JP2004528935A - 組織の非侵襲的検出方法及び検出装置 - Google Patents

組織の非侵襲的検出方法及び検出装置 Download PDF

Info

Publication number
JP2004528935A
JP2004528935A JP2003503077A JP2003503077A JP2004528935A JP 2004528935 A JP2004528935 A JP 2004528935A JP 2003503077 A JP2003503077 A JP 2003503077A JP 2003503077 A JP2003503077 A JP 2003503077A JP 2004528935 A JP2004528935 A JP 2004528935A
Authority
JP
Japan
Prior art keywords
waveform
tissue
sampling
electrode
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003503077A
Other languages
English (en)
Inventor
コリー,フィリップ,シー.
コリー,ジョーン,エム.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKM Diagnostics Inc
Original Assignee
CKM Diagnostics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKM Diagnostics Inc filed Critical CKM Diagnostics Inc
Publication of JP2004528935A publication Critical patent/JP2004528935A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0536Impedance imaging, e.g. by tomography

Abstract

周期的波形を身体の外部若しくは内部部位に印加することにより組織構造を非侵襲的に検出するための装置及び方法。
マイクロプロセッサが、波形発生器に対し、組織構造を介して少なくともリターン電極と電気的に接続している少なくとも一つのサンプリング電極に複数の周期波形を発生させる命令を与える。
組織構造のインピーダンスが発生波形毎に選択的に決定される。インピーダンスの測定値を割り出した後に、インピーダンスの変化と印加電流の変化との比率の決定を含む種々の演算が行われる。装置は、同一波形をすべてのサンプリング電極と同時に印加するか、若しくはいくつかのサンプリング電極を一つのサンプリング電極として、そこへ波形を同時に印加する。装置は、また、複数の波形を複数の電極に供給し、同一の電流波形を各サンプリング電極に維持する。

