適用される対応する4つの相対的位相シフトを示す。例えば、最後のバーカーワードの位相が第1四分区間にある場合、OFDMシンボルの位相は、802.11a規格のAnnex Gにおいて記載されているようなOFDM位相に関連して0度回転される(回転されない、または1を掛けられる)。さらに、最後のバーカーワードの移送が第2四分区間(135度の位相回転)にある場合、OFDMシンボルの位相は802.11aのAnnex Gにおけるサンプルの位相に関して90度回転され(即ち、“j”が掛けられ)、最後のバーカーワードの位相が第3四分区間(−135度の位相回転)にある場合、OFDMシンボルの位相は802.11aのAnnex Gにおけるサンプルの位相に関して180度回転され(即ち、“−1”が掛けられ)、最後のバーカーワードの位相が第4四分区間(−45度の位相回転)にある場合、OFDMシンボルの位相は802.11aのAnnex Gにおけるサンプルの位相に関して−90度回転される(即ち、“−j”が掛けられる)。
【0036】
多くのデザインの実行において、ことなるトランシーバ間において信号の完全性と互換性を維持するために、相対的な精度および忠実度の条件を知ることは、しばしば好適である。このやり方において、デザイナーは、コストを削減し且つ効率を最大化することができる一方、規格の範囲内にパラメータおよび特性を維持することができる。精度特性は、送信デザイナーが生成するショートカットを制約し、他方では、受信器性能に著しく悪影響を与えることとなる。1つの実施形態においては、残タイ的な波形性能の必要な忠実度が、802.11a規格のOFDM信号の忠実度の条件にしたがった方法論を用いて確立される。このようにして、たとえシングルキャリア部分が典型的には減少データレートにあろうが、シングルキャリア部分の必要な忠実度はマルチキャリア部分と同じである。802.11a規格において説明されるように、OFDMのための必要な忠実度は、次のデータレート対エラーベクトルの大きさ(EVM)についての表1において示すように、EVM規格により設定され、ここでは、データレートの単位はMbpsであり、EVMの単位はdBである。
【0037】
【表1】
Figure 2004537892
表1に示すように、OFDMの精度はデータレートの関数である。データレートが大きい程、送信波形はより複雑で錯綜したものとなり、必要とされる精度はより大きくなる。この必要な忠実度は全体的な波形に適用される。EVMは、信号パワーにより規格化される平均二乗エラー(MSE)と同じである。MSEは、最適な時間アライメント、最適な利得アライメントおよび最適な位相アライメントの後、測定されることが可能である。また、好適であれば、OFDMとシングルキャリアのバーカーチップとに共通の直線歪はバックアウトされることが可能である。802.11bの精度規格がさらに厳しくなる場合、それはシングルキャリア部分のために用いられることが可能である。
【0038】
802.11b規格の部分と802.11a規格の全ての部分はロックドオシレータの条件を用いる。ロックドオシレータ特性は、タイミングトラッキング情報がキャリア周波数および位相から導かれることを可能にする。送信波形に葉2つの基本的なクロックがあり、それらは、シンボルレートクロックとキャリア周波数である。送信器の少なくとも1つの実施形態においては、802.11gの信号の全ては、同じクロック基準から導かれる信号レートクロックとキャリア周波数とを有する。さらに、これら2つのクロック信号におけるPPM(part−per−million)エラーは等しいことが好ましい。受信器は、キャリア周波数エラーからのシンボルレートのタイミングをトラッキングするようにされる。
【0039】
混合信号受信器201のマルチキャリア受信器209部分は、ここで説明したように、信号のODFM部分を受信するために、波形のシングルキャリア受信器207からの遷移の挙動を得る。そのキャリア周波数および位相はコヒーレントである。さらに、時間アライメント、信号レベル(AGC)およびチャンネルインパルス応答(CIR)は各々コヒーレントである。信号キャリア受信器209は、シングルキャリアセグメントにより用いられる既知のパルス波形を用いて、修正される。この方法において、複数のキャリア受信器209は、信号のOFDM部分を再捕捉する必要はないが、スムーズな信号キャリアからマルチキャリア信号への遷移のための所定のまたは既知の情報と共にシングルキャリア受信器207により得られる情報を用いる。また、分離OFDMプリアンブル/ヘッダは必要ないが、好適には、好都合で微小な調整のために用いられることが可能である。
