JP2004528002A - Secretory and transport molecules - Google Patents

Secretory and transport molecules Download PDF

Info

Publication number
JP2004528002A
JP2004528002A JP2002507862A JP2002507862A JP2004528002A JP 2004528002 A JP2004528002 A JP 2004528002A JP 2002507862 A JP2002507862 A JP 2002507862A JP 2002507862 A JP2002507862 A JP 2002507862A JP 2004528002 A JP2004528002 A JP 2004528002A
Authority
JP
Japan
Prior art keywords
polypeptide
polynucleotide
seq
sat
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002507862A
Other languages
Japanese (ja)
Inventor
リー、アーンスティーン・エイ
リュ、ヤン
ラル、プリーティ
タング、トム・ワイ
ユエ、ヘンリー
チョーラ、ナリンダー・ケイ
ボーグン、マライア・アール
ダス、デボプリバ
ランクマール、ジャヤラクシミ
トリボレー、キャサリーン・エム
リュ、デュング・アイナ・エム
ハファリア、エープリル
ガンディー、アミーナ・アール
スー、ユーミング
バンドマン、オルガ
エリオット、ビッキー・エス
ニュエン、ダニエル・ビー
バリル、ジョン・ディー
マーカス、グレゴリー・エイ
ジングラー、カート・エイ
ヤオ、モニーク・ジー
ガルラジャン、ラジャゴパル
ディング、リー
ワレン、ブリジット、エイ
サンガベル、カビサ
リー、サリー
Original Assignee
インサイト・ゲノミックス・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インサイト・ゲノミックス・インコーポレイテッド filed Critical インサイト・ゲノミックス・インコーポレイテッド
Publication of JP2004528002A publication Critical patent/JP2004528002A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)

Abstract

本発明はヒト分泌分子および輸送分子(SAT)、並びにSATを同定し、コードするポリヌクレオチドを提供する。本発明はまた、発現ベクター、宿主細胞、抗体、アゴニストおよびアンタゴニストをも提供する。本発明はまた、SATの異常発現に関連する疾患を診断、治療または予防する方法をも提供する。The present invention provides human secreted and transported molecules (SATs), and polynucleotides that identify and encode SATs. The present invention also provides expression vectors, host cells, antibodies, agonists and antagonists. The present invention also provides a method for diagnosing, treating or preventing a disease associated with abnormal expression of SAT.

Description

【0001】
(技術分野)
本発明は、分泌分子および輸送分子の核酸配列及びアミノ酸配列に関する。 本発明はまた、これらの配列を利用した小胞輸送障害、輸送障害、神経系疾患、自己免疫/炎症疾患、および細胞の異常増殖の診断・治療・予防に関する。 本発明はさらに、分泌分子および輸送分子の核酸配列及びアミノ酸配列の発現における外来性化合物の効果についての評価に関する。本発明さらに、新規のヒト分泌及び輸送分子(SAT)及びSATをコードするポリヌクレオチドの発見に基づき、これらの組成物を利用した小胞輸送障害、神経系疾患、自己免疫/炎症性の疾患、および細胞増殖異常の診断、治療、及び予防に関する。
【0002】
(発明の背景)
真核細胞は脂質二分子膜細胞膜によって結合され、機能的に別個の、膜で結合された区画に細分される。膜は、細胞質、細胞外環境および細胞質内の各オルガネラの内腔空間に本質的な差を維持する。膜内在性タンパク質、分泌タンパク質、およびオルガネラのルーメン用のタンパク質を含む真核タンパク質は、小胞体(ER)内で合成され、翻訳後の処理およびソートするためゴルジ複合体に送られ、次に特定の細胞内と細胞外の目標地に輸送される。物質は、エンドシトーシスにより細胞外の環境から取り込まれる。これは神経シグナル、代謝シグナル、増殖シグナルの伝達にとって必須のプロセスである。また多くの必須の栄養素の取り込みを行う。さらに進入有機体に対し防御する。タンパク質分子のこの細胞内・細胞外の移動は小胞輸送と名付けられる。輸送は、供与体オルガネラ膜から開始し目標膜で融合する特殊小胞へタンパク質分子をパッケージングして遂行される (Rothman, J.E 、Wieland, F.T. (1996) Science 272:227234)。
ER膜を横切るタンパク質の輸送は、バクテリア、イースト、哺乳動物におけるプロセスと類似している(Gorlich, D. 他(1992) Cell 71:489−503を参照)。哺乳類システムでは、輸送は細胞質内シグナル認識粒子(SRP)の作用により開始する。SPRは、伸長している、合成されたばかりのポリペプチド上のシグナル配列を認識し、ER膜上のシグナル認識粒子(SRP)受容体を経てポリペプチドとそのリボソーム複合体をER膜に結合させる。シグナル ペプチドは切断され、付着しているポリペプチドと共にリボソーム複合体は膜に囲まれる。ポリペプチドは、その後ER膜を横切り、小胞へ転移させられる (Blobel, G. 及び B. Dobberstein (1975) J. Cell Biol. 67:852−862)。
イースト中のER膜を横切ってポリペプチドの転置に係わされるタンパク質には、SEC61p、SEC62pおよびSEC63pがある。これらのタンパク質をコードする遺伝子の突然変異は、移行プロセスに欠陥をもたらす。SEC61は、このタンパク質の遺伝子中にある突然変異が起こると多くのタンパク質の移行を阻害するため、特に重要である可能性がある(前出Gorlich)。
【0003】
イーストSEC61(mSEC61)の哺乳類相同体はイヌおよびネズミの中で識別されている(前出Gorlich)。また、哺乳類SEC61はSECYp、バクテリアの細胞質膜移行タンパク質に構造が似ている。mSEC61は膜に囲まれたリボソームと強い結合をすることが分かっている。この結合は、膜を標的とする新生ポリペプチド鎖により引き起こされ、リボソームがそれらを構成するサブユニットに解離することによって弱められる。新生ポリペプチドはリボソームにより翻訳の終了後ER膜に転送され、mSEC61は、ER膜にある推定タンパク質伝導チャンネルの成分であると仮定される(前出Gorlich)。
【0004】
分泌とエンドソーム経路に沿った物質の通過における数ステップは、輸送小胞の形成を必要とする。特に、小胞は、転移小胞体(tER)、ゴルジ槽の縁、トランスゴルジ ネットワーク(TGN)の表面、原形質膜(PM)およびエンドソームの管状伸張部で形成される。膜の一部領域が供与体オルガネラから離れるとき、小胞形成が起こる。膜で囲まれた小胞は、輸送されるタンパク質を含んでおり、タンパク質のコートにより取り囲まれる。それらの成分は細胞質から動員される。最初の分離プロセスとコーティング・プロセスは、細胞質のras様のGTP結合タンパク質、ADP−リボシル化要因(Arf)、およびアダプタ タンパク質(AP)によりコントロールされる。小胞形成時に、細胞質内のGTPを結合したArfも、小胞に組み入れられる。ArfとAPの両方の異なるアイソフォームは異なる部位の小胞分離に関与する。例えば、Arfs 1、3および5はゴルジからの小胞分離に、Arf4はエンドソームからの小胞分離に、またArf6は原形質膜からの小胞分離に必要である。2種類のクラスのコート タンパク質も同定されている。クラスリン コートはTGNとPMに由来した小胞を形成し、他方コートマ(coatmer)(COP)のコートはERとゴルジから由来した小胞を形成する (Mellman, I. (1996) Annu. Rev. Cell Dev. Biol. 12:575−625)。
【0005】
クラスリンを基にした小胞形成では、APは分離しようとする膜の表面に小胞に入れる内容物とコート タンパク質を集積する。APは2つの大きな鎖から形成されたヘテロ四量体複合体である。一つの鎖は、a、g、d又はe鎖から成り、b鎖、中鎖(m)、小鎖(s)を伴う。クラスリンは b−アダプチン サブユニットのカルボキシ末端の付随領域を経てAPに結合する (Le Bourgne, R.、Hoflack, B. (1998) Curr. Opin. Cell. Biol. 10:499−503)。AP−1は、TGNとエンドソームからエンドソーム/リソソーム システムの区画へのタンパク質選別を行う。AP−2は原形質膜でクラスリンを媒介としたエンドシトーシスで機能し、他方AP−3はエンドソーム及び/又はTGNに関係し、リソソームとリゾソーム関連オルガネラへの輸送のため膜内在性タンパク質を動員する。最近単離されたAP−4複合体は、TGNあるいは隣接区分に局在化し、ポスト−ゴルジ区分内で起こるとおもわれる選別イベントにおいて役割を果している可能性がある(Dell’Angelica, E. C. 他 (1999) J. Biol. Chem. 274:7278−7285 参照)。小胞の形成とともに、細胞質内のGTP結合Arfも、小胞に組み入れられる。別のGTP結合タンパク質(ダイナミン)は、形成しつつある小胞の頚部まわりにリング複合体を形成し、供与体膜から小胞の解放に必要な機械化学的の力を与える。つぎに、コーティングされた小胞複合体は細胞質内を通って輸送される。輸送プロセス中に、Arfに結合したGTPはGDPに加水分解され、コートは輸送小胞から解離する (West, M.A. 他 (1997) J. Mol. Biol. 138:1239−1254 参照)。
【0006】
コートマ(COP)のコート(コート タンパク質の別のクラス)は、ERとゴルジに由来した小胞に形成する。COPコートはさらにCOPIとCOPIIして分類され、COPIはゴルジを経て、ゴルジからERまで逆行輸送に関与し、COPIIはERからゴルジまでまで順行輸送に関与する(前出Mellman)。COPコートはGTP結合タンパク質(ArfまたはSar)とコートプロトマ(コートマ)の2つの主成分から成る。コートマは7種類のタンパク質(α−, β−, β’−, γ−, Δ−, ε−, Ζ−COP)の等モル複合体である。コートマ複合体は膜内在性タンパク質の細胞質テイル上に含まれるディリシン(dilysine) モチーフに結合する。それらのモチーフには、ERの膜タンパク質のディリシンを含んでいる検索(retrieval)モチーフと、p24ファミリー メンバーの二塩基/ジフェニルアミン モチーフがある。タイプI膜タンパク質のp24ファミリーは、COPI小胞の主要膜タンパク質である(Harter, C.、Wieland, F.T. (1998) Proc. Natl. Acad. Sci. USA 95:11649−11654 を参照)。
【0007】
小胞は同型融合(同種の小胞との融合)あるいは異型融合(異種の小胞との融合)をでき得る。適切な標的と小胞の融合に必要な分子には、小胞膜内のタンパク質、目標の膜、および細胞質から補充されたタンパク質が含まれる。供与体区分からの小胞の分離中に、複合内在性タンパク質であるVAMP(小胞結合膜タンパク質)が小胞に組み入れられる。小胞の脱コートの直後に、細胞質内のプレニレートされたGTP結合タンパク質(Rab)は小胞膜に挿入される。Rabタンパク質のアミノ酸配列は、Rasスーパーファミリのメンバに特有の保存されたGTP結合領域を明らかにする。小胞膜では、GTP結合RabはVAMPと相互作用する。小胞が目標の膜に達すると、目標の膜中のGTPase活性化タンパク質(GAP)はRabタンパク質をGDP結合形式に変換する。細胞質のタンパク質である、グアニンヌクレオチド解離阻害因子(GDI)は小胞膜からGDP結合Rabを取り除く。Rab アイソフォームのいくつかは同定されており、細胞内の特定区分と結合しているらしい。例えば、Rabs 4、5および11は初期のエンドソームに関連し、他方Rabs 7および9は後期エンドソームと関連する。これらの違いで、小胞とそれらの目標の膜の間の結合の選択性を提供する可能性がある (Novick, P., 及び Zerial, M. (1997) Cur. Opin. Cell Biol. 9:496−504)。
輸送小胞の目標膜とのドッキングは、小胞SNAP受容体(v−SNARE)、目標膜(t−)SNAREおよび他の膜タンパク質と、細胞質のタンパク質間の複合体を伴う。ドッキング複合体のそれらの正確な機能は不確かなままであるが、これらの他のタンパク質の多くが同定された(Tellam, J.T. 他(1995) J. Biol. Chem. 270:58575863; Hata, Y.、Sudhof, T.C. (1995) J. Biol. Chem. 270:1302213028 を参照)。N−エチルマレイミド感受性要因(NSF)と可溶性NSF−アッタチメント タンパク質(α−SNAP−とβ−SNAP)は、イーストからヒトまでで保存されており、ほとんどの細胞内膜融合反応で機能する、2つのタンパク質である。Sec1は、膜融合を含む分泌経路の種々の段階で機能するイーストタンパク質のファミリを表わす。最近、Munc−18タンパク質と呼ばれるSec1の哺乳類相同体が同定された(Katagiri, H. 他(1995) J. Biol. Chem. 270:49634966; Hata 他を参照)。
【0008】
SNARE複合体には3種類のSNARE分子があり、1つは小胞膜に、2つは目標膜にある。それらがいっしょになって、4つのα−へリックスのコイルドコイルの棒状複合体を形成する。3つのSNAREすべての膜固着ドメインは棒の一端から突き出る。この複合体は、ミクソウイルス、インフルエンザ、フィロウイルス(エボラ)、HIV、SIVのレトロウイルスのような、エンベロープウィルスの特徴である、融合タンパク質によって形成された棒状の構造に似ている (Skehel, J.J.,、Wiley, D.C. (1998) Cell 95:871−874)。SNARE複合体は膜融合に十分であると提案されており、複合体と結合するタンパク質が融合イベントの制御を提供することを示唆している (Weber, T. 他(1998) Cell 92:759−772 参照)。例えば、制御されたエキソサイトーシスをするニューロンでは、ドッキングされた小胞は、カルシウムの流入を引き起こす脱分極が起こるまで、シナプス前膜と融合しない (Bennett, M.K.、Scheller, R.H. (1994) Annu. Rev. Biochem. 63:63−100)。シナプトタグミン(シナプス小胞中の膜内在性タンパク質)はドッキング複合体中のt−SNAREシンタキシンと結合する。シナプトタグミンは、マイナスに荷電したリン脂質の付いた複合体中でカルシウムと結合する。このマイナスに荷電したリン脂質によって、細胞質内SNAPタンパク質はシンタキシンをシナプトタグミンに置き換え、融合を起こさせる。したがって、シナプトタグミンはニューロン中の融合に負の調節を行う(Littleton, J.T. 他(1993) Cell 22:817−1134を参照)。
【0009】
シナプス小胞で最も豊富にある膜タンパク質は、糖タンパク質シナプトフィシン(4つの膜貫通ドメインと2つの小胞内ループを備えた38kDaタンパク質)であると考えられている。シナプトフィシン モノマーは、シナプス小胞膜中にチャンネルを形成するホモポリマー内に結合する。神経組織内のシナプトフィシンのカルシウム結合力、チロシン燐酸化、および広範な配分は、神経分泌において潜在的な役割をしていることを示唆する (Bennett、前出)。
【0010】
タンパク質輸送の小胞内からの入出は、細胞膜と、スペクトリンとその他のタンパク質から成る膜細胞骨格の間の相互作用に依存する。アンキリンと呼ばれる関連タンパク質の大ファミリは、膜骨格タンパク質スペクトリンと、バンド3と呼ばれる細胞膜中のタンパク質(細胞膜中の陰イオンチャンネルの構成成分)に結合することにより、輸送プロセスに参加する。したがって、アンキリンは、細胞骨格と細胞膜間で重要なリンクとして機能する。
【0011】
アンキリンは、元々赤血球系細胞との関連で発見されたのであるが、他の組織にも存在する (Birkenmeier, C.S. 他(1993) J. Biol. Chem. 268:9533−9540 参照)。アンキリンは大きなタンパク質(約1800個のアミノ酸)であり、これに含まれるものとして、N末端 89 kDa ドメイン(細胞膜タンパク質バンド3およびチューブリンを結合する)、中枢部の 62k Da ドメイン(細胞骨格タンパク質スペクトリンとビメンチンを結合する)、C末端(他の2つのドメインの結合活性力の修飾体として機能する 55 kDa調節ドメイン)がある。アンキリンの個々の遺伝子は、種々の挿入および削除により多数のアニキリン アイソフォームの生成が可能である。それらのアイソフォームはほとんど同一のサイズであるが、異なる機能がある場合がある。また、N末端 (バンド 3 結合)からのコード化配列の大きな領域と、中枢部(スペクトリン結合)ドメインが欠落した、小さな転写物が生成される。アンキリンタンパク質のそのような大ファミリの存在と、1種類以上のアンキリンが同一細胞タイプ内に発現されることのある観察は、アンキリンは膜骨格を原形質膜に単に結合するより多くの特殊機能を持っている場合があることを、示唆する (Birkenmeier、前出)。
【0012】
ヒトでは、アンキリンの 2つのアイソフォームが交互に、発達中の赤血球系と成熟赤血球系にそれぞれ発現される (Lambert, S. 他 (1990) Proc. Natl. Acad. Sci. USA 87:17301734)。赤血球のスペクトリンおよびアンキリン中の欠乏は溶血性貧血、遺伝性球状赤血球症に関連していた (Coetzer, T.L. 他(1988) New Engl. J. Med. 318:230234 を参照)。
【0013】
タンパク質の正確な輸送には、上皮細胞の適切な機能が特に重要である。上皮細胞は、脂質と膜関連タンパク質のような異なる細胞膜成分を含んでいる、特有の表層側と基底側のドメインへ極性化される。タンパク質には柔軟なものがあり、細胞の種類または成長条件により、表層側か基底側に選別され得る。例えば、細胞が高密度に培養されている場合、腎臓陰イオン交換体(kAE1)は、表層から基底ドメインへ標的を変えることが可能である。タンパク質カナダプチンは、kAE1の細胞質ドメインに結合するタンパク質として分離される。また、それは膜内ではなく、小胞中で kAE1と共に局在化する。これは、カナダプチン機能が基底の標的膜にkAE1包含小胞をガイドしていることを示唆している (Chen, J. 他(1998) J. Biol. Chem. 273:1038−1043 参照)。
【0014】
小胞輸送は神経伝達の過程で重要である。シナプス小胞は、ニューロンの細胞質からシナプスまで神経伝達物質分子を搬送する。Rab3はシナプス小胞上にある GTP結合タンパク質のファミリである。タンパク質のRIMファミリーは、Rab3のためのエフェクタであると思われる (Wang, Y. 他(2000) J. Biol. Chem. 275:20033−20044 参照)。Rabphilin−3はシナプス小胞タンパク質である。グラニュフィリン(granuphilin)はラブフィリン(rabphilin)と相同性のあるタンパク質であり、エキソサイトーシスにおいて独特の役割をもつことがある (Wang, J. 他(1999) J. Biol. Chem. 274:28542−28548 参照)。
【0015】
無数のヒトの疾患及び障害の病因は、タンパク質のオルガネラまたは細胞膜への輸送における欠陥に起因し得る。膜結合受容体およびイオンチャネルの輸送の欠陥は、嚢胞性繊維症(嚢胞性繊維症の膜内外のコンダクタンス調節因子、CFTR)、グルコース−ガラクトース吸収不良症候群 (Na+/グルコース共同輸送体)、コレステロール過剰血(低密度リポタンパク質(LDL)受容体)、および糖尿病(インシュリン受容体)の形式に関連がある。異常なホルモンの分泌は、尿崩症(バソプレッシン)、高血糖症および低血糖症(インシュリン、グルカゴン)、グレーヴス疾病および甲状腺腫(甲状腺ホルモン)、およびクッシング疾病およびアディソン疾病(副腎皮質刺激ホルモン; ACTH)、などの障害に起因している。
【0016】
癌細胞は過量のホルモンあるいは他の生物活性ペプチドを分泌する。腫瘍細胞により生物活性ペプチドの過度の分泌と関係する障害には次のものがある。インスリノーマアイレ(insulinomaislet)細胞腫瘍からの高インシュリンに起因する絶食性低血糖症; 副腎髄質および感神経性パラガングリア(paraganglia)のクロム親和性細胞腫(pheochromocytomas)から分泌されるエピネフリンおよびノルエピネフリン増大に起因する高血圧症; 癌腫のような症候群(腹部の激痛、下痢および心臓弁膜症を含み、腸の腫瘍から分泌された過量の血管作用る物質(セロトニン、ブラジキニン、ヒスタミン、プロスタグランジンおよびポリペプチドホルモン)に起因する)。生物学上活発なペプチド(腫瘍から期待されないペプチド)の転位の合成および分泌には、肺と膵臓癌にACTHとバソプレッシン、肺と膀胱癌の中の副甲状腺ホルモン、肺と乳癌の中のカルシトニン、骨髄の甲状癌中の乾燥甲状腺刺激ホルモンが含まれる。
ヒトの種々の病原体は宿主細胞タンパク質を自己の利点のため輸送経路を変更する。例えば、HIVタンパク質Nefは、クラスリン コーティングされたピットを介するエンドシトーシスを加速することによりCD4分子の細胞表面発現を下方調節する。Nefのこの機能は感染細胞からのHIVの拡散にとって重要である (Harris, M. (1999) Curr. Biol. 9:R449−R461)。ヒトの最近識別されたタンパク質に、Nef結合因子1(Naf1)があり、これは4つの伸長したコイルドコイルのドメインを有するタンパク質であり、Nefと結合することが発見された。Naf1の過剰発現は、Nefによって抑制され得るCD4の細胞表面発現を増加させる。 (Fukushi, M. 他(1999) FEBS Lett. 442:83−88).
新たな分泌分子及び輸送分子及びこれらをコードするポリヌクレオチドの発見は、小胞輸送障害、輸送障害、神経障害、自己免疫/炎症疾患、および細胞増殖異常の診断、治療並びに予防において、また、分泌分子及び輸送分子の核酸及びアミノ酸配列の発現に対する外因性化合物の効果の評価において有用であるような新たな組成物を提供することにより、当分野における必要性を満たす。
【0017】
(発明の概要)
本発明の特徴は、精製ポリペプチド、および分泌・輸送分子にあり、これは集合的に「SAT」、個別には「SAT−1」、「SAT−2」、「SAT−3」、「SAT−4」、「SAT−5」、「SAT−6」、「SAT−7」、「SAT−8」、「SAT−9」と呼ばれている。或る実施態様において本発明は、(a)SEQ ID NO:1−9を有する群から選択したアミノ酸配列からなるポリペプチド、(b)SEQ ID NO:1−9を有する群から選択したアミノ酸配列と少なくとも90%が同一である天然のアミノ酸配列を有するポリペプチド、(c)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、または(d)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドの免疫抗原性断片を含む群から選択した実質上単離されたポリペプチドを提供する。一実施態様では、SEQ ID NO:1−9のアミノ酸配列を含む実質上単離されたポリペプチドを提供する。
【0018】
また、本発明は(a)SEQ ID NO:1−9を有する群から選択したアミノ酸配列からなるポリペプチド、(b)SEQ ID NO:1−9を有する群から選択したアミノ酸配列と少なくとも90%が同一である天然のアミノ酸配列を有するポリペプチド、(c)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、または(d)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドの免疫抗原性断片、を含む群から選択されたポリペプチドをコードする実質上単離されたポリヌクレオチドを提供する。 一実施態様では、ポリヌクレオチドはSEQ ID NO:1−9を有する群から選択したポリペプチドをコードする。 別の実施態様では、ポリヌクレオチドはSEQ ID NO:10−18を有する群から選択される。
【0019】
本発明は更に、(a)SEQ ID NO:1−9を有する群から選択したアミノ酸配列からなるポリペプチド、(b)SEQ ID NO:1−9を有する群から選択したアミノ酸配列と少なくとも90%の相同性のある天然のアミノ酸配列を有するポリペプチド、(c)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、または(d)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドの免疫抗原性断片を有する群から選択したポリペプチドをコードするようなポリヌクレオチドと機能的に結合したプロモーター配列を有する組換えポリヌクレオチドを提供する。 一実施態様では、本発明は組換えポリヌクレオチドを用いて形質転換した細胞を提供する。別の実施態様では、本発明は組換えポリヌクレオチドを含む遺伝形質転換体を提供する。
【0020】
更に本発明は、(a)SEQ ID NO:1−9からなる一群から選択されたアミノ酸配列からなるポリペプチドと、(b)SEQ ID NO:1−9からなる一群から選択されたアミノ酸配列と90%以上の配列同一性を有する天然のアミノ酸配列を有するポリペプチドと、(c)SEQ ID NO:1−9からなる一群から選択されたアミノ酸配列を有するポリペプチドの生物学的に活性な断片と、(d)SEQ ID NO:1−9とからなる一群から選択されたアミノ酸配列を有するポリペプチドの免疫原性断片とで構成される一群から選択されたポリペプチドを製造する方法を提供する。製造方法は、(a)組換えポリヌクレオチドを用いて形質転換した細胞をポリペプチドの発現に適した条件下で培養する過程と、(b)そのように発現したポリペプチドを受容する過程とを有し、組換えポリヌクレオチドはポリペプチドをコードするポリヌクレオチドに機能的に結合したプロモーター配列を有する。
【0021】
本発明は更に、(a)SEQ ID NO:1−9からなる群から選択したアミノ酸配列を有するポリペプチド、(b)SEQ ID NO:1−9からなる群から選択したアミノ酸配列と少なくとも90%同一である天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1−9からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、および(d)SEQ ID NO:1−9からなる群から選択したアミノ酸配列を有するポリペプチドの免疫抗原性断片から構成される群から選択されたポリペプチドに特異結合するような実質上単離された抗体を提供する。
【0022】
本発明は更に、(a)SEQ ID NO:10−18からなる群から選択したポリヌクレオチド配列、(b)SEQ ID NO:10−18からなる群から選択したポリヌクレオチド配列と少なくとも90%の同一性を有する天然のポリヌクレオチド配列を含むポリヌクレオチド、(c)(a)に相補的なポリヌクレオチド配列、(d)(b)に相補的なポリヌクレオチド配列、および(e)(a)〜(d)のRNA等価物からなる群から選択された単離されたポリヌクレオチドを提供する。一実施態様では、ポリヌクレオチドは少なくとも60の連続したヌクレオチドを有する。
【0023】
本発明は更に、サンプル中の標的ポリヌクレオチドを検出する方法を提供する。 ここで、標的ポリヌクレオチドは(a)SEQ ID NO:10−18からなる群から選択したポリヌクレオチド配列を含むポリヌクレオチド、(b)SEQ ID NO:10−18からなる群から選択したポリヌクレオチド配列と少なくとも90%の同一性を有する天然のポリヌクレオチド配列を含むポリヌクレオチド、(c)(a)に相補的なポリヌクレオチド、(d)(b)に相補的なポリヌクレオチド配列、および(e)(a)〜(d)のRNA等価物からなる群から選択されたポリヌクレオチド配列を含む。検出方法は、(a)サンプル中の標的ポリヌクレオチドに相補的な配列を含む少なくとも20の連続したヌクレオチドを含むプローブを用いて該サンプルをハイブリダイズする過程と、(b)ハイブリダイゼーション複合体の存在・不存在を検出し、複合体が存在する場合にはオプションでその量を検出する過程からなり、プローブと標的ポリヌクレオチドあるいはその断片の間でハイブリダイゼーション複合体が形成されるような条件下で、プローブは標的ポリヌクレオチドに特異的にハイブリダイズする。一実施態様では、プローブは少なくとも60の連続したヌクレオチドを含む。
【0024】
本発明はまた、サンプル中の標的ポリヌクレオチドを検出する方法を提供する。 ここで、標的ポリヌクレオチドは(a)SEQ ID NO:10−18を有する群から選択したポリヌクレオチド配列からなるポリヌクレオチド、(b)SEQ ID NO:10−18を有する群から選択したポリヌクレオチド配列と少なくとも90%同一である天然のポリヌクレオチド配列を有するポリヌクレオチド、(c)(a)のポリヌクレオチドに相補的なポリヌクレオチド、(d)(b)のポリヌクレオチドに相補的なポリヌクレオチド、または(e)(a)〜(d)のRNA等価物を含む群から選択されたポリヌクレオチドの配列を有する。検出方法は、(a)ポリメラーゼ連鎖反応増幅を用いて標的ポリヌクレオチドまたはその断片を増幅する過程と、(b)標的ポリヌクレオチドまたはその断片の存在・不存在を検出し、該標的ポリヌクレオチドまたはその断片が存在する場合にはオプションでその量を検出する過程を含む。
【0025】
発明は更に、有効量のポリペプチドと薬剤として許容できる賦形剤とを含む成分を提供し、有効量のポリペプチドは、(a)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチド、(b)SEQ ID NO:1−9を有する群から選択したアミノ酸配列と少なくとも90%同一である天然のアミノ酸配列を有するポリペプチド、(c)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、または(d)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドの免疫抗原性断片を含む。一実施態様では、成分は配列番号1乃至6を有する群から選択したアミノ酸配列を含む。 更に本発明は、機能性SATの発現低下に関連する疾患又は病状を治療する方法であって、そのような治療を必要とする患者に対して成分を投与する過程を有する方法を提供する。
【0026】
本発明はまた、(a)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を含むポリペプチド、(b)SEQ ID NO:1−9を有する群から選択したアミノ酸配列と少なくとも90%の相同性を有する天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1−9を有する群から選択したアミノ酸配列のポリペプチドの生物学的活性断片、または(d)SEQ ID NO:1−9を有する群から選択したアミノ酸配列のポリペプチドの免疫抗原性断片を含む群から選択されたアゴニストとしてのポリペプチドの有効性を確認するために化合物をスクリーニングする方法を提供する。 スクリーニング方法は、(a)ポリペプチドを有するサンプルを化合物に曝す過程と、(b)サンプル中のアゴニスト活性を検出する過程とを含む。別法では、本発明は、この方法によって同定されたアゴニスト化合物と好適な医薬用賦形剤とを含む組成物を提供する。一実施態様では、本発明は機能性SATの発現低下に関連する疾患又は病状を治療する方法であって、そのような治療を必要とする患者に対して成分を投与する過程を含む方法を提供する。
【0027】
本発明は更に、(a)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチド、(b)SEQ ID NO:1−9を有する群から選択したアミノ酸配列と少なくとも90%が同一である天然のアミノ酸配列を有するポリペプチド、(c)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、または(d)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドの免疫抗原性断片を含むポリペプチドのアンタゴニストとしての有効性を確認するために化合物をスクリーニングする方法を提供する。 スクリーニング方法は、(a)ポリペプチドを含むサンプルを化合物に曝す過程と、(b)サンプル中のアゴニスト活性を検出する過程とを含む。一実施態様で本発明は、この方法によって同定したアンタゴニスト化合物と薬剤として許容できる賦形剤とを含む成分を提供する。別の実施態様では、機能性SATの過剰発現に関連する疾患又は病状を治療する方法であって、そのような治療を必要とする患者に対して成分を投与する過程を含む方法を提供する。
【0028】
本発明は更に、(a)SEQ ID NO:1−9からなる群から選択したアミノ酸配列を含むポリペプチド、(b)SEQ ID NO:1−9からなる群から選択したアミノ酸配列と少なくとも90%の同一性を有する天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1−9を有する群から選択したアミノ酸配列の生物学的活性断片、または(d)SEQ ID NO:1−9からなる群から選択したアミノ酸配列の免疫抗原性断片を含むポリペプチドに特異結合する化合物をスクリーニングする方法を提供する。 スクリーニング方法は、(a)ポリペプチドを適切な条件下で少なくとも1つの試験化合物に結合させる過程と、(b)試験化合物とのポリペプチドの結合を検出し、それによってポリペプチドに特異結合する化合物を同定する過程とを含む。
【0029】
この方法は、(a)このポリペプチドを好適な条件下で少なくとも1つの化合物と結合させるステップと、(b)このポリペプチドとこの試験化合物との結合を検出して、このポリペプチドと特異的に結合する化合物を同定するステップとを含む。
(a)SEQ ID NO:1−9を有する群から選択したアミノ酸配列、(b)SEQ ID NO:1−9を有する群から選択したアミノ酸配列と少なくとも90%の相同性を有する天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1−9を有する群から選択したアミノ酸配列の生物学的活性断片、または(d)SEQ ID NO:1−9を有する群から選択したアミノ酸配列の免疫抗原性断片を含むポリペプチドの活性を調節する化合物をスクリーニングする方法を提供する。 スクリーニング方法は、(a)ポリペプチドの活性が許容された条件下で、ポリペプチドを少なくとも1つの試験化合物と混合させる過程と、(b)ポリペプチドの活性を試験化合物の存在下で算定する過程と、(c)試験化合物の存在下でのポリペプチドの活性を試験化合物の不存在下でのポリペプチドの活性と比較する過程とを含み、試験化合物の存在下でのポリペプチドの活性の変化は、ポリペプチドの活性を調節する化合物であることを意味する。
【0030】
更に本発明は、SEQ ID NO:10−18からなる一群から選択された配列を含む標的ポリヌクレオチドの発現を変化させるのに効果的な化合物をスクリーニングする方法であって、(a)この標的ポリヌクレオチドを含むサンプルを化合物に曝露するステップと、(b)この標的ポリヌクレオチドの発現の変化を検出するステップとを含む、該スクリーニング方法を提供する。
【0031】
本発明は更に、(a)核酸を含む生物学的サンプルを試験化合物で処理する過程と、(b)(i)SEQ ID NO:10−18からなる群から選択したポリヌクレオチド配列を含むポリヌクレオチド、(ii)SEQ ID NO:10−18からなる群から選択したポリヌクレオチド配列と少なくとも90%の同一性を有する天然のポリヌクレオチド配列を含むポリヌクレオチド、(iii)(i)に相補的な配列を有するポリヌクレオチド、(iv)(ii)のポリヌクレオチドに相補的なポリヌクレオチド、(v)(i)〜(iv)のRNA等価物からなる群から選択したポリヌクレオチドの少なくとも20の連続したヌクレオチドを含むプローブを用いて、処理した生物学的サンプルの核酸をハイブリダイズする過程とを含む試験化合物の毒性の算定方法を提供する。ハイブリダイゼーションは、上記プローブと生物学的サンプル中の標的ポリヌクレオチドの間に特定のハイブリダイゼーション複合体が形成されるような条件下で発生し、上記標的ポリヌクレオチドは、(i)SEQ ID NO:10−18からなる群から選択したポリヌクレオチド配列を含むポリヌクレオチド、(ii)SEQ ID NO:10−18からなる群から選択したポリヌクレオチド配列と少なくとも90%の同一性を有する天然のポリヌクレオチド配列を含むポリヌクレオチド、(iii)(i)のポリヌクレオチドに相補的な配列を有するポリヌクレオチド、(iv)(ii)のポリヌクレオチドに相補的なポリヌクレオチド、および(v)(i)〜(iv)のRNA等価物からなる群から選択する。或いは、標的ポリヌクレオチドは、上記(i)〜(v)からなる群から選択したポリヌクレオチド配列の断片と、(c)ハイブリダイゼーション複合体の量を定量する過程と、(d)処理した生物学的サンプルのハイブリダイゼーション複合体の量を、非処理の生物学的サンプルのハイブリダイゼーション複合体の量と比較する過程を含み、処理した生物学的サンプルのハイブリダイゼーション複合体の量の差は、試験化合物の毒性を示す。
【0032】
(発明の実施の形態)
本発明のタンパク質、ヌクレオチド配列及び方法について説明するが、その前に、説明した特定の装置、材料及び方法に本発明が限定されるものではなく、改変し得ることを理解されたい。また、ここで使用する専門用語は特定の実施例を説明する目的で用いたものに過ぎず、特許請求の範囲にのみ限定される本発明の範囲を限定することを意図したものではないことも併せて理解されたい。
【0033】
請求の範囲及び明細書中で用いている単数形の「或る」及び「その(この)」の表記は、文脈から明らかにそうでないとされる場合を除いて複数のものを指す場合もあることに注意しなければならない。従って、例えば「或る宿主細胞」と記されている場合にはそのような宿主細胞が複数あることもあり、「或る抗体」と記されている場合には単数または複数の抗体、及び、当業者に公知の抗体の等価物等についても言及しているのである。
【0034】
本明細書中で用いる全ての専門用語及び科学用語は、特に定義されている場合を除き、当業者に一般に理解されている意味と同じ意味を有する。本明細書で説明するものと類似あるいは同等の任意の装置、材料及び方法を用いて本発明の実施または試験を行うことができるが、ここでは好適な装置、材料、方法について説明する。本発明で言及する全ての刊行物は、刊行物中で報告されていて且つ本発明に関係があるであろう細胞、プロトコル、試薬及びベクターについて説明及び開示する目的で引用しているものである。本明細書のいかなる開示内容も、本発明が先行技術の効力によってこのような開示に対して先行する権利を与えられていないことを認めるものではない。
【0035】
(定義)
「SAT」は、実質上精製されたSATのアミノ酸配列であって、任意の種、特にウシ、ヒツジ、ブタ、マウス、ウマ及びヒトを含む哺乳動物の種から得たもので、任意の天然物、合成物、半合成物或いは組換え物を起源とするものを指す。
【0036】
「アゴニスト」の語は、SATの生物学的活性を強化または擬態する分子を指す。このアゴニストは、SATに直接相互作用するか、或いはSATが関与する生物学的経路の成分と作用して、SATの活性を調節するタンパク質、核酸、糖質、小分子、任意の他の化合物や組成物を含み得る。
【0037】
用語「対立遺伝子変異配列」は、SATをコードする遺伝子の別の形を指す。対立遺伝子変異体は、核酸配列における少なくとも1の突然変異から作製し得る。 また、変異RNAまたはポリペプチドからも作製し得る。 ポリペプチドの構造または機能は、変異することもしないこともある。遺伝子は、天然の対立遺伝子変異体を全く有しないか、1個若しくは数個の天然の対立遺伝子変異体を有し得る。一般に対立遺伝子変異体を生じさせる通常の突然変異性変化は、ヌクレオチドの自然欠失、付加または置換に帰するものである。これら各変化は、単独或いは他の変化と共に、所定の配列内で1回若しくは数回生じ得る。
【0038】
SATをコードする「変異」核酸配列は、様々なヌクレオチドの欠失、挿入、或いは置換が起こっても、SATと同じポリペプチド或いはSATの機能特性の少なくとも1つを備えるポリペプチドを指す。この定義には、SATをコードするポリヌクレオチド配列の正常な染色体の遺伝子座ではない位置でのアレル変異配列との不適当或いは予期しないハイブリダイゼーション、並びにSATをコードするポリヌクレオチドの特定のオリゴヌクレオチドプローブを用いて容易に検出可能な或いは検出困難な多形性を含む。コードされたタンパク質も「変異」し得るものであり、サイレント変化を生ぜしめて結果的に機能的に等価なSATとなるようなアミノ酸残基の欠失、挿入または置換を含み得る。意図的なアミノ酸置換は、生物学的或いは免疫学的にSATの活性が保持される範囲で、残基の極性、電荷、溶解度、疎水性、親水性、及び/または両親媒性についての類似性に基づいて成され得る。例えば、負に帯電したアミノ酸にはアスパラギン酸及びグルタミン酸があり、正に帯電したアミノ酸にはリジン及びアルギニンがある。親水性値が近似している非荷電極性側鎖を有するアミノ酸には、アスパラギンとグルタミン、セリンとスレオニンがある。親水性値が近似している非荷電側鎖を有するアミノ酸には、ロイシンとイソロイシンとバリン、グリシンとアラニン、フェニルアラニンとチロシンがある。
【0039】
「アミノ酸」または「アミノ酸配列」の語は、オリゴペプチド、ペプチド、ポリペプチド若しくはタンパク質の配列またはその断片を指し、天然または合成分子を指す。ここで、「アミノ酸配列」は天然のタンパク質分子のアミノ酸配列を指すものであり、「アミノ酸配列」及び類似の語は、アミノ酸配列を、列挙したタンパク質分子に関連する完全な本来のアミノ酸配列に限定しようとするものではない。
【0040】
「増幅」は、核酸配列の追加複製に関連する。増幅は通常、当業者によく知られたポリメラーゼ連鎖反応(PCR)技術を用いて行う。
【0041】
用語「アンタゴニスト」は、SATの生物学的活性を阻害或いは減弱する分子である。アンタゴニストは、SATに直接相互作用するか、或いはSATが関与する生物学的経路の成分と作用して、SATの活性を調節する抗体、核酸、糖質、小分子、任意の他の化合物や組成物などのタンパク質を含み得る。
【0042】
用語「抗体」は、エピトープの決定基と結合することができる、そのままの免疫グロブリンやその断片、例えばFa、F(ab’)2 及びFv断片を指す。SATポリペプチドと結合する抗体は、免疫抗原として、そのままのポリペプチド、または関心のある小ペプチドを含む断片を用いて作製可能である。動物(マウス、ラット、ウサギ等)を免疫化するために用いるポリペプチドまたはオリゴペプチドは、RNAの翻訳、または化学合成によって得られるポリペプチドまたはオリゴペプチドに由来し得るもので、好みに応じて担体タンパク質に抱合することも可能である。通常用いられる担体であってペプチドと化学結合するものは、ウシ血清アルブミン、サイログロブリン及びカスイガイのヘモシアニン(KLH)等がある。結合ペプチドは、動物を免疫化するために用いる。
【0043】
「抗原決定基」の語は、特定の抗体と接触している分子の領域(即ちエピトープ)を指す。タンパク質またはタンパク質断片を用いて宿主動物を免疫化する場合、タンパク質の多数の領域が、抗原決定基(タンパク質の特定の領域または3次元構造)に特異結合する抗体の産生を誘導し得る。抗原決定基は、抗体への結合において無損傷抗原(即ち免疫応答を誘導するために用いられる免疫原)と競合し得る。
【0044】
「アンチセンス」の語は、特定の核酸配列の「センス」(コーディング)鎖と塩基対を形成することが可能な任意の成分を指す。アンチセンス成分には、DNAや、RNAや、ペプチド核酸(PNA)や、ホスホロチオ酸、メチルホスホン酸またはベンジルホスホン酸等の修飾されたバックボーン連鎖を有するオリゴヌクレオチドや、2’−メトキシエチル糖または2’−メトキシエトキシ糖等の修飾された糖類を有するオリゴヌクレオチドや、或いは5−メチルシトシン、2−デオキシウラシルまたは7−デアザ−2’−デオキシグアノシン等の修飾された塩基を有するオリゴヌクレオチドが含まれうる。アンチセンス分子は、化学合成または転写を含む任意の方法で製造することができる。相補的アンチセンス分子は、ひとたび細胞に導入されたら、細胞が形成した天然の核酸配列と塩基対を形成し、転写または翻訳を妨害する二重鎖を形成する。「負」若しくは「マイナス(−)」の語が参照DNA分子のアンチセンス鎖を、「正」若しくは「プラス(+)」がセンス鎖を指すことがある。
【0045】
「生物学的に活性」の語は、天然分子の構造的機能、調節機能または生化学的機能を有するタンパク質を指す。同様に、用語「免疫学的に活性」または「免疫原性」は、天然或いは組換え体のSAT、合成のSATまたはそれらの任意のオリゴペプチドが、適当な動物或いは細胞の特定の免疫応答を誘発して特定の抗体と結合する能力を指す。
【0046】
「相補(的)」または「相補性」の語は、塩基対形成によってアニーリングする2つの一本鎖核酸の間の関係を指す。例えば、配列「5’A−G−T3’」は、相補配列「3’T−C−A5’」と対を形成する。
【0047】
「所定のポリヌクレオチド配列を含む成分」及び「所定のアミノ酸配列を含む成分」は、所定のポリヌクレオチド配列またはアミノ酸配列を含む広範囲の任意の成分を指す。この成分には、乾燥製剤または水溶液が含まれ得る。SAT 若しくはSAT の断片をコードするポリヌクレオチド配列を含む組成物は、ハイブリダイゼーションプローブとして使用され得る。このプローブは、凍結乾燥状態で保存可能であり、糖質などの安定化剤と結合させることが可能である。ハイブリダイゼーションにおいては、塩(例えばNaCl)、界面活性剤(例えばドデシル硫酸ナトリウム;SDS)及びその他の構成エレメント(例えばデンハート液、脱脂粉乳、サケの精子のDNA等)を含む水溶液中にプローブを分散させることができる。
【0048】