Description

【技術分野】
【0001】
本発明は、組織のタイプを識別し、マッピングする非侵襲的検出方法とその装置に関する。特に本発明は、対象組織へ周期的波形を印加し、その結果誘発されて生じた対象組織の電気的特性の変化をモニタリングすることによる、組織の識別及びマッピングに関する。
【背景技術】
【0002】
本出願は、2001年6月13日出願の仮米国特許出願第60/297,694号について優先権を主張する。なお、仮出願の内容は、ここでは援用文献として用いられる。
皮下組織の非侵襲的検出は、永年、多くの開業医が関心を寄せて来た。皮下組織の多くが、電気信号に応答することは開業医の知るところである。生物学的、電気反応膜系(BERMS)は、蛋白分子を包埋した脂質二重層であるが、蛋白分子のうちのあるものは、イオンチャネルである。組織の単位グラムあたりのイオンチャネル密度が最も高い神経組織を用いることで、包埋イオンチャネルの密度は、組織型変動を示すことで知られている。神経腫などの神経異常があると、正常神経よりも一層高いイオンチャネル密度となる。筋肉など他の組織のイオンチャネル量は、正常神経組織よりも少ない。
BERMSは外部からの印加電界内のインダクタンスと応答することで知られている。この膜インダクタンスは、広く認識されている膜抵抗及び膜キャパシタンスと共に生じることで知られている。閾値下、交番電界は活動電位を発生しないが、しかし、異常インピーダンスを引き起こす(インピーダンスの反射)。これは単軸索系において認められ、形成されている。Mauro, ANOMALOUS IMPEDANCE, A PHENOMENOLOGICAL PROPERTY OF TIME-VARIANT RESISTANCE, AN ANALYTIC REVIEW, The Rockefeller Institute(1961)は、この異常インピーダンスの仕組み解明を提案した。これは、神経細胞膜を横切り、印加電界とは逆方向に流れる正常な膜電流の効果に基づいたものである。これら電流は、時間変化、イオン特異的コンダクタンス及びインダクタンスとしての電気的ふるまいと関係している。
【0003】
更に、Sabah and Leibovic, SUBTHRESHOLD OSCILLATORY RESPONSES OF THE HODGKIN-HUXLEY CABLE MODEL FOR THE SQUID GIANT AXON, Department of Biophysical Sciences, Center for Theoretical Biology, State University of New York at Buffalo, Amherst, N.Y.(1969)は、膜容量及び膜抵抗と並列接続した膜電気インダクタンスの回路モデルを公開し、電気共振効果を予測している。
【0004】
皮膚表面から組織の深さ、構成、配置及び/若しくは機能状況を非侵襲的に測定する先行技術は、刺激に応答した構造の機能変化を検出するか、若しくは、組織内の電界経路に関しての特性を推測する。
ある技術においては、神経の位置が、電極アレイ内のある特定電極から神経内に活動電位を発生させることによって検出される。
【0005】
Loosの米国特許第6,167,304号は、神経の“共振”を引き起こすために誘導電界の利用を考察する。Loosの発表においては、共振の用語が何を意味しているのか不明である。この共振は、特定の周波数で生じるもので、生理学的発見と関連したものであるが、これは、電気的現象の共振とは明らかに異なる。
電気的現象の場合、共振は直列若しくは並列接続のインダクタンス及びキャパシタンスの関数であり、単一固有周波数でインピーダンスの著しい変化として現れる。インピーダンスの決定が、多重周波数で生じるLoos共振とは、明らかに異なるものである。
【0006】
Coryの米国特許第5,560,372号(ここでは援用文献として用いられる)によれば、表皮電極を通る電流を一定に維持するために必要とされる印加電圧は、主要神経を覆ってはいない皮膚に比べ、抹消神経を覆う皮膚上で測定した場合の方が低い。Coryの装置は、活動電位の発生を必要としない。この装置は、その領域を覆う表皮との接触電極に対応する単一発光ダイオードを駆動することによって、その領域内における最も低いインピーダンス領域を示した。これについては、インピーダンス・トモグラフィ技術のような、他の技術で検討されていない。
【0007】
インピーダンス・トモグラフィ技術においては、Pearlmanの米国特許第6,055,452号で述べられているように、一対の電極間を流れる電流は、身体表面上に配列した他の電極において、又は、身体表面に電流を印加する場合には用いられない皮下組織に配列した他の電極において、同時に、電圧、振幅、位相、又は波形の変化を引き起こす。
電流が流れている電極対を変化させ、そのデータを組み合わせ及び解析することで、基礎構造と関連のある特定インピーダンス画像の作成が可能となる。
【0008】
インピーダンス・トモグラフィの性能にとってのキーとなる前提としては、組織は、固有の電気特性を有することであり、その重要なものとしては、固有のインピーダンス、組織抵抗及び組織誘電率がある。
器官の大きさ、内容、構造又は機能状況の変化は、伝導率パターンの変化に反映されるが、電界それ自体は、上記パラメーターに影響を及ぼさないと思われる。
【0009】
上記インピーダンス・トモグラフィ技術は、刺激を与える電極対から離れた皮膚表面ポイントからの電圧情報を解析する。これら電界の場合、組織抵抗又は誘電率は一定であるという仮説がなされれば、皮膚表面下の電流フローパターンの計算及び、これらパターンからの画像作成が可能となる。
この技術において、皮下構造の解像度に問題がある。それ故、組織下部構造を正確に突き止め、識別することが可能なサンプルにおいて、組織の下部構造を非侵襲的に検出する必要がある。
【発明の開示】
【0010】
本発明は、組織の下部構造を正確に突き止め、識別することにより、先行技術の上記問題点を回避する装置及び方法を提供する。
本発明の装置は、マイクロプロセッサと;前記マイクロプロセッサから受信した命令に応じて、複数の異なった周期波形を発生する波形発生器と;前記波形発生器より波形を受信し、その受信波形を印加波形として被験組織に印加するための少なくとも1つのサンプリング電極と;前記被験組織からの印加波形を受信し、前記印加波形を前記マイクロプロセッサに供給し、これにより構成要素として前記被験組織を含む電気回路を構成する少なくとも1つのリターン電極と、を含んで構成可能であり、前記マイクロプロセッサが前記印加波形の特性を表示する情報を受信し、テスト被験組織の非線形の電気的特性を計算する。
【0011】
本発明の前記装置においては、計算される前記非線形の特性が、組織のインピーダンス及び/若しくはリアクタンスとすることが出来る。
本発明の前記装置においては、前記マイクロプロセッサは、前記波形発生器に対し、組織に印加される複数の異なった波形を発生させ、該複数の異なった波形のそれぞれの発生波形に対応する組織のインピーダンスを選択的に計算させ、印加電流の変化に対するインピーダンスの変化の比率の決定をするように動作させることが可能である。
【0012】
本発明の前記装置においては、前記少なくとも1つのサンプリング電極は複数のサンプリング電極を含んで構成され、前記装置は更に、前記マイクロプロセッサの命令を受けて、前記複数のサンプリング電極のうちのいずれかのサンプリング電極に対して、波形供給を行うスイッチング装置を更に含んで構成される。
本発明の前記装置においては、前記スイッチング装置は、2つ以上のサンプリング電極に対し単一波形を同時に供給するように動作可能である。
【0013】
本発明の前記装置においては、前記スイッチング装置は、2つ以上のサンプリング電極の各サンプリング電極に対して、同一電流波形を供給する方法で、2つ以上のサンプリング電極に対し複数の波形を同時に供給するように動作可能である。
本発明の前記装置においては、前記少なくとも1つのリターン電極は、複数のリターン電極を含んで構成可能であり、前記装置は更に、前記マイクロプロセッサから受信して、前記複数のリターン電極のうちのいずれかのリターン電極を選択し、これによって前記少なくとも1つのサンプリング電極と前記選択されたリターン電極との間の電気回路を構成するリターン側のスイッチング装置を含んで構成される。
【0014】
本発明の前記装置においては、前記少なくとも1つのサンプリング電極は、複数のサンプリング電極を含んで構成可能であり、前記装置は更に、前記マイクロプロセッサからの命令を受信して、前記複数のサンプリング電極のうちのいずれかのサンプリング電極に対して波形供給するスイッチング装置を含んでおり、前記少なくとも1つのリターン電極は、複数のリターン電極を含んで構成されることが可能であり、前記装置は更に、前記マイクロプロセッサから命令を受信して前記複数のリターン電極のうちのいずれかのリターン電極を選択し、これによって前記少なくとも1つのサンプリング電極と前記選択されたリターン電極との間に電気回路を構成するリターン側のスイッチング装置を含むことが可能である。
【0015】
本発明の前記装置が、ディスプレイを更に含んで構成可能であり、前記マイクロプロセッサが組織の三次元画像を作成し、前記ディスプレイが前記三次元画像と表示することが動作可能である。
本発明の前記組織構造検出の方法が以下のステップを含んで構成可能である;周期波形を発生すること;少なくとも1つのサンプリング電極を介し被験組織へ周期波形を印加波形として供給すること;少なくとも1つのリターン電極を介し、被験組織から前記印加波形を受信し、これによって構成要素として被験組織を含む電気回路を構成すること;前記印加波形の電圧及び電流が示す情報を受信すること;及び前記印加波形と関連したテスト被験組織の被線形の電気的特性を計算すること。
【0016】
本発明の前記方法において、計算される前記非線形の特性が組織のインピーダンス及び/若しくは組織のリアクタンスとすることが可能である。