【0040】
本発明にしたがったシステムおよび方法は好適な実施形態に結び付けて説明したが、上記の特定の形態に限定されることを意図するものではなく、それとは対照的に、本発明の主旨および範囲に適切に含まれることができる変形、修正および等価であるような場合をカバーすることを意図するものである。
【図面の簡単な説明】
【0041】
【図1】同じ部屋または範囲内で動作する4つの装置を含むWLANシステムのブロック図であって、それら装置の2つが802.11b規格にしたがって実行され、且つ他の2つが802.11gプロポーザルにしたがって実行されるWLANシステムのブロック図である。
【図2】図1の高いレートの装置のどちらかまたは両方において用いられることが可能である、本発明の実施形態にしたがって実行される混合信号受信器のブロック図である。
【図3】本発明の実施形態にしたがって実行される混合信号パケットの概念図である。
【図4A】802.11bバーカーチップのスペクトルのプロットを示すグラフである。
【図4B】802.11aOFDMのスペクトルのプロットを示すグラフである。
【図5A】802.11bQPSKバーカーチップの時間ドメインプロットを示すグラフである。
【図5B】802.11aOFDMの時間ドメインプロットを示すグラフであって、図5Aの波形とは完全に異なる波形を示すグラフである。
【図6A】802.11a規格において規定される可能な64個の可能なサブキャリアの範囲外のシングルサブキャリアのパワースペクトル密度(PSD)のプロットを示すグラフである。
【図6B】802.11aにおいて用いられる52個の非ゼロサブキャリアの混合PSDのプロットを示すグラフである。
【図7A】0MHzを中心とする代表的な両側が垂直である“レンガ壁”スペクトルのプロットを示すグラフである。
【図7B】図7Aのレンガ壁スペクトルに対応する関連の無限継続時間応答の一部を示すグラフである。
【図8】代表的な連続時間ウィンドウであって、ハニングウィンドウの連続時間バージョンであるプロットを示すグラフである。
【図9】図7Aのレンガ壁スペクトルに対応する無限継続時間応答の一部とオーバーレイする図8のハニングウィンドウのプロットを示すグラフである。
【図10】図9において示され且つ略0.8μsに切られたオーバーレイから結果として得られる代表的なパルスp(t)のプロットを示すグラフである。
【図11】OFDMスペクトルに非常に適合することを示すパルスp(t)のスペクトル特性のプロットを示すグラフである。
【図12】連続時間パルスp(t)を用いて22MHzのデジタル出力サンプルレートを設計するために用いられる代表的なデジタルフィルタを示すブロック図である。
【図13】図12のサンプリングスキームを用いて連続時間パルスp(t)のサンプリングおよび多相分解を示すグラフである。
【図14】パルスp(t)を用いて20MHzのデジタル出力サンプルを設計するために用いられる他の代表的なデジタルフィルタを示すブロック図である。
【図15】図14のサンプリングスキームを用いて連続時間パルスp(t)のサンプリングおよび多相分解を示すグラフである。
【図16】本発明の実施形態にしたがって実行される送信器のブロック図である。
【図17】20MHzのOFDMサンプリングブロックに対して11MHzのバーカーチップクロックを比較するグラフである。
【図18】シングルキャリア部分のヘッダの最後のバーカーワードを用いてOFDM信号部分のアライメントを示す概念的グラフである。
【図19】一般のOFDMシンボルの重なりを示すグラフである。
【図20】代表的な802.11aOFDMシンボルの始まりと終わりを示すグラフである。
【図21】802.11aに一致する整形された代表的なシングルキャリアの終わりと802.11aに一致する整形されたOFDMの始まりとを示すグラフである。
【図22A】BPSKが2つの四分区間(2つの位相の1つ)における実数部と虚数部の両方を組み合わせることを示す単純化されたBPSKを示すグラフである。
【図22B】QPSKが2つの四分区間(4つの位相の1つ)における実数部と虚数部の両方を組み合わせることを示す単純化されたQPSKを示すグラフである。
【図23】802.11規格のAnnex Gにおいて規定されるバーカーワードにしたがったOFDMシンボルの相対的な位相と802.11gにおける最後のバーカーワードの位相をプロットするグラフである。