「コンセンサス配列」は、不要な塩基を分離するためにDNA配列の解析を繰り返し行い、XL−PCRキット(PE Biosystems,Foster City CA)を用いて5’及び/または3’の方向に伸長され、再度シークエンシングされた核酸配列、またはGELVIEW 断片構築システム(GCG, Madison, WI)またはPhrap (University of Washington, Seattle WA)等の断片構築用のコンピュータプログラムを用いて1つ或いはそれ以上の重複するcDNAやEST、またはゲノムDNA断片から構築された核酸配列を指す。伸長及びアセンブル構築の両方を行ってコンセンサス配列を決定する配列もある。
【0049】
「保存的なアミノ酸置換」は、置換がなされた時に元のタンパク質の特性を殆ど損なわないと予測されるような置換、即ちタンパク質の構造と特に機能が保存され、そのような置換による大きな変化がない置換を指す。下表は、タンパク質中で元のアミノ酸と置換可能で、保存アミノ酸置換と認められるアミノ酸を示している。

Figure 2004528002
【0050】
保存アミノ酸置換では通常、(a)置換領域におけるポリペプチドのバックボーン構造、例えばβシートやαヘリックス構造、(b)置換部位における分子の電荷または疎水性、及び/または(c)側鎖の大部分を保持する。
【0051】
「欠失」は、結果的に1個若しくは数個のアミノ酸またはヌクレオチドが失われてなくなるようなアミノ酸またはヌクレオチド配列における変化を指す。
【0052】
「誘導体」の語は、ポリペプチド配列またはポリヌクレオチド配列の化学修飾を指す。例えば、アルキル基、アシル基、ヒドロキシル基またはアミノ基による水素の置換は、ポリヌクレオチド配列の化学修飾に含まれ得る。ポリヌクレオチド誘導体は、天然分子の生物学的または免疫学的機能を少なくとも1つは保持しているポリペプチドをコードする。ポリペプチド誘導体は、グリコシル化、ポリエチレングリコール化(pegylation)、或いは任意の同様なプロセスであって誘導起源のポリペプチドから少なくとも1つの生物学的若しくは免疫学的機能を保持しているプロセスによって、修飾されたポリペプチドである。
【0053】
「検出可能な標識」は、測定可能な信号を生成することができ、ポリヌクレオチドまたはポリペプチドに共有結合または非共有結合するようなレポーター分子または酵素を指す。
【0054】
「示差発現」は少なくとも2つの異なったサンプルを比較することによって決められる、増加、または非調節、あるいは減少、下方調節、または欠損遺伝子またはタンパク発現を指す。このような比較は例えば、治療後サンプルと未治療のサンプルまたは病態のサンプルと正常サンプルの間で行われ得る。
【0055】
用語「断片」は、SATまたはSATをコードするポリヌクレオチドの固有の部分であって、その親配列(parent sequence)と同一であるがその配列より長さが短いものを指す。断片は、画定された配列の全長から1ヌクレオチド/アミノ酸残基を差し引いた長さよりも短い長さを有し得る。例えば或る断片は、5〜1000の連続したヌクレオチドまたはアミノ酸残基を有し得る。プローブ、プライマー、抗原、治療用分子として、或いはその他の目的のために用いられる断片は、少なくとも5、10、15、20、25、30、40、50、60、75、100、150、250若しくは500の連続したヌクレオチド或いはアミノ酸残基長さであり得る。断片は、分子の特定領域から優先的に選択し得る。例えば、ポリペプチド断片は、所定の配列に示すような最初の250または500アミノ酸(またはポリペプチドの最初の25%または50%)から選択された或る長さの連続したアミノ酸を有し得る。これらの長さは明らかに例として挙げているものであり、本発明の実施例では、配列表、表及び図面を含む明細書に裏付けされた任意の長さであってよい。
【0056】
SEQ ID NO:10−18の断片は、例えば、この断片を得たゲノム内の他の配列とは異なる、SEQ ID NO:10−18を明確に同定する固有のポリヌクレオチド配列の領域を含む。SEQ ID NO:10−18のある断片は、例えば、ハイブリダイゼーションや増幅技術、またはSEQ ID NO:10−18を関連ポリヌクレオチド配列から区別する類似の方法に有用である。ある断片と一致するSEQ ID NO:10−18の正確な断片の長さや領域は、その断片の目的に基づいて当分野で一般的な技術によって日常的に測定できる。
【0057】
SEQ ID NO:1−9 の断片は、SEQ ID NO:10−18の断片によってコードされる。 SEQ ID NO:1−9 の断片には、SEQ ID NO:1−9を特異的に同定する固有のアミノ酸配列領域が含まれている。 例えば、SEQ ID NO:1−9 の断片は、SEQ ID NO:1−9を特異認識する抗体を産出するための免疫抗原性ペプチドとして有用である。 SEQ ID NO:1−9 の断片及び断片に対応するSEQ ID NO:1−9 の領域の正確な長さは、断片に対する意図した目的に基づき当業者が慣例的に決定することが可能である。
【0058】
「完全長」ポリヌクレオチド配列とは、少なくとも1つの翻訳開始コドン(例えばメチオニン)、オープンリーディングフレーム及び翻訳終止コドンを有する配列である。「完全長」ポリヌクレオチド配列は、「完全長」ポリペプチド配列をコードする。
【0059】
「相同性」の語は、配列類似性即ち2つ以上のポリヌクレオチド配列または2つ以上のポリペプチド配列の配列間で互換可能な配列同一性である。
【0060】
ポリヌクレオチド配列に適用される「一致率」または「一致%」の語は、標準化されたアルゴリズムを用いてアラインメントされた少なくとも2つ以上のポリヌクレオチド配列間で一致する残基の割合を意味する。このようなアルゴリズムは、2配列間のアラインメントを最適化するために比較する配列において、標準化された再現性のある方法でギャップを挿入するので、2つの配列をより有意に比較できる。
【0061】
ポリヌクレオチド配列間の一致率は、MEGALIGN version 3.12e配列アラインメントプログラムに組込まれているようなCLUSTAL Vアルゴリズムのデフォルトのパラメータを用いて決定できる。このプログラムは、LASERGENE ソフトウエアパッケージ(一組の分子生物学的分析プログラム)(DNASTAR, Madison WI)の一部である。このCLUSTAL Vは、Higgins, D.G. 及び P.M. Sharp (1989) CABIOS 5:151−153、Higgins, D.G. 他(1992) CABIOS 8:189−191に記載されている。ポリぺプチド配列を2つ1組でアラインメントする際のデフォルトパラメータは、Ktuple=2、gap penalty=5、window=4、「diagonals saved」=4と設定する。残基「重み付け」表をデフォルトとして選択する。CLUSTAL Vは、アラインメントされたポリヌクレオチド配列対間の「類似率」として一致率を報告する。
【0062】
或いは、米国国立バイオテクノロジー情報センター(NCBI)のBasic Local Alignment Search Tool(BLAST)が一般的に用いられ、且つ、無料で入手可能な配列比較アルゴリズム一式を提供している(Altschul, S.F. (1990) J. Mol. Biol. 215:403−410)。 このアルゴリズムは、幾つかの情報源から入手可能であり、メリーランド州ベセスダにあるNCBI及びインターネット(http://www.ncbi.nlm.nih.gov/BLAST/)からも入手可能である。BLASTソフトウェア一式には様々な配列分析プログラムが含まれており、既知のポリヌクレオチド配列を種々のデータベースから得た別のポリヌクレオチド配列とアラインメントする「blastn」もその1つである。その他にも、2つのヌクレオチド配列を対で直接比較するために用いる「BLAST 2 Sequences」と称されるツールも利用可能である。「BLAST 2 Sequences」は、http://www.ncbi.nlm.nih.gov/gorf/bl2.htmlにアクセスして対話形式で利用することが可能である。「BLAST 2 Sequences」ツールは、blastn と blastp(後述)の両方に用いることができる。BLASTプログラムは、一般的には、ギャップ及びデフォルト設定に設定された他のパラメータと共に用いる。例えば、2つのヌクレオチド配列を比較するために、デフォルトパラメータとして設定された「BLAST 2 Sequences」ツールVersion 2.0.12(2000年4月21日)を用いてblastnを実行してもよい。デフォルトパラメータの設定例を以下に示す。
【0063】
Figure 2004528002
一致率は、完全に画定された(例えば特定の配列番号で画定された)配列長さと比較して測定し得る。 或いは、より短い長さ、例えばより大きな画定された配列から得られた断片(例えば少なくとも20、30、40、50、70、100または200の連続したヌクレオチドの断片)の長さと比較して一致率を測定してもよい。ここに挙げた長さは単なる例示的なものに過ぎず、表、図及び配列リストを含めた本明細書に記載された配列に裏付けられた任意の配列長さの断片を用いて、一致率を測定し得る長さを説明し得ることを理解されたい。
【0064】
高度の相同性を示さない核酸配列が、それにもかかわらず遺伝子コードの縮重が原因で類似のアミノ酸配列をコードする場合がある。この縮重を利用して核酸配列内で変化を生じさせて、全ての核酸配列が実質上同一のタンパク質をコードするような多数の核酸配列を生成し得ることを理解されたい。
【0065】
ポリペプチド配列に適用される「一致率」または「一致%」の語は、標準化されたアルゴリズムを用いてアラインメントされた少なくとも2以上のポリペプチド配列間で一致する残基の割合を意味する。ポリペプチド配列アラインメントの方法は公知である。保存的アミノ酸置換を考慮するアラインメント方法もある。既に詳述したこのような保存的置換は通常、置換部位の電荷及び疎水性を保存するので、ポリペプチドの構造を(従って機能も)保存する。
【0066】
ポリペプチド配列間の一致率は、MEGALIGN version 3.12e配列アラインメントプログラムに組込まれているようなCLUSTAL Vアルゴリズムのデフォルトのパラメータを用いて決定できる(既に説明したのでそれを参照されたい)。CLUSTAL Vを用いて、ポリぺプチド配列を2つ1組でアラインメントする際のデフォルトパラメータは、Ktuple=1、gap penalty=3、window=5、「diagonals saved」=5と設定する。デフォルトの残基重み付け表としてPAM250マトリクスを選択する。ポリヌクレオチドアラインメントと同様に、CLUSTAL Vは、アラインメントされたポリペプチド配列対間の「類似率」として一致率を報告する。
【0067】
或いは、NCBI BLASTソフトウェア一式を用いてもよい。例えば、2つのポリペプチド配列を対で比較をする場合、ある者は、デフォルトパラメータで設定された「BLAST 2 Sequences」ツールVersion 2.0.12 (Apr−21−2000)でblastpを使用するであろう。デフォルトパラメータの設定例を以下に示す。
【0068】
Figure 2004528002
一致率は、完全に画定された(例えば特定の配列番号で画定された)ポリペプチド配列の長さと比較して測定し得る。 一致率は、配列或いは、より短い長さ、例えばより大きな画定されたポリペプチド配列から得られた断片(例えば少なくとも15、20、30、40、50、70または150の連続した残基の断片)の長さと比較して一致率を測定してもよい。ここに挙げた長さは単なる例示的なものに過ぎず、表、図及び配列リストを含めた本明細書に記載された配列に裏付けられた任意の配列長さの断片を用いて、或る長さであってその長さに対して一致率を測定し得る長さを説明し得ることを理解されたい。
【0069】
「ヒト人工染色体(HAC)」は、約6kb(キロベース)〜10MbのサイズのDNA配列を含み得る、染色体の複製、分離及び維持に必要な全てのエレメントを含む直鎖状の小染色体である。
【0070】
「ヒト化抗体」の語は、非抗体結合領域におけるアミノ酸配列はヒト抗体により近づくように変異させた抗体分子であって、本来の結合能力はそのまま保持しているような抗体分子を指す。
【0071】
「ハイブリダイゼーション」は、所定のハイブリダイゼーション条件下で塩基対を形成することによって、一本鎖ポリヌクレオチドが相補的鎖とアニーリングするプロセスを指す。特異的ハイブリダイゼーションは、2つの核酸配列が高い相同性を共有することを示すものである。特異的ハイブリダイゼーション複合体は許容されるアニーリング条件下で形成され、「洗浄」ステップ後もハイブリダイズされたままである。洗浄ステップは、ハイブリダイゼーションプロセスのストリンジェンシーを決定する際に特に重要であり、更にストリンジェントな条件では、非特異結合(即ち完全には一致しない核酸鎖間の対の結合)が減少する。核酸配列のアニーリングに対する許容条件は、本技術分野における当業者が慣例的に決定する。 許容条件はハイブリダイゼーション実験の間は一定でよいが、洗浄条件は所望のストリンジェンシーを得るように、従ってハイブリダイゼーション特異性も得るように実験中に変更することができる。アニーリングが許容される条件は、例えば、温度が68℃で、約6×SSC、約1%(w/v)のSDS、並びに約100μg/mlのせん断して変性したサケ精子DNAが含まれる。
【0072】
一般に、ハイブリダイゼーションのストリンジェンシーは或る程度、洗浄ステップを実行する温度を基準にして表すことができる。このような洗浄温度は通常、所定のイオン強度及びpHにおける特定の配列の融点(Tm)より約5〜20℃低くなるように選択する。このTmは、所定のイオン強度及びpHの下で、完全に一致するプローブに標的配列の50%がハイブリダイズする温度である。T を計算する式及び核酸のハイブリダイゼーション条件はよく知られており、Sambrook ら (1989) Molecular Cloning:Laboratory Manual, 第2版, 1−3巻, Cold Spring Harbor Press, Plainview NYに記載されており、特に2巻の9章を参照されたい。
【0073】
本発明のポリヌクレオチド間の高いストリンジェンシーのハイブリダイゼーションでは、約0.2x SSC及び約1%のSDSの存在の下、約68℃で1時間の洗浄過程を含む。 Alternatively, temperatures of about 65℃, 60℃, 55℃, or 42℃ may be used.SSC濃度は、約0.1%のSDS存在下で、約0.1〜2×SSCの範囲で変化し得る。通常は、ブロッキング剤を用いて非特異ハイブリダイゼーションを阻止する。このようなブロッキング剤には、例えば、約100〜200μg/mlの変性サケ精子DNAがある。特定条件下で、例えばRNAとDNAのハイブリダイゼーションに有機溶剤、例えば約35〜50%v/vの濃度のホルムアミドを用いることもできる。洗浄条件の有用なバリエーションは、当業者には自明であろう。 ハイブリダイゼーションは、特に高ストリンジェント条件下では、ヌクレオチド間の進化的な類似性を示唆し得る。このような類似性は、ヌクレオチド及びヌクレオチドにコードされるポリペプチドに対する類似の役割を強く示唆している。
【0074】
「ハイブリダイゼーション複合体」の語は、相補的塩基対間の水素結合の形成力によって2つの核酸配列間に形成された複合体を指す。ハイブリダイゼーション複合体は、溶解状態で形成し得る(CtまたはRt解析等)。 或いは、一方の核酸配列が溶解状態で存在し、もう一方の核酸配列が固体支持体(例えば紙、膜、フィルタ、チップ、ピンまたはガラススライド、或いは他の適切な基質であって細胞若しくはその核酸が固定される基質)に固定されているような2つの核酸配列間に形成され得る。
【0075】
「挿入」及び「付加」の語は、1個若しくは数個のアミノ酸残基またはヌクレオチド配列を各々付加するようなアミノ酸またはヌクレオチド配列における変化を指す。
【0076】
「免疫応答」は、炎症、外傷、免疫異常症、伝染性疾患または遺伝性疾患に関連する症状を指し得る。 これらの症状は、細胞及び全身の防御系に作用し得る種々の因子、例えばサイトカイン、ケモカイン、その他のシグナル伝達分子の発現によって特徴づけることができる。
【0077】
用語「免疫原性断片」は、例えば哺乳動物などの生きている動物に導入すると、免疫反応を引き起こすSATのポリペプチド断片またはオリゴペプチド断片を指す。用語「免疫原性断片」はまた、本明細書で開示するまたは当分野で周知のあらゆる抗体生産方法に有用なSATのポリペプチド断片またはオリゴペプチド断片を含む。
【0078】
「マイクロアレイ」の語は、基質上の複数のポリヌクレオチド、ポリペプチドまたはその他の化合物の構成を指す。
【0079】
「エレメント」または「アレイエレメント」の語は、マイクロアレイ上に定義された固有の位置にあるハイブリダイズ可能なポリヌクレオチド、ポリペプチドその他の化合物を指す。
【0080】
用語「調節」は、SATの活性の変化を指す。例えば、調節によって、SATのタンパク質活性、或いは結合特性、またはその他の生物学的特性、機能的特性或いは免疫学的特性の変化が起こる。
【0081】
「核酸」及び「核酸配列」の語は、ヌクレオチド、オリゴヌクレオチド、ポリヌクレオチドまたはこれらの断片を指す。「核酸」及び「核酸配列」の語は、ゲノム起源または合成起源のDNAまたはRNAであって一本鎖または二本鎖であるか或いはセンス鎖またはアンチセンス鎖を表し得るようなDNAまたはRNAや、ペプチド核酸(PNA)や、任意のDNA様またはRNA様物質を指すこともある。
【0082】
「機能的に結合した」は、第1核酸配列が第2核酸配列と機能的な関係があるように配置された状態を指す。例えば、プロモーターがコード配列の転写または発現に影響を及ぼす場合には、そのプロモーターはそのコード配列に機能的に結合している。機能的に結合したDNA配列は非常に近接するか、或いは連続し得る。そして、2つのタンパク質コード領域を結合する必要がある場合は、同一のリーディングフレーム内にある。
【0083】
「ペプチド核酸」(PNA)は、アンチセンス分子または抗遺伝子物質であって、リジンを末端とするアミノ酸残基のペプチドバックボーンに結合した、少なくとも約5ヌクレオチドの長さのオリゴヌクレオチドからなるものを指す。末端のリジンは、成分に溶解性を与える。PNAは、相補的一本鎖DNAまたはRNAに優先的に結合して転写の拡張を停止するものであり、ポリエチレングリコール化して細胞におけるPNAの寿命を延長し得る。
【0084】
SATの「翻訳後修飾」には、脂質化、グリコシル化、リン酸化、アセチル化、ラセミ化、蛋白分解性切断及びその他の当分野で既知の修飾を含まれ得る。 これらのプロセスは、合成或いは生化学的に生じ得る。生化学的修飾は、SATの酵素環境に依存し、細胞の種類によって異なり得る。
【0085】
「プローブ」は、SAT、SATの相補配列またはこれらの断片をコードする核酸配列を指し、同一核酸配列、対立遺伝子核酸配列または関連する核酸配列の検出に用いられる。プローブは、単離されたオリゴヌクレオチドまたはポリヌクレオチドであって、検出可能な標識またはレポーター分子に結合したものである。典型的な標識には、放射性アイソトープ、リガンド、化学発光試薬及び酵素がある。「プライマー」は、短い核酸、通常はDNAオリゴヌクレオチドであり、相補的塩基対を形成することで標的ポリヌクレオチドにアニーリングされ得る。プライマーは次に、DNAポリメラーゼ酵素によって標的DNA鎖に延在し得る。プライマー対は、例えばポリメラーゼ連鎖反応(PCR)による核酸配列の増幅(及び同定)に用い得る。
【0086】
本発明に用いるようなプローブ及びプライマーは通常、既知の配列の少なくとも15の連続したヌクレオチドを含んでいる。特異性を高めるために長めのプローブ及びプライマー、例えば開示した核酸配列の少なくとも20、25、30、40、50、60、70、80、90、100または150の連続したヌクレオチドからなるようなプローブ及びプライマーを用いてもよい。これよりもかなり長いプローブ及びプライマーもある。 表、図面及び配列リストを含む本明細書に裏付けされた任意の長さのヌクレオチドを用いることができるものと理解されたい。
【0087】
プローブ及びプライマーの調製及び使用方法については、Sambrook, J. ら(1989) Molecular Cloning:A Laboratory Manual, 第2版, 1−3巻, Cold Spring Harbor Press, Plainview NY、Ausubel, F.M. ら、(1987) Current Protocols in Molecular Biology, Greene Pubi. Assoc. & Wiley−Intersciences, New York NY、Innis ら(1990) PCR Protocols, Guide to Methods and Applications, Academic Press, San Diego CA等を参照されたい。PCRプライマー対は、その目的のためのコンピュータプログラム、例えばPrimer(Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA)を用いるなどして既知の配列から得ることができる。
【0088】
プライマーとして用いるオリゴヌクレオチドの選択は、そのような目的のために本技術分野でよく知られているソフトウェアを用いて行う。例えばOLIGO 4.06ソフトウェアは、各100ヌクレオチドまでのPCRプライマー対の選択に有用であり、オリゴヌクレオチド及び最大5,000までの大きめのポリヌクレオチドであって32キロベースまでのインプットポリヌクレオチド配列から得たものを分析するのにも有用である。類似のプライマー選択プログラムには、拡張能力のための追加機能が組込まれている。例えば、PrimOUプライマー選択プログラム(テキサス州ダラスにあるテキサス大学南西部医療センターのゲノムセンターから一般向けに入手可能)は、メガベース配列から特定のプライマーを選択することが可能であり、従ってゲノム全体の範囲でプライマーを設計するのに有用である。Primer3プライマー選択プログラム(マサチューセッツ州ケンブリッジのWhitehead Institute/MITゲノム研究センターから一般向けに入手可能)ではユーザーが「ミスプライミング・ライブラリ」をインプットすることができ、ここでプライマー結合部位として避けたい配列はユーザーが指定する。Primer3は特に、マイクロアレイのためのオリゴヌクレオチドの選択に有用である。(後二者のプライマー選択プログラムのソースコードは、各自のソースから得てユーザー固有のニーズを満たすように変更してもよい。)PrimerGenプログラム(英国ケンブリッジ市の英国ヒトゲノムマッピングプロジェクト−リソースセンターから一般向けに入手可能)は、多数の配列アラインメントに基づいてプライマーを設計し、それによって、アラインメントされた核酸配列の最大保存領域または最小保存領域の何れかとハイブリダイズするようなプライマーの選択を可能にする。従って、このプログラムは、固有な、および保存されたオリゴヌクレオチド及びポリヌクレオチドの断片の同定に有用である。上記選択方法のいずれかによって同定したオリゴヌクレオチド及びポリヌクレオチドの断片は、ハイブリダイゼーション技術において、例えばPCRまたはシークエンシングプライマーとして、マイクロアレイエレメントとして、或いは核酸のサンプルにおいて完全または部分的相補的ポリヌクレオチドを同定する特異プローブとして有用である。オリゴヌクレオチドの選択方法は、上記の方法に限定されるものではない。
【0089】
「組換え核酸」は天然配列ではない配列であるか或いは人為的に組み合わせなければ離隔しているような配列の2以上のセグメントを人為的に組み合わせて産出した配列を有する配列である。この人為的組合せはしばしば化学合成によって達成するが、より一般的には核酸の単離セグメントの人為的操作によって、例えばのSambrookらの文献(前出)に記載されているような遺伝子工学的手法によって達成する。組換え核酸の語は、単に核酸の一部を付加、置換または欠失した変異核酸も含む。しばしば組換え核酸には、プロモーター配列に機能的に結合した核酸配列が含まれる。このような組換え核酸は、ベクターの不可欠なエレメントであって例えばある細胞を形質転換するために用いられるようなものであり得る。
【0090】
或いはこのような組換え核酸は、ウイルスベクターの不可欠なエレメントであって例えばワクシニアウイルスに基づくものであり得る。 ワクシニアウイルスは哺乳動物のワクチン接種に用いることが可能で、その際に組換え核酸が発現して哺乳動物の防御免疫応答を誘導する。
【0091】
「調節エレメント」は、通常は遺伝子の未翻訳領域に由来する核酸配列であり、エンハンサー、プロモーター、イントロン及び5’及び3’の未翻訳領域(UTR)を含む。調節エレメントは、転写、翻訳またはRNA安定性を調節する宿主またはウイルスタンパク質と相互作用する。
【0092】
「レポーター分子」とは、核酸、アミノ酸または抗体を標識するのに用いられる化学的または生化学的成分である。レポーター分子には、放射性核種、酵素、蛍光剤、化学発光剤、発色剤、基質、補助因子、阻害因子、磁気粒子及びその他の当分野で既知の成分がある。
【0093】
DNA配列に関する「RNA等価物」は、窒素塩基チミンが全てウラシルに置換されていることと、糖のバックボーンがデオキシリボースではなくリボースから構成されていることを除いて、参照DNA配列と同一のヌクレオチド線形配列から構成されている。
【0094】
「サンプル」の語は、その最も広い意味で用いられる。SAT、SATをコードする核酸、またはその断片を含むと推定されるサンプルは、体液と、細胞からの抽出物や細胞から単離された染色体や細胞内小器官、膜と、細胞と、溶液中に存在するまたは基板に固定されたゲノムDNA、RNA、cDNAと、組織と、組織プリント等を含み得る。
【0095】
「特異結合」または「特異的に結合する」の語は、タンパク質またはペプチドと、アゴニスト、抗体、アンタゴニスト、小分子、任意の天然成分または合成結合成分との間の相互作用を指す。この相互作用は、タンパク質の特定の構造(例えば抗原決定基即ちエピトープ)であって結合分子が認識するものが存在するか否かに依存している。例えば、抗体がエピトープ「A」に対して特異的である場合、標識された遊離したA及びその抗体を含む反応において、エピトープA(つまり遊離し、標識されていないA)を含むポリペプチドの存在が、抗体に結合している標識されたAの量を低減させる。
【0096】
「実質上精製された」の語は、自然環境から取り除かれ、或いは単離または分離された核酸またはアミノ酸配列であって、自然に会合するその他の構成エレメントの少なくとも約60%、好ましくは少なくとも約75%、最も好ましいのは少なくとも約90%が遊離しているものを指す。
【0097】
「置換」は、1個若しくは数個のアミノ酸またはヌクレオチドを各々別のアミノ酸またはヌクレオチドに置換することを意味する。
【0098】
「基質」は、任意の好適な固体または半固体の支持体を指すものであって、膜、フィルタ、チップ、スライド、ウエハ、ファイバー、磁性または非磁性ビーズ、ゲル、管、プレート、ポリマー、微細粒子、毛管が含まれる。基質は、凹み、溝、ピン、チャネル、孔等、様々な表面形態を有することができ、基質表面にはポリヌクレオチドやポリペプチドが結合する。
【0099】
「転写イメージ」は、所与の時間、条件での固有の細胞タイプまたは組織による遺伝子発現の集合的パターンを指す。
【0100】
「形質転換」は、外来性のDNAが受入細胞に入り込むプロセスを表す。形質転換は、本技術分野で知られている種々の方法に従って自然条件または人工条件下で生じ得るものであり、外来性の核酸配列を原核または真核宿主細胞に挿入する任意の既知の方法を基にし得る。形質転換の方法は、形質転換する宿主細胞の種類によって選択する。 限定するものではないが形質転換方法には、バクテリオファージまたはウイルス感染、電気穿孔法(エレクトロポレーション)、熱ショック、リポフェクション及び微粒子銃を用いる方法がある。「形質転換された」細胞には、導入されたDNAが自律的に複製するプラスミドとして或いは宿主染色体の一部として複製可能である安定的に形質転換された細胞が含まれる。 さらに、限られた時間に一時的に導入DNA若しくは導入RNAを発現する細胞も含まれる。
【0101】
ここで用いる「遺伝形質転換体」とは任意の有機体であり、限定するものではないが動植物を含み、有機体の1個若しくは数個の細胞が、ヒトの関与によって、例えば本技術分野でよく知られている形質転換技術によって導入された異種核酸を有する。 核酸の細胞への導入は、直接または間接的に、細胞の前駆物質に導入することによって、計画的な遺伝子操作によって、例えば微量注射法によって或いは組換えウイルスの導入によって行う。遺伝子操作の語は、古典的な交雑育種或いはin vitro受精を指すものではなく、組換えDNA分子の導入を指すものである。本発明に基づいて予期される遺伝形質転換体には、バクテリア、シアノバクテリア、真菌及び動植物がある。本発明の単離されたDNAは、本技術分野で知られている方法、例えば感染、形質移入、形質転換またはトランス接合によって宿主に導入することができる。本発明のDNAをこのような有機体に移入する技術はよく知られており、前出のSambrook(1989) の参考文献に記載されている。
【0102】
特定の核酸配列の「変異体」は、核酸配列1本全部の長さに対して特定の核酸配列と少なくとも40%の相同性を有する核酸配列であると定義する。 その際、デフォルトパラメータに設定した「BLAST 2 Sequences」ツールVersion 2.0.9(1999年5月7日)を用いてblastnを実行する。このような核酸対は、所定の長さに対して、例えば少なくとも50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%またはそれ以上の相同性を示し得る。或る変異体は、例えば「対立遺伝子」変異体(前述)、「スプライス」変異体、「種」変異体または「多形性」変異体として説明し得る。スプライス変異体は参照分子とかなりの相同性を有し得るが、mRNAプロセッシング中のエキソンの交互スプライシングによって通常多数の或いは僅かな数のポリヌクレオチドを有することになる。対応するポリペプチドは、追加機能ドメインを有するか或いは参照分子に存在するドメインが欠落していることがある。種変異体は、種相互に異なるポリヌクレオチド配列である。結果的に生じるポリペプチドは通常、相互にかなりのアミノ酸相同性を有する。多形性変異体は、与えられた種の個体間で特定の遺伝子のポリヌクレオチド配列が異なる。また、多形性変異体は、1つのヌクレオチド塩基によってポリヌクレオチド配列が変化する「1塩基ヌクレオチド多形性」(SNP)を含み得る。SNPの存在は、例えば特定の個体群、病状または病状性向を示し得る。
【0103】
特定のポリペプチド配列の「変異体」は、ポリペプチド配列の1本の長さ全体で特定のポリペプチド配列に対して少なくとも40%の相同性を有するポリペプチド配列として画定される。 ここで、デフォルトパラメータに設定した「BLAST 2 Sequences」ツールVersion 2.0.9(1999年5月7日)を用いてblastpを実行する。このようなポリペプチド対は、所定の長さに対して、例えば少なくとも50%、60%、70%、80%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%またはそれ以上の配列同一性を示し得る。
【0104】
(発明)
表1は、本発明の完全長ポリヌクレオチド配列及びポリペプチド配列の命名の概略である。各ポリヌクレオチド及びその対応するポリペプチドは、1つのIncyteプロジェクト識別番号(IncyteプロジェクトID)と相関する。各ポリペプチド配列は、ポリペプチド配列識別番号(ポリペプチドSEQ ID NO)とIncyteポリペプチド配列番号(IncyteポリペプチドID)によって表示した。各ポリヌクレオチド配列は、ポリヌクレオチド配列識別番号(ポリヌクレオチドSEQ ID NO)とIncyteポリヌクレオチド配列番号(IncyteポリヌクレオチドID)によって表示した。
【0105】
表2は、GenBankタンパク質(genpept)データベースに対するBLAST分析によって同定されたような、本発明のポリペプチドとの相同性を有する配列を示している。列1と2は発明したポリペプチドをポリペプチド配列識別番号(ポリペプチドSEQ ID NO)と対応するIncyteポリペプチド配列番号(IncyteポリペプチドID)によって表示した。列3は、GenBankの最も近い相同体のGenBankの識別番号(Genbank ID NO :)を示す。列4は、各ポリペプチドとそのGenBank相同体との間の一致を表す確率スコアを示す。列5は、GenBank相同体のアノテーションを示し、更に該当箇所には適当な引用文も示す。 これらを引用することを以って本明細書の一部とする。
【0106】
表3は、本発明のポリペプチドの様々な構造的特徴を示す。列1と2は発明した個々のポリペプチドをポリペプチド配列識別番号(SEQ ID NO)と対応するIncyteポリペプチド配列番号(IncyteポリペプチドID)を示す。列3は、各ポリペプチドのアミノ酸残基数を示す。列4および列5はそれぞれ、GCG配列分析ソフトウェアパッケージのMOTIFSプログラム(Genetics Computer Group, Madison WI)によって決定された、リン酸化およびグリコシル化の可能性のある部位を示す。列6は、シグネチャ(signature)配列、ドメイン、およびモチーフを含むアミノ酸残基を示す。列7は、タンパク質の構造/機能の分析のための分析方法を示し、該当箇所にはさらに分析方法に利用した検索可能なデータベースを示す。
【0107】
表2及び3は共に、本発明の各々のポリペプチドの特性を要約しており、それら特性が請求の範囲に記載されたポリペプチドが分泌分子及び輸送分子であることを確立している。例えば、SEQ ID NO:2は、Basic Local Alignment Search Tool (BLAST)により決定されるように、シナプトフィジン ファミリーのメンバーである mitsugumin29 (GenBank ID g3077703)と93%が同一である。(表2参照)BLAST確率スコアは2.9e−136であり、これは観察されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:2はまた、シナプトフィジン/シナプトポリン ドメインを有する。これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメインのPFAMデータベースにおいて、統計的に有意な一致を検索して決定された(表3参照)DOMO及びPRODOMデータベースのタンパク質シグネチャ配列へのBLAST比較そしてBLIMPS及びPROFILESCAN分析から得たデータは、SEQ ID NO:2がシナプトフィジンのファミリ メンバであることを裏づける証拠を更に提供する。SEQ ID NO:3 は、BLAST確率スコアが 0.0 で、ラットの表層エンドソーム糖タンパク質(GenBank ID g777776)と72%が同一である。PRODOMデータベースに対するBLAST分析からのデータは、さらにSEQ ID NO:3が尖端エンドソーム糖タンパク質である確証的な証拠を示している。SEQ ID NO:8 は、BLAST確率スコアが 0.0 で、ドブネズミ(Rattus norvegicus )のシナプトタグミンIII(GenBank ID g484296)と95%が同一である。SEQ ID NO:8はまた、C2 ドメインを有する。これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメインのPFAMデータベースにおいて、統計的に有意な一致を検索して決定された。(表3参照)BLIMPS、MOTIFS、及びPROFILESCAN解析よりのデータは、SEQ ID NO:8 があるC2ドメインを含むタンパク質(おそらくシナプトタグミン(synaptotagmin)ファミリーのメンバー)である、さらに実証的な証拠を提供する。SEQ ID NO:1、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、及びSEQ ID NO:9については、同様の方法で分析し、注釈を付けた。SEQ ID NO:1−9の解析のためのアルゴリズム及びパラメータが表7で記述されている。
【0108】
表4に示すように、本発明の完全長ポリヌクレオチド配列は、cDNA配列またはゲノムDNA由来のコード(エキソン)配列を用いて、或いはこれら2種類の配列を任意に組み合わせて構築した。列1と2は本発明のポリヌクレオチドをポリヌクレオチド配列識別番号(Polynucleotide SEQ ID NO)と対応するIncyteポリヌクレオチド コンセンサス配列番号(IncyteポリヌクレオチドID)を示す。列3は、各ポリヌクレオチド配列の長さ(塩基対単位)を示す。列4は、例えば、SEQ ID NO:10−18を同定するため、或いはSEQ ID NO:10−18と関連するポリヌクレオチド配列とを区別するためのハイブリダイゼーションまたは増幅技術に有用なポリヌクレオチド配列の断片を示す。列5はcDNA配列、ゲノムDNAから予想されたコード配列(エキソン)及び/またはcDNA及びゲノムDNAを共に有する配列集合に対応する識別番号を示している。これらの配列は、本発明の完全長ポリヌクレオチド配列を構築するのに用いた。表4の列6および列7はそれぞれ、列5の配列に対応するcDNA配列およびゲノム配列の開始ヌクレオチド(5’)位置および終了ヌクレオチド(3’)位置を示す。
【0109】
表4の列5の識別番号は、特に例えばIncyte cDNAとそれに対応するcDNAライブラリを指す場合もある。例えば、1438701F1はIncytecDNA配列の識別番号であり、PANCNOT02はそれが由来するcDNAライブラリの識別番号である。cDNAライブラリが示されていないインサイトcDNAは、プールされているcDNAライブラリ(例えば、70767606V1)に由来する。または、列5の識別番号は、ポリヌクレオチド配列の組み立てに用いたGenBankのcDNAすなわちEST(例えば、g5810426)の識別番号の場合もある。さらに、列5の識別番号は、ENSEMBL(イギリス Cambridge のThe Sanger Centre) データベース(「ENST」を含む配列)に由来した配列を識別できる場合もある。或いは、列5の識別番号は、NCBI RefSeq ヌクレオチド・配列・レコード・データベース(「NM」あるいは「NT」を含む配列)または NCBI RefSeq 蛋白質配列・レコード(「NP」を含む配列)に由来する場合もある。または列5の識別番号は、「エキソンスティッチング(exon−stitching)」アルゴリズムにより結び合わせたcDNA及びGenscan予想エキソンの両方の集合を指す場合もある。例えば、FL_XXXXXX_N_N_YYYYY_N_N はアルゴリズムが適用される配列のクラスターの識別番号がXXXXXX であり、アルゴリズムにより生成される予測の番号がYYYYYであるような「縫合された」配列であり、また N1,2,3..は存在する場合、分析中に手動で編集を行える場合のある特定のエキソンを表わす( 実施例5を参照 )。または列5の識別番号は、「エキソンストレッチング(exon−stretching)」アルゴリズムにより結び合わせたエキソンの集合を指す場合もある。例えば、FLXXXXXX_gAAAAA_gBBBBB_1_N は「ストレッチ」配列の識別番号である。ここで XXXXXX はIncyteプロジェクト識別番号、gAAAAA は「エキソンストレッチング」アルゴリズムを適用したヒトゲノム配列のGenBank識別番号、gBBBBB は一番近いGenBankタンパク質相同体のGenBank識別番号または NCBI RefSeq 識別番号であり、N は特定エキソンを示す。(実施例5を参照。)RefSeq配列を「エキソン ストレッチング」アルゴリズムのため蛋白質同族体として使用した場合には、RefSeq 識別子(NM、NPあるいはNTにより表示)は、GenBank 識別子(gBBBBB)の代わりに使用できる。
【0110】
或いは、プレフィクスは、手動編集、ゲノムのDNA配列からの予想、あるいは配列分析方法の組み合わせの由来による、成分配列を識別する。次の表に、プレフィックスに関連した成分配列 プレフィックスおよび対応する配列分析方法の例を掲げる(実施例4および5参照)。
Figure 2004528002
【0111】
場合によっては、最終コンセンサスポリヌクレオチド配列を確認するための列5に示すような配列の適用範囲と重複するIncyte cDNAの適用範囲が得られたが、関連するIncyte cDNA識別番号は示さなかった。
【0112】
表5は、Incyte cDNA配列を用いて構築された完全長ポリヌクレオチド配列のための代表的なcDNAライブラリを示している。代表的なcDNAライブラリは、上記のポリヌクレオチド配列を構築及び確認するために用いられるIncyte cDNA配列によって最も頻繁に代表されるIncyte cDNAライブラリである。cDNAライブラリを作製するために用いた組織及びベクターを表5に示し、表6で説明している。
【0113】
本発明はまた、SATの変異体も含む。好適なSATの変異体は、SATの機能的或いは構造的特徴の少なくともどちらか一方を有し、かつSATアミノ酸配列に対して少なくとも約80%のアミノ酸配列同一性、或いは少なくとも約90%のアミノ酸配列同一性、更には少なくとも約95%のアミノ酸配列同一性を有する。
【0114】
本発明はまた、SATをコードするポリヌクレオチドを提供する。特定の実施例において、本発明は、SATをコードするSEQ ID NO:10−18からなる一群から選択された配列を含むポリヌクレオチド配列を提供する。配列表に示したSEQ ID NO:10−18のポリヌクレオチド配列は、窒素系塩基のチミンがウラシルに置換され、糖鎖の背骨がデオキシリボースではなくリボースからなる等価RNA配列を含む。
【0115】
本発明には、SATをコードするポリヌクレオチド配列の変異配列も含まれる。詳細には、このようなポリヌクレオチド配列の変異配列は、SATをコードするポリヌクレオチド配列と少なくとも70%のポリヌクレオチド配列同一性、或いは少なくとも85%のポリヌクレオチド配列同一性、更には少なくとも95%ものポリヌクレオチド配列同一性を有する。本発明の或る実施態様では、SEQ ID NO:10−18からなる群から選択されたアミノ酸配列と少なくとも約70%、或いは少なくとも約85%、または少なくとも約95%もの一致率を有するようなSEQ ID NO:10−18からなる群から選択された配列を有するポリヌクレオチド配列の変異配列を含む。 上記の任意のポリヌクレオチドの変異体は、SATの機能的若しくは構造的特徴を少なくとも1つ有するアミノ酸配列をコードし得る。
【0116】
遺伝暗号の縮重により作り出され得るSATをコードする種々のポリヌクレオチド配列には、既知の自然発生する任意の遺伝子のポリヌクレオチド配列と最小の類似性しか有しないものも含まれることを、当業者は理解するであろう。したがって本発明には、可能コドン選択に基づく組合せの選択によって産出し得るようなありとあらゆる可能性のあるポリヌクレオチド配列変異体を網羅し得る。これらの組み合わせは、天然のSATのポリヌクレオチド配列に適用される標準的なトリプレット遺伝暗号を基に作られ、全ての変異が明確に開示されていると考慮する。
【0117】
SATをコードするヌクレオチド配列及びその変異配列は一般に、好適に選択されたストリンジェントな条件下で、天然のSATのヌクレオチド配列とハイブリダイズ可能であるが、非天然のコドンを含めるなどの実質的に異なった使い方のコドンを有するSAT或いはその誘導体をコードするヌクレオチド配列を作ることは有利となり得る。宿主が特定のコドンを利用する頻度に基づいて、特定の真核又は原核宿主に発生するペプチドの発現率を高めるようにコドンを選択することが可能である。コードされたアミノ酸配列を変えないで、SAT及びその誘導体をコードするヌクレオチド配列を実質的に変更する別の理由は、天然の配列から作られる転写物より例えば長い半減期など好ましい特性を備えるRNA転写物を作ることにある。
【0118】
本発明はまた、SAT及びその誘導体をコードするSAT配列またはそれらの断片を完全に合成化学によって作り出すことも含む。作製後にこの合成配列を、当分野で良く知られた試薬を用いて、種々の入手可能な発現ベクター及び細胞系の何れの中にも挿入可能である。更に、合成化学を用いて、SATまたはその任意の断片をコードする配列の中に突然変異を導入することも可能である。
【0119】
更に本発明には、種々のストリンジェントな条件下で、請求項に記載されたポリヌクレオチド配列、特に、SEQ ID NO:10−18 及びそれらの断片とハイブリダイズ可能なポリヌクレオチド配列が含まれる (例えば、Wahl, G.M.及びS.L. Berger (1987) Methods Enzymol.152:399−407; Kimmel, A.R. (1987) Methods Enzymol.152:507−511)。アニーリング及び洗浄条件を含むハイブリダイゼーションの条件は、「定義」に記載されている。
【0120】
DNAシークエンシングの方法は当分野でよく知られており、本発明の何れの実施例もDNAシークエンシング方法を用いて実施可能である。DNAシークエンシング方法には酵素を用いることができ、例えばDNAポリメラーゼIのクレノウ断片、SEQUENASE(US Biochemical, Cleveland OH)、Taqポリメラーゼ(Applied Biosystems)、熱安定性T7ポリメラーゼ(Amersham, Pharmacia Biotech, Piscataway NJ)を用いることができる。 或いは、例えばELONGASE増幅システム(Life Technologies, Gaithersburg MD)において見られるように、ポリメラーゼと校正エキソヌクレアーゼを併用することができる。好適には、MICROLAB2200液体転移システム(Hamilton, Reno, NV)、PTC200サーマルサイクラー(MJ Research, Watertown MA)及びABI CATALYST 800サーマルサイクラー(Applied Biosystems)等の装置を用いて配列の調製を自動化する。次に、ABI 373 或いは 377 DNAシークエンシングシステム(Applied Biosystems)、MEGABACE 1000 DNAシークエンシングシステム(Molecular Dynamics, Sunnyvale CA)または当分野でよく知られている他の方法を用いてシークエンシングを行う。 結果として得られた配列を当分野でよく知られている種々のアルゴリズムを用いて分析する。 (Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7、Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856−853.等を参照)。
【0121】