本発明の前記方法が、以下のステップを更に含んで構成される;先行する周期波形とは異なる新たな周期波形を発生すること;前記サンプリング電極を介して、前記新たな周期波形を他の印加波形として被験組織に供給すること;前記リターン電極を介して、被験組織から前記他の印加波形を受信し、これによって、被験組織を構成要素として含む電気回路を構成すること;前記他の印加波形の電圧及び電流を示す情報を受信すること;及び、前記印加波形と関連してテスト被験組織の非線形の電気的特性を計算すること。
【0017】
本発明の前記方法においては、前記計算される前記非線形の電気的特性が組織のインピーダンスであることが可能であり、前記再計算された非線形の電気的特性が組織のインピーダンスであることが可能であり、更に前記方法が、前記他の印加波形の特性及び前記印加波形の特性並びに、前記計算された組織のインピーダンス及び前記再計算された組織のインピーダンスを選択的に用いて数学的計算を行うステップを含んで構成されることが可能である。
【0018】
本発明の前記の方法においては、実行される前記数学的計算が、インピーダンスの変化と印加電流の変化との比率決定とすることが可能である。
本発明の前記の方法においては、前記少なくとも1つのサンプリング電極が複数のサンプリング電極を含んで構成されることが可能であり、前記方法が2つ以上のサンプリング電極へ単一波形を同時に供給するステップを更に含んで構成される。
【0019】
本発明の前記の方法が、以下のステップを更に含んで構成可能である;先行する周期波形とは異なる新たな周期波形を発生すること;前記サンプリング電極を介して前記新たな周期波形を他の印加波形として被験組織に供給すること;前記リターン電極を介して被験組織から前記他の印加波形を受信し、これによって被験組織を構成要素として含む電気回路を構成すること;前記他の印加波形の電圧及び電流が示す情報を受信すること;及び前記他の印加波形と関連するテスト被験組織の非線形の電気的特性を計算すること。
【0020】
本発明の前記方法が以下のステップを更に含んで構成可能である;前記新たな周期波形に対する組織のインピーダンスを計算すること;及び前記印加波形及び前記他の印加波形に対するテスト被験組織のインピーダンスの変化と印加電流の変化との比率を決定すること。
本発明の前記方法において、前記少なくとも1つのサンプリング電極が複数のサンプリング電極を含んで構成され、前記方法が、前記2つ以上のサンプリング電極のそれぞれのサンプリング電極に対し、前記の同一電流波形を供給するという方法で、2つ以上のサンプリング電極に複数の波形を同時に供給するステップを更に含んで構成可能である。
【0021】
本発明の前記方法が以下のステップを更に含んで構成される;組織の三次元画像ディスプレイを起動すること;及び前記三次元画像を表示すること。
本発明の実施例であるコンピュータの読み取り可能な媒体が、以下のステップを含んで構成される方法の遂行をコンピュータに実行させる命令を記録可能で、コンピュータの読み取り可能な媒体:周期波形を発生すること;少なくとも1つのサンプリング電極を介し被験組織に前記周期波形を印加波形として供給すること;少なくとも1つのリターン電極を介し、被験組織から前印加波形を受信し、これによって構成要素として被験組織を含む電気回路を構成すること;前記印加波形の特性を示す情報を受信すること; 及び 前記印加波形と関連したテスト被験組織の非線形の電気的特性を計算すること。
【0022】
本明細書に組み込まれ、明細書の一部を構成する添付図面は、本発明の様々な実施例を示すものであり、詳細な説明とともに本発明の本質の説明に寄与するものである。
【発明を実施するための最良の形態】
【0023】
以下、本発明の好ましい実施例の詳細について述べる。発明の実施例の一例は、添付図面に基づいて説明される。
本発明者らは、細胞膜内に生じ、組織に対し行なわれる測定に影響を及ぼすインダクタンスに符合して観察を行った。更に、(a)組織の固有抵抗及び誘電率が負性を示し、変化に対して非線形の関係を示し、電流の増加を示し、そして、(b)共振現象がしばしば膜に関連したインダクタンス及び膜に関連したキャパシタンスとの相互作用から生じることを観察した。第1図及び第2図は、本発明の動作の原理を示すために、均質媒体に関して考察を行うものである。しかしながら、当業者は、殆どの生体組織が非均質媒体であると認識する。これに対し、本発明は、均質組織だけでなく、非均質組織も検出の対象としている。
【0024】
上記の(a)に関しては、第1図および第2図に示されるように、電流のスカラー量(又は電界強さelectrical intensity)が、皮膚表面上の2つの電極間において紡錘状の分布を描く。図1は、均質媒体における電流分布を示す。紡錘状電流分布の中心からより遠く離れたポイント上の電流密度は、紡錘状の電流分布の中心により近いポイントのそれよりも低くなる。
【0025】
均質媒体においては、図1に示されるように、等電流線の同心リングが導電電極を結ぶ線と90°の角度で交差する表面上に形成される。このように、BERMS(A)は、BERMS(B)よりも電流密度の高い等電流線上に位置する。BERMS(B)の実際の電流密度は、BERMS(A)のそれよりも低い。第2図に示されるように、均質媒体においては、電圧分布は等電位線が等電流線と直角に交わって皮膚表面上の電極の周囲にほぼ半円形を形作る。
【0026】
非均質媒体においては、個々の等電位線に沿って並んだ表面下構造の実際の電流密度は、紡錘状の電流分布の中心からの距離によって、異なってくる。これは言い換えれば、非均質媒体においては、同一組織の固有抵抗及び誘導率が紡錘状の電流分布の中心から測定ポイントまでの距離により変わるということである。
皮膚表面で生じる印加電流(I)の変化は、電界内いずれのポイントで測定されるインピーダンス(Z)をも変化させるが、これは、特定の測定ポイントにおいて電流密度がシフトするためであり、そのシフトする電流密度によって誘発されて固有抵抗が変化する結果である。
【0027】
当該技術分野においては一般的に知られたことであるが、インピーダンスZは、抵抗成分Rおよび無効成分(リアクタンス)X、例えばZ=R+jX、ここでjは、虚数(−1の平方根)を表す。抵抗成分は、しばしばインピーダンスの“実”の部分として表示され、無効成分は、しばしばインピーダンスの“虚”の部分として表示される。共振は誘導性リアクタンスと容量性リアクタンスが等しくなり、臨界周波数=1/(2π√(LC))の時に生じる。
【0028】
インダクタンスおよびキャパシタンスが並列の場合、臨界周波数において、Z→∞;
インダクタンスおよびキャパシタンスが直列の場合、臨界周波数において、Z→0、である。電界に周波数がある場合、容量性リアクタンスが Xc=1/(2πfC)であり、誘導リアクタンスがXL=2πfLであるため、リアクタンスは0でありえない。
無効成分の損失は次の2つの場合に起こる;つまりf→0で、X→0の場合もしくは、f→∞で、X→0の場合である。
【0029】
本発明者らは、サンプリング電極及びリターン電極間の特定の波形及び距離に関して、BERMS関連のインピーダンス変化を観測することにより、組織の様々な型が認識されかつ識別可能であることを発見した。
第1及び2図においては、電極Eは、理想的な(ideal)均質皮下組織を被う理想的な皮膚表面上に位置している。第1及び2図において2つの理想的に同一のBERMSが皮膚表面下の同一距離であって、一方(A)は電極Eの法線方向に、他方(B)は電極Eに対して90°未満の角度の位置にある。
【0030】
2つのBERMS及び皮膚表面上の電極を結ぶ平面に対し、90°の角度にある電界の場合、(A)の電流密度は(B)のそれよりも大きい。(現実には、電流密度分布の形は、BERMSにより変化するが、ここでは、考察するうえで、この影響は考慮に入れない。)これは、すべての印加電流レベルで言えることであって、ΔZ/ΔIはBよりもAの方が大きいことを意味する。
【0031】
第5図は本発明の第1実施例に従い、均質若しくは不均質組織のいずれかにおけるBERMSと関連したインピーダンスの変化を検出する装置のブロック図を示す。第5図に示されるように、サンプル電極アレイ12は、テスト被験体2に付着されており、リターン電極14もまた、サンプル電極アレイ12から距離dだけ離れて、被験体2に付着されている。
テスト被験体は腕など身体の外部部位、又は体内器官等のどの組織でも可能である。テスト被験体は好ましくは、一部がイオンチャネルである埋め込まれた蛋白分子を含む脂質二重層を含んで構成される少なくとも1つの電気反応膜系(1つのBERMS)を包含する。
【0032】
サンプリング電極アレイ12は、好ましくは複数のサンプル電極eslからesnのアレイを有するサンプリング電極を含んで構成される。それぞれのサンプリング電極には、好ましくは被験体2の表面と良好な電気接触を得るための水性インターフェースが与えられている。
第5図に関して、電流源は、好ましくは、波形発生器8に電流を供給する。マイクロプロセッサ16は、波形発生器8に対し、周期電流波形発生の指示を与える。波形発生器8により発生された波形は、好ましくはスイッチング装置10に供給される。スイッチング装置10は、好ましくは、サンプル電極eslからesnのうちの選択された1つの電極に対し、波形発生器8により発生された波形を予め設定した周期(サンプリング時間)で供給するよう、マイクロプロセッサ16により、制御されている。
【0033】
好適な実施例においては、波形発生器は、波形の振幅、周波数及び波形をコントロールし、パルス列波形、正弦波形、のこぎり波形等に変える。或いは、マイクロプロセッサ16が、波形発生器8及びスイッチング装置10に対し、複数の異なった波形の印加を命令する。この場合、各波形は、サンプリング時間内で、他のサンプリング電極にスイッチする前に、個々のサンプリング電極に対し印加される。
【0034】
スイッチング装置10は、マイクロプロセッサ16により制御されて、電流を波形発生器8からサンプリング電極アレイ12に対して供給できる、マルチプレクサー、ゲートアレイ若しくは他の適当な素子であれば良い。
好適な実施例においては、スイッチング装置10は、発生波形を単一のサンプリング電極又はサンプリング電極の一部あるいはすべてに対し同時に印加するように、マイクロプロセッサ16によって制御される。