Claims (23)

  1. 混合波形構成を用いて通信するための無線通信システムであって:
    プリアンブルとヘッダをもつシングルキャリアスキームにしたがって変調される第1部分とマルチキャリアスキームにしたがって変調される第2部分とを含む混合波形構成にしたがって送信するための送信器;
    第1部分から得られるチャンネルインパルス応答評価が第2部分の捕捉のために再使用可能であるように指定される波形;並びに
    混合波形構成をもつパケットを捕捉し且つ受信するための受信器;
    から構成されることを特徴とする無線通信システム。
  2. 請求項1に記載の無線通信システムであって、送信器は、パワー、キャリア位相、キャリア周波数、タイミングおよび波形の第1部分と第2部分との間のマルチパススペクトルを保つ、ことを特徴とする無線通信システム。
  3. 請求項2に記載の無線通信システムであって、送信器は:
    第1キャリア変調スキームにしたがって第1部分を変調する第1カーネル;
    マルチキャリア変調スキームにしたがって第2部分を生成する第2カーネル;
    第1カーネルと第2カーネルに結合されたスイッチであって、送信波形を生成する第2部分のための第2カーネルと第1部分のための第1カーネルを選択するスイッチ;
    から構成される、ことを特徴とする無線通信システム。
  4. 請求項3に記載の無線通信システムであって、第1カーネルは第1サンプルレートにおいて動作し、第2カーネルは第2サンプルレートにおいて動作する、ことを特徴とする無線通信システム。
  5. 請求項3に記載の無線通信システムであって、第1カーネルはマルチキャリア変調スキームのマルチキャリアスペクトルに似ているシングルキャリアスペクトルを用いる、ことを特徴とする無線通信システム。
  6. 請求項5に記載の無線通信システムであって、第1カーネルは連続する時間において指定される時間整形パルスを用いる、ことを特徴とする無線通信システム。
  7. 請求項6に記載の無線通信システムであって、時間整形パルスは、所望のスペクトル特性を得るためには十分長く且つ複雑性を最小化するためには十分短い連続時間ウィンドウを用いて切られるレンガ壁近似の無限インパルス応答を用いて導かれる、ことを特徴とする無線通信システム。
  8. 請求項6に記載の無線通信システムであって、第1カーネルはナイキスト基準にしたがって時間整形パルスをサンプリングする、ことを特徴とする無線通信システム。
  9. 請求項3に記載の無線通信システムであって、第1カーネルの平均出力信号パワーと第2カーネルの平均出力信号パワーは実質的に等しい、ことを特徴とする無線通信システム。
  10. 請求項3に記載の無線通信システムであって、シングルキャリア変調スキームは802.11bバーカーにしたがい、マルチキャリア変調スキームは直交周波数分割多重方式(OFDM)を用いる802.11a規格にしたがう、ことを特徴とする無線通信システム。
  11. 請求項3に記載の無線通信システムであって、第1カーネルは第1サンプルレートクロックを用い、第2カーネルは第2サンプルレートクロックを用い、第1および第2サンプルレートクロックは所定のタイミングインターバルにおいてアライメントされ、並びに、マルチキャリア変調スキームの第1フルサンプルはシングルキャリア変調スキームの最後のサンプルの始めの後に1つのタイミングインターバルを始める、ことを特徴とする無線通信システム。
  12. 請求項3に記載の無線通信システムであって、第1カーネルからのシングルキャリア信号は802.11a規格において規定されるOFDM信号整形のためのウィンドウ関数にしたがって終了される、ことを特徴とする無線通信システム。
  13. 請求項3に記載の無線通信システムであって、キャリア周波数は第1カーネルと第2カーネルとの間でコヒーレントである、ことを特徴とする無線通信システム。
  14. 請求項3に記載の無線通信システムであって、キャリア位相は第1カーネルと第2カーネルとの間でコヒーレントである、ことを特徴とする無線通信システム。
  15. 請求項14に記載の無線通信システムであって、第2カーネルマルチキャリア信号のキャリア位相は第2カーネルシングルキャリア信号の最後の部分のキャリア位相により決定される、ことを特徴とする無線通信システム。