当分野で周知のPCR法をベースにした種々の方法で、部分的なヌクレオチド配列を利用して、SATをコードする核酸配列を伸長し、プロモーターや調節エレメントなどの上流にある配列を検出する。例えば、使用し得る方法の1つである制限部位PCR法は、ユニバーサルプライマー及びネステッドプライマーを用いてクローニングベクター内のゲノムDNAから未知の配列を増幅する方法である(Sarkar, G. (1993) PCR Methods Applic.2:318322.)。 別の方法に逆PCR法があり、これは広範な方向に伸長させたプライマーを用いて環状化した鋳型から未知の配列を増幅する方法である。鋳型は、既知のゲノム遺伝子座及びその周辺の配列を含む制限酵素断片から得る(Triglia, T. 他(1988) Nucleic Acids Res.16:8186.)。 第3の方法としてキャプチャPCR法があり、これはヒト及び酵母菌人工染色体DNAの既知の配列に隣接するDNA断片をPCR増幅する方法に関与している。(Lagerstrom, M. 他 (1991) PCR Methods Applic.1:111119.)。 この方法では、PCRを行う前に複数の制限酵素の消化及び連結反応を用いて未知の配列領域内に組換え二本鎖配列を挿入することが可能である。また、未知の配列を検索するために用い得る別の方法については当分野で知られている。 (Parker, J.D.ら(1991) Nucleic Acids Res.19:30553060)。 更に、PCR、ネステッドプライマー及びPromoterFinder(商標)ライブラリ(Clontech, Palo Alto CA)を用いてゲノムDNAをウォーキングすることができる。この手順は、ライブラリをスクリーニングする必要がなく、イントロン/エキソン接合部を見付けるのに有用である。全てのPCRベースの方法に対して、市販されているソフトウェア、例えばOLIGO 4.06プライマー分析ソフトウェア(National Biosciences, Plymouth MN)或いは別の好適なプログラムを用いて、長さが約22〜30ヌクレオチド、GC含有率が約50%以上、温度約68℃〜72℃で鋳型に対してアニーリングするようにプライマーを設計し得る。
【0122】
完全長cDNAをスクリーニングする際は、より大きなcDNAを含むようにサイズ選択されたライブラリを用いるのが好ましい。更に、ランダムに初回抗原刺激を受けたライブラリは、しばしば遺伝子の5’領域を有する配列を含み、オリゴd(T)ライブラリが完全長cDNAを作製できない状況に対して好適である。ゲノムライブラリは、5’非転写調節領域への配列の伸長に有用であろう。
【0123】
市販されているキャピラリー電気泳動システムを用いて、シークエンシングまたはPCR産物のサイズを分析し、またはそのヌクレオチド配列を確認することができる。具体的には、キャピラリーシークエンシングは、電気泳動による分離のための流動性ポリマーと、4つの異なるヌクレオチドに特異的であるような、レーザで活性化される蛍光色素と、放出された波長の検出に利用するCCDカメラとを有し得る。出力/光の強度は、適切なソフトウェア(Applied Biosystems社のGENOTYPER、SEQUENCE NAVIGATOR等)を用いて電気信号に変換し得る。 サンプルのロードからコンピュータ分析及び電子データ表示までの全プロセスがコンピュータ制御可能である。キャピラリー電気泳動法は、特定のサンプルに少量しか存在しないようなDNA小断片のシークエンシングに特に適している。
【0124】
本発明の別の実施例では、SATをコードするポリヌクレオチド配列またはその断片を組換えDNA分子にクローニングして、適切な宿主細胞内にSAT、その断片または機能的等価物を発現させることが可能である。遺伝暗号固有の縮重により、実質的に同じ或いは機能的に等価のアミノ酸配列をコードする別のDNA配列が作られ得り、これらの配列をSATのクローン化及び発現に利用可能である。
【0125】
種々の目的でSATをコードする配列を変えるために、当分野で一般的に知られている方法を用いて、本発明のヌクレオチド配列を組換えることができる。 この目的には、遺伝子産物のクローン化、プロセッシング及び/または発現の調節が含まれるが、これらに限定されるものではない。遺伝子断片及び合成オリゴヌクレオチドのランダムなフラグメンテーション及びPCR再アセンブリによるDNAシャッフリングを用い、ヌクレオチド配列を組み換えることが可能である。例えば、オリゴヌクレオチド仲介特定部位突然変異誘導を利用して、新規な制限部位の生成、グリコシル化パターンの変更、コドン優先の変更、スプライス変異体の生成等を行う突然変異を導入し得る。
【0126】
本発明のヌクレオチドは、MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; 米国特許第5,837,458号; Chang, C.−C. 他(1999) Nat. Biotechnol. 17:793−797; Christians, F.C. 他 (1999) Nat. Biotechnol. 17:259−264; Crameri, A. 他 (1996) Nat. Biotechnol. 14:315−319)などのDNAシャフリング技術の対象となり得るもので、生物学的または酵素的な活性、或いは他の分子や化合物と結合する能力などのSATの生物学的特性を変更或いは改良することができる。DNAシャッフリングは、遺伝子断片のPCR仲介再組換えを用いて遺伝子変異体のライブラリを生成するプロセスである。ライブラリはその後、その遺伝子変異体を所望の特性に同定するような選択またはスクリーニングにかける。次にこれらの好適な変異体をプールし、更に反復してDNAシャッフリング及び選択/スクリーニングを行ってもよい。このように、遺伝の多様性は「人為的」品種改良及び急速な分子の進化を経て創生される。例えば、ランダムポイント突然変異を有する単一の遺伝子の断片を再結合し組み換えて、スクリーニングし、その後所望の特性が最適化されるまでシャッフリングすることができる。或いは、所定の遺伝子を同種または異種のいずれかから得た同一遺伝子ファミリーの相同遺伝子と再結合し組み換えて、それによって天然に存在する複数の遺伝子の遺伝多様性を、指図された制御可能な方法で最大化させることができる。
【0127】
別の実施例によれば、SATをコードする配列は、当分野で周知の化学的方法を用いて、全体或いは一部が合成可能である(例えば、Caruthers. M.H.ら(1980)Nucl. Acids Res. Symp. Ser 7:215−223; 及びHorn, T.他(1980)Nucl. Acids Res. Symp. Ser7.225−232を参照)。別法として、化学的方法を用いてSAT自体またはその断片を合成することが可能である。例えば、種々の液相または固相技術を用いてペプチド合成を行うことができる(Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY,55−60ページ、Roberge, J.Y. ら (1995) Science 269:202−204等を参照)。自動合成はABI 431Aペプチドシンセサイザ(Perkin Elmer)を用いて達成し得る。更にSATのアミノ酸配列または任意のその一部は、直接的な合成の際の変更、及び/または化学的方法を用いた他のタンパク質または任意のその一部からの配列との組み合わせにより、天然のポリペプチド配列を有するポリペプチドまたは変異体ポリペプチドを作製することが可能である。
【0128】
ペプチドは、分離用高速液体クロマトグラフィーを用いて実質上精製可能である(Chiez, R.M.及び F.Z. Regnier (1990) Methods Enzymol. 182:392−421等を参照)。合成ペプチドの組成は、アミノ酸分析またはシークエンシングによって確認することができる(前出のCreighton, 28−53ページ等を参照)。
【0129】
生物学的に活性なSATを発現させるために、SATをコードするヌクレオチド配列またはその誘導体を好適な発現ベクターに挿入する。 この発現ベクターは、好適な宿主に挿入されたコーディング配列の転写及び翻訳の調節に必要なエレメントを含む。これらのエレメントには、ベクター及びSATをコードするポリヌクレオチド配列におけるエンハンサー、構成型及び発現誘導型のプロモーター、5’及び3’の非翻訳領域などの調節配列が含まれる。このような要素は、長さ及び特異性が様々である。特定の開始シグナルによって、SATをコードする配列のより効果的な翻訳を達成することが可能である。このようなシグナルには、ATG開始コドンと、コザック配列などの近傍の配列が含まれる。SATをコードする配列及びその開始コドン、上流の調節配列が好適な発現ベクターに挿入された場合は、更なる転写調節シグナルや翻訳調節シグナルは必要なくなるであろう。しかしながら、コーディング配列或いはその断片のみが挿入された場合は、インフレームのATG開始コドンを含む外来性の翻訳調節シグナルが発現ベクターに含まれるようにすべきである。外来性の翻訳要素及び開始コドンは、様々な天然物及び合成物を起源とし得る。用いられる特定の宿主細胞系に好適なエンハンサーを含めることで発現の効率を高めることが可能である。(Scharf, D. ら (1994) Results Probl. Cell Differ. 20:125−162.等を参照)。
【0130】
当業者に周知の方法を用いて、SATをコードする配列、好適な転写及び翻訳調節エレメントを含む発現ベクターを作製することが可能である。これらの方法には、in vitro組換えDNA技術、合成技術、及びin vivo遺伝子組換え技術が含まれる(例えば、 Sambrook, J. 他. (1989) Molecular Cloning. Laboratory Manual, Cold Spring Harbor Press, Plainview NY, 4章及び8章, 及び16−17章; 及び Ausubel, F.M. 他. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, 9章、13章及び16章を参照)。
【0131】
種々の発現ベクター/宿主系を利用して、SATをコードする配列の保持及び発現が可能である。限定するものではないがこのような発現ベクター/宿主系には、組換えバクテリオファージ、プラスミドまたはコスミドDNA発現ベクターで形質転換させた細菌や、酵母菌発現ベクターで形質転換させた酵母菌や、ウイルス発現ベクター(例えばバキュロウイルス)に感染した昆虫細胞系や、ウイルス発現ベクター(例えばカリフラワーモザイクウイルスCaMVまたはタバコモザイクウイルスTMV)または細菌発現ベクター(例えばTiまたはpBR322プラスミド)で形質転換させた植物細胞系、動物細胞系などの微生物等がある。(前出のSambrook、前出のAusubel、Van Heeke, G. 及び S.M. Schuster (1989) J. Biol. Chem. 264:5503−5509、; Engelhard、E.K. ら (1994) Proc. Natl. Acad. Sci. USA 91:3224−3227、Sandig, V. ら (1996) Hum. Gene Ther. 7:1937−1945、Takamatsu, N. (1987) EMBOJ. 6:307−311、;『マグローヒル科学技術年鑑』(The McGraw Hill Yearbook of Science and Technology) (1992) McGraw Hill New York NY, 191−196ページ、Logan, J. 及び T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655−3659、Harrington, J.J. ら (1997) Nat. Genet. 15:345−355等を参照)。レトロウイルス、アデノウイルス、ヘルペスウイルスまたはワクシニアウイルス由来の発現ベクター、または種々の細菌性プラスミド由来の発現ベクターを用いて、ヌクレオチド配列を標的器官、組織または細胞集団へ輸送することができる(Di Nicola, M. 他 (1998) Cancer Gen. Ther. 5(6):350−356、Yu, M. 他(1993) Proc. Natl. Acad. Sci. USA 90(13):6340−6344、Buller, R.M. 他(1985) Nature 317(6040):813−815; McGregor, D.P. 他(1994) Mol. Immunol. 31(3):219−226、Verma, I.M. 及び N. Somia (1997) Nature 389:239−242等を参照)。
本発明は使用される宿主細胞によって限定されるものではない。
【0132】
細菌系では、SATをコードするポリヌクレオチド配列の使用目的に応じて多数のクローニングベクター及び発現ベクターを選択し得る。例えば、SATをコードするポリヌクレオチド配列の日常的なクローニング、サブクローニング、増殖には、PBLUESCRIPT(Stratagene, La Jolla CA)またはpSPORT1プラスミド(GIBCO BRL)などの多機能の大腸菌ベクターを用いることができる。ベクターの多数のクローニング部位にSAT をコードする配列をライゲーションするとlacZ遺伝子が破壊され、組換え分子を含む形質転換された細菌の同定のための比色スクリーニング法が可能となる。更にこれらのベクターは、クローニングされた配列におけるin vitro転写、ジデオキシのシークエンシング、ヘルパーファージによる一本鎖の救出、入れ子状態の欠失の生成にも有用であろう(例えば、Van Heeke, G. および S.M. Schuster (1989) J. Biol. Chem. 264:55035509を参照)。例えば、抗体の産生のためなどに多量のSATが必要な場合は、SATの発現をハイレベルで誘導するベクターが使用できる。例えば、強力な誘導T5バクテリオファージプロモーターまたは誘導T7バクテリオファージプロモーターを含むベクターが使用できる。
【0133】
SATの発現に酵母の発現系の使用が可能である。α因子、アルコールオキシダーゼ、PGHプロモーター等の構成型或いは誘導型のプロモーターを含む多数のベクターが、酵母菌サッカロミセス−セレビジエまたはPichia pastorisに使用可能である。更に、このようなベクターは、発現したタンパク質の分泌か細胞内への保持のどちらかを誘導し、安定した増殖のために宿主ゲノムの中に外来配列を組み込む。(例えば、Ausubel, 1995,前出、Bitter, G.A. ら (1987) Methods Enzymol.153:516−544、及びScorer. C. A. ら (1994) Bio/Technology 12:181−184.を参照)。
【0134】
植物系を使用してSATを発現することも可能である。SAT をコードする配列の転写は、ウイルスプロモーター、例えば単独或いはTMV(Takamatsu, N. (1987) EMBO J 6:307−311)由来のオメガリーダー配列と組み合わせて用いられるようなCaMV由来の35S及び19Sプロモーターによって促進される。或いは、RUBISCOの小サブユニット等の植物プロモーターまたは熱ショックプロモーターを用いてもよい(例えば、Coruzzi, G. ら. (1984) EMBO J. 3 : 1671−1680 ; Broglie, R. ら (1984) Science 224 : 838−843 ; および Winter, J. ら (1991) Results Probl. Cell Differ. 17 : 85−105を参照)。これらの構成物は、直接DNA形質転換または病原体を媒介とする形質移入によって、植物細胞内に導入可能である。(『マグローヒル科学技術年鑑』(The McGraw Hill Yearbook of Science and Technology) (1992) McGraw Hill New York NY, pp.191−196等を参照)。
【0135】
哺乳動物細胞においては、多数のウイルスベースの発現系を利用し得る。アデノウイルスが発現ベクターとして用いられる場合、後発プロモーター及び3連リーダー配列からなるアデノウイルス転写物/翻訳複合体にSATをコードする配列を結合し得る。可欠E1またはE3領域へウイルスのゲノムを挿入し、宿主細胞でSATを発現する感染ウイルスを得ることが可能である。(例えば、Logan, J. および T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:36553659を参照)。更に、ラウス肉腫ウイルス(RSV)エンハンサー等の転写エンハンサーを用いて、哺乳動物宿主細胞における発現を増大させ得る。SV40またはEBVをベースにしたベクターを用いてタンパク質を高レベルで発現させることもできる。
【0136】
ヒト人工染色体(HAC)を用いて、プラスミドに含まれ且つプラスミドから発現するものより大きなDNAの断片を輸送することもできる。治療のために約6kb〜10MbのHACsを作製し、従来の輸送方法(リポソーム、ポリカチオンアミノポリマー、またはベシクル)で供給する。(Harrington, J.J. ら (1997) Nat Genet. 15:345−355、Price, C.M. (1993) Blood Rev. 7:127−134、Trask, B.J. (1991) Trends Genet. 7:149−154等を参照)。
【0137】
哺乳動物系の組換えタンパク質の長期にわたる産生のためには、株化細胞におけるSATの安定した発現が望ましい。例えば、発現ベクターを用いて、SATをコードする配列を株化細胞に形質転換することが可能である。 このような発現ベクターは、ウイルス起源の複製及び/または内在性の発現要素や、同じ或いは別のベクターの上の選択マーカー遺伝子を含む。ベクターの導入後、選択培地に移す前に強化培地で約1〜2日間細胞を増殖させることができる。選択可能マーカーの目的は選択培地への抵抗性を与えることであり、選択可能マーカーが存在することにより、導入された配列をうまく発現するような細胞の成長及び回収が可能となる。安定的に形質転換された細胞の耐性クローンは、その細胞型に適した組織培養技術を用いて増殖可能である。
【0138】
任意の数の選択系を用いて、形質転換細胞株を回収できる。限定するものではないがこのような選択系には、tk単純細胞のために用いられるヘルペスウイルスチミジンキナーゼ遺伝子と、apr細胞のために用いられるアデニンホスホリボシルトランスフェラーゼ遺伝子がある(例えば、Wigler, M. 他 (1977) Cell 11:223−232; Lowy, I. 他。(1980) Cell 22:817−823を参照。)また、選択の基礎として代謝拮抗物質、抗生物質或いは除草剤への耐性を用いることができる。例えばdhfrはメトトレキセートに対する耐性を与え、neoはアミノグリコシッドネオマイシン及びG−418に対する耐性を与え、alsはクロルスルフロンに対する耐性を、patはホスフィノトリシンアセチルトランスフェラーゼに対する耐性を各々与える( Wigler, M. ら (1980) Proc. Natl. Acad. Sci. USA 77:35673570; ColbereGarapin, F. ら (1981) J. Mol. Biol. 150:114 等を参照)。この他の選択可能な遺伝子、例えば、代謝のための細胞の必要条件を変えるtrpB及びhisDは、文献に記載されているアニトシアニン、緑色蛍光タンパク質(GFP;Clontech)、βグルクロニダーゼ及びその基質GUS,ルシフェラーゼ及びその基質ルシフェリンなどの可視マーカーが用いられる。可視マーカー、例えばアントシアニン、緑色蛍光タンパク質(GFP;Clontech)、βグルクロニダーゼ及びその基質βグルクロニド、またはルシフェラーゼ及びその基質ルシフェリン等を用いてもよい。これらのマーカーを用いて、トランスフォーマントを特定するだけでなく、特定のベクター系に起因する一過性或いは安定したタンパク質発現を定量することが可能である(Rhodes, C.A. (1995) Methods Mol. Biol. 55:121131等を参照)。
【0139】
マーカー遺伝子発現の存在/不存在によって目的の遺伝子の存在が示唆されても、その遺伝子の存在及び発現の確認が必要な場合もある。例えば、SAT をコードする配列がマーカー遺伝子配列の中に挿入された場合、SATをコードする配列を含む形質転換された細胞は、マーカー遺伝子機能の欠落により特定可能である。または、1つのプロモーターの制御下でマーカー遺伝子がSATをコードする配列と一列に配置することも可能である。誘導または選択に応答したマーカー遺伝子の発現は通常、タンデム遺伝子の発現も示す。
【0140】
一般に、SATをコードする核酸配列を含み且つSATを発現する宿主細胞は、当業者によく知られている種々の方法を用いて同定することが可能である。限定するものではないが当業者によく知られている方法には、DNA−DNA或いはDNA−RNAハイブリダイゼーション、PCR法、核酸或いはタンパク質の検出、定量、或いはその両方を行うための膜系、溶液ベース或いはチップベースの技術を含むタンパク質の生物学的検定法または免疫学的検定法がある。
【0141】
特異的なポリクローナル抗体またはモノクローナル抗体のどちらかを用いるSATの発現の検出及び計測のための免疫学的な方法は、当分野で周知である。 このような技法には、酵素に結合した免疫吸着剤検定法(ELISA)、ラジオイムノアッセイ(RIA)、フローサイトメーター(FACS)などがある。SAT上の2つの非干渉エピトープに反応するモノクローナル抗体を用いた、2部位モノクローナルベースのイムノアッセイ(two−site, monoclonal−based immunoassay)が好ましいが、競合結合アッセイも用いることもできる。これらのアッセイ及びこれ以外のアッセイは、当分野で公知である(Hampton. R. ら (1990) Serological Methods, Laboratory Manual. APS Press. St Paul. MN, Sect. IV、Coligan, J. E. ら (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley−Interscience, New York NY、Pound, J.D. (1998) Immunochemical Protocols, Humans Press, Totowa NJ等を参照)。
【0142】
多岐にわたる標識方法及び結合方法が、当業者に知られており、様々な核酸アッセイおよびアミノ酸アッセイにこれらの方法を用い得る。SATをコードするポリヌクレオチドに関連する配列を検出するための、標識されたハイブリダイゼーションプローブ或いはPCRプローブを生成する方法には、オリゴ標識化、ニックトランスレーション、末端標識化、または標識されたヌクレオチドを用いるPCR増幅が含まれる。別法として、SATをコードする配列、またはその任意の断片をmRNAプローブを生成するためのベクターにクローニングすることも可能である。このようなベクターは、当分野において知られており、市販もされており、T7、T3またはSP6等の好適なRNAポリメラーゼ及び標識されたヌクレオチドを加えて、in vitroでRNAプローブの合成に用いることができる。このような方法は、例えばAmersham Pharmacia Biotech、Promega(Madison WI)、U.S. Biochemical等から市販されている種々のキットを用いて実行することができる。検出を容易にするために用い得る好適なレポーター分子或いは標識には、基質、補助因子、インヒビター、磁気粒子のほか、放射性核種、酵素、蛍光剤、化学発光剤、発色剤等がある。
【0143】
SATをコードするヌクレオチド配列で形質転換された宿主細胞は、細胞培地でのこのタンパク質の発現及び回収に好適な条件下で培養される。形質転換細胞から製造されたタンパク質が分泌されるか細胞内に留まるかは、使用される配列、ベクター、或いはその両者に依存する。SATをコードするポリヌクレオチドを含む発現ベクターは、原核細胞膜及び真核細胞膜を透過するSATの分泌を誘導するシグナル配列を含むように設計できることは、当業者には理解されよう。
【0144】
更に、宿主細胞株の選択は、挿入した配列の発現を調節する能力または発現したタンパク質を所望の形に処理する能力によって行い得る。限定するものではないがこのようなポリペプチドの修飾には、アセチル化、カルボキシル化、グリコシル化、リン酸化、脂質化及びアシル化がある。タンパク質の「プレプロ」または「プロ」形を切断するような翻訳後処理を利用して、タンパク質のターゲティング、折りたたみ及び/または活性を特定することも可能である。翻訳後の活性のための固有の細胞装置及び特徴のある機構を有する種々の宿主細胞(例えばCHO、HeLa、MDCK、MEK293、WI38等)は、American Type Culture Collection(ATCC, Bethesda, VA)から入手可能であり、外来タンパク質の正しい修飾及び処理を確実にするように選択し得る。
【0145】
本発明の別の実施例では、SATをコードする自然或いは変更された、または組換えの核酸配列を上記した任意の宿主系の融合タンパク質の翻訳となる異種配列に結合させる。例えば、市販の抗体によって認識できる異種部分を含むキメラSATタンパク質が、SATの活性のインヒビターに対するペプチドライブラリのスクリーニングを促進し得る。また、異種タンパク質部分及び異種ペプチド部分も、市販されている親和性基質を用いて融合タンパク質の精製を促進し得る。限定されるものではないがこのような部分には、グルタチオンSトランスフェラーゼ(GST)、マルトース結合タンパク質(MBP)、チオレドキシン(Trx)、カルモジュリン結合ペプチド(CBP)、6−His、FLAG、c−myc、赤血球凝集素(HA)がある。GSTは固定化グルタチオン上で、MBPはマルトース上で、Trxはフェニルアルシンオキシド上で、CBPはカルモジュリン上で、そして6−Hisは金属キレート樹脂上で、同族の融合タンパク質の精製を可能にする。FLAG、c−myc及び赤血球凝集素(HA)は、これらのエピトープ標識を特異的に認識する市販されているモノクローナル抗体及びポリクローナル抗体を用いて、融合タンパク質の免疫親和性精製を可能にする。また、SATをコードする配列と異種タンパク質配列との間にあるタンパク質分解切断部位を融合タンパク質が含むように遺伝子操作すると、SATが精製の後に異種部分から切断され得る。融合タンパク質の発現及び精製方法は、前出のAusubel (1995) 10章に記載されている。市販されている種々のキットを用いて融合タンパク質の発現及び精製を促進することもできる。
【0146】
本発明の別の実施例では、TNTウサギ網状赤血球可溶化液またはコムギ胚芽抽出系(Promega)を用いてin vitroで放射能標識したSATの合成が可能である。これらの系は、T7、T3またはSP6プロモーターと機能的に結合したタンパク質コード配列の転写及び翻訳を結合する。翻訳は、例えば35Sメチオニンのような放射能標識したアミノ酸前駆体の存在下で起こる。
【0147】
本発明のSATまたはその断片を用いて、SATに特異結合する化合物をスクリーニングすることができる。少なくとも1つまたは複数の試験化合物を用いて、SATへの特異的な結合をスクリーニングすることが可能である。試験化合物の例には、抗体、オリゴヌクレオチド、タンパク質(例えば受容体)または小分子が挙げられる。
【0148】
一実施例では、このように同定された化合物は、例えばリガンドやその断片などのSATの天然のリガンド、または天然の基質、構造的または機能的な擬態性または自然結合パートナーに密接に関連している(Coligan, J.E. 他 (1991) Current Protocols in Immunology 1(2)の5章等を参照)。同様に、化合物は、SATが結合する天然受容体、或いは例えばリガンド結合部位などの少なくとも受容体のある断片に密接に関連し得る。何れの場合も、既知の技術を用いてこの化合物を合理的に設計することができる。一実施例では、このような化合物に対するスクリーニングには、分泌タンパク質或いは細胞膜上のタンパク質の何れか一方としてSATを発現する好適な細胞の作製が含まれる。好適な細胞には、哺乳動物、酵母、ショウジョウバエ、大腸菌からの細胞が含まれる。SATを発現する細胞またはSATを含有する細胞膜断片を試験化合物と接触させて、SATまたは化合物の何れかの結合、刺激または阻害を分析する。
【0149】
あるアッセイは、単に試験化合物をポリペプチドに実験的に結合させ、結合を、蛍光色素、放射性同位体、酵素抱合体またはその他の検出可能な標識により検出することができる。例えば、このアッセイは、少なくとも1つの試験化合物を、溶液中の或いは固体支持物に固定されたSATと結合させるステップと、SATとこの化合物との結合を検出するステップを含み得る。別法では、標識された競合物の存在下での試験化合物の結合の検出及び測定を行うことができる。更にこのアッセイでは、無細胞再構成系、化学ライブラリまたは天然の生成混合物を用いて実施することができ、試験化合物は、溶液中で遊離させるか固体支持体に固定させる。
【0150】
本発明のSATまたはその断片を用いて、SATの活性を調整する化合物をスクリーニングすることが可能である。このような化合物には、アゴニスト、アンタゴニスト、或るいは部分的または逆アゴニスト等が含まれる。一実施例では、SATが少なくとも1つの試験化合物と結合する、SATの活性が許容される条件下でアッセイを実施し、試験化合物の存在下でのSATの活性が試験化合物不在下でのSATの活性と比較する。試験化合物の存在下でのSATの活性の変化は、SATの活性を調整する化合物の存在を示唆する。別法では、試験化合物をSATの活性に適した条件下でSATを含むin vitroまたは無細胞再構成系と結合させてアッセイを実施する。これらアッセイの何れかにおいて、SATの活性を調整する試験化合物は間接的に結合することが可能であり、試験化合物と直接接触する必要がない。少なくとも1つから複数の試験化合物をスクリーニングすることができる。
【0151】
別の実施例では、胚性幹細胞(ES細胞)における相同組換えを用いて動物モデル系内で、SATまたはその哺乳動物相同体をコードするポリヌクレオチドを「ノックアウト」する。このような技術は当技術分野において周知であり、ヒト疾患動物モデルの作製に有用である(米国特許第5,175,383号及び第5,767,337号等を参照)。例えば129/SvJ細胞株等のマウスES細胞は初期のマウス胚に由来し、培地で増殖させることができる。このES細胞は、ネオマイシンホスホトランスフェラーゼ遺伝子(neo: Capecchi, M.R. (1989) Science 244:1288−1292)等のマーカー遺伝子で破壊した目的の遺伝子を含むベクターで形質転換する。このベクターは、相同組換えにより宿主ゲノムの対応する領域に組み込まれる。別法では、Cre−loxP系を用いて相同組換えを行い、組織特異的または発生段階特異的に目的遺伝子をノックアウトする(Marth, J.D. (1996) Clin. Invest. 97:1999−2002; Wagner, K.U. 他 (1997) Nucleic Acids Res. 25:4323−43 30)。形質転換したES細胞を同定し、例えばC57BL/6マウス系等から採取したマウス細胞胚盤胞に微量注入する。胚盤胞を偽妊娠メスに外科的に導入し、得られるキメラ子孫の遺伝形質を決め、これを交配させてヘテロ接合性系またはホモ接合性系を作製する。このようにして作製した遺伝子組換え動物は、可能性のある治療薬や毒性薬剤で検査することができる。
【0152】
SATをコードするポリヌクレオチドをin vitroでヒト胚盤胞由来のES細胞において操作することが可能である。ヒトES細胞は、内胚葉、中胚葉及び外胚葉の細胞の種類を含む少なくとも8つの別々の細胞系統に分化する可能性を有する。これらの細胞系統は、例えば神経細胞、造血系統及び心筋細胞に分化する(Thomson, J.A. 他 (1998) Science 282:1145−1147参照)。
【0153】
SATをコードするポリヌクレオチドを用いて、ヒト疾患をモデルとした「ノックイン」ヒト化動物(ブタ)または遺伝子組換え動物(マウスまたはラット)を作製することが可能である。ノックイン技術を用いて、SATをコードするポリヌクレオチドの或る領域を動物ES細胞に注入し、注入した配列を動物細胞ゲノムに組み込ませる。形質転換細胞を胞胚に注入し、胞胚を上記のように移植する。遺伝子組換え子孫または近交系について研究し、可能性のある医薬品を用いて処理し、ヒトの疾患の治療に関する情報を得る。別法では、例えばSATを乳汁内に分泌するなどSATを過剰に発現する哺乳動物近交系は、便利なタンパク質源となり得る(Janne, J. 他 (1998) Biotechnol. Annu. Rev. 4:55−74)。
【0154】
(治療)
SATのある領域と分泌性分子および輸送分子のある領域との間に、例えば配列及びモチーフの文脈における化学的及び構造的類似性が存在する。更に、SATの発現は、脳組織、脊髄組織、リンパ組織、および生殖組織に密接に関連する。従って、SATは、小胞輸送障害、輸送障害、神経の疾患、筋疾患、及び免疫疾患や細胞異常増殖においてある役割を果たすと考えられる。SATの発現または活性の増大に関連する疾患の治療においては、SATの発現または活性を低下させることが望ましい。また、SATの発現または活性の低下に関連する疾患の治療においては、SATの発現または活性を増大させることが望ましい。
【0155】
従って、或る実施例において、SATの発現または活性の低下に関連した疾患の治療または予防のために、患者にSATまたはその断片や誘導体を投与することが可能である。限定するものではないが、このような疾患のうち、輸送障害には運動不能症、筋萎縮性側索硬化症、毛細血管拡張性運動失調、ベッカー筋ジストロフィー、顔面麻痺、シャルコー‐マリー‐ツース病、糖尿病、尿崩症、糖尿病性ニューロパシー、デュシェンヌ型筋ジストロフィー、高カリウム血性周期性四肢麻痺、正常カリウム血性周期性四肢麻痺、パーキンソン病、悪性高熱、多剤耐性、重症筋無力症、筋緊張性異栄養症、緊張病、錐体外路性終末欠陥症候群、ジストニー、末梢神経疾患、脳性腫瘍、前立腺癌と、口峡炎、徐脈型不整脈、頻拍性型不整脈、高血圧症、遺伝性QT延長症候群、心筋炎、心筋症、ネマリンミオパシーラネマリン筋障害、中心核ミオパシー、脂質ミオパシー、ミトコンドリアミオパシー、甲状腺中毒性ミオパシー、エタノールミオパシー、皮膚筋炎、封入体筋炎、感染性節炎、及び多発性筋炎などの輸送に関連した心臓病と、アルツハイマー病、健忘症、双極性障害、痴呆、うつ病、てんかん、トゥーレット病、妄想性精神病、及び分裂病などの輸送に関連した神経障害と、神経線維腫症、帯状疱疹後神経痛、3叉神経ニューロパシー、サルコイドーシス、鎌状赤血球性貧血、ウィルソン病、白内障、不妊症、肺動脈狭窄症、常染色体性感音性難聴、高/低血糖症、グレーブス病、甲状腺腫、クッシング病と、副腎機能不全、グルコース‐ガラクトース吸収不全症候群、高コレステロール血症、副腎性白質ジストロフィー、ツェルヴェーガー症候群、メンケス病、後角症候群、フォンギルケ症候群、シスチン尿症、イミノグリシン尿症、Hartup病、ファンコニ病が含まれ、神経の疾患の中には、癲癇、虚血性脳血管障害、脳卒中、大脳新生物、アルツハイマー病、ピック病、ハンチントン病、痴呆、パーキソン病及びその他の錐体外路障害、筋萎縮性側策硬化及びその他の運動ニューロン障害、進行性神経性筋萎縮症、色素性網膜炎、遺伝性運動失調、多発性硬化症及び他の脱髄疾患、細菌性及びウイルス性髄膜炎、脳膿瘍、硬膜下蓄膿症、硬膜外膿瘍、化膿性頭蓋内血栓性静脈炎、脊髄炎及び神経根炎、ウイルス性中枢神経系疾患と、クールー及びクロイツフェルト‐ヤコブ病、ゲルストマン症候群、Gerstmann−Straussler−Scheinker症候群を含むプリオン病(prion disease)と、致死性家族性不眠症、神経系性栄養病及び代謝病、神経線維腫症、結節硬化症、小脳網膜血管芽腫(cerebelloretinal hemangioblastomatosis)、脳3叉神経血管症候群、ダウン症を含む中枢神経系性精神薄弱及び他の発生障害、脳性麻痺、神経骨格異常症、自律神経系障害、脳神経障害、脊髄病、筋ジストロフィー及び他の神経筋障害、末梢神経疾患、皮膚筋炎及び多発性筋炎と、遺伝性、代謝性、内分泌性、及び中毒性ミオパシーと、重症筋無力症、周期性四肢麻痺と、気分性及び不安性精神障害、及び妄想性精神病と、季節性の感情の障害(SAD)、静座不能、健忘症、緊張病、糖尿病性ニューロパシー、錐体外路性終末欠陥症候群、ジストニー、分裂病性精神障害、帯状疱疹後神経痛、及びトゥーレット病が含まれ、筋疾患の中には、心筋症、心筋炎、デュシェンヌ型筋ジストロフィー、ベッカー型偽肥大性筋ジストロフィー、筋緊張性ジストロフィー、中心コア病、ネマリンミオパシーラネマリン筋障害、中心核ミオパシー、脂質ミオパシー、ミトコンドリアミオパチー、感染性節炎、多発性筋炎、皮膚筋炎、封入体筋炎、甲状腺中毒性ミオパシー、エタノールミオパシー(ethanol myopathy)、口峡炎、アナフィラキシー、不整脈、喘息、心血管ショック、クッシング病、高血圧症、低血糖症、心筋梗塞、片頭痛、クロム親和細胞腫、脳症、てんかん、カーンズ‐セイヤ症候群、乳酸アシドーシス、ミオクローヌス疾患、眼筋麻痺、および酸性マルターゼ欠損症(AMD、ポンペ病としても知られる)を含む筋障害が含まれ、免疫疾患の中には、炎症及び日光性角化症、後天性免疫不全症候群(AIDS)及び副腎機能不全、成人呼吸窮迫症候群、アレルギー、強直性脊椎炎、アミロイド症、貧血、喘息、アテローム性動脈硬化症、自己免疫性溶血性貧血、自己免疫性甲状腺炎、自己免疫性多腺性内分泌カンジダ性外胚葉ジストロフィー(APECED)、気管支炎、胆嚢炎、接触皮膚炎、クローン病、アトピー性皮膚炎、皮膚筋炎、糖尿病、肺気腫、リンパ球毒素性一時性リンパ球減少症、赤芽球症、結節性紅斑、萎縮性胃炎、糸球体腎炎、グッドパスチャー症候群、痛風、グレーブス病、橋本甲状腺炎、過好酸球増加症、過敏性大腸症候群、多発性硬化症、重症筋無力症、心筋または心膜炎症、骨関節炎、骨粗しょう症、膵炎、乾癬、ライター症候群、リウマチ様関節炎、強皮症、シェ−グレン症候群、全身性アナフィラキシー、全身性エリテマトーデス、全身性硬化症、原発性血小板血症、血小板減少症、潰瘍性大腸炎、ウェルナー症候群、癌合併症、血液透析、体外循環、ウイルス感染症、細菌感染症、真菌感染症、寄生虫感染症、原虫感染症、蠕虫感染症、外傷、および細胞異常増殖には日光性角化症及びアテローム性動脈硬化、滑液包炎、硬変、肝炎、混合型結合組織病(MCTD)、骨髄線維症、発作性夜間ヘモグロビン尿症、真性多血症、乾癬、原発性血小板血症、並びに腺癌及び白血病、リンパ腫、黒色腫、骨髄腫、肉腫、及び奇形癌、具体的には、副腎、膀胱、骨、骨髄、脳、乳房、頚部、胆嚢、神経節、消化管、心臓、腎臓、肝臓、肺、筋肉、卵巣、膵臓、副甲状腺、陰茎、前立腺、唾液腺、皮膚、脾臓、精巣、胸腺、甲状腺、子宮の癌が含まれる。
【0156】
別の実施例では、限定するものではないが上に列記した疾患を含むSATの発現または活性の低下に関連した疾患の治療または予防のために、SATまたはその断片や誘導体を発現し得るベクターを患者に投与することも可能である。
【0157】
更に別の実施例では、限定するものではないが上に列記した疾患を含むSATの発現または活性の低下に関連した疾患の治療または予防のために、実質的に精製されたSATを含む組成物を好適な医薬用担体と共に患者に投与することも可能である。
【0158】
更に別の実施例では、SATの活性を調節するアゴニストを患者に投与して、限定するものではないが上記した疾患を含むSATの発現または活性の低下に関連した疾患を治療または予防することも可能である。
【0159】
更なる実施例では、SATの発現または活性の増大に関連した疾患の治療または予防のために、患者にSATのアンタゴニストを投与することが可能である。限定するものではないが、このような疾患の例には、上記した小胞輸送障害、輸送障害、神経疾患、自己免疫/炎症疾患および細胞の増殖異常が含まれる。一実施態様では、SATと特異的に結合する抗体が直接アンタゴニストとして、或いはSATを発現する細胞または組織に薬剤を運ぶターゲッティング或いは運搬機構として間接的に用いられ得る。
【0160】
別の実施例では、限定するものではないが上に列記した疾患を含むSATの発現または活性の増大に関連した疾患の治療まは予防のために、SATをコードするポリヌクレオチドの相補配列を発現するベクターを患者に投与することも可能である。
【0161】
別の実施例では、本発明の任意のタンパク質、アンタゴニスト、抗体、アゴニスト、相補配列、またはベクターを、別の好適な治療薬と組み合わせて投与することもできる。併用療法で用いる好適な治療薬は、当業者が従来の医薬原理に従ってを選択し得る。治療薬と組み合わせることにより、上記した種々の疾患の治療または予防に相乗効果をもたらし得る。この方法を用いることにより少量の各薬剤で医薬効果をあげることが可能となり、それによって副作用の可能性を低減し得る。
【0162】
SATのアンタゴニストは、当分野で一般的な方法を用いて製造することが可能である。 詳しくは、精製されたSATを用いて抗体を作ったり、治療薬のライブラリをスクリーニングしてSATと特異的に結合するものを同定が能である。SATの抗体も、本技術分野で一般的に知られている方法を用いて製造することが可能である。 限定するものではないがこのような抗体には、ポリクローナル抗体、モノクローナル抗体、キメラ抗体、一本鎖抗体、Fab断片及びFab発現ライブラリによって作られた断片が含まれ得る。中和抗体(即ち二量体の形成を阻害する抗体)は通常、治療用に好適である。
【0163】
抗体の産生のためには、ヤギ、ウサギ、ラット、マウス、ヒト及びその他のものを含む種々の宿主が、SATまたは任意の断片、または免疫原性の特性を備えるそのオリゴペプチドの注入によって免疫化され得る。宿主の種に応じて、種々のアジュバントを用いて免疫応答を高めることもできる。限定するものではないがこのようなアジュバントには、フロイントアジュバントと、水酸化アルミニウム等のミネラルゲルアジュバントと、リゾレシチン、プルロニックポリオル、ポリアニオン、ペプチド、油性乳剤、スカイガイのヘモシニアン、ジニトロフェノール等の界面活性剤とがある。ヒトに用いられるアジュバントの中では、BCG(カルメット‐ゲラン杆菌)及びコリネバクテリウム‐パルヴムが特に好ましい。
【0164】
SATに対する抗体を誘発するために用いられるオリゴペプチド、ペプチド、または断片は、少なくとも約5個のアミノ酸からなり、一般的には約10個以上のアミノ酸からなるものが好ましい。これらのオリゴペプチド、ペプチドまたは断片は、天然のタンパク質のアミノ酸配列の一部と同一であり且つ小さな天然の分子の全アミノ酸配列を含むことが望ましい。SATアミノ酸の短いストレッチは、KLHなどの別のタンパク質の配列と融合し、キメラ分子に対する抗体が産生され得る。
【0165】
SATに対するモノクローナル抗体は、培地内の連続した細胞株によって、抗体分子を産生する任意の技術を用いて作製することが可能である。限定するものではないがこのような技術には、ハイブリドーマ技術、ヒトB細胞ハイブリドーマ技術及びEBV−ハイブリドーマ技術がある(Kohler, G. ら. (1975) Nature 256:495−497、Kozbor, D. ら (1985) .J. Immunol. Methods 81:31−42、Cote, R.J. ら (1983) Proc. Natl. Acad. Sci. USA 80:2026−2030、Cole, S.P. ら (1984) Mol. Cell Biol. 62:109−120等を参照)。
【0166】
更に、「キメラ抗体」作製のために発達したヒト抗体遺伝子にマウス抗体遺伝子をスプライシングするなどの技術が、好適な抗原特異性及び生物学的活性を備える分子を得るために用いられる(例えば、Morrison, S.L.他. (1984) Proc. Natl. Acad. Sci. 81:68516855、Neuberger、M.S.他. (1984) Nature 312:604−608; Takeda, S.ら. (1985) Nature 314:452,454等を参照)。別法では、当分野で周知の方法を用いて、一本鎖抗体の産生のための記載された技術を適用して、SAT特異的一本鎖抗体を生成する。関連特異性を有するがイディオタイプ組成が異なるような抗体を、ランダムな組合せの免疫グロブリンライブラリからチェーンシャッフリングによって産生することもできる(Burton D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134−10137等を参照)。
【0167】
抗体の産生は、リンパ球集団におけるin vivo産生の誘導によって、或いは免疫グロブリンライブラリのスクリーニングまたは文献に開示されているような高特異結合試薬のパネルのスクリーニングによっても行い得る(Orlandi, R. ら (1989) Proc. Natl. Acad. Sci. USA 86: 3833−3837、Winter, G. ら (1991) Nature 349:293−299等を参照)。
【0168】
SATに対する特異的な結合部位を含む抗体も得ることができる。例えば、限定するものではないが、このような断片には、抗体分子のペプシン消化によって作製されるF(ab’) 断片と、F(ab’) 断片のジスルフィド架橋を還元することによって作製されるFab断片とがある。或いは、Fab発現ライブラリを作製することによって、モノクローナルFab断片を所望の特異性と迅速且つ容易に同定することが可能となる(Huse, W.D. ら (1989) Science 246:12751281等を参照)。
【0169】
種々のイムノアッセイを用いてスクリーニングし、所望の特異性を有する抗体を同定することができる。隔離された特異性を有するポリクローナル抗体またはモノクローナル抗体の何れかを用いる競合的な結合、または免疫放射線活性のための数々のプロトコルが、当分野では周知である。 通常このようなイムノアッセイには、SATとその特異性抗体との間の複合体形成の計測が含まれる。二つの非干渉性SATピトープに対して反応性のモノクローナル抗体を用いる、2部位モノクローナルベースのイムノアッセイが一般に利用されるが、競合的結合アッセイも利用することができる(Pound、前出)。
【0170】
ラジオイムノアッセイ技術と共にScatchard分析などの様々な方法を用いて、SATに対する抗体の親和性を評価する。親和性を結合定数Kaで表すが、このKaは、平衡状態の下でSAT抗体複合体のモル濃度を遊離抗体と遊離抗原のモル濃度で除して得られる値である。ポリクローナル抗体は多様なSATピトープに対する親和性が不均一であり、ポリクローナル抗体試薬のために決定したKaは、SAT抗体の平均親和性または結合活性を表す。特定のSATピトープに単一特異的なモノクローナル抗体医薬のKaは、親和性の真の測定値を表す。Ka値が10〜1012liter/molの高親和性抗体医薬は、SAT抗体複合体が激しい操作に耐えなければならないイムノアッセイに用いるのが好ましい。Ka値が10〜10liter/molの低親和性抗体医薬は、SATが抗体から最終的に活性化状態で解離する必要がある免疫精製(immunopurification)及び類似の処理に用いるのが好ましい。 (Catty, D. (1988) Antibodies, Volume I: Practical Approach. IRL Press, Washington, DC; Liddell, J. E. 及び Cryer, A. (1991) Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY)。