【0035】
波形発生器8は、また、スイッチング装置10と関連してマイクロプロセッサ16によっても制御されることが出来、たとえサンプリング電極に異なるインピーダンスが生じても、同一電流を複数のサンプリング電極または、すべてのサンプリング電極に対し、互いに独立して、同時に印加が可能である。
波形発生装置8及びスイッチング装置10は、また、単一電流をサンプリング電極アレイのすべてのサンプリング電極若しくは複数の電極に対し印加するよう、マイクロプロセッサにより制御され、これにより単一電流が選択されたサンプリング電極間で分散出力される。波形のソフトウェア制御により、電極アレイ内の個々のサンプリング電極において、1つのサンプリング・セッション間あるいはアレイ内の他の電極をサンプリングした後に、電流が可変される。
【0036】
マイクロプロセッサ16は、どのタイプの演算装置でもよい。好適な実施例においては、マイクロプロセッサ16は、ソフトウェアによりプログラムされており、これによってマイクロプロセッサは、波形の、形状、正負の最大振幅、周波数及びデューティ・サイクルなど、波形のパラメーターを規定するオペレータからの指令を受信可能となる。
マイクロプロセッサは、また、複数の予め規定された波形を有するメモリーバンクを含んでおり、波形発生器により発生されるべき波形を、一連の予め規定された波形より選択する。波形は、正の最大振幅、負の最大振幅、周波数、形状及び/若しくはデューティ・サイクルにおいて変化可能である。
【0037】
更に第5図に関しては、リターン電極14は、サンプリング電極アレイ12と共に電気回路を構成し、電流がサンプリング電極を通るのを許容する。好適な実施例において、マイクロプロセッサはサンプリング期間中(波形がサンプル電極に印加される期間)に電流を検出する。マイクロプロセッサは好ましくは、複数のサンプリング時間に、インピーダンス値を計算し記憶するが、このサンプリング期間中、複数の異なる波形がサンプリング電極に印加される。好ましい実施例においては、マイクロプロセッサ16は、各サンプル電極にある電流波形及び電圧波形に関して、スイッチング装置10から情報を受信する。
【0038】
マイクロプロセッサは好ましくは、各サンプリング電極における電流波形及び電圧波形を用いて、各サンプル電極とリターン電極14間のインピーダンスを計算する。マイクロプロセッサは、好ましくは、RAM、記録可能な磁気ディスク装置、光ディスク装置、光磁気ディスク装置若しくはテープ記憶装置などの記憶機能を含む。
マイクロプロセッサは好ましくは、各サンプル電極及び各サンプル期間の電流波形、電圧波形および計算済みインピーダンスを示すデータを記録する。
【0039】
アレイ内すべての電極に対するΔZ/ΔIが決定されると、最大のΔZ/ΔIを示す電極が、BERMS構造のコース(例えば神経)に殆ど直接被っているか、あるいは、これら電極の下にBERMSを最大量(例えば神経枝ポイント)有していることになる。印加電界の周波数は、同様に変化されて、共振のピークを操作する。一例としては、第3図及び第4図において、神経は多重で平行な電気素子、軸索から構成される。各軸索細胞膜がBERMSである。
【0040】
サンプリング電極とリターン電極間の所定の離間距離では、各軸索は特定の共振周波数を持つ。サンプリング電極12とリターン電極14間で観測されたインピーダンス変化は、すべて軸索共振を反映し、周波数の範囲にわたって、広域のインピーダンス・ピークを与える。逆に、安定周波数が維持され、サンプリング電極とリターン電極14間の距離dが変化すると、第3図に示されるように、電極間距離の範囲にわたって広域のピークが見られる。
【0041】
インピーダンス・ピークは、印加電界の周波数を、共振周波数以上に著しく増大する(第4図)ことにより、特定の電極間距離dでは消失される。逆に、電界の周波数を下げ、インピーダンス・ピークの幅を広げると、フーリエ解析若しくは他の数学的方法によってインピーダンス・ピークの各成分の検査が容易になる。このようにして、オペレータは目標組織構造に焦点を絞ることが可能となる。
【0042】
本発明の第1実施例においては、サンプリング期間の終了後、マイクロプロセッサ16が好ましくは、スイッチング装置10に対し、発生波形をサンプリング期間中es2など他のサンプル電極に供給するよう指令する。発生波形は好ましくは、サンプリングサイクル中、所定の指令に従って、各サンプリング電極に供給される。サンプリング期間終了時に、マイクロプロセッサが好ましくは、サンプリング電極アレイ12に印加される異なる波形を発生するよう波形発生器8に指令する。
【0043】
組織構造のインピーダンスは、各発生波形に対し、選択的に決定される。例えばオペレータは、発生した印加波形のあるものに関してはそのインピーダンスの決定を回避する指令を与える。複数のインピーダンス測定を行った後は、複数のインピーダンス測定を用いて、インピーダンス変化及び印加電流変化の比率の決定を含む、種々の数学的解析が行なわれる。数学的解析には、また、あらゆる有効なデータプレゼンテーション技術も含まれる。これは:生データ、生データの正規化、隣接電極間の変化率、ローリング平均の使用、比率偏差のプレゼンテーション、若しくは、周波数成分のフーリエ解析など更にいくつかの、複雑な解析を含むが、これに限定されるものではない。
【0044】
マイクロプロセッサはまた、抵抗及びリアクタンスなどインピーダンス測定の個々の成分を決定する。抵抗及びリアクタンスは、インピーダンスの実(抵抗)および虚(リアクタンス)成分を求め、フーリエ解析技術など公知の技術を用いて計算される。
マイクロプロセッサは好ましくは、表示信号を表示装置18に対し供給する。マイクロプロセッサが、三次元トモグラフィック画像など表示装置18に表示されるべき組織構造の二次元及び三次元画像を生成する。二次元及び三次元画像は、異なる波形の複数のインピーダンス測定を行うことにより、生成される。
【0045】
例えば、直接の測定値若しくは測定値に基づき計算された結果が、組織及び神経内容の単線、二次元トモグラフィック画像若しくは三次元トモグラフィック画像から成る画像を作成する。
第6図は、第5図に示される装置の操作方法の第1実施例のフローチャートを示す。第6図に示されるように、波形が発生され(ステップS2)、該波形がサンプリング期間に、第1サンプリング電極へと印加される(ステップS4)。インピーダンスは、電圧、電流、周波数およびデューティ・サイクル等選択されたサンプリング電極の印加波形の特性に基づき計算され、その特性及び計算されたインピーダンスがマイクロプロセッサにより記憶される(ステップS6)。波形は他のサンプリング電極に印加される(ステップS8)が、これは好ましくは、スイッチング装置10により選択される。
【0046】
インピーダンスは新たに選択されたサンプリング電極で印加された波形の特性に基づき、再度計算され、上記印加された特性及び計算されたインピーダンスがマイクロプロセッサにより記憶される (ステップS10)。装置は、波形が最後のサンプリング電極へ印加されるまでステップS8及びステップS10を繰り返して、各サンプリング電極へ波形を印加する (ステップS12、NO)。波形がすべてのサンプリング電極へ印加された時点で(ステップS12、YES)、一連の所定波形のなかで、まだサンプリング電極にどれか印加されていない波形があるかどうかを決定するか、若しくは、オペレータに対し他の波形の選択を指示することにより、装置が他の波形を選択するか否かを決定する(ステップS14)。その新たな波形は、前の波形と比べ最大若しくは最小振幅、波形の形状、及び/若しくは周期若しくはデューティ・サイクルが変えられている。
【0047】
他の新しい波形が選択されたなら(ステップS14、YES)、波形発生器8が、新たな波形を発生し、最初のサンプリング電極(ステップS4)にそれを印加する。
ステップS4−S12は、新たな波形に対しても、繰り返される。すべての波形がサンプリング電極に印加されたなら(ステップS14、NO) 、マイクロプロセッサ16は種々の数学的計算を用いてデータ評価を行う。例えば、各波形が印加されたなら、マイクロプロセッサが記録されたインピーダンス、及び各サンプリング電極の電圧及び電流からΔZ/ΔIを決定する(ステップS18)。マイクロプロセッサは、また、組織のリアクタンスも決定する。好適な実施例においては、オペレータはマイクロプロセッサに対しあらゆるタイプの計算の実行を指令出来る。
【0048】
他の選択的方法が第7図に示す。第7図に示されるように、サンプリング電極が選択され(ステップS20)、波形が発生され(ステップS22)、該波形が選択されたサンプリング電極に印加される(ステップS24)。
電圧、電流、周波数及びデューティ・サイクルなど、選択されたサンプリング電極における印加波形の特性に基づきインピーダンスが計算され、その特性及び計算されたインピーダンスが、マイクロプロセッサにより記憶される(ステップS26)。ステップS28では、一連の所定波形のなかでまだサンプリング電極にどれか印加されていない波形があるかどうかを決定するか、若しくは、オペレータに対し、他の波形の選択を指示することにより、装置は他の波形を選択するかどうかを、決定する(ステップS28)。
【0049】
その新たな波形は、前の波形と比べ最大若しくは最小振幅、波形の形状、及び/若しくは周波数が変えられている。他の波形が選択されたなら(ステップS28、YES)、波形発生器8が新たな波形を発生し (ステップS30) 、選択されたサンプリング電極に対し、それを印加する(ステップS24、S26)。もしも、これ以上選択する波形がなくなると(ステップS28、NO)まだ複数の波形が印加されないで残っているサンプリング電極があるかどうかを、装置が決定する(ステップS32)。
【0050】