  16. 請求項15に記載の無線通信システムであって、第2カーネルマルチキャリア信号のキャリア位相は複数の回転倍数の対応する1つにより回転され、各々の回転倍数は第2カーネルシングルキャリア信号の最後の部分の複数の所定の位相の1つに対応する、ことを特徴とする無線通信システム。
  17. 請求項16に記載の無線通信システムであって、第1カーネルシングルキャリア変調スキームは各々のバーカーワードが第1、第2、第3および第4可能位相である802.11bバーカーにしたがい、第2カーネルマルチキャリア変調スキームは802.11a規格のAnnex Gに規定されるようなOFDMにしたがい、並びに、OFDMシンボルは、最後のバーカーワードが第1位相を有する場合に0度、最後のバーカーワードが第2位相を有する場合に90度、最後のバーカーワードが第3位相を有する場合に180度および最後のバーカーワードが第4位相を有する場合に−90度OFDMサンプルが回転される、ことを特徴とする無線通信システム。
  18. 請求項3に記載の無線通信システムであって、全体混合波形構成の必要な忠実度はマルチキャリアスキームのために指定される必要な忠実度により指定される、ことを特徴とする無線通信システム。
  19. 請求項18に記載の無線通信システムであって、必要な忠実度は第2部分のデータレートの関数であり、802.11a規格におけるOFDMのために指定されるような信号パワーにより規格化される平均2乗エラーにより決定される、ことを特徴とする無線通信システム。
  20. 請求項2に記載の無線通信システムであって、シンボルレートクロックと波形のキャリア周波数は同じ基準クロックから導かれる、ことを特徴とする無線通信システム。
  21. 請求項20に記載の無線通信システムであって、シンボルレートについてのクロック基本波のPPMエラーおよびキャリア周波数についてのクロック基本波のPPMエラーは実質的に等しい、ことを特徴とする無線通信システム。
  22. 請求項2に記載の無線通信システムであって、受信器は:
    シングルキャリア受信器;
    マルチキャリア受信器;並びに
    シングルキャリア受信器とマルチキャリア受信器と結合されるスイッチであって、シングルキャリア受信器に受信される信号の第1部分を供給し且つマルチキャリア受信器に受信される信号の第2部分を供給するスイッチ;
    から構成され、
    シングルキャリア受信器は、プリアンブルとヘッダとを含む入力信号の第1部分を捕捉し且つチャンネルインパルス応答(CIR)評価を決定し、マルチキャリア受信器は入力信号の第2部分のためのCIR評価を用いる;
    ことを特徴とする無線通信システム。
  23. 請求項22に記載の無線通信システムであって:
    第1イコライザを含む信号キャリア受信器であって、信号キャリア受信器はCIR評価に基づく第1イコライザのタップをプログラムする、信号キャリア受信器;並びに
    第2イコライザを含むマルチキャリア受信器であって、マルチキャリア受信器は第1イコライザにより決定されるCIR評価に基づく第2イコライザのタップを変調する、マルチキャリア受信器;
    からさらに構成される、ことを特徴とする無線通信システム。
JP2003511486A 2001-07-06 2002-07-02 混合波形構成を用いて通信するための無線通信システム Pending JP2004537892A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30643801P 2001-07-06 2001-07-06
US10/143,134 US6754195B2 (en) 2001-07-06 2002-05-10 Wireless communication system configured to communicate using a mixed waveform configuration
PCT/US2002/021095 WO2003005652A1 (en) 2001-07-06 2002-07-02 Wireless communication system configured to communicate using a mixed waveform configuration