【0171】
ポリクローナル抗体試薬の抗体価及び結合活性を更に評価して、後に使う或る適用例に対するこのような試薬の品質及び適性を決定することができる。例えば、少なくとも1〜2mg/mlの特異的な抗体、好ましくは5〜10mg/mlの特異的な抗体を含むポリクローナル抗体医薬は一般に、SAT抗体複合体を沈殿させなければならない処理に用いられる。抗体の特異性、抗体価、結合活性、様々な適用例における抗体の品質や使用に対する指針については、一般に入手可能である。(前出のCattyの文献、同Coligan らの文献等を参照)。
【0172】
本発明の別の実施例では、SATをコードするポリヌクレオチド、またはその任意の断片や相補配列が、治療目的で使用することができる。ある実施態様では、SATをコードする遺伝子のコーディング領域や調節領域に相補的な配列やアンチセンス分子(DNA及びRNA、修飾ヌクレオチド)を設計して遺伝子発現を変更することができる。このような技術は当分野では周知であり、センスまたはアンチセンスオリゴヌクレオチドまたは大きな断片が、SATをコードする配列の制御領域から、またはコード領域に沿ったさまざまな位置から設計可能である。(Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJを参照)。
【0173】
治療に用いる場合、アンチセンス配列を好適な標的細胞に導入するのに好適な任意の遺伝子送達系を用いることができる。アンチセンス配列は、転写時に標的タンパク質をコードする細胞配列の少なくとも一部に相補的な配列を発現する発現プラスミドの形で細胞内に輸送することが可能である(Slater, J.E. ら (1998) J. Allergy Clin. Immunol. 102(3):469−475 及び Scanlon, K.J. ら (1995)9(13):1288−1296.等を参照)アンチセンス配列はまた、例えばレトロウイルスやアデノ関連ウイルスベクター等のウイルスベクターを用いて細胞内に導入することもできる。(Miller, A.D. (1990) Blood 76:271、前出のAusubel、Uckert, W. 及び W. Walther (1994) Pharmacol. Ther. 63(3):323−347等を参照)。その他の遺伝送達機構には、リポソーム系、人工的なウイルスエンベロープ及び当分野で公知のその他の系が含まれる(Rossi, J.J. (1995) Br. Med. Bull. 51(1):217−225; Boado、R.J.ら (1998) J. Pharm. Sci. 87(11):1308−1315、Morris, M.C. ら (1997) Nucleic Acids Res. 25(14):2730−2736. 等を参照)。
【0174】
本発明の別の実施例では、SATをコードするポリヌクレオチドを、体細胞若しくは生殖細胞の遺伝子治療に用いることが可能である。遺伝子治療を行うことにより、(i)遺伝子欠損症(例えばX染色体鎖遺伝(Cavazzana−Calvo, M. ら (2000) Science 288:669−672)により特徴付けられる重度の複合型免疫欠損(SCID)−X1の場合)、先天性アデノシンデアミナーゼ(ADA)欠損症に関連する重度の複合型免疫欠損(Blaese, R.M. ら (1995) Science 270:475−480、Bordignon, C. ら (1995) Science 270:470−475)、嚢胞性繊維症(Zabner, J. ら (1993) Cell 75:207−216: Crystal、R.G. ら (1995) Hum. Gene Therapy 6:643−666、Crystal, R.G. ら. (1995) Hum. Gene Therapy 6:667−703)、サラセミア(thalassamia)、家族性高コレステロール血症、第VIII因子若しくは第IX因子欠損に起因する血友病(Crystal, R.G. (1995) Science 270:404−410、Verma, I.M. 及び Somia. N. (1997) Nature 389:239−242)を治療し、(ii)条件的致死性遺伝子産物を発現させ(例えば制御不能な細胞増殖に起因する癌の場合)、(iii)細胞内の寄生虫(例えばヒト免疫不全ウイルス(HIV)(Baltimore, D. (1988) Nature 335:395−396、Poescbla, E. ら (1996) Proc. Natl. Acad. Sci. USA. 93:11395−11399)、B型若しくはC型肝炎ウイルス(HBV、HCV)、Candida albicans及びParacoccidioides brasiliensis等の真菌寄生虫、並びにPlasmodium falciparum及びTrypanosoma cruzi等の原虫寄生体に対する防御機能を有するタンパク質を発現させることができる。SAT若しくは調節に必要な遺伝子の欠損が疾患を引き起こす場合、導入した細胞の好適な集団からSATを発現させて、遺伝子欠損によって起こる症状の発現を緩和することが可能である。
【0175】
本発明の更なる実施例では、SATの欠損による疾患や異常症は、SATをコードする哺乳動物発現ベクターを作製して、これらのベクターを機械的手段によってSAT欠損細胞に導入することによって治療する。in vivo或いはex vitroの細胞に用いる機械的導入技術には、(i)個々の細胞内への直接的なDNA微量注射法、(ii)遺伝子銃、(iii)リポソームを介した形質移入、(iv)受容体を介した遺伝子導入、及び(v)DNAトランスポソンの使用(Morgan, R.A. および W.F. Anderson (1993) Annu. Rev. Biochem. 62:191−217、Ivics, Z. (1997) Cell 91:501−510; Boulay, J−L. および H. Recipon (1998) Curr. Opin. Biotechnol. 9:445−450)がある。
【0176】
SATを及ぼし得る発現ベクターには、限定するものではないが、PCDNA 3.1、EPITAG、 PRCCMV2、PREP、PVAXベクター(Invitrogen, Carlsbad CA)、PCMV−SCRIPT、PCMV−TAG、PEGSH/PERV (Stratagene, La Jolla CA)、PTET−OFF、PTET−ON、PTRE2、PTRE2−LUC、PTK−HYG (Clontech, Palo Alto CA)が含まれる。SATを発現させるために、(i)恒常的に活性なプロモーター(例えば、サイトメガロウイルス(CMV)、ラウス肉腫ウイルス(RSV)、SV40ウイルス、チミジンキナーゼ(TK)、若しくはβ−アクチン遺伝子等)、(ii)誘導性プロモーター(例えば、市販されているT−REXプラスミド(Invitrogen)に含まれている、テトラサイクリン調節性プロモーター(Gossen, M. 及び H. Bujard (1992) Proc. Natl. Acad. Sci. U.S.A. 89:5547−5551; Gossen, M. 他 (1995) Science 268:1766−1769; Rossi, F.M.V. 及び H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451−456))、エクジソン誘導性プロモーター(市販されているプラスミドPVGRXR及びPINDに含まれている:Invitrogen)、FK506/ラパマイシン誘導性プロモーター、またはRU486/ミフェプリストーン誘導性プロモーター(Rossi, F.M.V. 及び H.M. Blau, 前出)、または(iii)正常な個体に由来するSATをコードする内在性遺伝子の天然のプロモーター若しくは組織特異的プロモーターを用いることが可能である。
【0177】
市販のリポソーム形質転換キット(例えばInvitrogen社のPerFect Lipid Transfection Kit)を用いれば、当業者は経験にそれほど頼らないでもポリヌクレオチドを培養中の標的細胞に導入することが可能になる。別法では、リン酸カルシウム法(Graham. F.L. 及び A.J. Eb (1973) Virology 52:456−467)若しくは電気穿孔法(Neumann, B. ら (1982) EMBO J. 1:841−845)を用いて形質転換を行う。(1982) EMBO J. 1:841845).初代培養細胞にDNAを導入するためには、標準化された哺乳動物の形質移入プロトコルの修飾が必要である。
【0178】
本発明の別の実施例では、SATの発現に関連する遺伝子欠損によって起こる疾患や異常症は、(i)レトロウイルス末端反復配列(LTR)プロモーター若しくは独立したプロモーターのコントロール下でSATをコードするポリヌクレオチドと、(ii)好適なRNAパッケージングシグナルと、(iii)追加のレトロウイルス・シス作用性RNA配列及び効率的なベクターの増殖に必要なコーディング配列を伴うRev応答性エレメント(RRE)とからなるレトロウイルスベクターを作製して治療することができる。レトロウイルスベクター(例えばPFB及びPFBNEO)はStratagene社から市販されており、刊行データ(Riviere, I. ら. (1995) Proc. Natl. Acad. Sci. U.S.A. 92:6733−6737)に基づいている。 上記データを引用することをもって本明細書の一部とする。(1995) Proc. Natl. Acad. Sci. USA 92:6733−6737)、参考文献に記載。ベクターは、好適なベクター産生細胞系(VPCL)において増殖され、VPCLは、標的細胞上の受容体に対する向性を有するエンベロープ遺伝子またはVSVg等の乱交雑エンベロープタンパク質を発現する(Armentano, D. ら (1987) J. Virol. 61:1647−1650、Bender, M.A. ら (1987) J. Virol. 61:1639−1646、Adam, M.A. 及び A.D. Miller (1988) J. Virol. 62:3802−3806、Dull, T. ら (1998) J. Virol. 72:8463−8471、Zufferey, R. ら (1998) J. Virol. 72:9873−9880)。RIGGに付与された米国特許第5,910,434号(「Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant」)において、レトロウイルスパッケージング細胞系を得るための方法が開示されており、引用することをもって本明細書の一部とする。レトロウイルスベクターの増殖、細胞集団(例えばCD4 T細胞)の形質導入、及び形質導入した細胞の患者への戻しは、遺伝子治療の分野では当業者に公知の方法であり、多数の文献に記載されている(Ranga, U. ら. (1997) J. Virol. 71:7020−7029、Bauer, G. ら (1997) Blood 89:2259−2267、Bonyhadi, M.L. (1997) J. Virol. 71:4707−4716、Ranga, U. ら (1998) Proc. Natl. Acad. Sci. U.S.A. 95:1201−1206、Su, L. (1997) Blood 89:2283−2290)。
【0179】
別法では、アデノウイルス系遺伝子治療の送達系を用いて、SATの発現に関連する1或いは複数の遺伝子異常を有する細胞にSATをコードするポリヌクレオチドを送達する。アデノウイルス系ベクターの作製及びパッケージングについては、当業者に公知である。 複製欠損型アデノウイルスベクターは、免疫調節タンパク質をコードする遺伝子を膵臓の無損傷の膵島内に導入するために可変性であることが証明された(Csete, M.E. ら. (1995) Transplantation 27:263−268)。使用できる可能性のあるアデノウイルスベクターは、Armentanoに付与された米国特許第5,707,618号(”Adenovirus vectors for gene therapy”)に記載されており、引用することをもって本明細書の一部とする。アデノウイルスベクターについては、Antinozzi, P.A. ら (1999) Annu. Rev. Nutr. 19:511−544 及び Verma, I.M. 及び N. Somia (1997) Nature 18:389:239−242も参照されたい。 両文献は、引用することをもって本明細書の一部とする。
【0180】
別法では、ヘルペス系遺伝子治療の送達系を用いて、SATの発現に関連する1つ或いは複数の遺伝子異常を有する標的細胞にSATをコードするポリヌクレオチドを送達する。単純疱疹ウイルス(HSV)系のベクターは、HSV親和性の中枢神経細胞にSATを導入する際に特に重要である。ヘルペス系ベクターの作製及びパッケージングは、当業者に公知である。 複製適格性単純ヘルペスウイルス(HSV)I型系のベクターは、レポーター遺伝子を霊長類の眼に送達するために用いられてきた(Liu, X. ら (1999) Exp. Eye Res.169:385−395)。HSV−1ウイルスベクターの作製についても、DeLucaに付与された米国特許第5,804,413号(”Herpes simplex virus swains for gene transfer”)に開示されており、該特許の引用をもって本明細書の一部とする。 米国特許第5,804,413号には、ヒト遺伝子治療を含む目的のために好適なプロモーターの制御下において細胞に導入される少なくとも1つの外在性遺伝子を有するゲノムを含む組換えHSV d92についての記載がある。上記特許はまた、ICP4、ICP27及びICP22のために除去される組換えHSV系統の作製及び使用について開示している。HSVベクターについては、Goins, W.F. ら (1999) J. Virol. 73:519−532 及び Xu, H. ら (1994) Dev. Biol. 163:152−161も参照されたい。 両文献は、引用をもって本明細書の一部とする。クローン化ヘルペスウイルス配列の操作、巨大ヘルペスウイルスのゲノムの異なった部分を含む多数のプラスミドを形質移入した後の組換えウイルスの産生、ヘルペスウイルスの成長及び増殖、並びにヘルペスウイルスの細胞への感染は、当業者に公知の技術である。
【0181】
別法では、αウイルス(正の一本鎖RNAウイルス)ベクターを用いてSATをコードするポリヌクレオチドを標的細胞に送達する。プロトタイプのαウイルスであるセムリキ森林熱ウイルス(Semliki Forest Virus, SFV)の生物学的研究が広範に行われており、遺伝子導入ベクターがSFVゲノムに基づいていることが分かった(Garoff, H. および K.−J. Li (1998) Cun. Opin. Biotech. 9:464−469)。αウイルスRNAの複製中に、通常はウイルスのキャプシッドタンパク質をコードするサブゲノムRNAが作り出される。このサブゲノムRNAは、完全長のゲノムRNAより高いレベルに複製されるため、酵素活性(例えばプロテアーゼ及びポリメラーゼ)を有するウイルスタンパク質に比べてキャプシッドタンパク質が過剰産生される。同様に、SAT をコードする配列をαウイルスゲノムのカプシドをコードする領域に導入することによって、ベクター導入細胞において多数のSAT をコードするRNAが産生され、高いレベルでSAT が合成される。通常はαウイルスの感染が数日以内での細胞溶解に関係する一方で、シンドビスウイルス(SIN)の変異体を有するハムスター正常腎臓細胞(BHK−21)の持続的な感染を確立する能力は、αウイルスの溶解複製を遺伝子治療に適用できるように好適に変更可能であることを示唆している(Dryga, S.A. ら. (1997) Virology 228 :74−83)。様々な宿主にαウイルスを導入できることから、様々なタイプの細胞にSATを導入することできる。或る集団におけるサブセットの細胞の特定形質導入は、形質導入前に細胞の選別を必要とし得る。αウイルスの感染性cDNAクローンの処置方法、αウイルスのcDNA及びRNAの形質移入方法及びαウイルスの感染方法は、当業者に公知である。
【0182】
転写開始部位由来のオリゴヌクレオチドを用いて遺伝子発現を阻害することも可能である。 転写開始部位とは例えば開始部位から数えて約−10と約+10の間である。同様に、三重らせん塩基対の形成方法を用いて阻害が可能となる。三重らせん塩基対形成は、ポリメラーゼ、転写因子または調節分子の結合のために十分に開くような二重らせんの能力を阻害するので、三重らせん塩基対形成は有用である。三重らせんDNAを用いる最近の治療の進歩については文献に記載がある(Gee, J.E. ら (1994) in: Huber, B.E.及びB.I. Carr, Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco, NY, 163−177ページ等を参照)。相補配列またはアンチセンス分子もまた、転写物がリボソームに結合するのを阻止することによってmRNAの翻訳を阻止するように設計することができる。
【0183】
リボザイムは酵素性RNA分子であり、RNAの特異的切断を触媒するためにリボザイムを用いることもできる。リボザイム作用のメカニズムは、ヌクレオチド鎖切断に先立つ相補的標的RNAへのリボザイム分子の配列特異性ハイブリダイゼーションに関与している。例えば、SATをコードする配列のヌクレオチド鎖切断を、特異的且つ効果的に触媒する組換え型のハンマーヘッド型リボザイム分子が含まれる。
【0184】
任意の潜在的RNA標的内の特異的リボザイム切断部位は、GUA、GUU、GUC配列を含めたリボザイム切断部位に対する標的分子をスキャンすることによって先ず同定される。GUA、 GUU、GUC。一度同定すると、オリゴヌクレオチドを機能不全にするような2次構造の特徴に対して切断部位を含む標的遺伝子の領域に対応する15〜20リボヌクレオチドの短いRNA配列を、評価することが可能になる。候補標的の適合性の評価も、リボヌクレアーゼ保護アッセイを用いて相補的オリゴヌクレオチドとのハイブリダイゼーションの実施容易性をテストすることによって行うことができる。
【0185】
本発明の相補リボ核酸分子及びリボザイムは、核酸分子合成のために当分野でよく知られている任意の方法を用いて作製し得る。任意の方法には、固相フォスフォアミダイト化合物等のオリゴヌクレオチドを化学的に合成する方法がある。或いは、SATをコードするDNA配列のin vitro及びin vivo転写によってRNA分子を産出し得る。このようなDNA配列は、T7やSP6等の好適なRNAポリメラーゼプロモーターを用いて多様なベクター内に取り込むことが可能である。或いは、相補的RNAを構成的或いは誘導的に合成するようなこれらcDNA産物を、細胞系、細胞または組織内に導入することができる。
【0186】
細胞内の安定性を高め、半減期を長くするためにRNA分子を修飾することができる。限定するものではないが可能な修飾には、分子の5’末端、3’末端、あるいはその両方においてフランキング配列を追加したり、分子の主鎖内においてホスホジエステラーゼ結合ではなくホスホロチオネートまたは2’ O−メチルを使用したりすることが含まれる。この概念は、PNAの産出に固有のものであり、これら全ての分子に拡大することができる。 それには、内在性エンドヌクレアーゼによって容易には認識されないアデニン、シチジン、グアニン、チミン、及びウリジンにアセチル−、メチル−、チオ−及び同様の修飾をしたものの他、非従来型塩基、例えばイノシン、クエオシン(queosine)、ワイブトシン(wybutosine)等を加えることができる。
【0187】
本発明の更なる実施例は、SATをコードするポリヌクレオチドの発現の変化に有効な化合物をスクリーニングする方法を含む。限定するものではないが特異ポリヌクレオチドの変異発現に有効な化合物には、オリゴヌクレオチド、アンチセンスオリゴヌクレオチド、三重らせん形成オリゴヌクレオチド、転写因子その他のポリペプチド転写制御因子、及び特異ポリヌクレオチド配列と相互作用し得る非高分子化学的実体がある。有効な化合物は、ポリヌクレオチド発現のインヒビターまたはエンハンサーのいずれかとして作用することによりポリヌクレオチド発現を変異し得る。従って、SATの発現または活性の増加に関連する疾患の治療においては、SATをコードするポリヌクレオチドの発現を特異的に阻害する化合物が治療上有用であり、SATの発現または活性の低下に関連する疾患の治療においては、SATをコードするポリヌクレオチドの発現を特異的に促進する化合物が治療上有用であり得る。
【0188】
特異ポリヌクレオチドの変異発現における有効性に対して、少なくとも1個から複数個の試験化合物をスクリーニングし得る。試験化合物は、当分野で通常知られている任意の方法により得られる。 このような方法には、ポリヌクレオチドの発現を変異させる場合と、既存の、市販のまたは専売の、天然または非天然の化合物ライブラリから選択する場合と、標的ポリヌクレオチドの化学的及び/または構造的特性に基づく化合物を合理的にデザインする場合と、組合せ的にまたは無作為に生成した化合物のライブラリから選択する場合に有効であることが知られているような化合物の化学修飾がある。SATをコードするポリヌクレオチドを含むサンプルは、少なくとも1つの試験化合物に曝露して得る。サンプルには例えば、無傷細胞、透過化処理した細胞、無細胞再構成系または再構成生化学系があり得る。SATをコードするポリヌクレオチドの発現における変化は、当分野で周知の任意の方法でアッセイする。 通常、SATをコードするポリヌクレオチドの配列に相補的なヌクレオチド配列を有するプローブを用いたハイブリダイゼーションにより、特定のヌクレオチドの発現を検出する。ハイブリダイゼーション量を定量し、それによって1つ以上の試験化合物に曝露される及び曝露されないポリヌクレオチドの発現の比較に対する基礎を形成し得る。試験化合物に曝露されるポリヌクレオチドの発現における変化の検出は、ポリヌクレオチドの発現を変異する際に試験化合物が有効であることを示している。特異ポリヌクレオチドの変異発現に有効な化合物に対して、例えばSchizosaccharomyces pombe遺伝子発現系(Atkins, D. ら (1999) 米国特許第5,932,435号、Arndt, G.M. ら (2000) Nucleic Acids Res. 28:E15)またはHeLa細胞等のヒト細胞系(Clarke, M.L. ら (2000) Biochem. Biophys. Res. Commun. 268:8−13)を用いてスクリーニングを実行する。本発明の特定の実施例は、特異的ポリヌクレオチド配列に対するアンチセンス活性のためのオリゴヌクレオチド(デオキシリボヌクレオチド、リボヌクレオチド、ペプチド核酸、修飾オリゴヌクレオチド)の組み合わせライブラリをスクリーニングすることに関与している(Bruice, T.W. ら (1997) 米国特許第5,686,242号、Bruice, T.W. ら (2000) 米国特許第6,022,691号)。
【0189】
ベクターを細胞または組織に導入する多数の方法が利用可能であり、in vivoin vitro及びex vivoの使用に対して同程度に適している。ex vivo治療の場合、ベクターを患者から採取した幹細胞内に導入し、クローニング増殖して同一患者に自家移植で戻すことができる。トランスフェクション、リボソーム注入またはポリカチオンアミノポリマーによる輸送は、当分野でよく知られている方法を用いて実行することができる。 (Goldman, C.K. ら (1997) Nat. Biotechnol. 15:462−466.等を参照。(1997) Nat. Biotechnol. 15:462−466.)
上記の治療方法はいずれも、例えば、ヒト、イヌ、ネコ、ウシ、ウマ、ウサギ、サル等の哺乳動物を含めて治療が必要な全ての対象に適用できる。
【0190】
本発明の追加実施例は、通常薬剤として許容できる賦形剤で処方される活性成分を有する成分の投与に関連する。賦形剤には例えば、糖、でんぷん、セルロース、ゴム及びタンパク質がある。様々な処方が通常知られており、詳細はRemington’s Pharmaceutical Sciences(Maack Publishing, Easton PA)の最新版に記載されている。このような組成物は、SAT、SATの抗体、擬態、アゴニスト、アンタゴニスト、またはSATのインヒビターなどからなる。
【0191】
本発明に用いられる成分は、任意の数の経路によって投与することができ、限定するものではないが経路には、経口、静脈内、筋肉内、動脈内、骨髄内、クモ膜下腔内、心室内、肺、経皮、皮下、腹腔内、鼻腔内、腸内、局所、舌下または直腸がある。
【0192】
肺から投与する成分は、液状または乾燥粉末状で調製し得る。このような成分は通常、患者が吸入する直前にエアロゾル化する。小分子(例えば伝統的な低分子量有機薬)の場合には、速効製剤のエアロゾル送達は当分野で公知である。 高分子(例えばより大きなペプチド及びタンパク質)の場合には、当該分野において肺の肺胞領域を介しての肺送達が最近向上したことにより、インスリン等の薬剤を実質的に血液循環へ輸送することを可能にした(Patton, J.S. ら, 米国特許第5,997,848号等を参照)。肺送達は、針注射なしに投与する点で優れており、有毒な可能性のある浸透エンハンサーの必要性をなくす。
【0193】
本発明での使用に適した成分には、所定の目的を達成するために必要なだけの量の活性成分を含有する成分が含まれる。有効投与量の決定は、当業者の能力の範囲内で行う。
【0194】
SAT またはその断片を含む高分子を直接細胞内に送達するべく、特殊な形態に組成物が調製されるのが好ましい。例えば、細胞不透過性高分子を含むリポソーム製剤は、細胞融合及び高分子の細胞内送達を促進し得る。別法では、SATまたはその断片をHIV Tat−1タンパク質の短いカチオンN末端部に結合することもできる。このようにして生成された融合タンパク質は、マウスモデル系の脳を含む全ての組織の細胞に形質導入することがわかっている(Schwarze, S.R. ら (1999) Science 285:1569−1572)。
【0195】
任意の化合物に対して、細胞培養アッセイ、例えば新生物性細胞の細胞培養アッセイにおいて、或いは、動物モデル、例えばマウス、ウサギ、イヌまたはブタ等において、先ず治療の有効投与量を推定することができる。動物モデルはまた、好適な濃度範囲及び投与経路を決定するためにも用い得る。このような情報を用いて、次にヒトに対する有益な投与量及び投与経路を決定することができる。
【0196】
医学的に効果的な薬用量は、症状や容態を回復させる、たとえばSAT またはその断片、SATの抗体、SATのアゴニストまたはアンタゴニスト、インヒビターなどの活性処方成分の量に関連する。治療有効度及び毒性は、細胞培養または動物実験における標準的な薬剤手法によって、例えばED50(集団の50%の医薬的有効量)またはLD50(集団の50%の致死量)を測定するなどして決定することができる。毒性効果の薬用効果に対する投与量の比は、治療指数であり、LD50/ED50比として表すことができる。高い治療指数を示すような成分が望ましい。細胞培養アッセイ及び動物実験から得られたデータは、ヒトに用いるための投与量の範囲を調剤するのに用いられる。このような組成物が含まれる投与量は、毒性を殆ど或いは全く含まず、ED50を含むような血中濃度の範囲にあることが好ましい。用いられる投与形態、患者の感受性及び投与の経路によって、投与量はこの範囲内で様々に変わる。
【0197】
正確な投与量は、治療が必要な被験者に関する要素を考慮して、現場の医者が決定することになる。効果的なレベルの活性成分を与え、或いは所望の効果を維持するべく、投与量及び投与を調節する。被験者に関する要素としては、疾患の重症度、患者の通常の健康状態、患者の年齢、体重及び性別、投与の時間及び頻度、薬剤の配合、反応感受性及び治療に対する応答等を考慮する。作用期間が長い成分は、特定の製剤の半減期及びクリアランス率によって3〜4日毎に1度、1週間に1度、或いは2週間に1度の間隔で投与し得る。
【0198】
通常の投与量は、投与の経路にもよるが約0.1〜100,000μgであり、合計で約1gまでとする。特定の投与量及び送達方法に関するガイダンスは文献に記載されており、現場の医者は通常それを利用することができる。 当業者は、タンパク質またはインヒビターに対する処方とは異なる、ヌクレオチドに対する処方を利用することになる。同様に、ポリヌクレオチドまたはポリペプチドの送達は、特定の細胞、状態、位置等に特異的なものとなる。
【0199】
(診断)
別の実施例では、SATに特異的に結合する抗体が、SATの発現によって特徴付けられる疾患の診断、またはSATやSATのアゴニストまたはアンタゴニスト、インヒビターで治療を受けている患者をモニターするためのアッセイに用いられる。診断目的に有用な抗体は、上記の治療の箇所で記載した方法と同じ方法で調合される。SATの診断アッセイには、抗体及び標識を用いてヒトの体液或いは細胞や組織から採取されたものからSAT を検出する方法が含まれる。この抗体は修飾されたものもされていないものも可能であり、レポーター分子との共有結合または非共有結合で標識化できる。レポーター分子としては広くさまざまな種類が本分野で知られており、また使用可能であるが、そのうちのいくつかは上記で説明されている。
【0200】
SATを測定するためのELISA,RIA,及びFACSを含む種々のプロトコルは、当分野では周知であり、変わった或いは異常なレベルのSATの発現を診断する元となるものを提供する。正常或いは標準的なSATの発現の値は、複合体の形成に適した条件の下、正常な哺乳動物、例えばヒトなどの被験者から採取した体液または細胞とSATに対する抗体とを結合させることによって決定する。標準複合体形成量は、種々の方法、例えば測光法で定量できる。被験者のSATの発現の量、制御及び疾患、生検組織からのサンプルが基準値と比較される。標準値と被験者との偏差が疾患を診断するパラメータとなる。
【0201】
本発明の別の実施例によれば、SATをコードするポリヌクレオチドを診断のために用いることもできる。用いることができるポリヌクレオチドには、オリゴヌクレオチド配列、相補的RNA及びDNA分子、そしてPNAが含まれる。このポリヌクレオチドを用いて、疾患と相関し得るSATを発現する生検組織における遺伝子の発現を検出し定量する。この診断アッセイを用いて、SATの存在の有無、更に過剰な発現を調べ、治療中のSAT値の調節を監視する。
【0202】
一実施形態では、SATまたは近縁の分子をコードする遺伝子配列を含むポリヌクレオチド配列を検出可能なPCRプローブを用いたハイブリダイゼーションによって、SATをコードする核酸配列を同定することが可能である。例えば5’調節領域である高度に特異的な領域か、例えば保存されたモチーフであるやや特異性の低い領域から作られているかのプローブの特異性と、ハイブリダイゼーション或いは増幅のストリンジェントは、プローブがSATをコードする自然界の配列のみを同定するかどうか、或いはアレルや関連配列コードする自然界の配列のみを同定するかどうかによって決まるであろう。
【0203】
プローブはまた、関連する配列の検出に利用され、SATをコードする任意の配列と少なくとも50%の配列同一性を有し得る。目的の本発明のハイブリダイゼーションプローブには、DNAあるいはRNAが可能であり、SEQ ID NO:10−18の配列、或いはSAT遺伝子のプロモーター、エンハンサー、イントロンを含むゲノム配列に由来し得る。
【0204】
SATをコードするDNAに対して特異的なハイブリダイゼーションプローブの作製方法には、SAT及びSAT誘導体をコードするポリヌクレオチド配列をmRNAプローブの作製のためのベクターにクローニングする方法がある。mRNAプローブ作製のためのベクターは、当業者に知られており、市販されており、好適なRNAポリメラーゼ及び好適な標識されたヌクレオチドを加えることによって、in vitroでRNAプローブを合成するために用いられ得る。ハイブリダイゼーションプローブは、種々のレポーターの集団によって標識され得る。 レポーター集団の例としては、32Pまたは35S等の放射性核種、或いはアビジン/ビオチン結合系を介してプローブに結合されたアルカリホスファターゼ等の酵素標識などが挙げられる。
【0205】
SATをコードするポリヌクレオチド配列を用いて、SATの発現に関連する疾患を診断することが可能である。限定するものではないが、このような疾患のうち、輸送障害には運動不能症、筋萎縮性側索硬化症、毛細血管拡張性運動失調、ベッカー筋ジストロフィー、顔面麻痺、シャルコー‐マリー‐ツース病、糖尿病、尿崩症、糖尿病性ニューロパシー、デュシェンヌ型筋ジストロフィー、高カリウム血性周期性四肢麻痺、正常カリウム血性周期性四肢麻痺、パーキンソン病、悪性高熱、多剤耐性、重症筋無力症、筋緊張性異栄養症、緊張病、錐体外路性終末欠陥症候群、ジストニー、末梢神経疾患、脳性腫瘍、前立腺癌と、口峡炎、徐脈型不整脈、頻拍性型不整脈、高血圧症、遺伝性QT延長症候群、心筋炎、心筋症、ネマリンミオパシーラネマリン筋障害、中心核ミオパシー、脂質ミオパシー、ミトコンドリアミオパシー、甲状腺中毒性ミオパシー、エタノールミオパシー、皮膚筋炎、封入体筋炎、感染性節炎、及び多発性筋炎などの輸送に関連した心臓病と、アルツハイマー病、健忘症、双極性障害、痴呆、うつ病、てんかん、トゥーレット病、妄想性精神病、及び分裂病などの輸送に関連した神経障害と、神経線維腫症、帯状疱疹後神経痛、3叉神経ニューロパシー、サルコイドーシス、鎌状赤血球性貧血、ウィルソン病、白内障、不妊症、肺動脈狭窄症、常染色体性感音性難聴、高/低血糖症、グレーブス病、甲状腺腫、クッシング病と、副腎機能不全、グルコース‐ガラクトース吸収不全症候群、高コレステロール血症、副腎性白質ジストロフィー、ツェルヴェーガー症候群、メンケス病、後角症候群、フォンギルケ症候群、シスチン尿症、イミノグリシン尿症、Hartup病、ファンコニ病が含まれ、神経の疾患の中には、癲癇、虚血性脳血管障害、脳卒中、大脳新生物、アルツハイマー病、ピック病、ハンチントン病、痴呆、パーキソン病及びその他の錐体外路障害、筋萎縮性側策硬化及びその他の運動ニューロン障害、進行性神経性筋萎縮症、色素性網膜炎、遺伝性運動失調、多発性硬化症及び他の脱髄疾患、細菌性及びウイルス性髄膜炎、脳膿瘍、硬膜下蓄膿症、硬膜外膿瘍、化膿性頭蓋内血栓性静脈炎、脊髄炎及び神経根炎、ウイルス性中枢神経系疾患と、クールー及びクロイツフェルト‐ヤコブ病、ゲルストマン症候群、Gerstmann−Straussler−Scheinker症候群を含むプリオン病(prion disease)と、致死性家族性不眠症、神経系性栄養病及び代謝病、神経線維腫症、結節硬化症、小脳網膜血管芽腫(cerebelloretinal hemangioblastomatosis)、脳3叉神経血管症候群、ダウン症を含む中枢神経系性精神薄弱及び他の発生障害、脳性麻痺、神経骨格異常症、自律神経系障害、脳神経障害、脊髄病、筋ジストロフィー及び他の神経筋障害、末梢神経疾患、皮膚筋炎及び多発性筋炎と、遺伝性、代謝性、内分泌性、及び中毒性ミオパシーと、重症筋無力症、周期性四肢麻痺と、気分性及び不安性精神障害、及び妄想性精神病と、季節性の感情の障害(SAD)、静座不能、健忘症、緊張病、糖尿病性ニューロパシー、錐体外路性終末欠陥症候群、ジストニー、分裂病性精神障害、帯状疱疹後神経痛、及びトゥーレット病が含まれ、筋疾患の中には、心筋症、心筋炎、デュシェンヌ型筋ジストロフィー、ベッカー型偽肥大性筋ジストロフィー、筋緊張性ジストロフィー、中心コア病、ネマリンミオパシーラネマリン筋障害、中心核ミオパシー、脂質ミオパシー、ミトコンドリアミオパチー、感染性節炎、多発性筋炎、皮膚筋炎、封入体筋炎、甲状腺中毒性ミオパシー、エタノールミオパシー(ethanol myopathy)、口峡炎、アナフィラキシー、不整脈、喘息、心血管ショック、クッシング病、高血圧症、低血糖症、心筋梗塞、片頭痛、クロム親和細胞腫、脳症、てんかん、カーンズ‐セイヤ症候群、乳酸アシドーシス、ミオクローヌス疾患、眼筋麻痺、および酸性マルターゼ欠損症(AMD、ポンペ病としても知られる)を含む筋障害が含まれ、免疫疾患の中には、炎症及び日光性角化症、後天性免疫不全症候群(AIDS)及び副腎機能不全、成人呼吸窮迫症候群、アレルギー、強直性脊椎炎、アミロイド症、貧血、喘息、アテローム性動脈硬化症、自己免疫性溶血性貧血、自己免疫性甲状腺炎、自己免疫性多腺性内分泌カンジダ性外胚葉ジストロフィー(APECED)、気管支炎、胆嚢炎、接触皮膚炎、クローン病、アトピー性皮膚炎、皮膚筋炎、糖尿病、肺気腫、リンパ球毒素性一時性リンパ球減少症、赤芽球症、結節性紅斑、萎縮性胃炎、糸球体腎炎、グッドパスチャー症候群、痛風、グレーブス病、橋本甲状腺炎、過好酸球増加症、過敏性大腸症候群、多発性硬化症、重症筋無力症、心筋または心膜炎症、骨関節炎、骨粗しょう症、膵炎、乾癬、ライター症候群、リウマチ様関節炎、強皮症、シェ−グレン症候群、全身性アナフィラキシー、全身性エリテマトーデス、全身性硬化症、原発性血小板血症、血小板減少症、潰瘍性大腸炎、ウェルナー症候群、癌合併症、血液透析、体外循環、ウイルス感染症、細菌感染症、真菌感染症、寄生虫感染症、原虫感染症、蠕虫感染症、外傷、および細胞異常増殖には日光性角化症及びアテローム性動脈硬化、滑液包炎、硬変、肝炎、混合型結合組織病(MCTD)、骨髄線維症、発作性夜間ヘモグロビン尿症、真性多血症、乾癬、原発性血小板血症、並びに腺癌及び白血病、リンパ腫、黒色腫、骨髄腫、肉腫、及び奇形癌、具体的には、副腎、膀胱、骨、骨髄、脳、乳房、頚部、胆嚢、神経節、消化管、心臓、腎臓、肝臓、肺、筋肉、卵巣、膵臓、副甲状腺、陰茎、前立腺、唾液腺、皮膚、脾臓、精巣、胸腺、甲状腺、子宮の癌が含まれる。SATをコードするポリヌクレオチド配列は、サザーン法やノーザン法、ドットブロット法、或いはその他の膜系の技術、PCR法、ディップスティック(dipstick)、ピン(pin)、ELISA式アッセイ、及び変異SATの発現を検出するために患者から採取した体液或いは組織を利用するマイクロアレイに使用することが可能である。このような定性方法または定量方法は、当分野で公知である。
【0206】
ある実施態様では、SATをコードするヌクレオチド配列は、関連する疾患、特に上記した疾患を検出するアッセイにおいて有用であろう。SATをコードするヌクレオチド配列は、標準的な方法で標識化され、ハイブリダイゼーション複合体の形成に好適な条件の下、患者から採取した体液或いは組織のサンプルに加えることができるであろう。好適なインキュベーション期間が経過したらサンプルを洗浄し、シグナルを定量して標準値と比較する。患者のサンプルのシグナルの量が、制御サンプルと較べて著しく変わっている場合は、サンプル内のSATをコードするヌクレオチド配列の変異レベルにより、関連する疾患の存在が明らかになる。このようなアッセイは、動物実験、臨床試験における特定の治療効果を推定するため、或いは個々の患者の治療をモニターするために用いることもできる。
【0207】
SATの発現に関連する疾患の診断の基準となるものを提供するために、発現の正常すなわち標準的なプロファイルが確立される。これは、ハイブリダイゼーション或いは増幅に好適な条件の下、動物或いはヒトの何れかの正常な被験者から抽出された体液或いは細胞と、SATをコードする配列或いはその断片とを結合させることにより達成され得る。実質的に精製されたポリヌクレオチドを既知量用いて行った実験から得た値を正常な対象から得た値と比較することにより、標準ハイブリダイゼーションを定量することができる。このようにして得た標準値は、疾患の徴候を示す患者から得たサンプルから得た値と比較することができる。標準値からの偏差を用いて疾患の存在を確定する。
【0208】
疾患の存在が確定されて治療プロトコルが開始されると、患者の発現レベルが正常な被検者に観察されるレベルに近づき始めたかどうかを測定するため、ハイブリダイゼーションアッセイを通常ベースで繰り返し得る。連続アッセイから得られた結果を用いて、数日から数ヶ月の期間にわたる治療の効果を示し得る。
【0209】
癌に関しては、個体からの生体組織における異常な量の転写物(過少発現または過剰発現)の存在は、疾患の発生素質を示したり、実際に臨床的症状が現れる前に疾患を検出する方法を提供したりし得る。この種のより明確な診断により、医療の専門家が予防方法または積極的な治療法を早くから利用し、それによって癌の発生または更なる進行を防止することが可能となる。
【0210】
SATをコードする配列から設計されたオリゴヌクレオチドのさらなる診断への利用には、PCRの利用が含まれ得る。これらのオリゴマーは、化学的に合成するか、酵素により生産するか、或いはin vitroで産出し得る。オリゴマーは、好ましくはSATをコードするポリヌクレオチドの断片、或いはSATをコードするポリヌクレオチドと相補的なポリヌクレオチドの断片を含み、最適な条件の下、特定の遺伝子や条件を識別するために利用される。また、オリゴマーは、やや緩いストリンジェント条件下で、近縁のDNA或いはRNA配列の検出、定量、或いはその両方のため用いることが可能である。
【0211】
或る実施態様において、SATをコードするポリヌクレオチド配列由来のオリゴヌクレオチドプライマーを用いて、一塩基多型(SNP)を検出し得る。SNPは、多くの場合にヒトの先天性または後天性遺伝病の原因となるような置換、挿入及び欠失である。限定するものではないがSNPの検出方法には、SSCP(single−stranded conformation polymorphism)及び蛍光SSCP(fSSCP)法がある。SSCPでは、SATをコードするポリヌクレオチド配列由来のオリゴヌクレオチドプライマーを用いたポリメラーゼ連鎖反応(PCR)でDNAを増幅する。DNAは例えば、病変組織または正常組織、生検サンプル、体液その他に由来し得る。DNA内のSNPは、一本鎖形状のPCR生成物の2次及び3次構造に差異を生じさせる。 差異は非変性ゲル中でのゲル電気泳動法を用いて検出可能である。fSCCPでは、オリゴヌクレオチドプライマーを蛍光性に標識する。 それによってDNAシークエンシング機などの高処理機器でアンプリマー(amplimer)の検出が可能になる。更に、インシリコSNP(in silico SNP, isSNP)と呼ばれる配列データベース分析法は、一般的なコンセンサス配列に配列されるような個々の重畳するDNA断片の配列を比較することにより、多形性を同定し得る。これらのコンピュータベースの方法は、DNAの実験室での調整及び統計モデル及びDNA配列クロマトグラムの自動分析を用いたシークエンシングのエラーに起因する配列の変異をフィルタリングして除去する。別の態様では、例えば高処理MASSARRAYシステム(Sequenom, Inc., San Diego CA)を用いた質量分析によりSNPを検出し、特徴付ける。
【0212】
SATの発現を定量するために用い得る方法には、ヌクレオチドの放射標識またはビオチン標識、調節核酸の相互増幅(coamplification)及び標準曲線から得た結果の補間もある(例えば、Melby, P.C.ら(1993) J. Immunol. Methods, 159:235−244;Duplaa, C.ら(1993) Anal. Biochem.212: 229−236を参照)。目的のオリゴマーが種々の希釈液中に存在し、分光光度法または比色反応によって定量が迅速になるような高処理フォーマットのアッセイを行うことによって、複数のサンプルの定量速度を加速することができる。
【0213】
更に別の実施例では、本明細書で記載した任意のポリヌクレオチド配列由来のオリゴヌクレオチドまたはより長い断片を、マイクロアレイにおけるエレメントとして用いることができる。多数の遺伝子の関連発現レベルを同時にモニターする転写イメージング技術にマイクロアレイを用いることが可能である。 これについては、以下に記載する。マイクロアレイはまた、遺伝変異体、突然変異及び多形性の同定に用いることができる。この情報を用いることで、遺伝子機能を決定し、疾患の遺伝的根拠を理解し、疾患を診断し、遺伝子発現の機能としての疾病の進行/後退をモニターし、疾病治療における薬剤の活性を開発及びモニターすることができる。特に、患者にとって最もふさわしく、有効的な治療法を選択するために、この情報を用いて患者の薬理ゲノムプロフィールを開発することができる。例えば、患者の薬理ゲノムプロフィールに基づき、患者に対して高度に有効的で副作用を殆ど示さない治療薬を選択することができる。
【0214】
別の実施例では、SAT、SATの断片、SATに特異的な抗体をマイクロアレイ上のエレメントとして用いることができる。マイクロアレイを用いて、上記のようなタンパク質−タンパク質相互作用、薬剤−標的相互作用及び遺伝子発現プロフィールをモニターまたは測定することが可能である。
【0215】
或る実施例は、或る組織または細胞タイプの転写イメージを生成するような本発明のポリヌクレオチドの使用に関連する。転写イメージは、特定の組織または細胞タイプにより遺伝子発現の包括的パターンを表す。包括的遺伝子発現パターンは、所与の条件下で所与の時間に発現した遺伝子の数及び相対存在量を定量することにより分析し得る(Seilliamer らの米国特許第5,840,484号 ”Comparative Gene Transcript Analysis” を参照。該特許は特に引用することを以って本明細書の一部となす)。従って、特定の組織または細胞タイプの転写または逆転写全体に本発明のポリヌクレオチドまたはその補体をハイブリダイズすることにより、転写イメージを生成し得る。或る実施例では、本発明のポリヌクレオチドまたはその補体がマイクロアレイ上のエレメントのサブセットを複数含むような高処理フォーマットでハイブリダイゼーションを発生させる。結果として得られる転写イメージは、遺伝子活性のプロフィールを提供し得る。
【0216】
転写イメージは、組織、株化細胞、生検またはその生物学的サンプルから単離した転写物を用いて生成し得る。転写イメージは従って、組織または生検サンプルの場合にはin vivo、または株化細胞の場合にはin vitroでの遺伝子発現を反映する。
【0217】
本発明のポリヌクレオチドの発現のプロフィールを作製する転写イメージはまた、工業的または天然の環境化合物の毒性試験のみならず、in vitroモデル系及び薬剤の前臨床評価に関連して使用し得る。全ての化合物は、作用及び毒性のメカニズムを暗示する、しばしば分子フィンガープリントまたは毒性サインと称されるような特徴的な遺伝子発現パターンを惹起する(Nuwaysir, E.F. ら. (1999) Mol. Carcinog. 24:153−159、Steiner, S. 及び N.L. Anderson (2000) Toxicol. Lett. 112−113:467−471、該文献は特に引用することを以って本明細書の一部となす)。試験化合物が、既知の毒性を有する化合物のシグネチャと同一のシグネチャを有する場合には、毒性特性を共有している可能性がある。フィンガープリントまたはシグネチャは、多数の遺伝子及び遺伝子ファミリーからの発現情報を含んでいる場合には、最も有用且つ正確である。理想的には、発現のゲノム全域にわたる測定が最高品質のシグネチャを提供する。自己の発現が任意の試験された化合物により変化しない遺伝子が同様に重要であっても、このような遺伝子の発現レベルを用いて残りの発現データを規準化する。規準化手順は、異なる化合物で処理した後の発現データの比較に有用である。毒性シグネチャの要素に遺伝子機能を割り当てることが毒性メカニズムの解釈に役立つが、毒性の予測につながるシグネチャの統計的に一致させるのに遺伝子機能の知識は必要とされない(例えば2000年2月29日にNational Institute of Environmental Health Sciencesより発行されたPress Release 00−02を参照されたい。これについてはhttp://www.niehs.nih.gov/oc/news/toxchip.htmで入手可能である)。従って、中毒学的スクリーニングの際に毒性シグネチャを用いて、全ての発現した遺伝子配列を含めることは重要且つ望ましいことである。
