JP2004532424A5 - - Google Patents

Download PDF

Info

Publication number
JP2004532424A5
JP2004532424A5 JP2002573944A JP2002573944A JP2004532424A5 JP 2004532424 A5 JP2004532424 A5 JP 2004532424A5 JP 2002573944 A JP2002573944 A JP 2002573944A JP 2002573944 A JP2002573944 A JP 2002573944A JP 2004532424 A5 JP2004532424 A5 JP 2004532424A5
Authority
JP
Japan
Prior art keywords
photon
defect
optical waveguide
numerical value
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002573944A
Other languages
English (en)
Other versions
JP4251535B2 (ja
JP2004532424A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2002/005240 external-priority patent/WO2002075392A2/en
Publication of JP2004532424A publication Critical patent/JP2004532424A/ja
Publication of JP2004532424A5 publication Critical patent/JP2004532424A5/ja
Application granted granted Critical
Publication of JP4251535B2 publication Critical patent/JP4251535B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Claims (4)

  1. 光子バンドギャップ結晶光導波路であって、
    ピッチを有する光子バンドギャップ結晶と、
    平断面及び前記平断面に直角な長さからなる広がりを囲み且つ数値により特性が示される境界を有する欠陥と、を含み、
    前記数値は、前記欠陥により生成される局所モードの波長が光子バンドギャップの波長範囲において伝搬するように選択され、且つ、前記欠陥の数値の前記ピッチに対する比率が、光子バンドギャップ内の表面モードの励起を避けるように選択されていることを特徴とする光子バンドギャップ結晶光導波路。
  2. 請求項1記載の光子バンドギャップ結晶光導波路であって、前記光子バンドギャップ結晶は体積率が0.67以上の気孔を含み、前記欠陥は六辺形の断面を有する空隙であり、前記空隙に閉じ込められるモードパワー割合が0.6以下ではなく、前記数値は前記6角形の中心から前記6角形の側部に直角をなす線の長さであり、且つ、前記数値のピッチに対する比率が0.9乃至1.35の範囲を有することを特徴とする光子バンドギャップ結晶光導波路。
  3. 請求項1記載の光子バンドギャップ結晶光導波路であって、前記欠陥は、前記光子バンドギャップ結晶内の含まれる少なくとも1つ材料の反射率よりもより低い反射率を有する材料を含むことを特徴とする光子バンドギャップ結晶光導波路。
  4. 光子バンドギャップ結晶光導波路を作成する方法であって、
    a)ピッチを有する光子バンドギャップ結晶を製造するステップと、
    b)平断面及び前記平断面に直角な長さからなる広がりを囲み且つ数値により特性が示される境界を有する欠陥を前記光子バンドギャップ結晶に形成するステップと、を含み、
    前記数値は、前記欠陥により生成される局所モードの波長が光子バンドギャップの波長範囲において伝搬するように選択され、且つ、前記欠陥の数値の前記ピッチに対する比率が、光子バンドギャップ内の表面モードの励起を避けるように選択されていることを特徴とする方法。
JP2002573944A 2001-03-20 2002-02-11 バンドギャップ導波路における最適化欠陥 Expired - Fee Related JP4251535B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27731201P 2001-03-20 2001-03-20
PCT/US2002/005240 WO2002075392A2 (en) 2001-03-20 2002-02-11 Optimized defects in phonotic band-gap waveguides

Publications (3)

Publication Number Publication Date
JP2004532424A JP2004532424A (ja) 2004-10-21
JP2004532424A5 true JP2004532424A5 (ja) 2005-06-30
JP4251535B2 JP4251535B2 (ja) 2009-04-08

Family

ID=23060310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002573944A Expired - Fee Related JP4251535B2 (ja) 2001-03-20 2002-02-11 バンドギャップ導波路における最適化欠陥

Country Status (8)