Publications (1)

Publication Number Publication Date
JP2004537892A true JP2004537892A (ja) 2004-12-16

Family

ID=26840710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003511486A Pending JP2004537892A (ja) 2001-07-06 2002-07-02 混合波形構成を用いて通信するための無線通信システム

Country Status (6)

Country Link
US (1) US6754195B2 (ja)
JP (1) JP2004537892A (ja)
CN (1) CN1582553A (ja)
DE (1) DE10297028T5 (ja)
TW (1) TW578397B (ja)
WO (1) WO2003005652A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506301A (ja) * 2003-09-15 2007-03-15 パルス−リンク、インク 超広帯域通信プロトコル
JP2010081014A (ja) * 2008-09-24 2010-04-08 Panasonic Electric Works Co Ltd 変調方法および送信装置ならびにofdm変調方法およびofdm送信装置
JP2011527854A (ja) * 2008-07-08 2011-11-04 マーベル ワールド トレード リミテッド 広帯域無線通信システムの物理層フレーム形式設計
JP2012502565A (ja) * 2008-09-09 2012-01-26 クゥアルコム・インコーポレイテッド コモンモードおよび統一されたフレームフォーマット
JP2012523201A (ja) * 2009-04-06 2012-09-27 インテル コーポレイション 衝突回避のための方法及び装置
US8358668B2 (en) 2008-04-08 2013-01-22 Marvell World Trade Ltd. Physical layer frame format design for wideband wireless communications systems
JP2013118679A (ja) * 2013-02-05 2013-06-13 Panasonic Corp 変調方法および送信装置ならびにofdm変調方法およびofdm送信装置