【0218】
或る実施例では、核酸を含有する生物学的サンプルを試験化合物で処理することにより試験化合物の毒性を算定する。処理した生物学的サンプル中で発現した核酸は、本発明のポリヌクレオチドに特異的な1つ若しくは複数のプローブでハイブリダイズし、それによって本発明のポリヌクレオチドに対応する転写レベルを定量し得る。処理した生物学的サンプル中の転写レベルを、非処理生物学的サンプル中のレベルと比較する。両サンプルの転写レベルの差は、処理されたサンプル中で試験化合物が引き起こす毒性反応を示す。
【0219】
別の実施例は、本発明のポリペプチド配列を用いて組織または細胞タイプのプロテオームを分析することに関連する。プロテオームの語は、特定の組織または細胞タイプでのタンパク質発現の包括的パターンを指す。プロテオームの各タンパク質成分は、個々に更に分析の対象とすることができる。プロテオーム発現パターン即ちプロフィールは、所与の条件下で所与の時間に発現したタンパク質の数及び相対存在量を定量することにより分析し得る。従って細胞のプロテオームのプロフィールは、特定の組織または細胞タイプのポリペプチドを分離及び分析することにより作成し得る。或る実施例では、1次元等電点電気泳動によりサンプルからタンパク質を分離し、2次元ドデシル硫酸ナトリウムスラブゲル電気泳動により分子量に応じて分離するような2次元ゲル電気泳動により分離が達成される(前出のSteiner および Anderson)。タンパク質は、通常クーマシーブルーまたはシルバーまたは蛍光染色などの物質を用いてゲルで染色することにより、分散した、独特な位置にある点としてゲル中で可視化される。各タンパク質スポットの光学密度は、通常サンプル中のタンパク質レベルに比例する。異なるサンプル、例えば試験化合物または治療薬で処理または非処理のいずれかの生物学的サンプルから得られるタンパク質スポットの光学密度を比較し、処理に関連するタンパク質スポット密度の変化を同定する。スポット内のタンパク質は、例えば化学的または酵素的切断とそれに続く質量分析を用いる標準的な方法を用いて部分的にシークエンシングする。スポット内のタンパク質の同一性は、その部分配列を、好適には少なくとも5個の連続するアミノ酸残基を、本発明のポリペプチド配列と比較することにより決定し得る。場合によっては、決定的なタンパク質同定のための更なる配列が得られる。
【0220】
プロテオームのプロファイルは、SATに特異的な抗体を用いてSAT発現レベルを定量することによっても作成可能である。或る実施例では、マイクロアレイ上でエレメントとして抗体を用い、マイクロアレイをサンプルに曝して各アレイ要素へのタンパク質結合レベルを検出することによりタンパク質発現レベルを定量する(Lueking, A. ら(1999) Anal. Biochem. 270:103−111; Mendoze, L.G. 他(1999) Biotechniques 27:778−788を参照)。検出は当分野で既知の様々な方法で行うことができ、例えば、チオールまたはアミノ反応性蛍光化合物を用いてサンプル中のタンパク質を反応させ、各アレイのエレメントにおける蛍光結合の量を検出し得る。
【0221】
プロテオームレベルでの毒性サインも中毒学的スクリーニングに有用であり、転写レベルでの毒性サインと並行に分析するべきである。或る組織の或るタンパク質に対しては、転写とタンパク質の存在量の相関が乏しいこともあるので(Anderson, N.L. および J. Seilhamer (1997) Electrophoresis 18:533−537)、転写イメージにはそれ程影響しないがタンパク質のプロフィールを変化させるような化合物の分析においてプロテオーム毒性サインは有用たり得る。更に、体液中での転写の分析はmRNA急速な分解により困難であるので、タンパク質のプロフィール作成はこのような場合により信頼でき、情報価値がある。
【0222】
別の実施例では、タンパク質を含有する生物学的サンプルを試験化合物で処理することにより試験化合物の毒性を算定する。処理された生物学的サンプル中で発現したタンパク質は、各タンパク質の量を定量し得るように分離する。各タンパク質の量を、非処理生物学的サンプル中の対応するタンパク質の量と比較する。両サンプルのタンパク質量の差は、処理サンプル中の試験化合物に対する反応を示す。個々のタンパク質は、個々のタンパク質のアミノ酸残基をシークエンシングし、これら部分配列を本発明のポリペプチドと比較することにより同定する。
【0223】
別の実施例では、タンパク質を含有する生物学的サンプルを試験化合物で処理することにより試験化合物の毒性を算定する。生物学的サンプルから得たタンパク質は、本発明のポリペプチドに特異的な抗体を用いてインキュベートする。抗体により認識されたタンパク質の量を定量する。処理された生物学的サンプル中のタンパク質の量を、非処理生物学的サンプル中のタンパク質の量と比較する。両サンプルのタンパク質量の差は、処理サンプル中の試験化合物に対する反応を示す。
【0224】
マイクロアレイは、本技術分野でよく知られている方法を用いて調製し、使用し、そして分析する(Brennan, T.M. ら (1995) の米国特許第5,474,796号、Schena, M. ら (1996) Proc. Natl. Acad. Sci. USA 93:10614−10619、Baldeschweiler らの (1995) PCT出願第WO95/251116号、Shalon, D.らの (1995) PCT出願第WO95/35505号、Heller, R.A. ら (1997) Proc. Natl. Acad. Sci. USA 94:2150−2155、Heller, M.J. らの (1997) 米国特許第5,605,662号等を参照)。様々なタイプのマイクロアレイが周知であり、詳細については、DNA Microarrays: Practical Approach, M. Schena, ed. (1999) Oxford University Press, Londonに記載されている。 該文献は、特別に引用することを以って本明細書の一部となす。
【0225】
本発明の別の実施例ではまた、SATをコードする核酸配列を用いて、天然のゲノム配列をマッピングするのに有用なハイブリダイゼーションプローブを作製することが可能である。コード配列または非コード配列のいずれかを用いることができ、或る例では、コード配列全体で非コード配列が好ましい。例えば、多重遺伝子ファミリーのメンバー内でのコード配列の保存により、染色体マッピング中に望ましくないクロスハイブリダイゼーションが生じる可能性がある。核酸配列は、特定の染色体、染色体の特定領域または人工形成の染色体、例えば、ヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC)、細菌P1産物、或いは単一染色体cDNAライブラリに対してマッピングされる(Harrington, J.J. ら (1997) Nat Genet. 15:345−355、Price, C.M. (1993) Blood Rev. 7:127−134、Trask, B.J. (1991) Trends Genet. 7:149−154等を参照)。一度マッピングすると、本発明の核酸配列を用いて例えば病状の遺伝を特定の染色体領域の遺伝または制限酵素断片長多型(RFLP)と相関させるような遺伝子連鎖地図を発生させ得る。(例えば、 Lander, E.S. 及び D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353−7357を参照。)
蛍光原位置ハイブリッド形成法(FISH)は、他の物理的及び遺伝地図データと相関し得る(前出のHeinz−Ulrich, ら (1995) in Meyers, 965−968ページ.等を参照)遺伝地図データの例は、種々の科学雑誌あるいはOnline Mendelian Inheritance in Man(OMIM)のウェブサイトに見ることができる。物理的な染色体地図上のSATをコードする遺伝子の位置と特定の疾患との相関性、或いは特定の疾患に対する素因が、このような疾患と関連するDNA領域の決定に役立つため、更なる位置を決定するクローニングが行われる。
【0226】
確定した染色体マーカーを用いた結合分析等の物理的マッピング技術及び染色体標本原位置ハイブリッド形成法を用いて、遺伝地図を拡張することができる。例えばマウスなど別の哺乳動物の染色体上に遺伝子を配置することにより、正確な染色体の遺伝子座がわかっていない場合でも関連するマーカーを明らかにし得る。この情報は、位置クローニングその他の遺伝子発見技術を用いて疾患遺伝子を探す研究者にとって価値がある。疾患または症候群が、血管拡張性失調症の11q22−23領域等、特定の遺伝子領域への遺伝的結合によって大まかに位置決めがなされると、該領域に対するいかなるマッピングも、更なる調査のための関連遺伝子或いは調節遺伝子を表すことができる(Gatti, R.A.ら (1988) Nature 336:577−580等を参照)転座、反転等に起因する、健常者、保有者、感染者の三者間における染色体位置の相違を発見するために本発明のヌクレオチド配列を用いてもよい。
【0227】
本発明の別の実施例では、SAT、その触媒作用断片或いは免疫原断片またはそのオリゴペプチドを、種々の任意の薬剤スクリーニング技術における化合物のライブラリのスクリーニングに用いることができる。薬剤スクリーニングに用いる断片は、溶液中に遊離しているか、固体支持物に固定されるか、細胞表面上に保持されるか、細胞内に位置することになろう。SATと検査する薬剤との結合による複合体の形成を測定してもよい。
【0228】
別の薬剤スクリーニング方法は、目的のタンパク質に対して好適な結合親和性を有する化合物を高い処理能力でスクリーニングするために用いられる(Geysen,らの (1984) PCT出願番号 WO84/03564等を参照)この方法においては、多数の異なる小さな試験用化合物を固体基質上で合成する。試験用化合物は、SAT、或いはその断片と反応してから洗浄される。次ぎに、結合されたSATが、当分野で周知の方法で検出される。 精製されたSATはまた、前記した薬剤をスクリーニングする技術に用いられるプレート上で直接被覆することもできる。別法では、非中和抗体を用いてペプチドを捕捉し、ペプチドを固体支持物に固定することもできる。
【0229】
別の実施例では、SATと結合可能な中和抗体がSATと結合するため試験用化合物と特に競合する、競合的薬剤スクリーニングアッセイを用いることができる。この方法では、抗体が、SATと1つ以上の抗原決定因子を共有するどのペプチドの存在も検出する。
【0230】
別の実施例では、発展途上の分子生物学技術にSATをコードするヌクレオチド配列を用いて、限定はされないが、現在知られているトリプレット暗号及び特異的な塩基対相互作用などのヌクレオチド配列の特性に依存する新しい技術を提供することができる。
【0231】
更に詳細説明をしなくとも、当業者であれば以上の説明を以って本発明を最大限に利用できるであろう。従って、これ以下に記載する実施例は単なる例示目的にすぎず、いかようにも本発明を限定するものではない。
【0232】
前述した及び以下に記載する全ての特許出願、特許、刊行物、特に米国特許出願第60/215,465号、同第60/239,384号および同第60/253,639号に言及することをもって本明細書の一部とする。
【0233】
1 cDNAライブラリの作製
Incyte cDNAは、LIFESEQ GOLDデータベース(Incyte Genomics, Palo Alto CA)に記載されたcDNAライブラリに由来するものであり、表4の列5に列記した。 ホモジナイズしてグアニジニウムイソチオシアネート溶液に溶解した組織もあり、また、ホモジナイズしてフェノールまたは好適な変性剤の混合液に溶解した組織もある。 変性剤の混合液は、例えばフェノールとグアニジニウムイソチオシアネートの単相溶液であるTRIZOL(Life Technologies)等である。結果として得られた溶解物は、塩化セシウムクッション上で遠心分離するかクロロホルムで抽出した。イソプロパノールか、酢酸ナトリウムとエタノールか、いずれか一方、或いは別の方法を用いて、溶解物からRNAを沈殿させた。
【0234】
RNAの純度を高めるため、RNAのフェノールによる抽出及び沈殿を必要な回数繰り返した。場合によっては、DNアーゼでRNAを処理した。殆どのライブラリでは、オリゴd(T)連結磁性粒子(Promega)、OLIGOTEXラテックス粒子(QIAGEN, Valencia CA)またはOLIGOTEX mRNA精製キット(QIAGEN)を用いて、ポリ(A+) RNAを単離した。別法では、別のRNA単離キット、例えばPOLY(A)PURE mRNA精製キット(Ambion, Austin TX)を用いて組織溶解物からRNAを直接単離した。
【0235】
場合によってはStratagene社へのRNA提供を行い、対応するcDNAライブラリをStratagene社が作製することもあった。そうでない場合は、UNIZAPベクターシステム(Stratagene)またはSUPERSCRIPTプラスミドシステム(Life Technologies)を用いて本技術分野で公知の推奨方法または類似の方法でcDNAを合成し、cDNAライブラリを作製した(前出のAusubel, 1997, unit 5.1−6.6等を参照)。逆転写は、オリゴd(T)またはランダムプライマーを用いて開始した。合成オリゴヌクレオチドアダプターを二本鎖cDNAに連結反応させ、好適な制限酵素でcDNAを消化した。殆どのライブラリに対して、cDNAのサイズ(300〜1000bp)選択は、SEPHACRYL S1000、SEPHAROSE CL2BまたはSEPHAROSE CL4Bカラムクロマトグラフィー(Amersham Pharmacia Biotech)、或いは調製用アガロースゲル電気泳動法を用いて行った。 合成オリゴヌクレオチドアダプターを二本鎖cDNAに連結反応させ、好適な制限酵素または酵素でcDNAを消化した。 好適なプラスミドは、例えばPBLUESCRIPTプラスミド(Stratagene)、pSPORT1プラスミド(Life Technologies)またはplNCY(Incyte Pharmaceuticals, Palo Alto CA)等である。組換えプラスミドは、Stratagene社のXL1−Blue、XL1−BIueMRFまたはSOLR、或いはLife Technologies社のDH5α、DH10BまたはELECTROMAX DH10Bを含むコンピテント大腸菌細胞に形質転換した。
【0236】
2 cDNAクローンの単離
UNIZAPベクターシステム(Stratagene)を用いたin vivo切除によって、或いは細胞溶解によって、実施例 のようにして得たプラスミドを宿主細胞から回収した。MagicまたはWIZARD Minipreps DNA精製システム(Promega)、AGTC Miniprep精製キット(Edge Biosystems, Gaithersburg MD)、QIAGEN社のQIAWELL 8 Plasmid、QIAWELL 8 Plus Plasmid及びQIAWELL 8 Ultra Plasmid 精製システム、R.E.A.L. Prep 96プラスミドキットの中から少なくとも1つを用いて、プラスミドを精製した。沈殿させた後、0.1mlの蒸留水に再懸濁して、凍結乾燥して或いは凍結乾燥せずに、4℃で保管した。MagicまたはWIZARD Minipreps DNA精製システム(Promega)、AGTC Miniprep精製キット(Edge Biosystems, Gaithersburg MD)、QIAGEN社のQIAWELL 8 Plasmid、QIAWELL 8 Plus Plasmid及びQIAWELL 8 Ultra Plasmid 精製システム、R.E.A.L. Prep 96プラスミドキット。沈殿させた後、0.1mlの蒸留水に再懸濁して、凍結乾燥して或いは凍結乾燥せずに、4℃で保管した。
【0237】
別法では、高処理フォーマットにおいて直接結合PCR法を用いて宿主細胞溶解物からプラスミドDNAを増幅した(Rao, V.B. (1994) Anal. Biochem. 216:1−14)。宿主細胞の溶解及び熱サイクリング過程は、単一反応混合液中で行った。サンプルを処理し、それを384穴プレート内で保管し、増幅したプラスミドDNAの濃度をPICOGREEN色素(Molecular Probes, Eugene OR)及びFluoroskan II蛍光スキャナ(Labsystems Oy, Helsinki, Finland)を用いて蛍光分析的に定量した。
【0238】
3 シークエンシング及び分析
実施例2に記載したようにプラスミドから回収したIncyte cDNAを、以下に示すようにシークエンシングした。cDNAのシークエンス反応は、標準的方法或いは高処理装置、例えばABI CATALYST 800 サーマルサイクラー(Applied Biosystems)またはPTC−200 サーマルサイクラー(MJ Research)をHYDRAマイクロディスペンサー(Robbins Scientific)またはMICROLAB 2200(Hamilton)液体転移システムと併用して処理した。 cDNAのシークエンス反応は、Amersham Pharmacia Biotech社が提供する試薬またはABIシークエンシングキット、例えばABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit(Applied Biosystems)に与えられた試薬を用いて準備した。cDNAのシークエンス反応の電気泳動的分離及び標識したポリヌクレオチドの検出には、MEGABACE 1000 DNAシークエンシングシステム(Molecular Dynamics)か、標準ABIプロトコル及び塩基対呼び出しソフトウェアを用いるABI PRISM 373または377シークエンシングシステム(Applied Biosystems)か、或いはその他の本技術分野でよく知られている配列解析システムを用いた。 cDNA配列内のリーディングフレームは、標準的方法(前出のAusubel, 1997, unit 7.7に概説)を用いて決定した。cDNA配列の幾つかを選択して、実施例8に記載した方法で配列を伸長させた。
【0239】
IncyteのcDNA配列に由来するポリヌクレオチド配列は、ベクター、リンカー及びポリ(A)配列の除去し、あいまいな塩基対をマスクすることによって有効性を確認した。 その際、BLAST、動的プログラミング及び隣接ジヌクレオチド頻度分析に基づくアルゴリズム及びプログラムを用いた。次に、BLAST、FASTA及びBLIMPSに基づくプログラムを用いて、プログラム中の注釈を得るべく、公共のデータベース、例えばGenBankの霊長類及びげっ歯類、哺乳動物、脊椎動物、真核生物のデータベースと、BLOCKS、PRINTS、DOMO、PRODOM及びPFAM等のHidden Markov Model(HMM)ベースのタンパク質ファミリーデータベースの選択に対するIncyte cDNA配列またはその翻訳を問い合わせた(HMMは、遺伝子ファミリーのコンセンサス1次構造を分析する確率的アプローチである。例えば、Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361−365を参照のこと)。Eddy, S.R. (1996) Cuff. Opin. Struct. Biol. 6:361−365等を参照)の選択に対するIncyte cDNA配列またはその翻訳を問い合わせた。問合せは、BLAST、FASTA、BLIMPS及びHMMERに基づくプログラムを用いて行った。Incyte cDNA配列は、完全長のポリヌクレオチド配列を産出するように構築した。或いは、GenBank cDNA、GenBank EST、ステッチされた配列、ストレッチされた配列またはGenscan予測コード配列(実施例4及び5を参照)を用いてIncyte cDNAの集団を完全長まで伸長させた。Phred、Phrap及びConsedに基づくプログラムを用いて構築し、GenMark、BLAST及びFASTAに基づくプログラムを用いてcDNAの集団をオープンリーディングフレームに対してスクリーニングした。対応する完全長ポリペプチド配列を誘導するべく完全長ポリヌクレオチド配列を翻訳した。或いは、本発明のポリペプチドは完全長翻訳ポリペプチドの任意のメチオニン残基で開始し得る。引き続いて、GenBankタンパク質データベース(genpept)、SwissProt、BLOCKS、PRINTS、DOMO、PRODOM及びProsite等のデータベース、PFAM等の隠れマルコフモデル(HMM)ベースのタンパク質ファミリーデータベースに対する問合せによって完全長ポリペプチド配列を分析した。完全長ポリヌクレオチド配列はまた、MACDNASIS PROソフトウェア(日立ソフトウェアエンジニアリング, South San Francisco CA)及びLASERGENEソフトウェア(DNASTAR)を用いて分析した。ポリヌクレオチド及びポリペプチド配列アラインメントは、アラインメントした配列と配列の一致率も計算するMEGALIGNマルチシークエンスアラインメントプログラム(DNASTAR)に組み込まれているようなCLUSTALアルゴリズムによって特定されるデフォルトパラメータを用いて生成する。
【0240】
Incyte cDNA及び完全長配列の分析及びアセンブリに利用したツール、プログラム及びアルゴリズムの概略と、適用可能な説明、引用文献、閾値パラメータを表7に示す。用いたツール、プログラム及びアルゴリズムを表7の列1に、それらの簡単な説明を列2に示す。 列3は好適な引用文献であり、全ての文献はそっくりそのまま引用を以って本明細書の一部となす。 適用可能な場合には、列4は2つの配列が一致する強さを評価するために用いたスコア、確率値その他のパラメータを示す(スコアが高ければ高いほど2配列間の相同性が高くなる)。
【0241】
完全長のポリヌクレオチド配列およびポリペプチド配列の組み立て及び分析に用いる上記のプログラムは、SEQ ID NO:10−18のポリヌクレオチド配列断片の同定にも利用できる。 ハイブリダイゼーション及び増幅技術に有用である約20〜約4000ヌクレオチドの断片を表4の列4に示した。
【0242】
4 ゲノムDNAからのコード配列の同定及び編集
推定分泌分子と輸送分子は、公共のゲノム配列データベース(例えば、gbpriやgbhtg)においてGenscan遺伝子同定プログラムを実行して初めに同定された。Genscanは、様々な生物からゲノムDNA配列を分析する汎用遺伝子同定プログラムである(Burge, C. および S. Karlin (1997) J. Mol. Biol. 268:78−94 及びBurge, C. 及び S. Karlin (1998) Cuff. Opin. Struct. Biol. 8:346−354参照)。プログラムは予測エキソンを連結し、メチオニンから停止コドンに及ぶ構築されたcDNA配列を形成する。Genscanの出力は、ポリヌクレオチド及びポリペプチド配列のFASTAデータベースである。Genscanが一度に分析する配列の最大範囲は、30kbに設定した。これらのGenscan推定cDNA配列の内、どの配列が分泌分子と輸送分子をコードするかを決定するために、コードされたポリペプチドをPFAMモデルにおいて分泌分子と輸送分子について問合せて分析した。潜在的な分泌分子と輸送分子が、分泌分子と輸送分子としてアノテーションが付けられたインサイトcDNA配列に対する相同性を基に同定された。こうして選択されたGenscan予測配列は、次にBLAST分析により公共データベースgbpri及びgbhtgと比較した。必要であれば、genpeptからヒットしたトップのBLASTと比較することによりGenscan予測配列を編集し、余分なまたは取り除かれたエキソンなどのGenscanにより予測された配列のエラーを修正する。BLAST分析はまた、任意のIncyte cDNAまたはGenscan予測配列の公共cDNA適用範囲の発見に用いられるので、転写の証拠を提供する。Incyte cDNA適用範囲が利用できる場合には、この情報を用いてGenscan予測配列を修正または確認した。完全長ポリヌクレオチド配列は、実施例3に記載された構築プロセスを用いて、Incyte cDNA配列及び/または公共のcDNA配列でGenscan予測コード配列を構築することにより得た。或いは、完全長ポリヌクレオチド配列は編集または非編集のGenscan予測コード配列に完全に由来する。
【0243】
5 cDNA配列データを使ったゲノム配列データの構築
ステッチ配列( Stiched Sequence
部分cDNA配列は、実施例4に記載のGenscan遺伝子同定プログラムにより予測されたエキソンを用いて伸長させた。実施例3に記載されたように構築された部分cDNAは、ゲノムDNAにマッピングし、関連するcDNA及び1つ若しくは複数のゲノム配列から予測されたGenscanエキソンを含むクラスタに分解した。cDNA及びゲノム情報を統合するべくグラフ理論及び動的プログラミングに基づくアルゴリズムを用いて各クラスタを分析し、引き続いて確認、編集または伸長して完全長配列を産出するような潜在的スプライス変異体を生成した。間隔全体の長さがクラスタ中の2以上の配列に存在するような配列を同定し、そのように同定された間隔は推移により等しいと考えられた。例えば、1つのcDNA及び2つのゲノム配列に間隔が存在する場合、3つの間隔は全て等しいと考えられる。このプロセスは、無関係であるが連続したゲノム配列をcDNA配列により結び合わせて架橋し得る。このようにして同定された区間を、親配列(parent sequence)に沿って現われるようにステッチアルゴリズムで縫い合わせ、可能な最も長い配列および変異配列を作製する。1種類の親配列に沿って発生した間隔と間隔との連鎖(cDNA−cDNAまたはゲノム配列−ゲノム配列)は、親の種類を変える連鎖(cDNA−ゲノム配列)に優先した。結果として得られるステッチ配列は、BLAST分析により公共データベースgenpept及びgbpriに翻訳されて比較された。Genscanにより予測された不正確なエキソンは、genpeptからヒットしたトップのBLASTと比較することにより修正した。必要な場合には、追加cDNA配列を用いるかゲノムDNAの検査により配列を更に伸長させた。
【0244】
ストレッチ配列( Stretched Sequence
部分DNA配列は、BLAST分析に基づくアルゴリズムにより完全長まで伸長された。先ず、BLASTプログラムを用いて、GenBankの霊長類、げっ歯類、哺乳動物、脊椎動物及び真核生物のデータベースなどの公共データベースに対し、実施例3に記載されたように構築された部分cDNAを問い合わせた。次に、最も近いGenBankタンパク質相同体をBLAST分析によりIncyte cDNA配列または実施例4に記載のGenScanエキソン予測配列のいずれかと比較した。結果として得られる高スコアリングセグメント対(HSP)を用いてキメラタンパク質を産出し、翻訳した配列をGenBankタンパク質相同体上にマッピングした。元のGenBankタンパク質相同体に関連して、キメラタンパク質内で挿入または削除が起こり得る。GenBankタンパク質相同体、キメラタンパク質またはその両方をプローブとして用い、公共のヒトゲノムデータベースから相同ゲノム配列を検索した。このようにして、部分的なDNA配列を相同ゲノム配列の付加によりストレッチすなわち伸長した。結果として得られるストレッチ配列を検査し、完全遺伝子を含んでいるか否かを決定した。
【0245】
6 SATをコードするポリヌクレオチドの染色体マッピング
SEQ ID NO:10−18を構築するために用いた配列を、BLAST及びSmith−Watermanアルゴリズムを用いて、Incyte LIFESEQデータベース及び公共のドメインデータベースの配列と比較した。SEQ ID NO:10−18と一致するこれらのデータベースの配列を、Phrap(表7)などの構築アルゴリズムを使用して、連続及び重複した配列のクラスターに組み入れた。スタンフォード・ヒトゲノムセンター(SHGC)、ホワイトヘッド・ゲノム研究所(WIGR)、Genethon等の公的な情報源から入手可能な放射線ハイブリッド及び遺伝地図データを用いて、クラスタ化された配列が前もってマッピングされたかを測定した。マッピングされた配列がクラスタに含まれている結果、個々の配列番号を含めてそのクラスタの全配列が地図上の位置に割り当てられた。
【0246】
地図上の位置は、ヒト染色体の範囲または間隔として表される。センチモルガン間隔の地図上の位置は、染色体のpアームの末端に関連して測定する。(センチモルガン(cM)は、染色体マーカー間の組換え頻度に基づく計測単位である。平均して、1cMは、ヒト中のDNAの1メガベース(Mb)にほぼ等しい。 尤も、この値は、組換えのホットスポット及びコールドスポットに起因して広範囲に変化する。cM距離は、配列が各クラスタ内に含まれるような放射線ハイブリッドマーカーに対して境界を提供するようなGenethonによってマッピングされた遺伝マーカーに基づく。NCBI「GeneMap99」(http://www.ncbi.nlm.nih.gpv/genemap)などの一般個人が入手可能なヒト遺伝子マップおよびその他の情報源を用いて、上記した区間が既に同定されている疾患遺伝子マップ内若しくは近傍に位置するかを決定できる。
【0247】
7 ポリヌクレオチド発現の分析
ノーザン分析は、転写された遺伝情報の存在を検出するために用いられる実験技術であり、特定の細胞種または組織からのRNAが結合される膜への標識されたヌクレオチド配列のハイブリダイゼーションに関与している。(前出のSambrook, 7章、同Ausubel. F.M. ら, 4章及び16章等を参照)。
【0248】
BLASTに適用する類似のコンピュータ技術を用いて、GenBankやLifeSeq(Incyte Pharmaceuticals)等のヌクレオチドデータベースにおいて同一または関連分子を検索する。ノーザン分析は、多数膜系ハイブリダイゼーションよりも非常に速い。更に、特定の同一を厳密な或いは相同的なものとして分類するか否かを決定するため、コンピュータ検索の感度を変更することができる。検索の基準はプロダクト積スコアであり、次式で定義される。
【数1】
Figure 2004528002
プロダクト積スコアは、2つの配列間の類似度及び配列が一致する長さの両方を考慮している。プロダクト積スコアは、0〜100の規準化された値であり、次のようにして求める。BLASTスコアにヌクレオチドの配列一致率を乗じ、その積を2つの配列の短い方の長さの5倍で除する。高スコアリングセグメント対(HSP)に一致する各塩基に+5のスコアを割り当て、各不適性塩基対に−4を割り当てることにより、BLASTスコアを計算する。2つの配列は、2以上のHSPを共有し得る(ギャップにより隔離され得る)。2以上のHSPがある場合には、最高BLASTスコアの塩基対を用いてプロダクト積スコアを計算する。プロダクト積スコアは、断片的重畳とBLASTアラインメントの質とのバランスを表す。例えばプロダクト積スコア100は、比較した2つの配列の短い方の長さ全体にわたって100%一致する場合のみ得られる。プロダクト積スコア70は、一端が100%一致し、70%重畳しているか、他端が88%一致し、100%重畳しているかのいずれかの場合に得られる。プロダクト積スコア50は、一端が100%一致し、50%重畳しているか、他端が79%一致し、100%重畳しているかのいずれかの場合に得られる。
【0249】
或いは、SATをコードするポリヌクレオチド配列は、由来する組織に対して分析する。例えば或る完全長配列は、Incyte cDNA配列(実施例3を参照)と少なくとも一部は重畳するように構築される。各cDNA配列は、ヒト組織から作製されたcDNAライブラリに由来する。各cDNA配列は、ヒト組織から作製されたcDNAライブラリに由来する。各ヒト組織は、以下の生物/組織カテゴリー即ち心血管系、結合組織、消化器系、胎芽構造、内分泌系、外分泌腺、女性生殖器、男性生殖器、生殖細胞、血液及び免疫系、肝、筋骨格系、神経系、膵臓、呼吸器系、感覚器、皮膚、顎口腔系、非分類性/混合性または尿路の1つに分類される。各カテゴリーのライブラリ数を数えて、全カテゴリーの総ライブラリ数で除する。同様に、各ヒト組織は、以下の疾患/病状カテゴリー即ち癌、細胞系、発達、炎症、神経性、外傷、心血管、鬱血、その他の1つに分類される。 各カテゴリーのライブラリ数を数えて、全カテゴリーの総ライブラリ数で除する。得られるパーセンテージは、SATをコードするcDNAの疾患特異的な発現を反映する。 cDNA配列およびcDNAライブラリ/組織の情報は、LIFESEQ GOLD データベース(Incyte Genomics, Palo Alto CA)から得ることができる。
【0250】
8 SATをコードするポリヌクレオチドの伸長
完全長のポリヌクレオチド配列もまた、完全長分子の適切な断片から設計したオリゴヌクレオチドプライマーを用いて該断片を伸長させて生成した。一方のプライマーは既知の断片の5’伸長を開始するべく合成し、他方のプライマーは既知の断片の3’伸長を開始するべく合成した。開始プライマーは、長さが約22〜30ヌクレオチド、GC含有率が約50%以上となり、約68〜72℃の温度で標的配列にアニーリングするように、OLIGO 4.06ソフトウェア(National Biosciences)或いは別の適切なプログラムを用いて、cDNAから設計した。 ヘアピン構造及びプライマー−プライマー二量体を生ずるようなヌクレオチドの伸長は全て回避した。
【0251】
配列を伸長するために、選択されたヒトcDNAライブラリを用いた。2段階以上の伸長が必要または望ましい場合には、付加的プライマー或いはプライマーのネステッドセットを設計した。
【0252】
高忠実度の増幅が、当業者によく知られている方法を利用したPCR法によって得られた。 PCRは、PTC−200 サーマルサイクラー(MJ Research, Inc.)を用いて96穴プレート内で行った。反応混合液は、鋳型DNA及び200 nmolの各プライマー、Mg と(NHSOとβ−メルカプトエタノールを含むバッファー、Taq DNAポリメラーゼ(Amersham Pharmacia Biotech)、ELONGASE酵素(Life Technologies)、Pfu DNAポリメラーゼ(Stratagene)を含む。 プライマーの組、PCI AとPCI Bに対して以下のパラメータで増幅を行った。ステップ 1:94℃で3分間、ステップ 2:94℃で15秒間、ステップ 3:60℃で1分間、ステップ 4:68℃で2分間、ステップ 5:ステップ2、3、及び4を20回繰り返す。ステップ 6:68℃で5分間、ステップ 7:4℃で保存。別法では、プライマー対、T7とSK+に対して以下のパラメータで増幅を行った。ステップ 1:94℃で3分間、ステップ 2:94℃で15秒間、ステップ 3:57℃で1分間、ステップ 4:68℃で2分間、ステップ 5:ステップ2、3、及び4を20回繰り返す。ステップ 6:68℃で5分間、ステップ 7:4℃で保存。
【0253】
各ウェルのDNA濃度は、1X TE及び0.5μlの希釈していないPCR産物に溶解した100μlのPICOGREEN定量試薬(0.25(v/v) PICOGREEN; Molecular Probes, Eugene OR)を不透明な蛍光光度計プレート(Coming Costar, Acton MA)の各ウェルに分配してDNAが試薬と結合できるようにして測定する。サンプルの蛍光を計測してDNAの濃度を定量するべくプレートをFluoroskan II (Labsystems Oy, Helsinki, Finland)でスキャンした。反応混合物のアリコート5〜10μlを1%アガロースミニゲル上で電気泳動法によって解析し、どの反応が配列の伸長に成功したかを決定した。
【0254】
伸長させたヌクレオチドは、脱塩及び濃縮して384穴プレートに移し、CviJIコレラウイルスエンドヌクレアーゼ(Molecular Biology Research, Madison WI)を用いて消化し、pUC 18ベクター(Amersham Pharmacia Biotech)への再連結反応前に音波処理またはせん断した。ショットガン・シークエンシングのために、消化したヌクレオチドを低濃度(0.6〜0.8%)のアガロースゲル上で分離し、断片を切除し、寒天をAgar ACE(Promega)で消化した。伸長させたクローンをT4リガーゼ(New England Biolabs, Beverly MA)を用いてpUC 18ベクター(Amersham Pharmacia Biotech)に再連結し、Pfu DNAポリメラーゼ(Stratagene)で処理して制限部位の張出部(overhang)を満たし、大腸菌細胞に形質移入した。形質移入した細胞を選択して抗生物質を含む培地に移し、それぞれのコロニーを切りとってLB/2Xカルベニシリン培養液の384ウェルプレートに37℃で一晩培養した。
【0255】
細胞を溶解して、Taq DNAポリメラーゼ(Amersham Pharmacia Biotech)及びPfu DNAポリメラーゼ(Stratagene)を用いて以下の手順でDNAをPCR増幅した。ステップ 1:94℃で3分間、ステップ 2:94℃で15秒間、ステップ 3:60℃で1分間、ステップ 4:72℃で2分間、ステップ 5:ステップ2、3、及び4を20回繰り返す。ステップ 6:72℃で5分間、ステップ 7:4℃で保存。上記したようにPICOGREEN試薬(Molecular Probes)でDNAを定量化した。DNAの回収率が低いサンプルは、上記と同一の条件を用いて再増幅した。サンプルは20%ジメチルスルホキシド(1:2, v/v)で希釈し、DYENAMIC energy transfer sequencing primer及びDYENAMIC DIRECT kit(Amersham Pharmacia Biotech)またはABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit(Applied Biosystems)を用いてシークエンシングした。
【0256】
同様に、上記手順を用いて完全長ヌクレオチド配列を検証し、或いはそのような伸長のために設計されたオリゴヌクレオチド及び適切なゲノムライブラリを用いて5’調節配列を得る。
【0257】
9 個々のハイブリダイゼーションプローブの標識及び使用
SEQ ID NO:10−18から得たハイブリダイゼーションプローブを利用して、cDNA、ゲノムDNAまたはmRNAをスクリーニングする。約20塩基対からなるオリゴヌクレオチドの標識について特に記載するが、より大きなヌクレオチド断片に対しても事実上同一の手順が用いられる。オリゴヌクレオチドは、OLIGO 4.06ソフトウェア(National Biosciences)等の最新ソフトウェアを用いて設計し、各オリゴマー50pmolと、[γ−32P]アデノシン3リン酸 (Amersham Pharmacia Biotech)250μCiと、T4ポリヌクレオチドキナーゼ(DuPont NEN, Boston MA)を結合することにより標識する。標識したオリゴヌクレオチドは、SEPHADEX G−25超細繊分子サイズ排除デキストラン ビードカラム(Amersham Pharmacia Biotech)を用いて十分に精製する。Ase I、Bgl II、Eco RI、Pst I、Xba1またはPvu II(DuPont NEN)のいずれか1つのエンドヌクレアーゼで消化されたヒトゲノムDNAの典型的な膜ベースのハイブリダイゼーション解析において、毎分10カウントの標識されたプローブを含むアリコットを用いる。
【0258】
各消化物から得たDNAは、0.7%アガロースゲル上で分画してナイロン膜(Nytran Plus, Schleicher & Schuell, Durham NH)に移す。ハイブリダイゼーションは、40℃で16時間行う。 非特異的シグナルを除去するため、例えば0.1×クエン酸ナトリウム食塩水及び0.5%ドデシル硫酸ナトリウムに一致する条件下で、ブロットを室温で順次洗浄する。オートラジオグラフィーまたはそれに代わるイメージング手段を用いてハイブリダイゼーションパターンを視覚化し、比較する。
【0259】
10 マイクロアレイ
マイクロアレイの表面上でアレイエレメントの連鎖または合成は、フォトリソグラフィ、圧電印刷(インクジェット印刷、前出のBaldeschweiler等を参照)、機械的マイクロスポッティング技術及びこれらから派生したものを用いて達成することが可能である。上記各技術において基質は、均一且つ非多孔性の固体とするべきである(Schena (1999).前出)。推奨する基質には、シリコン、シリカ、スライドガラス、ガラスチップ及びシリコンウエハがある。或いは、ドットブロット法またはスロットブロット法に類似のアレイを利用して、熱的、紫外線的、化学的または機械的結合手順を用いて基質の表面にエレメントを配置及び結合させてもよい。通常のアレイは、手作業で、または利用可能な方法や機械を用いて作製でき、任意の適正数のエレメントを有し得る(Schena, M. ら (1995) Science 270:467−470、Shalon. D. ら (1996) Genome Res. 6:639−645、Marshall, A. 及び J. Hodgson (1998) Nat. Biotechnol. 16:27−31.を参照)。
【0260】
完全長cDNA、発現配列タグ(EST)、またはその断片またはオリゴマーは、マイクロアレイのエレメントと成り得る。ハイブリダイゼーションに好適な断片またはオリゴマーを、レーザGENEソフトウェア(DNASTAR)等の本技術分野で公知のソフトウェアを用いて選択することが可能である。アレイエレメントは、生物学的サンプル中でポリヌクレオチドを用いてハイブリダイズされる。生物学的サンプル中のポリヌクレオチドは、検出を容易にするために蛍光標識またはその他の分子タグに抱合される。ハイブリダイゼーション後、生物学的サンプルからハイブリダイズされていないヌクレオチドを除去し、蛍光スキャナを用いて各アレイエレメントにおいてハイブリダイゼーションを検出する。或いは、レーザ脱着及び質量スペクトロメトリを用いてもハイブリダイゼーションを検出し得る。マイクロアレイ上のエレメントにハイブリダイズする各ポリヌクレオチドの相補性の度合及び相対存在度は、算定し得る。一実施例におけるマイクロアレイの調整及び使用について、以下に詳述する。
【0261】
組織または細胞サンプルの調製
グアニジウムチオシアネート法を用いて組織サンプルから全RNAを単離し、オリゴ(dT)セルロース法を用いてポリ(A)RNAを精製する。各ポリ(A)RNAサンプルは、MMLV逆転写酵素、0.05pg/μlのオリゴ(dT)プライマー(21mer)、1×第1鎖緩衝液、0.03unit/μlのRNアーゼ阻害因子、500μMのdATP、500μMのdGTP、500μMのdTTP、40μMのdCTP、40μMのdCTP−Cy3(BDS)またはdCTP−Cy5(Amersham Pharmacia Biotech)を用いて逆転写する。逆転写反応は、GEMBRIGHTキット(Incyte)を用いて200 ngのポリ(A)RNA含有の25体積ml内で行う。特異制御ポリ(A)RNAは、370℃で2時間インキュベートした後、in vitro転写により非コード酵母ゲノムDNAから合成する。各反応サンプル(1つはCy3、もう1つはCy5標識)は、2.5mlの0.5M水酸化ナトリウムで処理し、85℃で20分間インキュベートし、反応を停止させてRNAを分解させる。サンプルは、2つの連続するCHROMA SPIN 30ゲル濾過スピンカラム(CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA)を用いて精製する。 結合後、2つの反応サンプルは、1mlのグリコーゲン(1mg/ml)を用いて析出させたエタノール、60mlの酢酸ナトリウム及び300mlの100%エタノールである。サンプルは次に、SpeedVAC(Savant Instruments Inc., Holbrook NY)を用いて乾燥して仕上げ、14μlの5×SSC/0.2%SDS中で再懸濁する。
【0262】
マイクロアレイの調製
本発明の配列を用いて、アレイエレメントを生成する。各アレイエレメントは、クローン化cDNAインサートによりベクター含有細菌性細胞から増幅する。PCR増幅は、cDNAインサートの側面に位置するベクター配列に相補的なプライマーを用いる。30サイクルのPCRで1〜2ngの初期量から5μgより大きい最終量までアレイエレメントを増幅する。増幅されたアレイエレメントは、SEPHACRYL−400(Amersham Pharmacia Biotech)を用いて精製される。
【0263】
精製したアレイエレメントは、ポリマーコートされたスライドグラス上に固定する。顕微鏡スライドグラス(Corning)は、処理中及び処理後に0.1%のSDS及びアセトン中で超音波をかけ、蒸留水で非常に良く洗って洗浄する。スライドグラスは、4%フッ化水素酸(VWR Scientific Products Corporation (VWR), West Chester PA)中でエッチングし、蒸留水中で広範囲にわたって洗浄し、95%エタノール中で0.05%アミノプロピルシラン(Sigma)を用いてコーティングする。コーティングしたスライドガラスは、110℃のオブンで硬化させる。
【0264】
米国特許第5,807,522号に記載されている方法を用いて、コーティングしたガラス基板にアレイエレメントを付加する。 この特許に引用することを以って本明細書の一部とする。平均濃度が100ng/μlのアレイエレメントDNA1μlを高速機械装置により開放型キャピラリープリンティングエレメント(open capillary printing element)に充填する。装置はここで、スライド毎に約5nlのアレイエレメントサンプルをデポジットする。
【0265】
マイクロアレイには、STRATALINKER UV架橋剤(Stratagene)を用いてUV架橋する。マイクロアレイは、室温において0.2%SDSで1度洗浄し、蒸留水で3度洗浄する。リン酸緩衝生理食塩水 (PBS)(Tropix, Inc., Bedford MA)中の0.2%カゼイン中において60℃で30分間マイクロアレイをインキュベートした後、前に行ったように0.2%SDS及び蒸留水で洗浄することにより、非特異結合部位をブロックする。
【0266】
ハイブリダイゼーション