もし、選択されるべきサンプリング電極がまだ残っていれば(ステップS32、YES)、残っているサンプリング電極が選択され、新たに選択された電極に対し、ステップS22−S30を繰り返しながら、複数の波形が印加される。もしも、サンプリング電極が残っていなければ(ステップS32、NO)、マイクロプロセッサ16は種々の数学的計算により、データを評価する。例えば、各波形が印加される場合、マイクロプロセッサが、各サンプリング電極の記憶インピーダンス、電圧及び電流データからΔZ/ΔIを決定する。(ステップS18)。マイクロプロセッサは、また、組織のリアクタンスも決定する。好適な実施例においては、オペレータは、マイクロプロセッサに対し、あらゆるタイプの計算の実行を指令出来る。
【0051】
第8図は、本発明に係る他の方法を示す。第8図に示されるように、複数のサンプリング電極が選択され(ステップS40)、発生された波形(ステップS42)が選択されたサンプリング電極のそれぞれに対して印加される(ステップS44)。これは、各選択電極が同一電流波形を受信するような方法でなされる。
選択された各サンプリング電極の電圧が検出され、選択された各サンプリング電極のインピーダンスが決定される (ステップS46、S48及びS50)。選択された各サンプリング電極には同一電流が印加され、電圧は各サンプリング電極間で変動するため、電圧がインピーダンスを決定するために必要とされる唯一の未知の変数ということになる。
【0052】
一旦インピーダンスが、選択されたサンプリング電極に対して決定されたなら (ステップS48、NO)、フローチャートが、他の波形が選択されるべきかどうかを決定する(ステップS52)。もしも、新たな波形が選択されるべきならば、新たな波形が発生され(ステップS54)、選択されたサンプリング電極に印加されて、ステップS44 −S52が繰り返される。
もし新たな波形が選択されないのなら、マイクロプロセッサ16が種々の数学的計算により、データを評価する。例えば、各波形が印加されればマイクロプロセッサが記憶インピーダンスや、各サンプリング電極の電圧及び電流データからΔZ/ΔIを決定する (ステップS56)。マイクロプロセッサが、組織のリアクタンスもまた、決定する。好ましい実施例においては、オペレータはマイクロプロセッサに対し、あらゆる型の計算の実行を指令出来る。
【0053】
第9図は第5図の装置を操作する更に他の方法を示す。第9図に示されるように、複数のサンプリング電極が選択され(ステップS60)、発生された波形(ステップS62)が、1グループを成す選択されたサンプリング電極群に対し印加され、その結果、各選択された電極を介し発生波形の電流が個々に配分される(ステップS64)。
選択された各サンプリング電極の電流及び電圧が検出され、選択された各サンプリング電極のインピーダンスが決定される(ステップS66、S68及びS70)。
【0054】
選択された各サンプリング電極には、異なる電流が印加され、電圧が各サンプリング電極間で変動するため、インピーダンスを計算するためには、電流及び電圧の両方が決定されなければならない。
一度インピーダンスが選択されたサンプリング電極に対して決定されたなら(ステップS68、NO)、フローチャートが、他の波形が選択されべきか否か、そして、該選択された波形が選択されたサンプリング電極に対し印加されるべきかどうかを決定し、第8図の実施例でなされたと同一の方法でデータが評価される(ステップ S72、S74、S76)。
【0055】
第5図の実施例は、各サンプリング電極間のインピーダンスを決定するために、各サンプリング電極での電流及び電圧の波形を検出することとして述べられてきたが、当業者は、他の技術が用いられることも認識している。例えば、電流若しくは電圧の波形のうちの一方がサンプリング電極で検出され、他方がリターン電極で検出され得る。あるいは、電圧と電流双方の波形が、リターン電極で検出もされてもよい。
【0056】
第6−9図の方法は、好ましくは、マイクロプロセッサによって実行されるか、若しくは実行を惹起される。第6−9図に示される方法を構成するステップの実行命令は、コンピュータの読み取り可能な媒体に記憶される。コンピュータの読み取り可能な媒体は、磁気ディスク、光ディスク若しくは磁気テープなど有形構造であるか、若しくはパケット化データを含んだ被変調搬送波などの無形構造である。この被変調搬送波は、有線、光ケーブル若しくは無線送信により搬送され、マイクロプロセッサ若しくはコンピュータによりアクセスが可能である。
【0057】
本発明の装置の第2の実施例が、第10図に示される。第10図に示される実施例は、リターン電極アレイ24及び単一サンプリング電極32が用いられるという点を除けば、第5図で示される実施例と同様である。
第10図に示されるように、マイクロプロセッサ16はサンプリング電極32に波形を供給する波形発生器8を備える。
【0058】
リターン電極アレイ24は、eriからermまでの複数のリターン電極を包含するが、スイッチング装置20により、マイクロプロセッサに信号を供給する電極が選択されると、これら電極が選択的に電気回路を形成する。
BERMS組織のインピーダンスは、第5図の実施例と関連して述べられたと同一の方法で決定されるが、ただし、電流及び電圧の波形が、好ましくはサンプリング電極のかわりに、リターン電極で決定され、その結果、複数の電極によって、より便利で広範囲な対象範囲が可能となる点が第5図の場合とは異なる点である。
【0059】
リターン電極が選択され、波形がサンプリング電極および被験体を介してリターン電極に印加される点を除けば、第6−9図に示される第5図の装置の操作方法は、第10図の実施例にも同様に適用が可能である。
本発明の第3の実施例が第11図に示される。第11図に示される実施例は、第5図及び第10図の実施例の組み合わせである。第11図の実施例はサンプリング電極アレイ12及びリターン電極アレイ24の双方と、第2のスイッチング装置20を含む。
【0060】
リターン電極アレイ24は、好ましくは、erlからermまでの複数のリターン電極を包含する。ここでmは整数であり、mはnと等しいか、nより少ないか若しくはnよりも大きい。nはサンプル電極アレイ12内のサンプル電極の数である。
マイクロプロセッサ16は好ましくは、どのサンプリング電極及びどのリターン電極がインピーダンス決定に用いられるかを、選択的に制御するために、スイッチング装置10とスイッチング装置20の双方を制御する。
【0061】
当業者は、第11図に示される第3実施例の装置が第6−9図に既述されたと同一方法で操作されることを理解する。尚、この場合、スイッチング装置20により電気回路を構成するために用いられるリターン電極アレイ24内の単数/複数の目的となるリターン電極が追加選択される。
当業者は又、電気回路を構成するために用いられるサンプリング電極アレイ12内のサンプリング電極が、スイッチング装置10により選択されるという点を除けば、第11図の実施例もまた、第10図の実施例と関連して述べられたと同一の方法で操作されることを理解できるものである。
【0062】
複数の電極が上で述べた実施例と関連して示されるが、当業者は、1つのサンプリング電極と1つのリターン電極とを用いてもよいということを認識するものである。この場合、第6−9図の方法では、電極の選択の必要がないという点を除いては、同様に適用が可能である。
本発明には多様な用途が考えられる。外科トローチャー(trochars)設置間の神経回避、或いは異常組織構造の認別などがその例である。
【0063】
本発明は当業者により、容易に認識される多様な用途がある。例えば、一切の制限なく、本発明は、神経の水平、垂直若しくは傾斜方向への分枝形成に特有の情報抽出のための数学的解析を印加電圧データに適用するために用いられる。
本発明は、また、神経圧迫、神経索引、神経エントラップメント、神経離断若しくは神経挫傷に特有の情報抽出のための数学的解析を、印加電圧データに適用するために用いられる。
【0064】
本発明は、また、神経腫の存在に特有の情報抽出のための数学的解析を印加電圧データに適用するために用いられる。
本発明は、また、筋膜発痛点若しくは刺鍼点に特有の情報抽出のための数学的解析を印加電圧データに適用するために用いられる。
本発明は、また、軸索脱髄に特有の情報抽出のための数学的解析を印加電圧データに適用するために用いられる。
【0065】
本発明は、また、関節、腱、筋肉、骨若しくは他の軟質組織の病的組織につながる正常な神経に特有の情報抽出のための数学的解析を印加電圧データに適用するために用いられる。
本発明は、また、麻酔若しくはボツリヌスの毒素局部注入など、神経を標的とした特殊治療を行うために用いられる。
【0066】
本発明は、また、手根管症候群など神経異常の進行の評価のため、時間をかけて神経組織をモニタリングするために用いられる。
本発明は、また、外科手術若しくは他の長い静止状態の間に神経に及ぼされる圧力効果など神経異常の進行の評価のため、時間をかけて神経組織をモニタリングするために用いられる。
【0067】
本発明は、また、神経剥離術若しくは神経縫合術後の神経回復の評価若しくは神経離断の外科的修復の評価のため、時間をかけて神経組織をモニタリングするために用いられる。
本発明は、また、特殊な神経を標的としたMRIなどの診断検査若しくは電気診断検査を行うために用いられる。
【0068】
上述の本発明の実施例は、説明用に示されている。本発明は、完全を意図するものでもなく、また開示した形状のみに限定を意図するものでもない。従って、上記開示を踏まえて、 多くの変形例や変化例が可能であることは明白である。
【図面の簡単な説明】
【0069】
【図1】理想的な均質媒体における印加電界の効果を示す。
【図2】理想的な均質媒体における印加電界の電流及び電圧間の関係を示す。
【図3】印加電界の固定周波数に対するインピーダンス及び電極間距離の関係を示す。
【図4】第3図におけるよりも高い固定周波数に対するインピーダンス及び電極離間間距離の関係を示す。
【図5】第本発明の第1実例に係る組織検出装置を示す。
【図6】本発明の第1実例で用いられる組織構造の検出方法を示す。
【図7】本発明の第1実施例で用いられる組織構造の他の検出方法を示す。
【図8】本発明の第1実施例で用いられる組織構造の更に他の検出方法を示す。
【図9】本発明の第1実施例で用いられる組織構造の更に他の検出方法を示す。
【図10】本発明の第2実施例を示す。
【図11】本発明の第3実施例を示す。