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274652B1 (en) 2000-06-02 2007-09-25 Conexant, Inc. Dual packet configuration for wireless communications
SE519303C2 (sv) * 2000-06-20 2003-02-11 Ericsson Telefon Ab L M Anordning för smalbandig kommunikation i ett multicarrier- system
US7394864B2 (en) 2001-07-06 2008-07-01 Conexant, Inc. Mixed waveform configuration for wireless communications
US6754195B2 (en) 2001-07-06 2004-06-22 Intersil Americas Inc. Wireless communication system configured to communicate using a mixed waveform configuration
US7161987B2 (en) 2001-09-26 2007-01-09 Conexant, Inc. Single-carrier to multi-carrier wireless architecture
US7170880B2 (en) * 2001-10-16 2007-01-30 Conexant, Inc. Sample rate change between single-carrier and multi-carrier waveforms
US7099380B1 (en) 2001-11-16 2006-08-29 Marvell International Ltd. Apparatus for antenna diversity for wireless communication and method thereof
US7224704B2 (en) * 2002-04-01 2007-05-29 Texas Instruments Incorporated Wireless network scheduling data frames including physical layer configuration
US20040001448A1 (en) * 2002-06-28 2004-01-01 Preston Shawn E. System and method for transmitting highly correlated preambles in QAM constellations
US7301924B1 (en) 2002-07-15 2007-11-27 Cisco Technology, Inc. Media access control for MIMO wireless network
JP3679080B2 (ja) * 2002-09-30 2005-08-03 株式会社バッファロー 無線lan、無線lanによるデータ送受信方法およびデータ送受信制御プログラムを記録した媒体
JP2004297481A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 無線通信システム、無線基地局および無線通信端末
US8743837B2 (en) * 2003-04-10 2014-06-03 Qualcomm Incorporated Modified preamble structure for IEEE 802.11A extensions to allow for coexistence and interoperability between 802.11A devices and higher data rate, MIMO or otherwise extended devices
US7916803B2 (en) 2003-04-10 2011-03-29 Qualcomm Incorporated Modified preamble structure for IEEE 802.11a extensions to allow for coexistence and interoperability between 802.11a devices and higher data rate, MIMO or otherwise extended devices
US7236747B1 (en) * 2003-06-18 2007-06-26 Samsung Electronics Co., Ltd. (SAIT) Increasing OFDM transmit power via reduction in pilot tone
US7062703B1 (en) * 2003-07-28 2006-06-13 Cisco Technology, Inc Early detection of false start-of-packet triggers in a wireless network node
US7039412B2 (en) * 2003-08-08 2006-05-02 Intel Corporation Method and apparatus for transmitting wireless signals on multiple frequency channels in a frequency agile network
US20050052990A1 (en) * 2003-09-10 2005-03-10 Envara Ltd. Orthogonal frequency division multiplexing error vector magnitude calibration based on separate multi-tone measurement
US20050058114A1 (en) * 2003-09-15 2005-03-17 John Santhoff Ultra-wideband communication protocol
US20050058102A1 (en) * 2003-09-15 2005-03-17 Santhoff John H. Ultra-wideband communication protocol
US20050058153A1 (en) * 2003-09-15 2005-03-17 John Santhoff Common signaling method
US7386074B1 (en) 2003-10-06 2008-06-10 Redpine Signals, Inc. Digital automatic gain control method and apparatus
US7616698B2 (en) 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
EP3267754B1 (en) * 2004-01-08 2019-02-06 Sony Corporation Wireless communication devices
US7542453B2 (en) 2004-01-08 2009-06-02 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
US7474608B2 (en) * 2004-01-12 2009-01-06 Intel Corporation Method for signaling information by modifying modulation constellations
KR20050075477A (ko) * 2004-01-15 2005-07-21 삼성전자주식회사 Mimo 스테이션 간에 통신하는 방법
WO2005117314A1 (en) * 2004-05-20 2005-12-08 Conexant Systems, Inc. Cyclic diversity systems and methods
US8125946B2 (en) * 2004-05-21 2012-02-28 Samsung Electronics Co., Ltd. Wireless network and mobile stations for implementing variable bandwidth service on demand
JP4838241B2 (ja) * 2004-05-27 2011-12-14 クゥアルコム・インコーポレイテッド Ieee802.11a装置間における相互動作のための変更されたieee802.11a
US7643453B2 (en) * 2004-06-22 2010-01-05 Webster Mark A Legacy compatible spatial multiplexing systems and methods
US8077592B2 (en) 2004-06-22 2011-12-13 Intellectual Ventures I Llc Packet processing systems and methods
WO2006014648A2 (en) * 2004-07-20 2006-02-09 Conexant Systems, Inc. Packet generation systems and methods
WO2006057677A1 (en) * 2004-07-21 2006-06-01 Conexant Systems, Inc. Packet processing systems and methods
US7299042B2 (en) * 2004-07-30 2007-11-20 Pulse-Link, Inc. Common signaling method and apparatus
US8139544B1 (en) * 2004-07-30 2012-03-20 Intellectual Ventures I Llc Pilot tone processing systems and methods