ハイブリダイゼーション反応は、5×SSC,0.2%SDSハイブリダイゼーション緩衝液中のCy3及びCy5標識したcDNA合成生成物を各0.2μg含む9μlのサンプル混合体を有する。サンプル混合体は、65℃まで5分間加熱し、マイクロアレイ表面上で等分して1.8cm のカバーガラスで覆う。アレイは、顕微鏡スライドより僅かに大きい空洞を有する防水チェンバーに移す。チェンバーのコーナーに140μlの5×SSCを加えることにより、チェンバー内部を湿度100に保持する。アレイを含むチェンバーは、60℃で約6.5時間インキュベートする。 アレイは、第1洗浄緩衝液中(1×SSC,0.1%SDS)において45℃で10分間洗浄し、第2洗浄緩衝液中(0.1×SSC)において45℃で10分間各々3度洗浄して乾燥させる。
【0267】
検出
レポーター標識ハイブリダイゼーション複合体は、Cy3の励起のためには488nm、Cy35の励起のためには632nmでスペクトル線を発生し得るInnova 70混合ガス10 Wレーザ(Coherent, Inc., Santa Clara CA)を備えた顕微鏡で検出する。20×顕微鏡対物レンズ(Nikon, Inc., Melville NY)を用いて、アレイ上に励起レーザ光の焦点を当てる。アレイを含むスライドを顕微鏡のコンピュータ制御のX−Yステージに置き、対物レンズを通過してラスタースキャンする。本実施例で用いた1.8cm×1.8cmのアレイは、20μmの解像度でスキャンした。
【0268】
2つの異なるスキャンのうち、混合ガスマルチラインレーザは2つの蛍光色素を連続的に励起する。発光された光は、波長に基づき分離され、2つの蛍光色素に対応する2つの光電子増倍管検出器(PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ)に送られる。アレイと光電子増倍管間に設置された好適なフィルターを用いて、シグナルをフィルターする。用いる蛍光色素の最大発光の波長は、Cy3では565nm、Cy5では650nmである。装置は両方の蛍光色素からのスペクトルを同時に記録し得るが、レーザ源において好適なフィルターを用いて、蛍光色素1つにつき1度スキャンし、各アレイを通常2度スキャンする。
【0269】
スキャンの感度は通常、既知濃度のサンプル混合体に添加されるcDNA対照種により生成されるシグナル強度を用いて較正する。アレイ上の特定の位置には相補的DNA配列が含まれ、その位置におけるシグナルの強度をハイブリダイジング種の重量比1:100,000に相関させる。 異なる源泉(例えば試験される細胞及び対照細胞など)からの2つのサンプルを、各々異なる蛍光色素で標識し、他と異なって発現した遺伝子を同定するために単一のアレイにハイブリダイズする場合には、その較正を、2つの蛍光色素で較正するcDNAのサンプルを標識し、ハイブリダイゼーション混合体に各々等量を加えることによって行う。
【0270】
光電子増倍管の出力は、IBMコンパチブルPCコンピュータにインストールされた12ビットRTI−835Hアナログ−ディジタル(A/D)変換ボード(Analog Devices, Inc., Norwood MA)を用いてディジタル化される。ディジタル化されたデータは、青色(低シグナル)から赤色(高シグナル)までの擬似カラー範囲へのリニア20色変換を用いてシグナル強度がマッピングされたようなイメージとして表示される。データは、定量的にも分析される。2つの異なる蛍光色素を同時に励起及び測定する場合には、各蛍光色素の発光スペクトルを用いて、データは先ず蛍光色素間の光学的クロストーク(発光スペクトルの重なりに起因する)を補正する。
【0271】
グリッドが蛍光シグナルイメージ上に重ねられ、それによって各スポットからのシグナルはグリッドの各エレメントに集められる。各エレメント内の蛍光シグナルは統合され、シグナルの平均強度に応じた数値が得られる。シグナル分析に用いるソフトウェアは、GEMTOOLS遺伝子発現分析プログラム(Incyte)である。
【0272】
11 相補的ポリヌクレオチド
SATをコードする配列或いはその任意の一部に対して相補的な配列は、天然のSATの発現を低下させるため即ち阻害するために用いられる。約15〜30塩基対を含むオリゴヌクレオチドの使用について記すが、これより小さな或いは大きな配列の断片の場合でも本質的に同じ方法を用いることができる。Oligo4.06ソフトウェア(National Biosciences)及びSATのコーディング配列を用いて、適切なオリゴヌクレオチドを設計する。転写を阻害するためには、最も独特な5’ 配列から相補的オリゴヌクレオチドを設計し、これを用いてプロモーターがコーディング配列に結合するのを阻害する。翻訳を阻害するためには、相補的なオリゴヌクレオチドを設計して、リボソームがSATをコードする転写物に結合するのを阻害する。
【0273】
12 SATの発現
SATの発現及び精製は、細菌若しくはウイルスを基にした発現系を用いて行うことができる。細菌でSATが発現するために、抗生物質耐性及びcDNAの転写レベルを高める誘導性のプロモーターを含む好適なベクターにcDNAをサブクローニングする。このようなプロモーターには、lacオペレーター調節エレメントに関連するT5またはT7バクテリオファージプロモーター及びtrp−lac(tac)ハイブリッドプロモーターが含まれるが、これらに限定するものではない。組換えベクターを、BL21(DE3)等の好適な細菌宿主に形質転換する。抗生物質耐性をもつ細菌が、イソプロピルβ−Dチオガラクトピラノシド(IPTG)で誘発されるとSATを発現する。真核細胞でのSATの発現は、昆虫細胞株または哺乳動物細胞株に一般にバキュロウイスルスとして知られているAutographica californica核多面性ウイルス(AcMNPV)を感染させて行う。バキュロウイルスの非必須ポリヘドリン遺伝子を、相同組換え或いは転移プラスミドの媒介を伴う細菌の媒介による遺伝子転移のどちらかによって、SATをコードするcDNAと置換する。ウイルスの感染力は維持され、強い多角体プロモーターによって高いレベルのcDNAの転写が行われる。組換えバキュロウイルスは、多くの場合はSpodoptera frugiperda(Sf9)昆虫細胞に感染に用いられるが、ヒト肝細胞の感染にも用いられることもある。後者の感染の場合は、バキュロウイルスの更なる遺伝的変更が必要になる。(Engelhard. E. K.ら (1994) Proc. Natl. Acad. Sci. USA 91:3224−3227、Sandig, V. ら (1996) Hum. Gene Ther. 7:1937−1945.等を参照)。
【0274】
殆どの発現系では、SATが、例えばグルタチオンSトランスフェラーゼ(GST)、またはFLAGや6−Hisなどのペプチドエピトープ標識で合成された融合タンパク質となるため、未精製の細胞溶解物からの組換え融合タンパク質の親和性ベースの精製が素早く1回で行うことができる。GSTは日本住血吸虫からの26kDaの酵素であり、タンパク質の活性及び抗原性を維持した状態で、固定化グルタチオン上で融合タンパク質の精製を可能とする(Amersham Pharmacia Biotech)。精製の後、GST部分を特定の操作部位でSATからタンパク分解的に切断できる。FLAGは8アミノ酸のペプチドであり、市販されているモノクローナル及びポリクローナル抗FLAG抗体(Eastman Kodak)を用いて免疫親和性精製を可能にする。6ヒスチジン残基が連続して伸長した6−Hisは、金属キレート樹脂(QIAGEN)上での精製を可能にする。タンパク質の発現及び精製の方法は、前出のAusubel(1995)10章、16章に記載されている。これらの方法で精製したSATを直接用いて以下の実施例16および17のアッセイを行うことができる。
【0275】
13 機能的アッセイ
SATの機能は、哺乳動物細胞培養系において生理学的に高められたレベルでのSATをコードする配列の発現によって評価する。 cDNAを、cDNAを高いレベルで発現する強いプロモーターを含む哺乳動物発現ベクターにサブクローニングする。選り抜きのベクターには、pCMV SPORTプラスミド(Life Technologies)及びpCR 3.1プラスミド(Invitrogen)が含まれ、どちらもサイトメガロウイルスプロモーターを有する。リポソーム製剤或いは電気穿孔法を用いて、5〜10μgの組換えベクターをヒト細胞株、例えば内皮由来または造血由来の細胞株に一時的に形質移入する。更に、標識タンパク質をコードする配列を含む1〜2μgのプラスミドを同時に形質移入する。標識タンパク質の発現により、形質移入細胞と非形質移入細胞を区別する手段が与えられる。 また、標識タンパク質の発現によって、cDNAの組換えベクターからの発現を正確に予想できる。標識タンパク質は、例えば緑色蛍光タンパク質(GFP;Clontech)、CD64またはCD64−GFP融合タンパク質から選択できる。自動化された、レーザー光学に基づく技術であるフローサイトメトリー(FCM)を用いて、GFPまたはCD64−GFPを発現する形質移入された細胞を同定し、その細胞のアポトーシス状態や他の細胞特性を評価する。FCMは、細胞死に先行するか或いは同時に発生する現象を診断する蛍光分子の取込を検出して計量する。このような現象として挙げられるのは、プロピジウムヨウ化物によるDNA染色によって計測される核DNA内容物の変化、前方光散乱と90°側方光散乱によって計測される細胞サイズと顆粒状性の変化、ブロモデオキシウリジンの取込量の低下によって計測されるDNA合成の下方調節、特異抗体との反応性によって計測される細胞表面及び細胞内におけるタンパンク質の発現の変化、及び蛍光複合アネキシンVタンパク質の細胞表面への結合によって計測される原形質膜組成の変化とがある。フローサイトメトリー法については、Ormerod, M. G. (1994) Flow Cytometry Oxford, New York, NY.に記述がある。
【0276】
遺伝子発現におけるSATの影響は、SATをコードする配列とCD64またはCD64−GFPのどちらかが形質移入された高度に精製された細胞集団を用いて評価することができる。CD64またはCD64−GFPは、形質転換された細胞表面で発現し、ヒト免疫グロブリンG(IgG)の保存領域と結合する。形質転換された細胞と形質転換されない細胞とは、ヒトIgGかCD64に対する抗体のどちらかで被覆された磁気ビードを用いて分離することができる(DYNAL. Lake Success. NY)。 mRNAは、当分野で周知の方法で細胞から精製することができる。 SAT及び目的の他の遺伝子をコードするmRNAの発現は、ノーザン分析やマイクロアレイ技術で分析することができる。
【0277】
14 SATに特異的な抗体の作製
ポリアクリルアミドゲル電気泳動法(PAGE;Harrington, M.G. (1990) Methods Enzymol. 182:488−495等を参照)または他の精製技術を用いて実質上精製されたSATを用いて、標準プロトコルでウサギを免疫化して抗体を産出する。
別法では、SATアミノ酸配列をLASERGENEソフトウェア(DNASTAR)を用いて解析して免疫原性の高い領域を決定し、対応するオリゴペプチドを合成してこれを用いて当業者に周知の方法で抗体を生産する。 C末端付近の、或いは隣接する親水性領域内のエピトープなどの適切なエピトープの選択については、当分野で周知である(例えば、前出のAusubel, 1995,11章を参照)。
【0278】
通常は、長さ約15残基のオリゴペプチドを、Fmocケミストリを用いるABI 431A ペプチドシンセサイザ(Applied Biosystems)を用いて合成し、N−マレイミドベンゾイル−N−ヒドロキシスクシンイミドエステル(MBS)を用いた反応によってKLH(Sigma−Aldrich, St. Louis MO)に結合させて、免疫抗原性を高める(前出のAusubel, 1995 等を参照)。完全フロイントアジュバントにおいてオリゴペプチド−KLM複合体を用いてウサギを免疫化する。得られた抗血清の抗ペプチド活性及び抗SAT活性を検査するには、ペプチドまたはSATを基板に結合し、1%BSAを用いてブロッキング処理し、ウサギ抗血清と反応させて洗浄し、さらに放射性ヨウ素標識されたヤギ抗ウサギIgGと反応させる。
【0279】
15 特異的抗体を用いる天然SATの精製
天然SAT或いは組換えSATを、SATに特異的な抗体を用いるイムノアフィニティークロマトグラフィにより実質的に精製する。イムノアフィニティーカラムは、CNBr−活性化SEPHAROSE(Amersham Pharmacia Biotech)のような活性化クロマトグラフィー用レジンと抗SAT抗体とを共有結合させることにより形成する。結合後に、製造者の使用説明書に従って樹脂をブロックし、洗浄する。
【0280】
SATを含む培養液をイムノアフィニティーカラムに通し、SATを優先的に吸着できる条件で(例えば、界面活性剤の存在下において高イオン強度のバッファーで)そのカラムを洗浄する。そのカラムを、抗体とSATとの結合を切るような条件で(例えば、pH2〜3のバッファー、或いは高濃度の尿素またはチオシアン酸塩イオンのようなカオトロピックイオンで)溶出させ、SATを回収する。
【0281】
16 SATと相互作用する分子の同定
SATまたは生物学的に活性であるSAT断片を、125Iボルトンハンター試薬で標識する。(例えば Bolton A.E. 及び W.M. Hunter (1973) Biochem. J. 133:529−539を参照。)マルチウェルプレートに予め配列しておいた候補の分子を、標識したSATと共にインキュベートし、洗浄して、標識したSAT複合体を有する全てのウェルをアッセイする。様々なSAT濃度で得られたデータを用いて、候補分子と結合したSATの数量及び親和性、会合についての値を計算する。
【0282】
別法では、SAT と相互作用する分子を、Fields, S.及びO. Song(1989, Nature 340:245−246)に記載の酵母2−ハイブリッドシステム(yeast two−hybrid system)やMATCHMAKERシステム(Clontech)などの2−ハイブリッドシステムに基づいた市販のキットを用いて分析する。
【0283】
SATはまた、高処理な方法で酵母2ハイブリッドシステムを使用するPATHCALLINGプロセス(CuraGen Corp., New Haven CT)に用いて、遺伝子の2大ライブラリにコードされる遺伝子間の全ての相互作用を決定することができる(Nandabalan, K. ら (2000) 米国特許第6,057,101号)。(2000) 米国特許第6,057,101号)。
【0284】
17 SAT活性の実証
SAT活動は被覆小胞中でその包含により測定される。SATは、SATをコードする真核生物発現ベクターを備えたCOS7、HeLa、若しくはCHOのようなほ乳類株化細胞を形質転換することで発現されうる。真核生物発現ベクターは市販されており、それらを細胞内に導入する技術は当業者には周知である。 β−ガラクトシダーゼのような複数の標識遺伝子いずれか一つを発現させる少量の第二のプラスミドは、細胞へと同時形質転換され、異質なDNAを吸収し発現させるそれら細胞の迅速な同定を可能とする。細胞は、形質転換の後、株化細胞がSAT及び13−ガラクトシダーゼを発現し蓄積するのに適した条件下で、48−72時間に渡ってインキュベートされる。形質転換細胞は集められ、細胞溶解物は小胞構成のため分析される。加水分解できない形式のGTPであるGTPγS、ATPを再生成するシステムが、溶解物に加えられ、混合液は10分間37 Cでインキュベートされる。これらの条件の下では、小胞の90%以上はコートしたままである (Orci, L. 他(1989) Cell 56:357−368 参照)。輸送小胞は、ゴルジ体膜から塩によって放出され、ショ糖密度勾配の下にかけられ、分別物はSDS−PAGEにより回収され分析される。SATがクラスリン又はCOPコーテイマと同じ局在性を示すと、小胞形成中のSAT活性を意味する。小胞形成のSATの寄与は、GTPγS追加の前に溶解産物とSAT特定の抗体をインキュベートすることにより確認できる。抗体はSATに結合し、その活性を妨害し、これにより小胞形成を妨げる。或いは、SAT活性は、小胞輸送経路を変更するその能力により測定できる。SATで形質転換された細胞の小胞輸送を、蛍光顕微鏡を使用して調べる。小胞コートタンパク質、またはトランスフェリン又はマンノース−6−リン酸塩受容体などの典型的な小胞輸送基質に特異的な抗体は市販されている。ER、ゴルジ体、ペルオキシゾーム、エンドソーム、リゾソームおよび原形質膜などの種々の細胞成分が検査される。対照細胞と比較して、SATで形質転換された細胞内の小胞の数および位置の変化は、SAT活性の特性である。
【0285】
当業者は、本発明の範囲及び精神から逸脱することなく本発明の記載した方法及びシステムの種々の改変を行い得る。本発明について説明するにあたり特定の好適実施例に関連して説明を行ったが、本発明の範囲が、そのような特定の実施例に不当に制限されるべきではないことを理解されたい。実際に、分子生物学または関連分野の専門家には明らかな、本明細書に記載されている本発明の実施方法の様々な改変は、特許請求の範囲内にあるものとする。
【0286】
(表の簡単な説明)
表1は、本発明の完全長ポリヌクレオチド配列及びポリペプチド配列の命名法の概略を示す。
【0287】
表2は、GenBank識別番号及び本発明のポリペプチドに最も近いGenBank相同体の注釈を示す。各ポリペプチドとそのGenBank相同体が一致する確率スコアも併せて示す。
【0288】
表3は、予測されるモチーフ及びドメインを含む本発明のポリヌクレオチド配列の構造的特徴を、ポリペプチドの分析に用いるための方法、アルゴリズム及び検索可能なデータベースと共に示す。
【0289】
表4は、本発明のポリヌクレオチド配列を構築するために用いたcDNAやゲノムDNA断片を、ポリヌクレオチド配列の選択した断片と共に示す。
【0290】
表5は、本発明のポリヌクレオチドの代表的なcDNAライブラリを示す。
【0291】
表6は、表5に示したcDNAライブラリの作製に用いた組織及びベクターを説明する付表である。
【0292】
表7は、本発明のポリヌクレオチドとポリペプチドの分析に用いたツール、プログラム、アルゴリズムを、適用可能な説明、引用文献及び閾値パラメータと共に示す。
【表1】
Figure 2004528002
【表2】
Figure 2004528002
【表3】
Figure 2004528002
【表4】
Figure 2004528002
【表5】
Figure 2004528002
【表6】
Figure 2004528002
【表7】
Figure 2004528002
【表8】
Figure 2004528002
【表9】
Figure 2004528002
【表10】
Figure 2004528002
【表11】
Figure 2004528002
【表12】
Figure 2004528002
【表13】
Figure 2004528002
【表14】
Figure 2004528002
【表15】
Figure 2004528002
【表16】
Figure 2004528002
【表17】
Figure 2004528002
【表18】
Figure 2004528002
[0001]
(Technical field)
The present invention relates to the nucleic acid and amino acid sequences of secretory and transport molecules. The present invention also relates to the diagnosis, treatment, and prevention of vesicle transport disorders, transport disorders, nervous system diseases, autoimmune / inflammatory diseases, and abnormal cell proliferation using these sequences. The invention further relates to the evaluation of the effects of foreign compounds on the expression of nucleic acid and amino acid sequences of secretory and transport molecules. The present invention is further based on the discovery of novel human secretory and transport molecules (SATs) and polynucleotides encoding SATs, using these compositions to impair vesicle transport, nervous system disorders, autoimmune / inflammatory disorders, And diagnosis, treatment, and prevention of abnormal cell proliferation.
[0002]
(Background of the Invention)
Eukaryotic cells are bound by lipid bilayer membranes and subdivided into functionally distinct, membrane-bound compartments. The membrane maintains essential differences in the cytoplasm, extracellular environment and luminal space of each organelle within the cytoplasm. Eukaryotic proteins, including integral membrane proteins, secreted proteins, and proteins for organelle rumen, are synthesized in the endoplasmic reticulum (ER), sent to the Golgi complex for post-translational processing and sorting, and then identified. Is transported to the intracellular and extracellular destinations. Substances are taken up from the extracellular environment by endocytosis. This is an essential process for transmitting neural, metabolic, and proliferation signals. It also takes up many essential nutrients. Further defend against invading organisms. This intra- and extra-cellular movement of protein molecules is termed vesicle transport. Transport is accomplished by packaging protein molecules into specialized vesicles that start at the donor organelle membrane and fuse at the target membrane (Rothman, JE, Wieland, FT (1996) Science 272: 227234). .
Transport of proteins across the ER membrane is similar to processes in bacteria, yeast, and mammals (see Gorlic, D. et al. (1992) Cell 71: 489-503). In mammalian systems, transport is initiated by the action of cytoplasmic signal recognition particles (SRPs). SPR recognizes a signal sequence on a growing, newly synthesized polypeptide, and binds the polypeptide and its ribosome complex to the ER membrane via a signal recognition particle (SRP) receptor on the ER membrane. The signal peptide is cleaved and the ribosome complex, along with the attached polypeptide, is surrounded by a membrane. The polypeptide is then traversed across the ER membrane and transferred to vesicles (Blobel, G. and B. Doberstein (1975) J. Cell Biol. 67: 852-862).
Proteins involved in translocation of a polypeptide across the ER membrane in yeast include SEC61p, SEC62p and SEC63p. Mutations in the genes encoding these proteins result in defects in the migration process. SEC61 may be particularly important because certain mutations in the gene for this protein will inhibit the translocation of many proteins (Gorlich, supra).
[0003]
Mammalian homologs of yeast SEC61 (mSEC61) have been identified in dogs and rats (Gorlic, supra). Moreover, mammalian SEC61 is similar in structure to SECYp, a bacterial cytoplasmic membrane translocating protein. mSEC61 has been found to bind strongly to ribosomes surrounded by membranes. This binding is triggered by nascent polypeptide chains that target the membrane and is weakened by the dissociation of ribosomes into their constituent subunits. The nascent polypeptide is transferred by the ribosome to the ER membrane after termination of translation, and mSEC61 is postulated to be a component of the putative protein conduction channel on the ER membrane (Gorlich, supra).
[0004]
Several steps in secretion and passage of substances along the endosomal pathway require the formation of transport vesicles. In particular, vesicles are formed at the metastatic endoplasmic reticulum (tER), at the edge of the Golgi bath, at the surface of the trans-Golgi network (TGN), at the plasma membrane (PM) and at the tubular extension of the endosome. Vesicle formation occurs when a region of the membrane leaves the donor organelle. The vesicles surrounded by the membrane contain the protein to be transported and are surrounded by a coat of protein. These components are recruited from the cytoplasm. The initial separation and coating processes are controlled by cytoplasmic ras-like GTP-binding proteins, ADP-ribosylation factors (Arf), and adapter proteins (AP). During vesicle formation, GTP-bound Arf in the cytoplasm is also incorporated into the vesicles. The different isoforms of both Arf and AP are involved in vesicle segregation at different sites. For example, Arfs 1, 3, and 5 are required for vesicle separation from the Golgi, Arf4 is required for vesicle separation from endosomes, and Arf6 is required for vesicle separation from the plasma membrane. Two classes of coat proteins have also been identified. The clathrin coat forms vesicles derived from TGN and PM, while the coater (COP) coat forms vesicles derived from ER and Golgi (Mellman, I. (1996) Annu. Rev. Cell Dev. Biol. 12: 575-625).
[0005]
In clathrin-based vesicle formation, the AP accumulates vesicle content and coat protein on the surface of the membrane to be separated. AP is a heterotetrameric complex formed from two large chains. One chain consists of a, g, d or e chains, with b chains, medium chains (m) and small chains (s). Clathrin binds to the AP via the associated region at the carboxy terminus of the b-adaptin subunit (Le Bourgne, R., Hoflack, B. (1998) Curr. Opin. Cell. Biol. 10: 499-503). AP-1 performs protein sorting from TGN and endosomes to compartments of the endosome / lysosomal system. AP-2 functions in clathrin-mediated endocytosis at the plasma membrane, while AP-3 is involved in endosomes and / or TGN and regulates integral membrane proteins for transport to lysosomes and lysosome-associated organelles. Mobilize. The recently isolated AP-4 complex is localized to the TGN or adjacent compartment and may play a role in sorting events that are likely to occur within the post-Golgi compartment (Dell'Angelica, EC). (1999) J. Biol. Chem. 274: 7278-7285). With the formation of vesicles, GTP-binding Arf in the cytoplasm is also incorporated into the vesicles. Another GTP-binding protein (dynamin) forms a ring complex around the neck of the forming vesicle, providing the mechanochemical force required to release the vesicle from the donor membrane. Next, the coated vesicle complex is transported through the cytoplasm. During the transport process, GTP bound to Arf is hydrolyzed to GDP and the coat dissociates from the transport vesicles (see West, MA et al. (1997) J. Mol. Biol. 138: 1239-1254).
[0006]
The coat of coatoma (COP), another class of coat protein, forms in vesicles derived from the ER and Golgi. COP coats are further classified as COPI and COPII, with COPI being involved in retrograde transport from the Golgi to the ER and COPII being involved in antegrade transport from the ER to the Golgi (Mellman, supra). The COP coat consists of two main components, a GTP binding protein (Arf or Sar) and a coat protomer (Coatoma). Coatoma is an equimolar complex of seven proteins (α-, β-, β'-, γ-, Δ-, ε-, Ζ-COP). The coatoma complex binds to a dilysine motif contained on the cytoplasmic tail of integral membrane proteins. These motifs include a retrieval motif containing the ER membrane protein dilysine and a dibasic / diphenylamine motif of a p24 family member. The p24 family of type I membrane proteins is the major membrane protein of COPI vesicles (see Harter, C., Wireland, FT (1998) Proc. Natl. Acad. Sci. USA 95: 11649-11654). .
[0007]
Vesicles can undergo homotypic fusion (fusion with homologous vesicles) or heterotypic fusion (fusion with heterologous vesicles). The molecules required for fusion of the vesicle with the appropriate target include proteins within the vesicle membrane, target membranes, and proteins recruited from the cytoplasm. During separation of the vesicles from the donor compartment, a complex endogenous protein, VAMP (vesicle-associated membrane protein), is incorporated into the vesicles. Immediately after vesicle decoating, the prenylated GTP-binding protein (Rab) in the cytoplasm is inserted into the vesicle membrane. The amino acid sequence of the Rab protein reveals a conserved GTP binding region unique to members of the Ras superfamily. In the vesicle membrane, GTP-bound Rab interacts with VAMP. When the vesicles reach the target membrane, GTPase-activating protein (GAP) in the target membrane converts the Rab protein into a GDP-bound form. Guanine nucleotide dissociation inhibitor (GDI), a cytoplasmic protein, removes GDP-bound Rab from vesicle membranes. Some of the Rab isoforms have been identified and appear to associate with specific compartments within the cell. For example, Rabs 4, 5, and 11 are associated with early endosomes, while Rabs 7 and 9 are associated with late endosomes. These differences may provide selectivity for binding between vesicles and their target membranes (Novick, P., and Zerial, M. (1997) Cur. Opin. Cell Biol. 9: 496-504).
Docking of transport vesicles to target membranes involves a complex between vesicular SNAP receptor (v-SNARE), target membrane (t-) SNARE and other membrane proteins and cytoplasmic proteins. Although the exact function of the docking complex remains uncertain, many of these other proteins have been identified (Tellam, JT, et al. (1995) J. Biol. Chem. 270: 58557563; Hata). , Y., Sudhof, TC (1995) J. Biol. Chem. 270: 1302213028). N-ethylmaleimide-sensitive factor (NSF) and soluble NSF-attachment proteins (α-SNAP- and β-SNAP) are conserved from yeast to human and function in most intracellular membrane fusion reactions. It is a protein. Sec1 represents a family of yeast proteins that function at various stages of the secretory pathway, including membrane fusion. Recently, a mammalian homolog of Sec1, termed the Munc-18 protein, has been identified (see Katagiri, H. et al. (1995) J. Biol. Chem. 270: 49634966; Hata et al.).
[0008]
There are three types of SNARE molecules in the SNARE complex, one at the vesicle membrane and two at the target membrane. Together they form a rod-like complex of four α-helical coiled coils. The membrane anchoring domains of all three SNAREs protrude from one end of the rod. This complex resembles the rod-like structure formed by the fusion protein, which is characteristic of enveloped viruses, such as myxovirus, influenza, filovirus (Ebola), HIV and SIV retroviruses (Skehel, J J., Wiley, DC (1998) Cell 95: 871-874). The SNARE complex has been proposed to be sufficient for membrane fusion, suggesting that the protein binding to the complex provides control of the fusion event (Weber, T. et al. (1998) Cell 92: 759- 772). For example, in neurons with controlled exocytosis, docked vesicles do not fuse with the presynaptic membrane until a depolarization that causes calcium influx occurs (Bennett, MK, Scheller, RH). (1994) Annu. Rev. Biochem. 63: 63-100). Synaptotagmin (an integral membrane protein in synaptic vesicles) binds to t-SNARE syntaxin in the docking complex. Synaptotagmin binds calcium in a complex with negatively charged phospholipids. With this negatively charged phospholipid, the cytoplasmic SNAP protein replaces syntaxin with synaptotagmin, causing fusion. Thus, synaptotagmin negatively regulates fusion in neurons (see Littleton, JT et al. (1993) Cell 22: 817-1134).
[0009]
The most abundant membrane protein in synaptic vesicles is thought to be the glycoprotein synaptophysin, a 38 kDa protein with four transmembrane domains and two intravesicular loops. Synaptophysin monomers bind into homopolymers that form channels in synaptic vesicle membranes. The calcium binding capacity, tyrosine phosphorylation, and widespread distribution of synaptophysin in neural tissue suggest a potential role in neurosecretion (Bennett, supra).
[0010]
The entry and exit of protein transport from within the vesicle depends on interactions between the cell membrane and the membrane cytoskeleton, which consists of spectrin and other proteins. A large family of related proteins called ankyrins participate in the transport process by binding to the membrane skeletal protein spectrin and a protein in the cell membrane called band 3 (a component of anion channels in the cell membrane). Thus, ankyrin functions as an important link between the cytoskeleton and the cell membrane.