Claims (48)

  1. マイクロプロセッサと;
    前記マイクロプロセッサから受信した命令に応じて、複数の異なった周期波形を発生する波形発生器と;
    前記波形発生器より波形を受信し、その受信波形を印加波形として被験組織に印加するための少なくとも1つのサンプリング電極と;
    前記被験組織からの印加波形を受信し、前記印加波形を前記マイクロプロセッサに供給し、これにより構成要素として前記被験組織を含む電気回路を構成する少なくとも1つのリターン電極と、
    を含んで構成され、
    前記マイクロプロセッサが前記印加波形の特性を表示する情報を受信し、テスト被験組織の非線形の電気的特性を計算する組織構造の検出装置
  2. 計算される前記非線形の特性が、前記組織のインピーダンスである請求項1に記載の装置。
  3. 前記マイクロプロセッサは、前記波形発生器に対し、組織に印加される複数の異なった波形を発生させ、該複数の異なった波形のそれぞれの発生波形に対応する組織のインピーダンスを選択的に計算させ、複数の波形の特性及び前記の選択的に計算された組織のインピーダンスを選択的に用いた数学的計算の実行をさせる請求項2に記載の装置。
  4. 前記実行される数学的計算が、インピーダンスの変化と印加電流の変化との比率の決定である請求項3に記載の装置。
  5. 前記少なくとも1つのサンプリング電極は複数のサンプリング電極を含んで構成され、前記装置は更に、前記マイクロプロセッサの命令を受けて、前記複数のサンプリング電極のうちのいずれかのサンプリング電極に対して、波形供給を行うスイッチング装置を含んで構成された請求項1に記載の装置。
  6. 前記スイッチング装置は、2つ以上のサンプリング電極に対し単一波形を同時に供給する請求項5に記載の装置。
  7. 前記スイッチング装置は、2つ以上のサンプリング電極の各サンプリング電極に対して、同一電流波形を供給する方法で、2つ以上のサンプリング電極に対し複数の波形を同時に供給する請求項5に記載の装置。
  8. 計算される前記非線形特性は、組織のインピーダンスである請求項5に記載の装置。
  9. 前記マイクロプロセッサは、前記の波形発生器に対し、組織に印加された複数の異なった波形を発生させ、該複数の異なった波形のそれぞれの発生波形に対応する組織のインピーダンスを選択的に計算させ、複数の波形の特性及び前記の選択的に計算された組織のインピーダンスを選択的に用いて数学的計算の実行をさせる請求項8に記載の装置。
  10. 前記実行される数学的計算は、インピーダンスの変化と印加電流の変化との比率を決定する請求項9に記載の装置。
  11. 前記少なくとも1つのリターン電極は、複数のリターン電極を含んで構成され、前記装置は更に、前記マイクロプロセッサから受信して、前記複数のリターン電極のうちのいずれかのリターン電極を選択し、これによって前記少なくとも1つのサンプリング電極と前記選択されたリターン電極との間の電気回路を構成するリターン側のスイッチング装置を含んで構成される請求項1に記載の装置。
  12. 前記少なくとも1つのサンプリング電極は、複数のサンプリング電極を含んで構成され、前記装置は更に、前記マイクロプロセッサからの命令を受信して、前記複数のサンプリング電極のうちのいずれかのサンプリング電極に対して波形供給するリターン側のスイッチング装置を含んで構成され、
    前記少なくとも1つのリターン電極は、複数のリターン電極を含んで構成され、前記装置は更に、前記マイクロプロセッサから命令を受信して前記複数のリターン電極のうちの、いずれかのリターン電極を選択し、これによって前記少なくとも1つのサンプリング電極と前記選択されたリターン電極との間に電気回路を構成するリターン側のスイッチング装置を含んで構成される請求項1に記載の装置。
  13. 計算される前記非線形の特性は組織のリアクタンスである請求項1に記載の装置。
  14. 更にディスプレイを含んで構成され、前記マイクロプロセッサが組織の三次元画像を作成し、該ディスプレイが前記三次元画像を表示する請求項1に記載の装置。
  15. 以下のステップを含んで構成される組織構造の検出方法:
    周期波形を発生すること;
    少なくとも1つのサンプリング電極を介し被験組織へ周期波形を印加波形として供給すること;
    少なくとも1つのリターン電極を介し、被験組織から前記印加波形を受信し、これによって構成要素として被験組織を含む電気回路を構成すること;
    前記印加波形特性が示す情報を受信すること;及び
    前記印加波形と関連したテスト被験組織の非線形の電気的特性を計算すること。
  16. 計算される前記非線形の特性が組織のインピーダンスである請求項15に記載の方法。
  17. 更に以下のステップを含んで構成される請求項15に記載の方法:
    先行する周期波形とは異なる新たな周期波形を発生すること;
    前記サンプリング電極を介して、前記新たな周期波形を他の印加波形としてテスト被験組織に供給すること;
    前記リターン電極を介して、被験組織から前記他の印加波形を受信し、これによって、被験組織を構成要素として含む電気回路を構成すること;
    前記他の印加波形の特性を示す情報を受信すること;及び
    前記印加波形と関連してテスト被験組織の非線形の電気的特性を再計算すること。
  18. 前記計算される前記非線形の電気的特性が組織のインピーダンスであり、前記再計算された非線形の電気的特性が組織のインピーダンスであり、更に前記方法が、前記他の印加波形の特性及び前記印加波形の特性並びに、前記計算された組織のインピーダンス及び前記再計算された組織のインピーダンスを選択的に用いて数学的計算を行うステップを含んで構成された請求項17に記載の方法。
  19. 実行される前記数学的計算が、インピーダンスの変化と印加電流の変化との比率の決定である請求項18に記載の方法。
  20. 前記少なくとも1つのサンプリング電極が複数のサンプリング電極を含んで構成され、前記方法が2つ以上のサンプリング電極へ単一波形を同時に供給するステップを更に含んで構成された請求項15に記載の方法。
  21. 以下のステップを更に含んで構成された請求項20に記載の方法:
    先行する周期波形とは異なる新たな周期波形を発生すること;
    前記サンプリング電極を介して前記新たな周期波形を他の印加波形として被験組織に供給すること;
    前記リターン電極を介して被験組織から前記他の印加波形を受信し、これによって被験組織を構成要素として含む電気回路を構成すること;
    前記他の印加波形の特性が示す表示情報を受信すること;及び
    前記他の印加波形と関連するテスト被験組織の非線形の電気的特性を再計算すること。
  22. 前記計算される前記非線形の電気的特性が組織のインピーダンスであり、前記再計算された非線形の電気的特性が組織のインピーダンスであり、更に前記方法が、前記他の印加波形の特性、及び前記の印加波形の特性、並びに前記計算された組織のインピーダンス及び前記の再計算された組織のインピーダンスを選択的に用いて数学的計算を行うステップを含んで構成された請求項21に記載の方法。
  23. 実行される前記数学的計算は、インピーダンスの変化と印加電流の変化との比率の決定である請求項22に記載の方法。
  24. 前記少なくとも1つのサンプリング電極が複数のサンプリング電極を含んで構成され、前記方法が、前記2つ以上のサンプリング電極のそれぞれのサンプリング電極に対し、前記の同一電流波形を供給するという方法で、2つ以上のサンプリング電極に複数の波形を同時に供給するステップを更に含んで構成された請求項15に記載の方法。
  25. 更に以下のステップを含んで構成された請求項24に記載の方法:
    先行する周期波形とは異なる新たな周期波形を発生すること;
    前記サンプリング電極を介して前記の新たな周期波形を他の印加波形として被験組織に供給すること;
    前記リターン電極を介して、被験組織から前記の他の印加波形を受信し、これによって被験組織を構成要素として含む電気回路を構成すること;
    前記他の印加波形の電圧及び電流が示す情報を受信すること;及び
    前記の他の印加波形と関連してテスト被験組織の非線形の電気的特性を再計算すること。
  26. 前記計算される前記非線形の電気的特性が組織のインピーダンスであり、前記再計算された非線形の電気的特性が組織のインピーダンスであり、前記方法が、前記他の印加波形の特性及び、前記印加波形の特性並びに、前記計算された組織のインピーダンス及び、前記再計算された組織のインピーダンスを選択的に用いて数学的計算を行うステップを更に含んで構成された請求項25に記載の方法。
  27. 実行される前記の数学的計算はインピーダンスの変化と印加電流の変化との比率の決定である請求項26に記載の方法。
  28. 前記少なくとも1つのリターン電極は、複数のリターン電極を含んで構成され、前記方法は、前記複数のリターン電極のうちの少なくとも1つのリターン電極を選択し、それによって前記少なくとも1つのサンプリング電極と前記少なくとも1つの選択されたリターン電極との間に電気回路を構成するステップを含んで構成した請求項15に記載の方法。