US7864659B2 (en) 2004-08-02 2011-01-04 Interdigital Technology Corporation Quality control scheme for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems
FR2875358B1 (fr) 2004-09-15 2006-12-15 Eads Telecom Soc Par Actions S Insertion d'un flux secondaire d'informations binaires dans un flux principal de symboles d'une modulation numerique
CN101588463B (zh) * 2004-12-17 2012-12-12 三星电子株式会社 数字多媒体接收机及其数字多媒体接收方法
CN101383919A (zh) * 2004-12-17 2009-03-11 三星电子株式会社 数字多媒体接收机及其数字多媒体接收方法
CN101383800A (zh) * 2004-12-17 2009-03-11 三星电子株式会社 数字多媒体接收机及其数字多媒体接收方法
CN101383920A (zh) * 2004-12-17 2009-03-11 三星电子株式会社 数字多媒体接收机及其数字多媒体接收方法
CN1798286A (zh) * 2004-12-20 2006-07-05 三星电子株式会社 数字多媒体接收机及其接收方法
CN1798283B (zh) * 2004-12-20 2010-11-24 三星电子株式会社 一种数字多媒体信号接收机及其接收方法
EP1847050B1 (en) * 2005-02-08 2016-04-13 QUALCOMM Incorporated Wireless messaging preambles allowing for beamforming and legacy device coexistence
US7609751B1 (en) 2005-05-24 2009-10-27 L-3 Communications Corporation Method and apparatus to initiate communications between an unknown node and an existing secure network
US7760697B1 (en) * 2005-05-24 2010-07-20 L-3 Communications Corporation Fast and long range node discovery in spread spectrum networks
US7436878B1 (en) 2005-05-24 2008-10-14 L-3 Communications Corporation Method and apparatus for efficient carrier bin search for a composite spreading code
US8169890B2 (en) * 2005-07-20 2012-05-01 Qualcomm Incorporated Systems and method for high data rate ultra wideband communication
US7711061B2 (en) * 2005-08-24 2010-05-04 Broadcom Corporation Preamble formats supporting high-throughput MIMO WLAN and auto-detection
CN101258701B (zh) * 2005-09-07 2011-08-17 日本电气株式会社 自适应无线电/调制装置、接收器装置、无线通信系统和无线通信方法
CN1933467B (zh) * 2005-09-14 2010-10-06 中国科学院上海微系统与信息技术研究所 宽带单载波/多载波均衡接收装置及其接收方法
JP5065609B2 (ja) * 2006-03-20 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ 基地局、移動局および伝搬路測定用信号の送信制御方法
JP4247267B2 (ja) * 2006-07-31 2009-04-02 株式会社エヌ・ティ・ティ・ドコモ 無線送信機、無線受信機、無線通信システム、及び無線信号制御方法
CN101755498B (zh) 2007-07-18 2016-09-28 马维尔国际贸易有限公司 一种无线网络和客户站
EP2592766B1 (en) 2007-07-18 2020-04-22 Marvell World Trade Ltd. Access point with simultaneous downlink transmission of independent data for multiple client stations
WO2009012618A1 (fr) * 2007-07-25 2009-01-29 Alcatel Shanghai Bell Co., Ltd. Procédé de transmission de données entre une station de base et une station mobile et station de base pour la mise en œuvre du procédé
US8441968B2 (en) * 2008-07-08 2013-05-14 Marvell World Trade Ltd. Physical layer frame format design for wideband wireless communications systems
US8982889B2 (en) 2008-07-18 2015-03-17 Marvell World Trade Ltd. Preamble designs for sub-1GHz frequency bands
US20100111229A1 (en) 2008-08-08 2010-05-06 Assaf Kasher Method and apparatus of generating packet preamble
JP5213586B2 (ja) * 2008-08-25 2013-06-19 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置及び基地局装置並びに通信制御方法
US9077594B2 (en) 2009-07-23 2015-07-07 Marvell International Ltd. Coexistence of a normal-rate physical layer and a low-rate physical layer in a wireless network
JP5503961B2 (ja) 2009-12-25 2014-05-28 株式会社デンソーアイティーラボラトリ 観測信号処理装置
JP5936280B2 (ja) * 2011-01-28 2016-06-22 マーベル ワールド トレード リミテッド 長距離無線lanの物理層フレーム形式
US9178745B2 (en) 2011-02-04 2015-11-03 Marvell World Trade Ltd. Control mode PHY for WLAN
US8885740B2 (en) 2011-02-04 2014-11-11 Marvell World Trade Ltd. Control mode PHY for WLAN
JP6057259B2 (ja) 2011-08-29 2017-01-11 マーベル ワールド トレード リミテッド システムおよび方法
CN104396154B (zh) 2012-05-15 2018-02-23 马维尔国际贸易有限公司 用于wlan的完全压缩和部分压缩的反馈格式
US8792399B2 (en) * 2012-07-11 2014-07-29 Blackberry Limited Phase-rotated reference signals for multiple antennas
CN103546400B (zh) * 2013-05-13 2017-02-15 上海数字电视国家工程研究中心有限公司 单多载波信号识别装置、方法及接收机
JP6253784B2 (ja) 2013-09-10 2017-12-27 マーベル ワールド トレード リミテッド 屋外wlanのための拡張ガードインターバル
US10194006B2 (en) 2013-10-25 2019-01-29 Marvell World Trade Ltd. Physical layer frame format for WLAN
US10218822B2 (en) 2013-10-25 2019-02-26 Marvell World Trade Ltd. Physical layer frame format for WLAN
KR20160077134A (ko) 2013-10-25 2016-07-01 마벨 월드 트레이드 리미티드 와이파이를 위한 레인지 확장 모드
US11855818B1 (en) 2014-04-30 2023-12-26 Marvell Asia Pte Ltd Adaptive orthogonal frequency division multiplexing (OFDM) numerology in a wireless communication network
US9923658B2 (en) * 2014-12-23 2018-03-20 Intel Corporation Interference cancelation
CN107710655B (zh) 2015-08-07 2019-06-28 三菱电机株式会社 发送装置、接收装置、发送方法以及接收方法
CN107068169B (zh) * 2017-03-01 2019-09-27 中国电子科技集团公司第三十八研究所 一种可任意配置码元序列的相位编码信号产生系统及方法
EP3410605A1 (en) 2017-06-02 2018-12-05 Intel IP Corporation Communication device and method for radio communication