[0011]
Ankyrin was originally found in association with erythroid cells, but is also present in other tissues (see Birkenmeier, CS. Et al. (1993) J. Biol. Chem. 268: 9533-9540). Ankyrin is a large protein (about 1800 amino acids) that includes the N-terminal 89 kDa domain (which binds cell membrane protein band 3 and tubulin), the central 62 kDa domain (the cytoskeletal protein spectrum). C-terminal (a 55 kDa regulatory domain that functions as a modifier of the binding activity of the other two domains). Individual genes of ankyrin are capable of producing a large number of ankyrin isoforms through various insertions and deletions. The isoforms are almost the same size, but may have different functions. Also, a small transcript is generated that lacks a large region of coding sequence from the N-terminus (band 3 binding) and a central (spectrin binding) domain. The existence of such a large family of ankyrin proteins and the observation that one or more ankyrins may be expressed in the same cell type suggests that ankyrins may have more specialized functions than simply bind the membrane skeleton to the plasma membrane. Suggests that you may have one (Birkenmeier, supra).
[0012]
In humans, the two isoforms of ankyrin are alternately expressed in the developing and mature erythroid lines, respectively (Lambert, S. et al. (1990) Proc. Natl. Acad. Sci. USA 87: 17301734). Deficiency of erythrocytes in spectrin and ankyrin has been associated with hemolytic anemia, hereditary spherocytosis (see Coetzer, TL et al. (1988) New Engl. J. Med. 318: 230234).
[0013]
Proper function of the epithelial cells is particularly important for the correct transport of proteins. Epithelial cells are polarized into distinct superficial and basal domains that contain different cell membrane components such as lipids and membrane-associated proteins. Some proteins are flexible and can be sorted on the superficial side or basal side depending on the cell type or growth conditions. For example, if the cells are cultured at high density, the kidney anion exchanger (kAE1) is able to retarget from the surface to the basal domain. The protein canapatin is isolated as a protein that binds to the cytoplasmic domain of kAE1. Also, it localizes with kAE1 in vesicles, but not in the membrane. This suggests that canadoptin function guides kAE1-containing vesicles to the basal target membrane (see Chen, J. et al. (1998) J. Biol. Chem. 273: 1038-1043).
[0014]
Vesicular transport is important in the process of neurotransmission. Synaptic vesicles carry neurotransmitter molecules from the cytoplasm of neurons to the synapse. Rab3 is a family of GTP binding proteins located on synaptic vesicles. The RIM family of proteins appears to be effectors for Rab3 (see Wang, Y. et al. (2000) J. Biol. Chem. 275: 20033-00444). Rabfilin-3 is a synaptic vesicle protein. Granuphilin is a protein homologous to rabphilin and may have a unique role in exocytosis (Wang, J. et al. (1999) J. Biol. Chem. 274: 28542). 28548).
[0015]
The etiology of countless human diseases and disorders can be due to defects in the transport of proteins to organelles or cell membranes. Defective transport of membrane-bound receptors and ion channels include cystic fibrosis (transmembrane conductance regulator of cystic fibrosis, CFTR), glucose-galactose malabsorption syndrome (Na + / glucose cotransporter), cholesterol excess It is related to the blood (low density lipoprotein (LDL) receptor), and the form of diabetes (insulin receptor). Abnormal hormone secretion includes diabetes insipidus (vasopressin), hyperglycemia and hypoglycemia (insulin, glucagon), Graves' disease and goiter (thyroid hormone), and Cushing's and Addison's disease (adrenocorticotropic hormone; ACTH) ), And so on.
[0016]
Cancer cells secrete excessive amounts of hormones or other bioactive peptides. Disorders associated with excessive secretion of bioactive peptides by tumor cells include: Fasted hypoglycemia due to high insulin from insulinomaislet cell tumors; caused by increased epinephrine and norepinephrine secreted from the pheochromocytomas of the adrenal medulla and nervous paraganglia. Hypertension; excessive amounts of vasoactive substances (serotonin, bradykinin, histamine, prostaglandin and polypeptide hormones) secreted from intestinal tumors, including carcinomatous syndromes (severe abdominal pain, diarrhea and valvular heart disease) caused by). The synthesis and secretion of translocations of biologically active peptides (peptides not expected from tumors) include ACTH and vasopressin in lung and pancreatic cancer, parathyroid hormone in lung and bladder cancer, calcitonin in lung and breast cancer, Contains dry thyrotropin in bone marrow thyroid cancer.
Various human pathogens alter the transport pathway of host cell proteins for their own advantages. For example, the HIV protein Nef down-regulates cell surface expression of the CD4 molecule by accelerating endocytosis through clathrin-coated pits. This function of Nef is important for the spread of HIV from infected cells (Harris, M. (1999) Curr. Biol. 9: R449-R461). A recently identified protein in humans is Nef binding factor 1 (Naf1), a protein with four extended coiled-coil domains and was found to bind Nef. Naf1 overexpression increases cell surface expression of CD4, which can be suppressed by Nef. (Fukushi, M. et al. (1999) FEBS Lett. 442: 83-88).
The discovery of new secretory and transport molecules and the polynucleotides encoding them has been implicated in the diagnosis, treatment and prevention of vesicular transport disorders, transport disorders, neuropathies, autoimmune / inflammatory diseases, and abnormal cell proliferation, and The need in the art is provided by providing new compositions that are useful in assessing the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of molecules and transport molecules.
[0017]
(Summary of the Invention)
A feature of the present invention resides in the purified polypeptide and the secretion / transport molecule, which are collectively “SAT”, and individually “SAT-1”, “SAT-2”, “SAT-3”, “SAT”. -4 "," SAT-5 "," SAT-6 "," SAT-7 "," SAT-8 ", and" SAT-9 ". In certain embodiments, the present invention relates to (a) a polypeptide consisting of an amino acid sequence selected from the group having SEQ ID NOs: 1-9; (b) an amino acid sequence selected from the group having SEQ ID NOs: 1-9. A polypeptide having a natural amino acid sequence at least 90% identical to (c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group having SEQ ID NOs: 1-9, or (d) Provided is a substantially isolated polypeptide selected from the group comprising an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group having SEQ ID NOs: 1-9. In one embodiment, there is provided a substantially isolated polypeptide comprising the amino acid sequence of SEQ ID NO: 1-9.
[0018]
Also, the present invention relates to (a) a polypeptide consisting of an amino acid sequence selected from the group having SEQ ID NO: 1-9, and (b) at least 90% of the amino acid sequence selected from the group having SEQ ID NO: 1-9. Has the same natural amino acid sequence, (c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group having SEQ ID NOs: 1-9, or (d) a SEQ ID NO: An immunogenic fragment of a polypeptide having an amino acid sequence selected from the group comprising 1-9. The invention provides a substantially isolated polynucleotide encoding a polypeptide selected from the group comprising: In one embodiment, the polynucleotide encodes a polypeptide selected from the group having SEQ ID NOs: 1-9. In another embodiment, the polynucleotide is selected from the group having SEQ ID NOs: 10-18.
[0019]
The invention further provides (a) a polypeptide consisting of an amino acid sequence selected from the group having SEQ ID NOs: 1-9, and (b) at least 90% of the amino acid sequence selected from the group having SEQ ID NOs: 1-9. A polypeptide having a homologous natural amino acid sequence of (c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group having SEQ ID NO: 1-9, or (d) a SEQ ID NO: Recombinant polynucleotide having a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group having an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group having 1-9 I will provide a. In one embodiment, the invention provides a cell transformed with the recombinant polynucleotide. In another embodiment, the present invention provides a genetic transformant comprising the recombinant polynucleotide.
[0020]
Further, the present invention provides (a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-9, and (b) an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-9. A polypeptide having a natural amino acid sequence having 90% or more sequence identity, and (c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-9 And (d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-9. . The production method comprises the steps of (a) culturing cells transformed with the recombinant polynucleotide under conditions suitable for expressing the polypeptide, and (b) receiving the polypeptide thus expressed. The recombinant polynucleotide has a promoter sequence operably linked to the polynucleotide encoding the polypeptide.
[0021]
The invention further provides (a) a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-9, and (b) at least 90% of an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-9. A polypeptide comprising an identical natural amino acid sequence; (c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-9; and (d) SEQ ID NO: 1. A substantially isolated antibody that specifically binds to a polypeptide selected from the group consisting of immunogenic fragments of a polypeptide having an amino acid sequence selected from the group consisting of -9.
[0022]
The invention further relates to (a) a polynucleotide sequence selected from the group consisting of: SEQ ID NOs: 10-18, (b) at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 10-18. (C) a polynucleotide sequence complementary to (a), (d) a polynucleotide sequence complementary to (b), and (e) (a) to (a). d) providing an isolated polynucleotide selected from the group consisting of RNA equivalents. In one embodiment, the polynucleotide has at least 60 contiguous nucleotides.
[0023]
The present invention further provides a method for detecting a target polynucleotide in a sample. Here, the target polynucleotide is (a) a polynucleotide containing a polynucleotide sequence selected from the group consisting of SEQ ID NO: 10-18, and (b) a polynucleotide sequence selected from the group consisting of SEQ ID NO: 10-18. A polynucleotide comprising a natural polynucleotide sequence having at least 90% identity to (c) a polynucleotide complementary to (a), (d) a polynucleotide sequence complementary to (b), and (e) A polynucleotide sequence selected from the group consisting of RNA equivalents of (a)-(d). The detection method comprises: (a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides containing a sequence complementary to the target polynucleotide in the sample; and (b) the presence of a hybridization complex. Detecting the absence and optionally detecting the amount of the complex, if any, under conditions such that a hybridization complex is formed between the probe and the target polynucleotide or fragment thereof. The probe hybridizes specifically to the target polynucleotide. In one embodiment, the probe comprises at least 60 contiguous nucleotides.
[0024]
The invention also provides a method for detecting a target polynucleotide in a sample. Here, the target polynucleotide is (a) a polynucleotide consisting of a polynucleotide sequence selected from the group having SEQ ID NO: 10-18, and (b) a polynucleotide sequence selected from the group having SEQ ID NO: 10-18. A polynucleotide having a natural polynucleotide sequence that is at least 90% identical to a polynucleotide of (c) a polynucleotide complementary to the polynucleotide of (a), a polynucleotide complementary to the polynucleotide of (d) (b), or (E) having a sequence of a polynucleotide selected from the group including the RNA equivalents of (a) to (d). The detection method includes (a) a process of amplifying a target polynucleotide or a fragment thereof using polymerase chain reaction amplification, and (b) detecting the presence or absence of the target polynucleotide or a fragment thereof, and Optionally, detecting the amount of fragments, if any, is included.
[0025]
The invention further provides a component comprising an effective amount of the polypeptide and a pharmaceutically acceptable excipient, wherein the effective amount of the polypeptide comprises: (a) an amino acid sequence selected from the group having SEQ ID NOs: 1-9. (B) a polypeptide having a natural amino acid sequence that is at least 90% identical to an amino acid sequence selected from the group having SEQ ID NOs: 1-9; (c) a SEQ ID NO: 1-9 A biologically active fragment of a polypeptide having an amino acid sequence selected from the group having, or (d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group having SEQ ID NO: 1-9. In one embodiment, the component comprises an amino acid sequence selected from the group having SEQ ID NOs: 1-6. The present invention further provides a method of treating a disease or condition associated with reduced expression of functional SAT, the method comprising administering a component to a patient in need of such treatment.
[0026]
The invention also provides (a) a polypeptide comprising an amino acid sequence selected from the group having SEQ ID NOs: 1-9, (b) at least 90% of the amino acid sequence selected from the group having SEQ ID NOs: 1-9. A polypeptide comprising a natural amino acid sequence having homology to: (c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group having SEQ ID NOs: 1-9, or (d) a SEQ ID NO: Provided is a method of screening a compound for confirming the effectiveness of a polypeptide as an agonist selected from the group comprising an immunogenic fragment of the polypeptide having the amino acid sequence selected from the group having 1-9. The screening method includes (a) exposing a sample having the polypeptide to the compound, and (b) detecting agonist activity in the sample. Alternatively, the invention provides a composition comprising an agonist compound identified by this method and a suitable pharmaceutical excipient. In one embodiment, the present invention provides a method of treating a disease or condition associated with reduced expression of a functional SAT, comprising administering a component to a patient in need of such treatment. I do.
[0027]
The invention further relates to (a) a polypeptide having an amino acid sequence selected from the group having SEQ ID NO: 1-9, and (b) a polypeptide having at least 90% the amino acid sequence selected from the group having SEQ ID NO: 1-9. Has the same natural amino acid sequence, (c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group having SEQ ID NOs: 1-9, or (d) a SEQ ID NO: Provided is a method for screening a compound including an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group having 1-9 to confirm the effectiveness of the polypeptide as an antagonist. The screening method includes (a) exposing a sample containing the polypeptide to the compound, and (b) detecting agonist activity in the sample. In one embodiment, the invention provides a component comprising an antagonist compound identified by this method and a pharmaceutically acceptable excipient. In another embodiment, there is provided a method of treating a disease or condition associated with over-expression of a functional SAT, comprising administering the component to a patient in need of such treatment.
[0028]
The invention further relates to (a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-9, and (b) at least 90% of the amino acid sequence selected from the group consisting of SEQ ID NOs: 1-9. A polypeptide comprising a natural amino acid sequence having the identity of: (c) a biologically active fragment of an amino acid sequence selected from the group having SEQ ID NOs: 1-9, or (d) a SEQ ID NO: 1-9 A method of screening for a compound that specifically binds to a polypeptide containing an immunogenic fragment of an amino acid sequence selected from the group consisting of: The screening method comprises: (a) binding the polypeptide to at least one test compound under appropriate conditions; and (b) detecting the binding of the polypeptide to the test compound, whereby the compound specifically binds to the polypeptide. And identifying.
[0029]
The method comprises the steps of: (a) binding the polypeptide to at least one compound under suitable conditions; and (b) detecting binding of the polypeptide to the test compound to specifically bind the polypeptide to the test compound. Identifying a compound that binds to.
(A) an amino acid sequence selected from the group having SEQ ID NOs: 1-9, (b) a natural amino acid sequence having at least 90% homology with an amino acid sequence selected from the group having SEQ ID NOs: 1-9 A polypeptide comprising (c) a biologically active fragment of an amino acid sequence selected from the group having SEQ ID NOs: 1-9, or (d) a biologically active fragment of an amino acid sequence selected from the group having SEQ ID NOs: 1-9. Methods for screening for compounds that modulate the activity of a polypeptide, including an immunogenic fragment, are provided. The screening method comprises: (a) mixing the polypeptide with at least one test compound under conditions permitting the activity of the polypeptide; and (b) calculating the activity of the polypeptide in the presence of the test compound. And (c) comparing the activity of the polypeptide in the presence of the test compound to the activity of the polypeptide in the absence of the test compound, wherein the change in the activity of the polypeptide in the presence of the test compound Means that the compound modulates the activity of the polypeptide.
[0030]
The invention further provides a method of screening for a compound effective to alter the expression of a target polynucleotide comprising a sequence selected from the group consisting of SEQ ID NOs: 10-18, comprising: (a) The present invention provides the screening method, comprising: exposing a sample containing nucleotides to a compound; and (b) detecting a change in expression of the target polynucleotide.
[0031]
The invention further provides (a) treating a biological sample containing nucleic acids with a test compound, and (b) (i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 10-18. (Ii) a polynucleotide comprising a natural polynucleotide sequence having at least 90% identity to a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 10-18, (iii) a sequence complementary to (i) At least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of: a polynucleotide having the formula: (iv) a polynucleotide complementary to the polynucleotide of (ii); (v) a polynucleotide selected from the group consisting of RNA equivalents of (i)-(iv). Hybridizing the nucleic acid of the processed biological sample with a probe comprising Provide a method for calculating the toxicity of a substance. Hybridization occurs under conditions such that a particular hybridization complex is formed between the probe and a target polynucleotide in a biological sample, wherein the target polynucleotide comprises (i) SEQ ID NO: A polynucleotide comprising a polynucleotide sequence selected from the group consisting of 10-18, (ii) a natural polynucleotide sequence having at least 90% identity to a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 10-18 , A polynucleotide having a sequence complementary to the polynucleotide of (iii) (i), a polynucleotide complementary to the polynucleotide of (iv) (ii), and (v) (i) to (iv). ) Is selected from the group consisting of RNA equivalents. Alternatively, the target polynucleotide may be a fragment of the polynucleotide sequence selected from the group consisting of (i) to (v), (c) a step of quantifying the amount of the hybridization complex, and (d) Comparing the amount of hybridization complex in the untreated biological sample with the amount of hybridization complex in the untreated biological sample. Shows the toxicity of the compound.
[0032]
(Embodiment of the invention)
Before describing the proteins, nucleotide sequences and methods of the present invention, it is to be understood that the invention is not limited to the particular devices, materials and methods described, as such may be modified. It is also understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the invention, which is limited only by the claims. Please understand at the same time.
[0033]
As used in the claims and the specification, the singular forms “a” and “the” may refer to plural unless the context clearly dictates otherwise. You have to be careful. Thus, for example, when described as "a host cell", there may be more than one such host cell, and when described as "an antibody", one or more antibodies, and It also refers to equivalents of antibodies known to those skilled in the art.
[0034]
All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art, unless otherwise defined. Although any apparatus, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred devices, materials, and methods are now described. All publications mentioned in the present invention are cited for the purpose of describing and disclosing the cells, protocols, reagents and vectors that are reported in the publications and that may be of interest to the present invention. . Nothing herein is an admission that the present invention is not entitled to antedate such disclosure by virtue of prior art.
[0035]
(Definition)
"SAT" is a substantially purified amino acid sequence of SAT, obtained from any species, particularly mammalian species including bovine, ovine, porcine, murine, equine, and human, and any natural product. , Synthetic, semi-synthetic or recombinant origin.
[0036]
The term "agonist" refers to a molecule that enhances or mimics the biological activity of SAT. The agonist may interact directly with SAT or with components of the biological pathways involving SAT to regulate the activity of SAT, including proteins, nucleic acids, carbohydrates, small molecules, any other compounds, It may include a composition.
[0037]
The term “allelic variant” refers to another form of the gene encoding SAT. Allelic variants can be made from at least one mutation in the nucleic acid sequence. It can also be made from mutant RNA or polypeptide. The structure or function of a polypeptide may or may not be mutated. A gene may have no natural allelic variants or one or several natural allelic variants. Common mutational changes that generally result in allelic variants are those that result from spontaneous deletion, addition or substitution of nucleotides. Each of these changes, alone or together with other changes, may occur once or several times within a given sequence.
[0038]
A "mutant" nucleic acid sequence encoding SAT refers to a polypeptide that has the same polypeptide as SAT or a polypeptide that has at least one of the functional properties of SAT, despite deletions, insertions, or substitutions of various nucleotides. This definition includes improper or unexpected hybridization of the polynucleotide sequence encoding SAT with the allelic variant at a position other than the normal chromosomal locus, as well as specific oligonucleotide probes of the polynucleotide encoding SAT. And polymorphisms that are easily detectable or difficult to detect using The encoded protein may also be "mutated" and may contain deletions, insertions or substitutions of amino acid residues that produce a silent change and result in a functionally equivalent SAT. Intentional amino acid substitutions are similar to residues with respect to polarity, charge, solubility, hydrophobicity, hydrophilicity, and / or amphipathicity, as long as SAT activity is retained biologically or immunologically. It can be done based on For example, negatively charged amino acids include aspartic acid and glutamic acid, and positively charged amino acids include lysine and arginine. Amino acids with uncharged polar side chains with similar hydrophilicity values include asparagine and glutamine, and serine and threonine. Amino acids with uncharged side chains with similar hydrophilicity values include leucine and isoleucine and valine, glycine and alanine, and phenylalanine and tyrosine.
[0039]
The term “amino acid” or “amino acid sequence” refers to an oligopeptide, peptide, polypeptide or protein sequence or a fragment thereof, and refers to a natural or synthetic molecule. As used herein, "amino acid sequence" refers to the amino acid sequence of a naturally occurring protein molecule, and "amino acid sequence" and like terms limit the amino acid sequence to the complete native amino acid sequence associated with the listed protein molecule. Not to try.
[0040]
“Amplification” involves additional replication of a nucleic acid sequence. Amplification is typically performed using the polymerase chain reaction (PCR) technique well known to those skilled in the art.
[0041]
The term “antagonist” is a molecule that inhibits or attenuates the biological activity of SAT. Antagonists are antibodies, nucleic acids, carbohydrates, small molecules, any other compounds or compositions that directly interact with SAT or interact with components of the biological pathways involving SAT to modulate the activity of SAT. It can include proteins such as objects.
[0042]
The term "antibody" refers to intact immunoglobulins or fragments thereof, e.g., Fa, F (ab ') 2 and Fv fragments, which can bind to epitope determinants. Antibodies that bind to the SAT polypeptide can be generated using the intact polypeptide or a fragment containing a small peptide of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (mouse, rat, rabbit, etc.) can be derived from a polypeptide or oligopeptide obtained by RNA translation or chemical synthesis. It can also be conjugated to a protein. Commonly used carriers that chemically bond to the peptide include bovine serum albumin, thyroglobulin, and limpet hemocyanin (KLH). The binding peptide is used to immunize the animal.
[0043]
The term "antigenic determinant" refers to a region of a molecule (ie, an epitope) that is in contact with a particular antibody. When immunizing a host animal with a protein or protein fragment, a number of regions of the protein can induce the production of antibodies that specifically bind to an antigenic determinant (a particular region or three-dimensional structure of the protein). Antigenic determinants can compete with the intact antigen (ie, the immunogen used to elicit the immune response) for binding to the antibody.
[0044]
The term "antisense" refers to any component capable of base-pairing with the "sense" (coding) strand of a particular nucleic acid sequence. Antisense components include DNA, RNA, peptide nucleic acid (PNA), oligonucleotides having a modified backbone linkage such as phosphorothioic acid, methylphosphonic acid or benzylphosphonic acid, 2′-methoxyethyl sugar or 2 ′ Oligonucleotides having a modified saccharide such as -methoxyethoxy sugar or oligonucleotides having a modified base such as 5-methylcytosine, 2-deoxyuracil or 7-deaza-2'-deoxyguanosine. . Antisense molecules can be produced by any method, including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule will base pair with the natural nucleic acid sequence formed by the cell, forming a duplex that prevents transcription or translation. The term “negative” or “minus (−)” may refer to the antisense strand of the reference DNA molecule, and “positive” or “plus (+)” may refer to the sense strand.
[0045]
The term "biologically active" refers to a protein that has a structural, regulatory or biochemical function of a natural molecule. Similarly, the term "immunologically active" or "immunogenic" refers to natural or recombinant SAT, synthetic SAT, or any oligopeptide thereof, that is capable of eliciting a specific immune response in a suitable animal or cell. Refers to the ability to trigger and bind to a particular antibody.
[0046]
The terms "complementary" or "complementarity" refer to the relationship between two single-stranded nucleic acids that anneal by base pairing. For example, the sequence "5'A-G-T3 '" pairs with the complementary sequence "3'TC-A5'".
[0047]
"Components comprising a given polynucleotide sequence" and "components containing a given amino acid sequence" refer to a wide range of arbitrary components containing a given polynucleotide or amino acid sequence. This component can include a dry formulation or an aqueous solution. Compositions comprising a polynucleotide sequence encoding SAT or a fragment of SAT can be used as a hybridization probe. This probe can be stored in a lyophilized state, and can be bound to a stabilizer such as a carbohydrate. In hybridization, a probe is dispersed in an aqueous solution containing a salt (eg, NaCl), a surfactant (eg, sodium dodecyl sulfate; SDS) and other constituent elements (eg, denhardt solution, skim milk powder, DNA of salmon sperm, etc.). Can be done.
[0048]
The “consensus sequence” is repeatedly subjected to DNA sequence analysis to separate unnecessary bases, and is extended in the 5 ′ and / or 3 ′ direction using an XL-PCR kit (PE Biosystems, Foster City CA), One or more overlapping cDNAs using a resequenced nucleic acid sequence or a computer program for fragment construction such as the GELVIEW fragment construction system (GCG, Madison, WI) or Phrap (University of Washington, Seattle WA). And ESTs, or nucleic acid sequences constructed from genomic DNA fragments. Some sequences perform both extension and assembly construction to determine a consensus sequence.
[0049]
A “conservative amino acid substitution” is one in which the substitution is expected to hardly impair the properties of the original protein, that is, the structure and particularly the function of the protein are conserved, and a large change due to such substitution is observed. No substitutions. The following table shows amino acids that can be substituted for the original amino acid in the protein and are recognized as conservative amino acid substitutions.
Figure 2004528002
[0050]
Conservative amino acid substitutions typically involve (a) the backbone structure of the polypeptide in the substitution region, eg, a β-sheet or α-helix structure, (b) the charge or hydrophobicity of the molecule at the substitution site, and / or (c) most of the side chain. Hold.
[0051]
A "deletion" refers to a change in the amino acid or nucleotide sequence that results in one or more amino acids or nucleotides being lost.
[0052]
The term "derivative" refers to a chemical modification of a polypeptide or polynucleotide sequence. For example, replacement of a hydrogen by an alkyl, acyl, hydroxyl, or amino group can be included in chemical modification of the polynucleotide sequence. A polynucleotide derivative encodes a polypeptide that retains at least one of the biological or immunological functions of the natural molecule. The polypeptide derivative may be modified by glycosylation, polyethylene glycolation, or any similar process that retains at least one biological or immunological function from the polypeptide of inducible origin. Polypeptide.
[0053]
"Detectable label" refers to a reporter molecule or enzyme that is capable of producing a measurable signal and is covalently or non-covalently linked to a polynucleotide or polypeptide.
[0054]
"Differential expression" refers to increased or unregulated, or decreased, down-regulated, or defective gene or protein expression, determined by comparing at least two different samples. Such comparisons can be made, for example, between a post-treatment sample and an untreated sample or between a diseased sample and a normal sample.
[0055]
The term "fragment" refers to a unique portion of a SAT or a polynucleotide encoding a SAT that is identical to, but shorter in length than, its parent sequence. A fragment may have a length that is less than the total length of the defined sequence minus one nucleotide / amino acid residue. For example, a fragment may have from 5 to 1000 contiguous nucleotide or amino acid residues. Fragments used as probes, primers, antigens, therapeutic molecules or for other purposes may be at least 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or It can be as long as 500 contiguous nucleotides or amino acid residues. Fragments can be preferentially selected from particular regions of the molecule. For example, a polypeptide fragment can have a length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50% of the polypeptide) as set forth in the given sequence. These lengths are clearly given by way of example, and in the embodiments of the present invention may be of any length supported by the description, including the sequence listings, tables and figures.
[0056]
Fragments of SEQ ID NOs: 10-18 include, for example, regions of unique polynucleotide sequence that unambiguously identify SEQ ID NOs: 10-18, different from other sequences in the genome from which the fragment was obtained. Certain fragments of SEQ ID NO: 10-18 are useful, for example, in hybridization and amplification techniques, or similar methods for distinguishing SEQ ID NO: 10-18 from related polynucleotide sequences. The exact fragment length or region of SEQ ID NO: 10-18 that matches a fragment can be routinely determined by techniques common in the art based on the purpose of the fragment.
[0057]
The fragment of SEQ ID NO: 1-9 is encoded by the fragment of SEQ ID NO: 10-18. The fragment of SEQ ID NO: 1-9 contains a unique amino acid sequence region that specifically identifies SEQ ID NO: 1-9. For example, a fragment of SEQ ID NO: 1-9 is useful as an immunogenic peptide for producing an antibody that specifically recognizes SEQ ID NO: 1-9. The exact length of the fragment of SEQ ID NO: 1-9 and the region of SEQ ID NO: 1-9 corresponding to the fragment can be routinely determined by those skilled in the art based on the intended purpose for the fragment. .
[0058]
A “full-length” polynucleotide sequence is a sequence that has at least one translation initiation codon (eg, methionine), an open reading frame, and a translation stop codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence.
[0059]
The term "homology" refers to sequence similarity, ie, interchangeable sequence identity between the sequences of two or more polynucleotide sequences or two or more polypeptide sequences.
[0060]
The term “percent identity” or “percent identity” as applied to a polynucleotide sequence refers to the percentage of residues that match between at least two or more polynucleotide sequences aligned using a standardized algorithm. Such an algorithm can more significantly compare two sequences because it inserts gaps in a standardized and reproducible manner in the sequences that are compared to optimize alignment between the two sequences.
[0061]
The percent identity between polynucleotide sequences can be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package (a set of molecular biological analysis programs) (DNASTAR, Madison WI). This CLUSTAL V is available from Higgins, D.W. G. FIG. And P.A. M. Sharp (1989) CABIOS 5: 151-153; Higgins, D.W. G. FIG. (1992) CABIOS 8: 189-191. The default parameters for aligning the polypeptide sequences in pairs are set as Ktuple = 2, gap penalty = 5, window = 4, and “diagons saved” = 4. Select the residue "weighting" table as the default. CLUSTAL V reports percent identity as the "% similarity" between aligned polynucleotide sequence pairs.
[0062]
Alternatively, the Basic Local Alignment Search Tool (BLAST) of the National Center for Biotechnology Information (NCBI) is commonly used and provides a complete set of freely available sequence comparison algorithms (Altschul, SF. (1990) J. Mol. Biol. 215: 403-410). This algorithm is available from several sources and is also available from NCBI in Bethesda, Md. And the Internet (http://www.ncbi.nlm.nih.gov/BLAST/). The BLAST software suite includes a variety of sequence analysis programs, including "blastn," which aligns known polynucleotide sequences with other polynucleotide sequences obtained from various databases. In addition, a tool called “BLAST 2 Sequences” that is used to directly compare two nucleotide sequences in pairs is available. “BLAST 2 Sequences” is available at http: // www. ncbi. nlm. nih. gov / gorf / bl2. It is possible to access html and use it interactively. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (described below). BLAST programs are typically used with gaps and other parameters set to default settings. For example, to compare two nucleotide sequences, blastn may be performed using the “BLAST 2 Sequences” tool Version 2.0.12 (April 21, 2000) set as a default parameter. An example of setting default parameters is shown below.
[0063]
Figure 2004528002
The percent identity can be measured relative to a fully defined sequence length (eg, defined by a particular SEQ ID NO). Alternatively, the percent identity compared to shorter lengths, eg, fragments obtained from larger defined sequences (eg, fragments of at least 20, 30, 40, 50, 70, 100 or 200 contiguous nucleotides) May be measured. The lengths listed here are merely exemplary, and using any sequence length fragment backed by the sequences described herein, including tables, figures and sequence listings, It can be understood that the length over which the can be measured can be explained.
[0064]
Nucleic acid sequences that do not show a high degree of homology may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is to be understood that this degeneracy can be used to effect changes in a nucleic acid sequence to produce a large number of nucleic acid sequences such that all nucleic acid sequences encode substantially the same protein.
[0065]
The term “percent identity” or “percent identity” as applied to a polypeptide sequence refers to the percentage of residues that match between at least two or more polypeptide sequences aligned using a standardized algorithm. Methods for polypeptide sequence alignment are known. There are also alignment methods that take into account conservative amino acid substitutions. Such conservative substitutions, as detailed above, usually preserve the charge and hydrophobicity of the substitution site, thus preserving the structure (and therefore function) of the polypeptide.
[0066]
The percent identity between polypeptide sequences can be determined using the default parameters of the CLUSTAL V algorithm, such as that incorporated in the MEGALIGN version 3.12e sequence alignment program (see already described). The default parameters for aligning the polypeptide sequences in pairs using CLUSTAL V are set as Ktuple = 1, gap penalty = 3, window = 5, and “diagonals saved” = 5. Select the PAM250 matrix as the default residue weight table. Similar to polynucleotide alignments, CLUSTAL V reports percent identity as “similarity” between aligned polypeptide sequence pairs.
[0067]
Alternatively, a set of NCBI BLAST software may be used. For example, when comparing two polypeptide sequences in pairs, one may use blastp with the "BLAST 2 Sequences" tool Version 2.0.12 (Apr-21-2000) set with default parameters. There will be. An example of setting default parameters is shown below.
[0068]
Figure 2004528002
The percent identity can be measured relative to the length of a fully defined (eg, defined by a particular SEQ ID NO) polypeptide sequence. The percent identity is determined by the sequence or fragments obtained from shorter lengths, eg, larger defined polypeptide sequences (eg, fragments of at least 15, 20, 30, 40, 50, 70 or 150 contiguous residues). May be measured in comparison with the length of the match. The lengths listed here are merely exemplary, and using fragments of any sequence length supported by the sequences described herein, including tables, figures and sequence listings, It should be understood that the length may explain the length over which the percent match can be measured.
[0069]
“Human artificial chromosomes (HACs)” are linear small chromosomes that contain all the elements necessary for chromosome replication, segregation and maintenance, which can include DNA sequences of about 6 kb (kilobases) to 10 Mb in size. .
[0070]
The term "humanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antibody binding region has been mutated to be closer to a human antibody, and retains its original binding ability.
[0071]
"Hybridization" refers to the process by which a single-stranded polynucleotide anneals to a complementary strand by forming base pairs under defined hybridization conditions. Specific hybridization indicates that two nucleic acid sequences share a high degree of homology. Specific hybridization complexes are formed under acceptable annealing conditions and remain hybridized after the "wash" step. Wash steps are particularly important in determining the stringency of the hybridization process, and under more stringent conditions, non-specific binding (ie, pair binding between nucleic acid strands that are not perfectly matched) is reduced. The permissive conditions for annealing a nucleic acid sequence are routinely determined by those skilled in the art. The permissive conditions may be constant during the hybridization experiment, but the washing conditions may be varied during the experiment to obtain the desired stringency and thus also the hybridization specificity. Conditions that permit annealing include, for example, about 6 × SSC, about 1% (w / v) SDS at about 68 ° C., and about 100 μg / ml shear denatured salmon sperm DNA.
[0072]
In general, the stringency of hybridization can be expressed, in part, in reference to the temperature at which the washing step is performed. Such washing temperatures are usually selected to be about 5-20 ° C. below the melting point (Tm) of the particular sequence at a given ionic strength and pH. This Tm is the temperature at which 50% of the target sequence hybridizes to a perfectly matched probe under a given ionic strength and pH. Tm The equation for calculating, and hybridization conditions for nucleic acids are well known and are described in Sambrook et al. (1989).Molecular Cloning:Laboratories Manual, 2nd Edition, Vol. 1-3, Cold Spring Harbor Press, Plainview NY, especially see Vol. 2, Chapter 9.
[0073]
High stringency hybridization between polynucleotides of the present invention involves a washing step at about 68 ° C. for 1 hour in the presence of about 0.2 × SSC and about 1% SDS. Alternately, temperature of about 65 ° C, 60 ° C, 55 ° C, or 42 ° C may be used. SSC concentrations can vary from about 0.1 to 2 × SSC in the presence of about 0.1% SDS. Usually, blocking agents are used to block non-specific hybridization. Such blocking agents include, for example, denatured salmon sperm DNA at about 100-200 μg / ml. Under certain conditions, for example, for the hybridization of RNA and DNA, an organic solvent such as formamide at a concentration of about 35-50% v / v can also be used. Useful variations of washing conditions will be apparent to those skilled in the art. Hybridization can indicate evolutionary similarity between nucleotides, especially under high stringency conditions. Such similarities strongly suggest a similar role for nucleotides and polypeptides encoded by nucleotides.
[0074]
The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by the force of forming hydrogen bonds between complementary base pairs. Hybridization complexes can be formed in solution (C0t or R0t analysis). Alternatively, one nucleic acid sequence is in solution and the other nucleic acid sequence is a solid support (eg, paper, membrane, filter, chip, pin, or glass slide, or other suitable substrate, such as a cell or its nucleic acid). Can be formed between two nucleic acid sequences such that they are immobilized on a substrate to which they are immobilized.
[0075]
The terms "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence that add one or more amino acid residues or nucleotide sequences, respectively.
[0076]
“Immune response” can refer to a condition associated with inflammation, trauma, immune disorders, infectious diseases or genetic diseases. These conditions can be characterized by the expression of various factors, such as cytokines, chemokines, and other signaling molecules, that can act on cells and the systemic defense system.
[0077]
The term "immunogenic fragment" refers to a polypeptide or oligopeptide fragment of SAT that, when introduced into a living animal, such as a mammal, elicits an immune response. The term "immunogenic fragment" also includes SAT polypeptide or oligopeptide fragments useful in any of the antibody production methods disclosed herein or known in the art.
[0078]
The term "microarray" refers to the organization of a plurality of polynucleotides, polypeptides or other compounds on a substrate.
[0079]
The term "element" or "array element" refers to a hybridizable polynucleotide, polypeptide or other compound at a unique position defined on a microarray.
[0080]
The term "modulation" refers to a change in the activity of a SAT. For example, modulation results in a change in the protein activity, or binding properties, or other biological, functional, or immunological properties of the SAT.
[0081]
The terms "nucleic acid" and "nucleic acid sequence" refer to nucleotides, oligonucleotides, polynucleotides or fragments thereof. The terms “nucleic acid” and “nucleic acid sequence” refer to DNA or RNA of genomic or synthetic origin that may be single-stranded or double-stranded or represent a sense or antisense strand. , Peptide nucleic acid (PNA), or any DNA-like or RNA-like substance.
[0082]
"Operably linked" refers to a state in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For example, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. The operably linked DNA sequences can be very close or contiguous. And if it is necessary to join two protein coding regions, they are in the same reading frame.
[0083]
"Peptide nucleic acid" (PNA) refers to an antisense molecule or an antigenic material, consisting of an oligonucleotide of at least about 5 nucleotides in length attached to the peptide backbone of lysine-terminated amino acid residues. . Terminal lysine confers solubility to the component. PNAs preferentially bind to complementary single-stranded DNA or RNA and stop transcription expansion, and can be polyethyleneglycolated to extend the lifespan of PNAs in cells.
[0084]
"Post-translational modifications" of a SAT can include lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes can occur synthetically or biochemically. Biochemical modifications depend on the enzymatic environment of the SAT and can vary from cell type to cell type.
[0085]
"Probe" refers to a nucleic acid sequence that encodes SAT, the complement of SAT, or a fragment thereof, and is used to detect identical, allelic or related nucleic acid sequences. A probe is an isolated oligonucleotide or polynucleotide that is attached to a detectable label or reporter molecule. Typical labels include radioisotopes, ligands, chemiluminescent reagents and enzymes. A "primer" is a short nucleic acid, usually a DNA oligonucleotide, that can anneal to a target polynucleotide by forming complementary base pairs. The primer can then be extended to the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of nucleic acid sequences, for example, by the polymerase chain reaction (PCR).
[0086]
Probes and primers as used in the present invention typically contain at least 15 contiguous nucleotides of a known sequence. Longer probes and primers to increase specificity, such as probes consisting of at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 or 150 contiguous nucleotides of the disclosed nucleic acid sequences; Primers may be used. Some probes and primers are considerably longer. It is understood that any length of nucleotide supported by the specification, including tables, figures and sequence listings, can be used.
[0087]
Methods for preparing and using probes and primers are described in Sambrook, J .; Et al. (1989)Molecular Cloning: A Laboratory Manual, Second Edition, Volumes 1-3, Cold Spring Harbor Press, Plainview NY, Ausubel, F.C. M. Et al. (1987)Current Protocols in Molecular Biology, Green Pubi. Assoc. & Wiley-Intersciences, New York NY, Innis et al. (1990)PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA, and the like. A PCR primer pair can be obtained from a known sequence using a computer program for that purpose, such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
[0088]
The selection of oligonucleotides to use as primers is made using software well known in the art for such purpose. For example, OLIGO 4.06 software is useful for selecting PCR primer pairs of up to 100 nucleotides each, oligonucleotides and up to 5,000 larger polynucleotides derived from input polynucleotide sequences up to 32 kilobases. It is also useful for analyzing data. Similar primer selection programs incorporate additional features for expansion capabilities. For example, the PrimOU primer selection program (available publicly from the Genome Center at the University of Texas Southwestern Medical Center in Dallas, Texas) is capable of selecting specific primers from megabase sequences, and thus covers the entire genome. Useful for designing primers. The Primer3 primer selection program (available publicly from the Whitehead Institute / MIT Genome Research Center in Cambridge, Mass.) Allows users to input a "mispriming library", where the sequences that you want to avoid as primer binding sites are Is specified. Primer 3 is particularly useful for selecting oligonucleotides for microarrays. (The source code of the latter two primer selection programs may be obtained from their own source and modified to meet the specific needs of the user.) PrimerGen program (Human Genome Mapping Project in Cambridge, UK-General Information from Resource Center Designed primers based on multiple sequence alignments, thereby allowing the selection of primers that hybridize to either the largest or the smallest conserved region of the aligned nucleic acid sequences . Thus, this program is useful for identifying unique and conserved oligonucleotide and polynucleotide fragments. Oligonucleotides and polynucleotide fragments identified by any of the above selection methods can be used to identify fully or partially complementary polynucleotides in hybridization techniques, eg, as PCR or sequencing primers, as microarray elements, or in nucleic acid samples. It is useful as a specific probe to perform. The method for selecting the oligonucleotide is not limited to the above method.
[0089]
A “recombinant nucleic acid” is a sequence that is not a natural sequence or that has a sequence produced by artificially combining two or more segments of a sequence that would otherwise be separated if not artificially combined. This artificial combination is often achieved by chemical synthesis, but more generally by the artificial manipulation of isolated segments of nucleic acids, for example, by genetic engineering techniques such as those described in Sambrook et al., Supra. Achieved by. The term recombinant nucleic acid also includes a mutant nucleic acid in which a part of the nucleic acid is simply added, substituted or deleted. Frequently, recombinant nucleic acids include nucleic acid sequences operably linked to a promoter sequence. Such a recombinant nucleic acid can be an essential element of the vector, for example, as used to transform a cell.
[0090]
Alternatively, such a recombinant nucleic acid may be an essential element of a viral vector, for example based on vaccinia virus. Vaccinia virus can be used for vaccination in mammals, where the recombinant nucleic acid is expressed to induce a protective immune response in the mammal.