  29. 前記少なくとも1つのサンプリング電極は複数のサンプリング電極を含んで構成され、前記少なくとも1つのリターン電極は複数のリターン電極を含んで構成され、前記方法は更に以下のステップを含んで構成された請求項15に記載の方法;
    前記周期波形が印加波形として被験組織へ印加されるように少なくとも1つのサンプリング電極を選択すること;
    前記複数のリターン電極のうちの少なくとも1つのリターン電極を選択し、これにより、前記少なくとも1つのサンプリング電極と前記少なくとも1つの選択されたリターン電極との間に電気回路を構成すること。
  30. 計算される前記非線形の特性が組織のリアクタンスである請求項15に記載の方法。
  31. 以下のステップを更に含んで構成された請求項15に記載の方法:
    組織の三次元画像ディスプレイを起動すること;及び
    前記三次元画像を表示すること。
  32. 以下のステップを含んで構成される方法の遂行をコンピュータに実行させる命令を記録したコンピュータの読み取り可能な媒体:
    周期波形を発生すること;
    少なくとも1つのサンプリング電極を介し被験組織に前記周期波形を印加波形として供給すること;
    少なくとも1つのリターン電極を介し、被験組織から前印加波形を受信し、これによって構成要素として被験組織を含む電気回路を構成すること;
    前記印加波形の特性を示す情報を受信すること;及び
    前記印加波形と関連したテスト被験組織の非線形の電気的特性を計算すること。
  33. 計算される前記非線形の特性が組織のインピーダンスである請求項32に記載のコンピュータの読み取り可能な媒体。
  34. 以下のステップを更に含む方法の遂行をコンピュータに実行させる命令を記録した請求項32に記載のコンピュータの読み取り可能な媒体:
    先行する周期波形とは異なる新たな周期波形を発生する事こと;
    前記サンプリング電極を介して前記新たな周期波形を他の印加波形として被験組織に供給すること;
    前記リターン電極を介して被験組織から前記他の印加波形を受信し、これによって被験組織を構成要素として含む電気回路を構成すること;
    前記他の印加波形の電圧と電流が示す情報を受信すること;及び
    前記他の印加波形と関連するテスト被験組織の非線形の電気的特性を再計算すること。
  35. 計算される前記非線形の電気的特性が組織のインピーダンスであり、前記再計算された非線形の電気的特性が組織のインピーダンスであり、前記コンピュータの読み取り可能な媒体が、コンピュータに対して、以下のステップを更に含む前記方法の遂行をコンピュータに実行させる命令を記録した請求項32に記載のコンピュータの読み取り可能な媒体;
    他の印加波形の特性及び前記印加波形の特性、並びに前記計算された組織のインピーダンスを選択的に用いて数学的計算を行うこと。
  36. 実行される前記数学的計算が、インピーダンスの変化と電流の変化との比率の決定である請求項35の記載のコンピュータの読み取り可能な媒体。
  37. 前記の少なくとも1つのサンプリング電極が、複数のサンプリング電極を含んで構成され、前記コンピュータの読み取り可能な媒体が、2つ以上のサンプリング電極に単一波形を同時に供給するステップを更に含んで構成された前記方法をコンピュータに実行させる命令を更に含む請求項32に記載のコンピュータの読み取り可能な媒体。
  38. 前記コンピュータの読み取り可能な媒体が、以下のステップを更に含んで構成された方法を、コンピュータに実行させる命令を更に含む請求項37に記載のコンピュータの読み取り可能な媒体:
    先行する周期波形とは異なる新たな周期波形を発生すること;
    前記サンプリング電極を介して前記の新たな周期波形を他の印加波形として被験組織に供給すること;
    前記リターン電極を介して被験組織から前記他の印加波形を受信し、これによって被験組織を構成要素として含む電気回路を構成すること;
    前記他の印加波形の電圧及び電流が示す情報を受信すること;
    前記他の印加波形と関連してテスト被験組織の非線形の電気的特性を再計算すること。
  39. 前記計算される前記非線形の電気的特性が組織のインピーダンスであり、前記再計算された非線形の電気的特性が組織のインピーダンスであり、前記コンピュータの読み取り可能な媒体が、前記他の印加波形の特性、及び前記印加波形の特性、並びに前記計算された組織のインピーダンス及び前記再計算された組織のインピーダンスを選択的に用いて数学的計算を行うステップを含んで構成された方法をコンピュータに実行させる命令を更に含む請求項38に記載のコンピュータの読み取り可能な媒体
  40. 実行される前記数学的計算が、インピーダンスの変化と印加電流の変化との比率の決定である請求項39に記載のコンピュータの読み取り可能な媒体。
  41. 前記少なくとも1つのサンプリング電極が複数のサンプリング電極を含んで構成され、前記コンピュータの読み取り可能な媒体が、2つ以上のサンプリング電極のその各々に対して同一電流波形を供給する方法で、2つ以上のサンプリング電極に対し複数の波形を同時に供給するステップを更に含んで構成された請求項32に記載の前記コンピュータの読み取り可能な媒体。
  42. 前記コンピュータの読み取り可能な媒体が以下のステップを更に含んで構成された方法をコンピュータに実行させる命令を更に含む請求項41に記載のコンピュータの読み取り可能な媒体:
    先行する周期波形とは異なる新たな周期波形を発生すること;
    前記サンプリング電極を介して、前記新たな周期波形を他の印加波形として被験組織に供給すること;
    前記リターン電極を介して、被験組織から前記他の印加波形を受信し、これによって被験組織を構成要素として含む電気回路を構成すること;
    前記他の印加波形の電圧及び電流が示す情報を受信すること;及び
    前記他の印加波形と関連してテスト被験組織の非線形の電気的特性を再計算すること。
  43. 前記計算される前記非線形の電気的特性が組織のインピーダンスであり、前記再計算された非線形の電気的特性が組織のインピーダンスであり、コンピュータの読み取り可能な媒体が、前記他の印加波形の特性、及び前記印加波形の特性、並びに前記計算された組織のインピーダンス及び前記再計算された組織のインピーダンスを選択的に用いて数学的計算を行うステップを更に含んで構成された方法をコンピュータに実行させる命令を更に含む請求項42に記載のコンピュータの読み取り可能な媒体。
  44. 実行される前記数学的計算が、インピーダンスの変化及び電流の変化の比率の決定である請求項43に記載のコンピュータの読み取り可能な媒体。
  45. 前記少なくとも1つのリターン電極が複数のリターン電極を含んで構成され、前記コンピュータの読み取り可能な媒体が、前記複数のリターン電極のうちの少なくとも1つのリターン電極を選択し、これによって前記少なくとも1つのサンプリング電極と、前記少なくとも1つの選択されたリターン電極との間に電気回路を構成するステップを更に含んで構成された方法をコンピュータに実行させる命令を更に含む請求項32に記載のコンピュータの読み取り可能な媒体。
  46. 前記少なくとも1つのサンプリング電極が複数のサンプリング電極を含んで構成され、前記少なくとも1つのリターン電極が複数のリターン電極を含んで構成され、前記コンピュータの読み取り可能な媒体が、以下のステップを更に含んで構成された方法を、コンピュータに実施させる命令を更に含む請求項32に記載のコンピュータの読み取り可能な媒体:
    前記周期波形が印加波形として被験組織に印加されるように少なくとも1つのサンプリング電極を選択すること;
    前記複数のリターン電極のうち少なくとも1つのリターン電極を選択し、これによって前記少なくとも1つのサンプリング電極と前記少なくとも1つの選択されたリターン電極との間に電気回路を構成すること。
  47. 計算される前記非線形の特性が組織のリアクタンスである請求項32に記載のコンピュータの読み取り可能な媒体。
  48. 前記コンピュータの読み取り可能な媒体が、以下のステップを更に含んで構成された方法を、コンピュータに実施させる命令を更に含む請求項47に記載のコンピュータの読み取り可能な媒体:
    組織の三次元画像ディスプレイを起動すること;及び
    前記三次元画像を表示すること。
JP2003503077A 2001-06-13 2002-06-13 組織の非侵襲的検出方法及び検出装置 Pending JP2004528935A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29769401P 2001-06-13 2001-06-13
PCT/US2002/018649 WO2002100247A2 (en) 2001-06-13 2002-06-13 Non-invasive method and apparatus for tissue detection