Country Link
US (2) US6778749B2 (ja)
EP (1) EP1370893A2 (ja)
JP (1) JP4251535B2 (ja)
KR (1) KR20030085562A (ja)
CN (1) CN1288460C (ja)
AU (1) AU2002248476A1 (ja)
TW (1) TW539875B (ja)
WO (1) WO2002075392A2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6640037B2 (en) * 2001-04-17 2003-10-28 Corning Incorporated Thin walled core band-gap waveguides
US7321712B2 (en) * 2002-12-20 2008-01-22 Crystal Fibre A/S Optical waveguide
WO2004057393A1 (en) * 2002-12-20 2004-07-08 Crystal Fibre A/S Photonic band-gap optical fiber with large hollow core
AU2003290349A1 (en) * 2002-12-20 2004-07-14 Blazephotonics Limited Photonic bandgap optical waveguide
US7346249B2 (en) * 2003-03-21 2008-03-18 Crystal Fibre A/S Photonic bandgap optical waveguide with anti-resonant core boundary
CA2538750C (en) * 2003-09-12 2012-03-27 The Board Of Trustees Of The Leland Stanford Junior University Method for configuring air-core photonic-bandgap fibers free of surface modes
CN100410704C (zh) * 2003-09-12 2008-08-13 里兰斯坦福初级大学理事会 对无表面模式的空气纤芯光子能带隙光纤进行配置的方法和光子能带隙光纤
US7228041B2 (en) * 2004-05-08 2007-06-05 The Board Of Trustees Of The Leland Stanford Junior University Photonic-bandgap fiber with a core ring
US7480430B2 (en) * 2006-02-08 2009-01-20 Massachusetts Institute Of Technology Partial confinement photonic crystal waveguides
US7406222B2 (en) * 2006-02-16 2008-07-29 Pavel Kornilovich Composite evanescent waveguides and associated methods
JP2007264331A (ja) 2006-03-29 2007-10-11 Fujikura Ltd 拡張三角格子型フォトニックバンドギャップファイバ
US20080170830A1 (en) 2007-01-16 2008-07-17 Fujikura Ltd Photonic band gap fiber and method of producing the same
EP2345914B1 (en) 2007-01-22 2014-06-25 Fujikura Ltd. Photonic band gap fibre with reduced coupling between core modes and surface mode, and method of producing the same
GB0719376D0 (en) * 2007-10-03 2007-11-14 Univ Bath Hollow-core photonic crystal fibre
GB2562688B (en) * 2013-09-20 2019-06-19 Univ Southampton Methods of manufacturing hollow-core photonic bandgap fibers.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1118887B (de) 1959-04-13 1961-12-07 Licentia Gmbh Verfahren zur Herstellung von Selentrockengleichrichtern
ATE268482T1 (de) 1998-06-09 2004-06-15 Crystal Fibre As Faser mit photonischer bandlücke
CA2339114A1 (en) 1998-07-30 2000-02-10 Nicholas F. Borrelli Method of fabricating photonic structures
DK1118887T3 (da) * 2000-01-21 2007-03-05 Sumitomo Electric Industries Foton-krystalglasfiber (PCF) med flere kappelag
US6444133B1 (en) 2000-04-28 2002-09-03 Corning Incorporated Method of making photonic band gap fibers
US6674949B2 (en) * 2000-08-15 2004-01-06 Corning Incorporated Active photonic crystal waveguide device and method
US6640037B2 (en) * 2001-04-17 2003-10-28 Corning Incorporated Thin walled core band-gap waveguides

Similar Documents

Publication Publication Date Title
JP2004532424A5 (ja)
Lalanne et al. Bloch-wave engineering for high-Q, small-V microcavities
Pacradouni et al. Photonic band structure of dielectric membranes periodically textured in two dimensions
Yu et al. A selectively coated photonic crystal fiber based surface plasmon resonance sensor
Andreani et al. Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method
Frolov et al. Laser-like emission in opal photonic crystals
US8287642B2 (en) Devices and methods for providing stimulated raman lasing
JP2005309295A (ja) 光増幅素子、光増幅装置および光増幅システム
JP2005509918A (ja) モード変換用フォトニック結晶構造
WO2002075392A3 (en) Optimized defects in phonotic band-gap waveguides
Song et al. Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities
Jaiswal et al. Design of a nanoscale silicon laser
EP1785755A1 (en) Waveguide and device including the same
Dumeige et al. Second-harmonic generation in one-dimensional photonic edge waveguides
Lu et al. Tunable nanoblock lasers and stretching sensors
JP2004310049A (ja) フォトニック結晶を用いた共振器および共振装置
Gorelik et al. Stimulated Raman scattering in three-dimensional photonic crystals
Danaie et al. Design of a high efficiency wide-band 60° bend for TE polarization
Jugessur et al. Microcavity filters based on hexagonal lattice 2-D photonic crystal structures embedded in ridge waveguides
Hoogland Optical gain and lasing in colloidal quantum dots
JP5372682B2 (ja) 表面効果3次元フォトニック結晶
Hsiao et al. Design of silicon photonic crystal waveguides for high gain Raman amplification using two symmetric transvers-electric-like slow-light modes
Zain et al. Design and fabrication of high quality-factor 1-D photonic crystal/photonic wire extended microcavities
Van Hoi et al. Silicon–Rich Silicon Oxide Thin Films Fabricated by Electro-Chemical Method
Khorshidahmad et al. Nested photonic crystal cavity for on-chip wavelength conversion