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241545A (en) 1990-11-14 1993-08-31 Motorola, Inc. Apparatus and method for recovering a time-varying signal using multiple sampling points
US5425050A (en) 1992-10-23 1995-06-13 Massachusetts Institute Of Technology Television transmission system using spread spectrum and orthogonal frequency-division multiplex
US6128276A (en) 1997-02-24 2000-10-03 Radix Wireless, Inc. Stacked-carrier discrete multiple tone communication technology and combinations with code nulling, interference cancellation, retrodirective communication and adaptive antenna arrays
US6434119B1 (en) 1998-03-19 2002-08-13 Texas Instruments Incorporated Initializing communications in systems using multi-carrier modulation
US6067391A (en) 1998-09-02 2000-05-23 The United States Of America As Represented By The Secretary Of The Air Force Multiply periodic refractive index modulated optical filters
US6344807B1 (en) 1999-09-24 2002-02-05 International Business Machines Corporation Packet-frame generator for creating an encoded packet frame and method thereof
US6298035B1 (en) * 1999-12-21 2001-10-02 Nokia Networks Oy Estimation of two propagation channels in OFDM
US6754195B2 (en) 2001-07-06 2004-06-22 Intersil Americas Inc. Wireless communication system configured to communicate using a mixed waveform configuration

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506301A (ja) * 2003-09-15 2007-03-15 パルス−リンク、インク 超広帯域通信プロトコル
US8358668B2 (en) 2008-04-08 2013-01-22 Marvell World Trade Ltd. Physical layer frame format design for wideband wireless communications systems
JP2011527854A (ja) * 2008-07-08 2011-11-04 マーベル ワールド トレード リミテッド 広帯域無線通信システムの物理層フレーム形式設計
JP2012502565A (ja) * 2008-09-09 2012-01-26 クゥアルコム・インコーポレイテッド コモンモードおよび統一されたフレームフォーマット
JP2010081014A (ja) * 2008-09-24 2010-04-08 Panasonic Electric Works Co Ltd 変調方法および送信装置ならびにofdm変調方法およびofdm送信装置
JP2012523201A (ja) * 2009-04-06 2012-09-27 インテル コーポレイション 衝突回避のための方法及び装置
JP2013118679A (ja) * 2013-02-05 2013-06-13 Panasonic Corp 変調方法および送信装置ならびにofdm変調方法およびofdm送信装置

Also Published As

Publication number Publication date
DE10297028T5 (de) 2004-07-22
WO2003005652A1 (en) 2003-01-16
US6754195B2 (en) 2004-06-22
TW578397B (en) 2004-03-01
CN1582553A (zh) 2005-02-16
US20030012160A1 (en) 2003-01-16

Similar Documents

Publication Publication Date Title
JP2004537892A (ja) 混合波形構成を用いて通信するための無線通信システム
JP2005521270A (ja) 無線通信のための混合波形構成
US7161987B2 (en) Single-carrier to multi-carrier wireless architecture
US7170880B2 (en) Sample rate change between single-carrier and multi-carrier waveforms
JP3048563B2 (ja) 直交周波数分割多重通信装置とその方法
CA2345776C (en) Digital variable symbol rate modulation
US7145934B2 (en) Multichannel signal transmission and reception for bluetooth systems
US8477594B2 (en) Backward-compatible long training sequences for wireless communication networks
EP1142163B1 (en) Handset time synchronization to a wireless telephone base station
WO2003092152A1 (en) Dc removal techniques for wireless networking
JP2004221940A (ja) 通信装置
EP1018825B1 (en) Transceiver prerotation based on carrier offset
EP2387191A2 (en) Spectral smoothing wireless communications device and associated methods
MXPA99012057A (en) Transceiver prerotation based on carrier offset