Publications (1)

Publication Number Publication Date
JP2004528935A true JP2004528935A (ja) 2004-09-24

Family

ID=23147353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003503077A Pending JP2004528935A (ja) 2001-06-13 2002-06-13 組織の非侵襲的検出方法及び検出装置

Country Status (5)

Country Link
US (1) US20030009111A1 (ja)
EP (1) EP1401332A4 (ja)
JP (1) JP2004528935A (ja)
CA (1) CA2449567A1 (ja)
WO (1) WO2002100247A2 (ja)

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100010369A1 (en) * 2003-04-22 2010-01-14 The University Of Manchester Nervous system monitoring method
GB0309049D0 (en) * 2003-04-22 2003-05-28 Univ Manchester Nervous system monitoring method
JP2005080720A (ja) * 2003-09-05 2005-03-31 Tanita Corp 生体電気インピーダンス測定装置
EP1722681A4 (en) * 2004-03-06 2010-03-03 Calisto Medical Inc METHODS AND DEVICES FOR NON-INVASIVE MEASUREMENT OF QUANTITATIVE DATA OF SUBSTANCES OF LIVING ORGANISMS
US7465114B2 (en) * 2004-08-11 2008-12-16 Elc Management Llc Vibrating mascara applicator, suitable compositions and method of use
WO2006044868A1 (en) * 2004-10-20 2006-04-27 Nervonix, Inc. An active electrode, bio-impedance based, tissue discrimination system and methods and use
US20060085048A1 (en) * 2004-10-20 2006-04-20 Nervonix, Inc. Algorithms for an active electrode, bioimpedance-based tissue discrimination system
JP4881574B2 (ja) * 2005-04-21 2012-02-22 パナソニック株式会社 経穴位置評価装置
EP1898784B1 (en) 2005-07-01 2016-05-18 Impedimed Limited Method and apparatus for performing impedance measurements
WO2007002991A1 (en) 2005-07-01 2007-01-11 Impedimed Limited Monitoring system
US9924886B2 (en) * 2005-08-09 2018-03-27 Ingo Flore Medical measuring device
ES2476999T3 (es) 2005-10-11 2014-07-15 Impedimed Limited Monitorización del estado de hidratación
EP2096989B1 (de) * 2006-11-23 2012-11-21 Flore, Ingo Medizinische messvorrichtung
JP5419861B2 (ja) 2007-04-20 2014-02-19 インぺディメッド リミテッド インピーダンス測定装置および方法
EP2175776B1 (en) 2007-08-09 2016-03-23 Impedimed Limited Impedance measurement process
ATE533399T1 (de) * 2007-09-07 2011-12-15 Flore Ingo Medizinische messvorrichtung zur bioelektrischen impedanzmessung
US20110028803A1 (en) * 2008-03-31 2011-02-03 Stig Ollmar Method and device for non-invasive determination of the concentration of a substance in a body fluid
EP2369983B8 (en) * 2008-11-18 2020-12-16 Philips Healthcare Informatics, Inc. Methods and apparatus for measurement of cardiovascular quantities
DE102009011381A1 (de) 2009-03-05 2010-09-09 Flore, Ingo, Dr. Diagnostische Messvorrichtung
KR101143853B1 (ko) * 2009-09-23 2012-05-23 신경민 생체세포의 임피던스 변화에 따라 rf 출력을 제어하는 방법 및 시스템
AU2010312305B2 (en) 2009-10-26 2014-01-16 Impedimed Limited Fluid level indicator determination
WO2011060497A1 (en) 2009-11-18 2011-05-26 Impedimed Limited Signal distribution for patient-electrode measurements
US8593141B1 (en) 2009-11-24 2013-11-26 Hypres, Inc. Magnetic resonance system and method employing a digital squid
US8970217B1 (en) 2010-04-14 2015-03-03 Hypres, Inc. System and method for noise reduction in magnetic resonance imaging
WO2012054560A1 (en) * 2010-10-21 2012-04-26 Highland Instruments, Inc. Methods for detecting a condition
US9179843B2 (en) 2011-04-21 2015-11-10 Hassan Ghaderi MOGHADDAM Method and system for optically evaluating proximity to the inferior alveolar nerve in situ
AU2012351988B2 (en) 2011-12-14 2017-05-04 Impedimed Limited Devices, systems and methods for determining the relative spatial change in subsurface resistivities across frequencies in tissue
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11109878B2 (en) 2017-10-30 2021-09-07 Cilag Gmbh International Surgical clip applier comprising an automatic clip feeding system
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11413042B2 (en) 2017-10-30 2022-08-16 Cilag Gmbh International Clip applier comprising a reciprocating clip advancing member
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US20190200981A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11612444B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Adjustment of a surgical device function based on situational awareness
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11179175B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US20190201039A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Situational awareness of electrosurgical systems
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US20190201146A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11058498B2 (en) 2017-12-28 2021-07-13 Cilag Gmbh International Cooperative surgical actions for robot-assisted surgical platforms
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11457944B2 (en) 2018-03-08 2022-10-04 Cilag Gmbh International Adaptive advanced tissue treatment pad saver mode
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11678927B2 (en) 2018-03-08 2023-06-20 Cilag Gmbh International Detection of large vessels during parenchymal dissection using a smart blade
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11166716B2 (en) 2018-03-28 2021-11-09 Cilag Gmbh International Stapling instrument comprising a deactivatable lockout
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11291444B2 (en) 2019-02-19 2022-04-05 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a closure lockout
US11464511B2 (en) 2019-02-19 2022-10-11 Cilag Gmbh International Surgical staple cartridges with movable authentication key arrangements
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969468A (en) * 1986-06-17 1990-11-13 Alfred E. Mann Foundation For Scientific Research Electrode array for use in connection with a living body and method of manufacture
US5433730A (en) * 1989-05-03 1995-07-18 Intermedics, Inc. Conductive pouch electrode for defibrillation
US4962766A (en) * 1989-07-19 1990-10-16 Herzon Garrett D Nerve locator and stimulator
US5272624A (en) * 1990-10-02 1993-12-21 Rensselaer Polytechnic Institute Current patterns for impedance tomography
US5458117A (en) * 1991-10-25 1995-10-17 Aspect Medical Systems, Inc. Cerebral biopotential analysis system and method
US5284153A (en) * 1992-04-14 1994-02-08 Brigham And Women's Hospital Method for locating a nerve and for protecting nerves from injury during surgery
GB9222888D0 (en) * 1992-10-30 1992-12-16 British Tech Group Tomography
US6167304A (en) * 1993-05-28 2000-12-26 Loos; Hendricus G. Pulse variability in electric field manipulation of nervous systems
US5560372A (en) * 1994-02-02 1996-10-01 Cory; Philip C. Non-invasive, peripheral nerve mapping device and method of use
US6560480B1 (en) * 1994-10-24 2003-05-06 Transscan Medical Ltd. Localization of anomalies in tissue and guidance of invasive tools based on impedance imaging
US5810742A (en) * 1994-10-24 1998-09-22 Transcan Research & Development Co., Ltd. Tissue characterization based on impedance images and on impedance measurements
EP0957982A1 (en) * 1995-04-10 1999-11-24 Admir Hadzic Peripheral nerve stimulation device for unassisted nerve blockade
US5919142A (en) * 1995-06-22 1999-07-06 Btg International Limited Electrical impedance tomography method and apparatus
US5813404A (en) * 1995-10-20 1998-09-29 Aspect Medical Systems, Inc. Electrode connector system
US6246912B1 (en) * 1996-06-27 2001-06-12 Sherwood Services Ag Modulated high frequency tissue modification
US5853373A (en) * 1996-08-05 1998-12-29 Becton, Dickinson And Company Bi-level charge pulse apparatus to facilitate nerve location during peripheral nerve block procedures
US5792069A (en) * 1996-12-24 1998-08-11 Aspect Medical Systems, Inc. Method and system for the extraction of cardiac artifacts from EEG signals
IL128803A0 (en) * 1998-03-24 2000-01-31 Siemens Ag Apparatus for examining living tissue
US6338713B1 (en) * 1998-08-18 2002-01-15 Aspect Medical Systems, Inc. System and method for facilitating clinical decision making
US6298255B1 (en) * 1999-06-09 2001-10-02 Aspect Medical Systems, Inc. Smart electrophysiological sensor system with automatic authentication and validation and an interface for a smart electrophysiological sensor system
US6466817B1 (en) * 1999-11-24 2002-10-15 Nuvasive, Inc. Nerve proximity and status detection system and method
EP1289415A4 (en) * 2000-05-18 2008-12-03 Nuvasive Inc TISSUE DISTRACTION AND APPLICATIONS IN MEDICAL PROCEDURES
US6564079B1 (en) * 2000-07-27 2003-05-13 Ckm Diagnostics, Inc. Electrode array and skin attachment system for noninvasive nerve location and imaging device
US6725087B1 (en) * 2000-09-19 2004-04-20 Telectroscan, Inc. Method and apparatus for remote imaging of biological tissue by electrical impedance tomography through a communications network
JP2004522497A (ja) * 2000-11-24 2004-07-29 シー ケー エム ダイアグノスティクス インコーポレーテッド 深度決定機能を備えた神経刺激器出力制御針およびその使用方法
DE10136529C1 (de) * 2001-07-26 2002-12-12 Siemens Ag Kombinierter elektrischer Impedanz- und Ultraschall-Scanner
EP1571981A2 (en) * 2002-11-27 2005-09-14 Z-Tech (Canada) Inc. Eliminating interface artifact errors in bioimpedance measurements

Also Published As

Publication number Publication date
EP1401332A2 (en) 2004-03-31
WO2002100247A2 (en) 2002-12-19
US20030009111A1 (en) 2003-01-09
CA2449567A1 (en) 2002-12-19
WO2002100247A3 (en) 2003-11-27
EP1401332A4 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP2004528935A (ja) 組織の非侵襲的検出方法及び検出装置
US20210000528A1 (en) Optimizing Treatment Using TTFields by Changing the Frequency During the Course of Long Term Tumor Treatment
US10716489B2 (en) Determining biological tissue type
US20060085048A1 (en) Algorithms for an active electrode, bioimpedance-based tissue discrimination system
US20120323134A1 (en) Method and system for determining a location of nerve tissue in three-dimensional space
US7865236B2 (en) Active electrode, bio-impedance based, tissue discrimination system and methods of use
US10065034B2 (en) Method and system for controlling neural activity in the brain
US20130223709A1 (en) Systems for detecting a condition
EP0420980A1 (en) Apparatus for measuring data of living body
JP4378607B2 (ja) 測定装置
WO2008094448A1 (en) High-resolution mapping of bio-electric fields
CN108471978A (zh) 神经刺激设备和生物磁场测量系统
Trulsson et al. Cortical responses to single mechanoreceptive afferent microstimulation revealed with fMRI
US20230218902A1 (en) Bioimpedance measurement method and apparatus with electrical stimulation performance
KR101690425B1 (ko) 생체 조직에 대한 전기적 물성 변화 측정 장치 및 그 방법
CN102497806A (zh) 诊断和筛选潜在疾病的电子标记物的方法
AU2002312473A1 (en) Non-invasive method and apparatus for tissue detection
RU212641U1 (ru) Устройство измерения электропроводности кожных покровов
CN110520038A (zh) 心律失常驱动器的连通性分析
US20220313992A1 (en) Impedance Tomography Using Electrodes of a Tumor Treating Fields (TTFields) System
Zheng et al. Imageless Electrical Impedance Tomography for Highly Sensitive Object Dynamics Detection
KR20070091329A (ko) 신체의 일부 내의 혈관화 정도를 평가 및 제어하는 방법그리고 이를 구현하는 장치
Mamatjan et al. Optimized electrode positions and stimulation patterns in head EIT
Wang Biomedical applications of acoustoelectric effect
Scharfstein A reconfigurable electrode array for use in rotational electrical impedance myography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127