[0091]
A "regulatory element" is a nucleic acid sequence usually derived from the untranslated region of a gene and includes enhancers, promoters, introns, and 5 'and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins that regulate transcription, translation or RNA stability.
[0092]
"Reporter molecule" is a chemical or biochemical component used to label nucleic acids, amino acids or antibodies. Reporter molecules include radionuclides, enzymes, fluorescent agents, chemiluminescent agents, chromogenic agents, substrates, cofactors, inhibitors, magnetic particles, and other components known in the art.
[0093]
An "RNA equivalent" with respect to a DNA sequence is the same nucleotide as the reference DNA sequence, except that all of the nitrogenous bases thymine are replaced by uracil and that the sugar backbone is composed of ribose instead of deoxyribose. Consists of a linear array.
[0094]
The term "sample" is used in its broadest sense. The sample presumed to contain the SAT, the nucleic acid encoding the SAT, or a fragment thereof is obtained by analyzing a body fluid, an extract from the cell or a chromosome or an organelle isolated from the cell, a membrane, a cell, Genomic DNA, RNA, and cDNA present in or immobilized on a substrate, tissue, tissue prints, and the like.
[0095]
The term “specific binding” or “specifically binds” refers to the interaction between a protein or peptide and an agonist, antibody, antagonist, small molecule, any natural or synthetic binding component. This interaction depends on the presence or absence of a particular structure of the protein (eg, an antigenic determinant or epitope) that the binding molecule recognizes. For example, if the antibody is specific for epitope "A", then in a reaction involving labeled free A and the antibody, the presence of a polypeptide comprising epitope A (ie, free, unlabeled A) Reduces the amount of labeled A bound to the antibody.
[0096]
The term "substantially purified" refers to a nucleic acid or amino acid sequence that has been removed from the natural environment or has been isolated or separated and that is at least about 60%, preferably at least about 60%, of other naturally associated components. 75%, most preferably at least about 90% free.
[0097]
"Substitution" refers to the replacement of one or several amino acids or nucleotides with another amino acid or nucleotide, respectively.
[0098]
"Substrate" refers to any suitable solid or semi-solid support, including membranes, filters, chips, slides, wafers, fibers, magnetic or non-magnetic beads, gels, tubes, plates, polymers, microparticles, and the like. Includes particles, capillaries. The substrate can have various surface morphologies such as depressions, grooves, pins, channels, pores, etc., and polynucleotides and polypeptides bind to the substrate surface.
[0099]
"Transcription image" refers to the collective pattern of gene expression by a unique cell type or tissue at a given time, condition.
[0100]
"Transformation" refers to the process by which exogenous DNA enters a recipient cell. Transformation can occur under natural or artificial conditions according to various methods known in the art, and include any known method for inserting foreign nucleic acid sequences into prokaryotic or eukaryotic host cells. Can be based. The method of transformation is selected depending on the type of host cell to be transformed. Transformation methods include, but are not limited to, bacteriophage or viral infections, electroporation, heat shock, lipofection, and biolistics. "Transformed" cells include stably transformed cells in which the introduced DNA is capable of replicating autonomously as a plasmid or as part of the host chromosome. Furthermore, cells that express the introduced DNA or introduced RNA temporarily for a limited time are also included.
[0101]
As used herein, a “genetically transformant” is any organism, including but not limited to animals and plants, wherein one or several cells of the organism are involved, for example, in the art, by the involvement of humans. It has a heterologous nucleic acid introduced by well known transformation techniques. The nucleic acid is introduced into the cell either directly or indirectly, by introducing it into a precursor of the cell, by deliberate genetic manipulation, for example by microinjection or by introducing a recombinant virus. The term genetic manipulation refers to classical cross breeding orin in vitroIt does not refer to fertilization but to the introduction of a recombinant DNA molecule. Genetic transformants contemplated according to the present invention include bacteria, cyanobacteria, fungi and plants and animals. The isolated DNA of the present invention can be introduced into a host by methods known in the art, for example, infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are well known and are described in Sambrook (1989), supra.
[0102]
A “variant” of a particular nucleic acid sequence is defined as a nucleic acid sequence that has at least 40% homology with the particular nucleic acid sequence over the entire length of the nucleic acid sequence. At this time, blastn is executed using the “BLAST 2 Sequences” tool Version 2.0.9 (May 7, 1999) set as the default parameter. Such a nucleic acid pair can be, for example, at least 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, It may show 96%, 97%, 98%, 99% or more homology. Certain variants may be described, for example, as "allelic" variants (described above), "splice" variants, "species" variants or "polymorphic" variants. Splice variants may have significant homology to a reference molecule, but will usually have a large or small number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may have additional functional domains or may lack domains present in the reference molecule. Species variants are polynucleotide sequences that differ from one another by species. The resulting polypeptides usually have significant amino acid homology to one another. Polymorphic variants vary in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants may also include "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence changes by one nucleotide base. The presence of a SNP may be indicative of, for example, a particular population, condition or propensity for a condition.
[0103]
A “variant” of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% homology to the particular polypeptide sequence over one entire length of the polypeptide sequence. Here, blastp is executed using the “BLAST 2 Sequences” tool Version 2.0.9 (May 7, 1999) set as the default parameter. Such a pair of polypeptides may be, for example, at least 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, for a given length. , 97%, 98%, 99% or more sequence identity.
[0104]
(invention)
Table 1 is a summary of the nomenclature of the full length polynucleotide and polypeptide sequences of the present invention. Each polynucleotide and its corresponding polypeptide correlates with one Incyte project identification number (Incyte project ID). Each polypeptide sequence was designated by a polypeptide sequence identification number (polypeptide SEQ ID NO) and an Incyte polypeptide sequence number (Incyte polypeptide ID). Each polynucleotide sequence was designated by a polynucleotide sequence identification number (polynucleotide SEQ ID NO) and an Incyte polynucleotide sequence number (Incyte polynucleotide ID).
[0105]
Table 2 shows sequences with homology to the polypeptides of the invention, as identified by BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 indicate the invented polypeptide by polypeptide sequence identification number (polypeptide SEQ ID NO) and corresponding Incyte polypeptide sequence number (Incyte polypeptide ID). Column 3 shows the GenBank identification number (Genbank ID NO :) of the closest homolog of GenBank. Column 4 shows the probability score representing the match between each polypeptide and its GenBank homolog. Column 5 shows the annotations of the GenBank homologs, with the appropriate citation in place. These are incorporated herein by reference.
[0106]
Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2 show the individual polypeptides invented with the polypeptide sequence identification number (SEQ ID NO) and the corresponding Incyte polypeptide sequence number (Incyte polypeptide ID). Column 3 shows the number of amino acid residues in each polypeptide. Rows 4 and 5 show potential phosphorylation and glycosylation sites, respectively, as determined by the MOTIFS program (Genetics Computer Group, Madison WI) of the GCG sequence analysis software package. Column 6 shows the amino acid residues that include the signature sequence, domain, and motif. Column 7 shows the analysis method for analysis of the structure / function of the protein, and the relevant part shows a searchable database used for the analysis method.
[0107]
Tables 2 and 3 together summarize the properties of each of the polypeptides of the present invention, which properties establish that the claimed polypeptides are secretory and transport molecules. For example, SEQ ID NO: 2 is 93% identical to mitsugumin29 (GenBank ID g3077703), a member of the synaptophysin family, as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2) The BLAST probability score is 2.9e-136, indicating the probability that the observed polypeptide sequence alignment will be obtained by chance. SEQ ID NO: 2 also has a synaptophysin / synaptoporin domain. This was determined by searching for statistically significant matches in the PFAM database of conserved protein family domains based on the Hidden Markov Model (HMM) (see Table 3) and the protein signature sequences of the DOMO and PRODOM databases. The data obtained from the BLAST comparison to and BLIMPS and PROFILESCAN analysis provide further evidence that SEQ ID NO: 2 is a family member of synaptophysin. SEQ ID NO: 3 has a BLAST probability score of 0.0 and is 72% identical to rat surface endosome glycoprotein (GenBank ID g777776). Data from BLAST analysis against the PRODOM database further shows conclusive evidence that SEQ ID NO: 3 is a pointed endosomal glycoprotein. SEQ ID NO: 8 has a BLAST probability score of 0.0 and a brown rat (Rattus norvegicus )of95% identical to synaptotagmin III (GenBank ID g484296). SEQ ID NO: 8 also has a C2 domain. This was determined by searching for statistically significant matches in the PFAM database of conserved protein family domains based on the Hidden Markov Model (HMM). (See Table 3) Data from BLIMPS, MOTIFS, and PROFILESCAN analysis provide further empirical evidence that SEQ ID NO: 8 is a C2 domain-containing protein (possibly a member of the synaptotagmin family). . SEQ ID NO: 1, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and SEQ ID NO: 9 were analyzed and annotated in a similar manner. . The algorithm and parameters for the analysis of SEQ ID NOs: 1-9 are described in Table 7.
[0108]
As shown in Table 4, the full-length polynucleotide sequence of the present invention was constructed using a cDNA sequence or a coding (exon) sequence derived from genomic DNA, or any combination of these two sequences. Columns 1 and 2 show the polynucleotide of the present invention with the polynucleotide sequence identification number (Polynucleotide SEQ ID NO) and the corresponding Incyte polynucleotide consensus sequence number (Incyte polynucleotide ID). Column 3 shows the length (in base pairs) of each polynucleotide sequence. Column 4 contains polynucleotide sequences useful for hybridization or amplification techniques, eg, to identify SEQ ID NO: 10-18 or to distinguish SEQ ID NO: 10-18 from related polynucleotide sequences. Shows a fragment. Column 5 shows the identification number corresponding to the cDNA sequence, the coding sequence (exon) predicted from genomic DNA and / or the sequence set having both cDNA and genomic DNA. These sequences were used to construct the full length polynucleotide sequences of the present invention. Columns 6 and 7 of Table 4 indicate the starting nucleotide (5 ') and ending nucleotide (3') positions of the cDNA and genomic sequences, respectively, corresponding to the sequence of column 5.
[0109]
The identification numbers in column 5 of Table 4 may particularly refer to, for example, Incyte cDNA and its corresponding cDNA library. For example, 1438701F1 is the identification number of the Incyte cDNA sequence, and PANCNOT02 is the identification number of the cDNA library from which it was derived. Insite cDNAs for which no cDNA library is shown are derived from a pooled cDNA library (eg, 70767606V1). Alternatively, the identification number in row 5 may be the identification number of the GenBank cDNA or EST (eg, g5810426) used to assemble the polynucleotide sequence. Further, the identification number in column 5 may identify a sequence derived from the ENSEMBL (The Sanger Center, Cambridge, UK) database (a sequence containing "ENST"). Alternatively, the identification number in column 5 may be derived from the NCBI RefSeq nucleotide / sequence / record database (sequence containing "NM" or "NT") or the NCBI RefSeq protein sequence / record (sequence containing "NP"). is there. Alternatively, the identification number in column 5 may refer to both the set of cDNA and Genscan predicted exons combined by the “exon-stitching” algorithm. For example, FL_XXXXXX_N1_N2_YYYYY_N3_N4  Is a "sewn" sequence in which the identification number of the cluster of the sequence to which the algorithm is applied is XXXXXXX, the prediction number generated by the algorithm is YYYYY, and N1,2,3. . Represents a particular exon, if present, that may be manually edited during the analysis (see Example 5). Alternatively, the identification number in column 5 may refer to a set of exons connected by an “exon-stretching” algorithm. For example, FLXXXXXX_gAAAAAA_gBBBBBB_1_N is the identification number of the “stretch” sequence. Where XXXXXX is the Incyte project identification number, gAAAAAA is the GenBank identification number of the human genome sequence to which the “exon stretching” algorithm is applied, gBBBBB is the GenBank identification number of the closest GenBank protein homolog or NCBI RefSeq identification number, and N is Indicates a specific exon. (See Example 5.) If the RefSeq sequence was used as a protein homolog for the “exon stretching” algorithm, the RefSeq identifier (indicated by NM, NP or NT) would be replaced by the GenBank identifier (gBBBBBB). Can be used.
[0110]
Alternatively, the prefix identifies component sequences by manual editing, prediction from genomic DNA sequences, or from a combination of sequence analysis methods. The following table lists examples of component sequence prefixes associated with the prefixes and the corresponding sequence analysis methods (see Examples 4 and 5).
Figure 2004528002
[0111]
In some cases, coverage of Incyte cDNA was obtained that overlapped with the coverage of the sequence as shown in column 5 to confirm the final consensus polynucleotide sequence, but did not give the relevant Incyte cDNA identification number.
[0112]
Table 5 shows a representative cDNA library for full-length polynucleotide sequences constructed using Incyte cDNA sequences. Representative cDNA libraries are those most frequently represented by the Incyte cDNA sequences used to construct and confirm the above polynucleotide sequences. The tissues and vectors used to prepare the cDNA library are shown in Table 5 and described in Table 6.
[0113]
The present invention also includes SAT variants. Preferred SAT variants have at least one of SAT functional and / or structural characteristics and have at least about 80% amino acid sequence identity to the SAT amino acid sequence, or at least about 90% amino acid sequence. Have identity, and even at least about 95% amino acid sequence identity.
[0114]
The present invention also provides a polynucleotide encoding SAT. In certain embodiments, the invention provides a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 10-18 encoding a SAT. The polynucleotide sequence of SEQ ID NO: 10-18 shown in the sequence listing contains an equivalent RNA sequence in which thymine, a nitrogenous base, is substituted with uracil and the backbone of the sugar chain is composed of ribose instead of deoxyribose.
[0115]
The present invention also includes a mutant sequence of the polynucleotide sequence encoding SAT. In particular, a variant of such a polynucleotide sequence will have at least 70% polynucleotide sequence identity, or at least 85% polynucleotide sequence identity, or even at least 95% polynucleotide sequence with the polynucleotide sequence encoding SAT. Has polynucleotide sequence identity. In some embodiments of the present invention, the SEQ ID NO: 10-18 has at least about 70%, or at least about 85%, or at least about 95% identity to an amino acid sequence selected from the group consisting of SEQ ID NOS: 10-18. Includes a variant of the polynucleotide sequence having a sequence selected from the group consisting of ID NOs: 10-18. A variant of any of the above polynucleotides may encode an amino acid sequence having at least one functional or structural characteristic of a SAT.
[0116]
One of skill in the art will appreciate that the various polynucleotide sequences encoding SAT that can be created by the degeneracy of the genetic code include those that have minimal similarity to the polynucleotide sequences of any known, naturally occurring genes. Will understand. Thus, the present invention may cover any and all possible variants of the polynucleotide sequence that can be generated by selecting combinations based on possible codon choices. These combinations are made on the basis of the standard triplet genetic code as applied to the polynucleotide sequence of the native SAT, and all variations are considered to be expressly disclosed.
[0117]
The nucleotide sequence encoding SAT and its mutant sequences are generally capable of hybridizing to the nucleotide sequence of a native SAT under suitably selected stringent conditions, but are substantially non-naturally occurring, such as including non-naturally occurring codons. It may be advantageous to generate nucleotide sequences that encode SAT or its derivatives with different usage codons. Based on the frequency with which a host utilizes a particular codon, it is possible to select codons to enhance the expression of a peptide that occurs in a particular eukaryotic or prokaryotic host. Another reason to substantially alter the nucleotide sequence encoding SAT and its derivatives without altering the encoded amino acid sequence is that RNA transcripts with favorable properties, such as a longer half-life, than transcripts made from the native sequence Is to make things.
[0118]
The present invention also includes the generation of SAT sequences encoding SAT and its derivatives or fragments thereof entirely by synthetic chemistry. After construction, the synthetic sequence can be inserted into any of a variety of available expression vectors and cell lines using reagents well known in the art. In addition, synthetic chemistry can be used to introduce mutations into the sequence encoding SAT or any fragment thereof.
[0119]
The invention further includes polynucleotide sequences that are capable of hybridizing under various stringent conditions to the claimed polynucleotide sequences, particularly SEQ ID NOS: 10-18 and fragments thereof ( See, for example, Wahl, GM and SL Berger (1987) Methods Enzymol. 152: 399-407; Kimmel, AR (1987) Methods Enzymol. 152: 507-511). Hybridization conditions, including annealing and washing conditions, are described in Definitions.
[0120]
Methods of DNA sequencing are well known in the art, and any of the embodiments of the present invention can be practiced using DNA sequencing methods. Enzymes can be used in the DNA sequencing method. For example, Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), and thermostable T7 polymerase (Amersham, Pharmacia, N. Biocia, Japan) ) Can be used. Alternatively, a polymerase and a calibrated exonuclease can be used in combination, for example, as found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, the system is automated using a MICROLAB 2200 liquid transfer system (Hamilton, Reno, NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Next, sequencing is performed using an ABI 373 or 377 DNA sequencing system (Applied Biosystems), a MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA) or other methods well known in the art. The resulting sequence is analyzed using various algorithms well known in the art. (Ausubel, FM (1997)Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7, Meyers, R.A. A. (1995)Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853. Etc.).
[0121]
Various techniques based on the PCR method known in the art are used to extend the nucleic acid sequence encoding SAT using partial nucleotide sequences to detect sequences upstream of promoters and regulatory elements. For example, one of the methods that can be used, restriction site PCR, is a method of amplifying an unknown sequence from genomic DNA in a cloning vector using universal primers and nested primers (Sarkar, G. (1993) PCR). Methods Applic. 2: 318322.). Another method is the inverse PCR method, which amplifies an unknown sequence from a circularized template using primers extended in a wide range of directions. The template is obtained from a restriction fragment containing the known genomic locus and surrounding sequences (Triglia, T. et al. (1988) Nucleic Acids Res. 16: 8186.). A third method is the capture PCR method, which involves PCR amplifying a DNA fragment adjacent to a known sequence of human and yeast artificial chromosomal DNA. (Lagerstrom, M. et al. (1991) PCR Methods Applic. 1: 111119.). In this method, it is possible to insert a recombinant double-stranded sequence into an unknown sequence region using digestion and ligation of a plurality of restriction enzymes before performing PCR. Also, other methods that can be used to search for unknown sequences are known in the art. (Parker, JD, et al. (1991) Nucleic Acids Res. 19: 30553060). In addition, genomic DNA can be walked using PCR, nested primers and PromoterFinder ™ library (Clontech, Palo Alto CA). This procedure is useful for finding intron / exon junctions without having to screen the library. For all PCR-based methods, commercially available software, such as OLIGO 4.06 Primer Analysis Software (National Biosciences, Plymouth MN) or another suitable program, may be about 22-30 nucleotides in length, Primers can be designed to anneal to the template at a GC content of about 50% or more and a temperature of about 68 ° C to 72 ° C.
[0122]
When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, randomly primed libraries often contain sequences having the 5 'region of the gene, and are suitable for situations where an oligo d (T) library cannot produce full-length cDNA. Genomic libraries will be useful for extension of sequence into 5 'non-transcribed regulatory regions.
[0123]
A commercially available capillary electrophoresis system can be used to analyze the size of the sequencing or PCR product or to confirm its nucleotide sequence. Specifically, capillary sequencing involves a flowable polymer for electrophoretic separation, a laser-activated fluorescent dye that is specific for four different nucleotides, and detection of the emitted wavelength. And a CCD camera used for The output / light intensity can be converted to an electrical signal using appropriate software (such as GENOTYPER, SEQUENCE NAVIGATOR from Applied Biosystems). The entire process from sample loading to computer analysis and electronic data display is computer controllable. Capillary electrophoresis is particularly suitable for sequencing small DNA fragments that are present in small amounts in a particular sample.
[0124]
In another embodiment of the present invention, a polynucleotide sequence encoding SAT or a fragment thereof can be cloned into a recombinant DNA molecule to express SAT, a fragment thereof or a functional equivalent in a suitable host cell. It is. Due to the inherent degeneracy of the genetic code, alternative DNA sequences encoding substantially the same or functionally equivalent amino acid sequences can be made, and these sequences can be used for SAT cloning and expression.
[0125]
The nucleotide sequence of the present invention can be recombined using methods commonly known in the art to alter the sequence encoding SAT for various purposes. This purpose includes, but is not limited to, cloning, processing and / or regulating expression of the gene product. Nucleotide sequences can be recombined using random fragmentation of gene fragments and synthetic oligonucleotides and DNA shuffling by PCR reassembly. For example, oligonucleotide-mediated site-directed mutagenesis can be used to introduce mutations that create new restriction sites, alter glycosylation patterns, alter codon preferences, generate splice variants, and the like.
[0126]
The nucleotides of the present invention can be obtained from MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; U.S. Pat. No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17: 793-797; Christians, F. C. et al. (1999) Nat. Biotechnol. 17: 259-264; Crameri, A. et al. (1996) Nat. Biotechnol. 14: 315-319). The biological properties of the SAT can be altered or improved, such as its catalytic or enzymatic activity, or its ability to bind to other molecules or compounds. DNA shuffling is the process of generating a library of gene variants using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening to identify the gene variant with the desired properties. These suitable mutants may then be pooled and subjected to repeated DNA shuffling and selection / screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene with random point mutations can be recombined, recombined, screened, and then shuffled until the desired properties are optimized. Alternatively, a recombination and recombination of a given gene with a homologous gene of the same gene family from either the same species or a different species, thereby controlling the genetic diversity of a plurality of naturally occurring genes in a directed and controllable manner. Can be maximized.
[0127]
According to another embodiment, the sequence encoding SAT can be synthesized, in whole or in part, using chemical methods well known in the art (eg, Caruthers. MH, et al. (1980) Nucl. Acids Res. Symp. Ser 7: 215-223; and Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser 7.225-232). Alternatively, SAT itself or a fragment thereof can be synthesized using chemical methods. For example, peptide synthesis can be performed using various liquid or solid phase techniques (Creightton, T. (1984)).Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60, Robert, J .; Y. (1995) Science 269: 202-204). Automated synthesis can be achieved using an ABI 431A peptide synthesizer (Perkin Elmer). Further, the amino acid sequence of SAT, or any portion thereof, may be altered by direct synthesis and / or in combination with sequences from other proteins or any portion thereof, using chemical methods, to produce the native SAT. It is possible to produce a polypeptide having a polypeptide sequence or a variant polypeptide.
[0128]
Peptides can be substantially purified using high performance liquid chromatography for separation (see, eg, Chiez, RM and FZ Regnier (1990) Methods Enzymol. 182: 392-421). The composition of the synthetic peptide can be confirmed by amino acid analysis or sequencing (see Creighton, supra, pages 28-53, etc.).
[0129]
To express a biologically active SAT, the nucleotide sequence encoding SAT or a derivative thereof is inserted into a suitable expression vector. This expression vector contains the necessary elements for the regulation of transcription and translation of the coding sequence inserted in a suitable host. These elements include regulatory sequences such as enhancers, constitutive and expression-inducible promoters, 5 'and 3' untranslated regions in the vector and polynucleotide sequences encoding SAT. Such elements vary in length and specificity. With a specific initiation signal, it is possible to achieve a more efficient translation of the sequence coding for the SAT. Such signals include the ATG start codon and nearby sequences such as the Kozak sequence. If the sequence encoding SAT, its initiation codon, and upstream regulatory sequences are inserted into a suitable expression vector, no additional transcriptional or translational regulatory signals will be necessary. However, if only the coding sequence or a fragment thereof is inserted, an exogenous translational control signal including an in-frame ATG initiation codon should be included in the expression vector. Exogenous translational elements and initiation codons can be of various natural and synthetic origin. Inclusion of suitable enhancers for the particular host cell line used can increase the efficiency of expression. (See Scharf, D. et al. (1994) Results Probl. Cell Differ. 20: 125-162.).
[0130]
Using methods well known to those skilled in the art, it is possible to create an expression vector containing a sequence encoding SAT and suitable transcriptional and translational regulatory elements. These methods include:in in vitroRecombinant DNA technology, synthetic technology, andin VivoGenetic recombination techniques are included (eg, Sambrook, J. et al. (1989)).Molecular Cloning. A Laboratory ManualAusubel, F., Cold Spring Harbor Press, Plainview NY, Chapters 4 and 8, and 16-17; M. other. (1995)Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, Chapters 9, 13, and 16).
[0131]
Various expression vector / host systems can be used to retain and express the SAT-encoding sequence. Such expression vector / host systems include, but are not limited to, bacteria transformed with recombinant bacteriophage, plasmid or cosmid DNA expression vectors, yeast transformed with yeast expression vectors, and viruses. Insect cell lines infected with an expression vector (eg, baculovirus), plant cell lines transformed with a viral expression vector (eg, cauliflower mosaic virus CaMV or tobacco mosaic virus TMV) or a bacterial expression vector (eg, Ti or pBR322 plasmid), There are microorganisms such as animal cell systems. (Sambrook, supra, Ausubel, supra, Van Heke, G. and SM Schuster (1989) J. Biol. Chem. 264: 5503-5509; Engelhard, EK, et al. (1994) Proc. Natl. Acad. Sci. USA 91: 3224-2327, Sandig, V. et al. (1996) Hum. Gene Ther. 7: 1937-1945, Takamatsu, N. (1987) EMBOJ. 6: 307-311; The Yearbook of Science and Technology "(The McGraw Hill Year of Science and Technology) (1992) McGraw Hill New York NY, pp. 191-196, Logan, J. et al. And T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81: 3655-3659, Harrington, JJ et al. (1997) Nat. Genet. 15: 345-355, etc.). Expression vectors derived from retroviruses, adenoviruses, herpesviruses or vaccinia viruses, or expression vectors derived from various bacterial plasmids can be used to transport nucleotide sequences to target organs, tissues or cell populations (Di Nicola, 5 (6): 350-356, Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA 90 (13): 6340-6344, Buller, R. M. et al. (1998) Cancer Gen. Ther. (1985) Nature 317 (6040): 813-815; McGregor, DP et al. (1994) Mol. Immunol. 31 (3): 219-226, Verma, IM, and N. Somia ( 1997) Nat See 239-242, etc.): re 389.
The present invention is not limited by the host cell used.
[0132]
In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for the polynucleotide sequence encoding SAT. For example, routine cloning, subcloning, and propagation of a polynucleotide sequence encoding a SAT requires multifunctional, such as PBLUESCRIPT (Stratagene, La Jolla CA) or pSPORT1 plasmid (GIBCO BRL).E. coliVectors can be used. Ligation of the SAT coding sequence into multiple cloning sites of the vector disrupts the lacZ gene, allowing a colorimetric screening method to identify transformed bacteria containing the recombinant molecule. In addition, these vectors are used in the cloned sequence.in in vitroIt may also be useful for transcription, sequencing dideoxy, rescue of single strands by helper phage, generation of nested deletions (eg, Van Heake, G. and SM Schuster (1989) J. Biol. Chem. 264: 55035509). For example, when a large amount of SAT is required, for example, for the production of an antibody, a vector that induces SAT expression at a high level can be used. For example, vectors containing a strong inducible T5 or inducible T7 bacteriophage promoter can be used.
[0133]
A yeast expression system can be used for SAT expression. Numerous vectors containing constitutive or inducible promoters such as α-factor, alcohol oxidase, PGH promoter, etc.Pichia pastorisIt can be used for Furthermore, such vectors induce either the secretion of the expressed protein or its retention in cells, incorporating foreign sequences into the host genome for stable growth. (See, for example, Ausubel, 1995, supra, Bitter, GA et al. (1987) Methods Enzymol. 153: 516-544, and Scorer. CA et al. (1994) Bio / Technology 12: 181-184. reference).
[0134]
It is also possible to express SAT using a plant system. Transcription of the SAT-encoding sequence can be achieved by transcription from viral promoters, such as CaMV-derived 35S and 19S, alone or in combination with an omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J 6: 307-311). Promoted by a promoter. Alternatively, a plant promoter such as a small subunit of RUBISCO or a heat shock promoter may be used (for example, Coruzzi, G. et al. (1984) EMBO J. 3: 1671-1680; Broglie, R. et al. (1984) Science). 224: 838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17: 85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (Maglow Hill Science and Technology Yearbook (The McGraw Hill Yearbook of Science and Technology(1992) McGraw Hill New York NY, p. 191-196).
[0135]
In mammalian cells, a number of viral-based expression systems may be utilized. When an adenovirus is used as an expression vector, a sequence encoding SAT may be ligated to an adenovirus transcript / translation complex consisting of the late promoter and tripartite leader sequence. By inserting the viral genome into the indispensable E1 or E3 region, it is possible to obtain an infectious virus expressing SAT in the host cell. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81: 36553659). In addition, transcription enhancers such as the Rous sarcoma virus (RSV) enhancer can be used to increase expression in mammalian host cells. High levels of protein expression can also be achieved using vectors based on SV40 or EBV.
[0136]
Human artificial chromosomes (HACs) can also be used to transport fragments of DNA larger than those contained in and expressed from the plasmid. Approximately 6 kb to 10 Mb of HACs are made for treatment and supplied by conventional delivery methods (liposomes, polycationic amino polymers, or vesicles). (Harrington, JJ, et al. (1997) Nat Genet. 15: 345-355, Price, CM (1993) Blood Rev. 7: 127-134, Trask, BJ. (1991) Trends Genet. 7: 149-154).
[0137]
For long-term production of recombinant mammalian proteins, stable expression of SAT in cell lines is desirable. For example, an expression vector can be used to transform a SAT-encoding sequence into a cell line. Such expression vectors include replication and / or endogenous expression elements of viral origin and a selectable marker gene on the same or another vector. After the introduction of the vector, the cells can be allowed to grow for about 1-2 days in an enriched medium before being transferred to a selective medium. The purpose of the selectable marker is to confer resistance to the selection medium, and the presence of the selectable marker allows for the growth and recovery of cells that successfully express the introduced sequence. Resistant clones of stably transformed cells can be propagated using tissue culture techniques appropriate for the cell type.
[0138]
The transformed cell line can be recovered using any number of selection systems. Such selection systems include, but are not limited to, tkA herpesvirus thymidine kinase gene used for simple cells and aprThere are adenine phosphoribosyltransferase genes used for cells (see, eg, Wigler, M. et al. (1977) Cell 11: 223-232; Lowy, I. et al. (1980) Cell 22: 817-823). Also, resistance to antimetabolites, antibiotics or herbicides can be used as the basis for selection. For example, dhfr confers resistance to methotrexate, neo confers resistance to aminoglycosid neomycin and G-418, als confer resistance to chlorsulfuron, and pat confer resistance to phosphinothricin acetyltransferase (Wigler, M., et al. (1980) Proc. Natl. Acad. Sci. USA 77: 35673570; Colbere Garapin, F. et al. (1981) J. Mol. Biol. 150: 114). Other selectable genes, such as trpB and hisD, which alter cell requirements for metabolism, are described in the literature as anitocyanin, green fluorescent protein (GFP; Clontech), β-glucuronidase and its substrate GUS, Visible markers such as luciferase and its substrate luciferin are used. Visible markers such as anthocyanins, green fluorescent protein (GFP; Clontech), β-glucuronidase and its substrate β-glucuronide, or luciferase and its substrate luciferin may be used. Using these markers, it is possible not only to identify transformants, but to quantify transient or stable protein expression due to a particular vector system (Rhodes, CA (1995) Methods). Mol. Biol. 55: 121131).
[0139]
Even if the presence / absence of marker gene expression indicates the presence of the gene of interest, it may be necessary to confirm the presence and expression of that gene. For example, if a sequence encoding SAT is inserted into a marker gene sequence, transformed cells containing the sequence encoding SAT can be identified by a lack of marker gene function. Alternatively, the marker gene can be aligned with the sequence encoding SAT under the control of one promoter. Expression of the marker gene in response to induction or selection usually also indicates expression of the tandem gene.
[0140]
In general, host cells that contain the SAT-encoding nucleic acid sequence and express SAT can be identified using a variety of methods well known to those skilled in the art. Non-limiting methods well known to those skilled in the art include DNA-DNA or DNA-RNA hybridization, PCR, nucleic acid or protein detection, quantification, or both, membrane systems and solutions. There are protein bioassays or immunoassays, including base or chip based techniques.
[0141]
Immunological methods for detecting and measuring SAT expression using either specific polyclonal or monoclonal antibodies are well known in the art. Such techniques include enzyme linked immunosorbent assays (ELISA), radioimmunoassays (RIA), flow cytometers (FACS) and the like. A two-site, monoclonal-based immunoassay using monoclonal antibodies reactive to two non-interfering epitopes on the SAT is preferred, but a competitive binding assay can also be used. These and other assays are known in the art (Hampton. R. et al. (1990).Serological Methods, a Laboratory Manual. APS Press. St Paul. MN, Sect. IV, Coligan, J.M. E. FIG. Et al. (1997)Current Protocols in Immunology, Green Pub. Associates and Wiley-Interscience, New York NY, Pound, J .; D. (1998)Immunochemical Protocols, Humans Press, Totowa NJ, etc.).
[0142]
A wide variety of labels and conjugation methods are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Methods for generating labeled hybridization or PCR probes to detect sequences related to the SAT-encoding polynucleotide include oligo-labeling, nick translation, end-labeling, or labeled nucleotides. The PCR amplification used is included. Alternatively, the sequence encoding SAT, or any fragment thereof, can be cloned into a vector for generating an mRNA probe. Such vectors are known in the art and commercially available, with the addition of a suitable RNA polymerase such as T7, T3 or SP6 and labeled nucleotides.in in vitroCan be used for the synthesis of RNA probes. Such methods are described, for example, in Amersham Pharmacia Biotech, Promega (Madison WI), U.S.A. S. It can be performed using various kits commercially available from Biochemical or the like. Suitable reporter molecules or labels that can be used to facilitate detection include substrates, cofactors, inhibitors, magnetic particles, as well as radionuclides, enzymes, fluorescent agents, chemiluminescent agents, chromogenic agents, and the like.
[0143]
Host cells transformed with the nucleotide sequence encoding SAT are cultured under conditions suitable for the expression and recovery of the protein from cell culture. Whether a protein produced from a transformed cell is secreted or remains in the cell depends on the sequence, the vector, or both. Those of skill in the art will appreciate that expression vectors containing a polynucleotide encoding SAT can be designed to include a signal sequence that directs secretion of SAT across prokaryotic and eukaryotic cell membranes.
[0144]
In addition, selection of a host cell strain may be made by its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing that cleaves the "prepro" or "pro" form of the protein can also be used to identify protein targeting, folding and / or activity. A variety of host cells (eg, CHO, HeLa, MDCK, MEK293, WI38, etc.) with unique cellular devices and characteristic mechanisms for post-translational activity are available from the American Type Culture Collection (ATCC, Bethesda, Va.). It is possible and can be chosen to ensure correct modification and processing of the foreign protein.
[0145]
In another embodiment of the present invention, a natural or altered or recombinant nucleic acid sequence encoding SAT is linked to a heterologous sequence which translates into a fusion protein in any of the host systems described above. For example, a chimeric SAT protein containing a heterologous moiety that can be recognized by commercially available antibodies can facilitate screening of peptide libraries for inhibitors of SAT activity. Heterologous protein moieties and heterologous peptide moieties can also facilitate purification of the fusion protein using commercially available affinity substrates. Such portions include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, There is hemagglutinin (HA). GST on immobilized glutathione, MBP on maltose, Trx on phenylarsine oxide, CBP on calmodulin, and 6-His on metal chelating resin allow purification of homologous fusion proteins. FLAG, c-myc and hemagglutinin (HA) allow immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. Also, if the fusion protein is engineered so that the fusion protein contains a proteolytic cleavage site between the SAT-encoding sequence and the heterologous protein sequence, the SAT may be cleaved from the heterologous portion after purification. Methods for expression and purification of the fusion protein are described in Ausubel (1995), Chapter 10, supra. Various commercially available kits can also be used to facilitate expression and purification of the fusion protein.
[0146]
In another embodiment of the invention, a TNT rabbit reticulocyte lysate or a wheat germ extract system (Promega) is used.in in vitroCan synthesize radioactively labeled SAT. These systems couple the transcription and translation of a protein coding sequence operably linked to a T7, T3 or SP6 promoter. Translation, for example35It occurs in the presence of a radiolabeled amino acid precursor such as S-methionine.
[0147]
A compound that specifically binds to SAT can be screened using the SAT of the present invention or a fragment thereof. At least one or more test compounds can be used to screen for specific binding to SAT. Examples of test compounds include antibodies, oligonucleotides, proteins (eg, receptors) or small molecules.
[0148]
In one embodiment, the compound so identified is closely related to a natural ligand of the SAT, eg, a ligand or fragment thereof, or a natural substrate, structural or functional mimetic or natural binding partner. (Coligan, JE, et al. (1991)Current Protocols in Immunology (See Chapter 5 of 1 (2)). Similarly, the compound may be closely related to the natural receptor to which the SAT binds, or at least some fragment of the receptor, eg, a ligand binding site. In each case, the compound can be rationally designed using known techniques. In one embodiment, screening for such compounds involves generating suitable cells that express SAT as either a secreted protein or a protein on the cell membrane. Suitable cells include cells from mammals, yeast, Drosophila, E. coli. Cells expressing SAT or cell membrane fragments containing SAT are contacted with a test compound and analyzed for binding, stimulation or inhibition of either SAT or the compound.
[0149]
Some assays simply allow the test compound to be conjugated experimentally to the polypeptide and the binding detected by a fluorescent dye, radioisotope, enzyme conjugate or other detectable label. For example, the assay can include binding at least one test compound to a SAT in solution or immobilized on a solid support, and detecting binding of the SAT to the compound. Alternatively, detection and measurement of binding of a test compound in the presence of a labeled competitor can be performed. In addition, this assay can be performed using cell-free reconstitution systems, chemical libraries or natural product mixtures, where the test compound is released in solution or immobilized on a solid support.
[0150]
Using the SAT of the present invention or a fragment thereof, it is possible to screen for a compound that regulates the activity of SAT. Such compounds include agonists, antagonists, or partial or inverse agonists and the like. In one example, the assay is performed under conditions where the activity of the SAT is acceptable, wherein the SAT binds to at least one test compound, and the activity of the SAT in the presence of the test compound is greater than the activity of the SAT in the absence of the test compound. Compare with activity. A change in the activity of SAT in the presence of the test compound indicates the presence of a compound that modulates the activity of SAT. Alternatively, the test compound comprises SAT under conditions suitable for the activity of SAT.in in vitroAlternatively, the assay is performed in combination with a cell-free reconstitution system. In any of these assays, the test compound that modulates the activity of the SAT can bind indirectly and does not require direct contact with the test compound. At least one and a plurality of test compounds can be screened.
[0151]
In another example, a polynucleotide encoding SAT or a mammalian homolog thereof is "knocked out" in an animal model system using homologous recombination in embryonic stem cells (ES cells). Such techniques are well known in the art and are useful for generating animal models of human disease (see, eg, US Pat. Nos. 5,175,383 and 5,767,337). For example, mouse ES cells such as the 129 / SvJ cell line are derived from an early mouse embryo and can be grown in a medium. These ES cells are transformed with a vector containing a gene of interest disrupted with a marker gene such as the neomycin phosphotransferase gene (neo: Capecchi, MR (1989) Science 244: 1288-1292). This vector is integrated into the corresponding region of the host genome by homologous recombination. In another method, homologous recombination is performed using the Cre-loxP system to knock out the target gene in a tissue-specific or developmental stage-specific manner (Marth, JD (1996) Clin. Invest. 97: 1999-2002). Wagner, KU, et al. (1997) Nucleic Acids Res. 25: 4323-4330). The transformed ES cells are identified and microinjected into mouse cell blastocysts collected, for example, from the C57BL / 6 mouse line. The blastocysts are surgically introduced into pseudopregnant females, the genetic traits of the resulting chimeric progeny are determined, and they are bred to produce heterozygous or homozygous lines. The transgenic animals thus produced can be tested with potential therapeutic or toxic agents.
[0152]
A polynucleotide encoding SATin in vitroIt is possible to operate on ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight distinct cell lineages, including endoderm, mesoderm and ectoderm cell types. These cell lines differentiate, for example, into neurons, hematopoietic lineages and cardiomyocytes (see Thomson, JA, et al. (1998) Science 282: 1145-1147).
[0153]
SAT-encoding polynucleotides can be used to create "knock-in" humanized animals (pigs) or transgenic animals (mouse or rat) modeled on human disease. Using knock-in technology, a region of the polynucleotide encoding SAT is injected into animal ES cells and the injected sequence is integrated into the animal cell genome. The transformed cells are injected into a blastula and the blastula is implanted as described above. Study transgenic progeny or inbred lines and treat with potential medicines to obtain information on the treatment of human disease. Alternatively, mammalian inbred lines that overexpress SAT, eg, secrete SAT into milk, may be a convenient source of protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55). -74).
[0154]
(Treatment)
There are chemical and structural similarities between certain regions of the SAT and certain regions of the secretory and transport molecules, for example, in the context of sequence and motifs. In addition, SAT expression is closely associated with brain, spinal cord, lymphoid, and reproductive tissues. Thus, SAT is thought to play a role in vesicular transport disorders, transport disorders, neurological disorders, muscular disorders, and immune disorders and cell overgrowth. In treating diseases associated with increased SAT expression or activity, it is desirable to reduce SAT expression or activity. In the treatment of a disease associated with a decrease in SAT expression or activity, it is desirable to increase SAT expression or activity.
[0155]
Thus, in certain embodiments, it is possible to administer SAT or a fragment or derivative thereof to a patient for the treatment or prevention of a disease associated with reduced SAT expression or activity. Among such disorders include, but are not limited to, movement disorders such as ataxia, amyotrophic lateral sclerosis, ataxia telangiectasia, Becker muscular dystrophy, facial paralysis, Charcot-Marie-Tooth disease, Diabetes, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemia periodic limb paralysis, normokalemia periodic limb paralysis, Parkinson's disease, malignant high fever, multidrug resistance, myasthenia gravis, myotonic dystrophy Disease, catatonia, extrapyramidal terminal deficiency syndrome, dystonia, peripheral neuropathy, cerebral tumor, prostate cancer, and canalitis, bradyarrhythmia, tachyarrhythmia, hypertension, hereditary long QT syndrome, Myocarditis, cardiomyopathy, nemarin myopathy lanemarin myopathy, central nucleus myopathy, lipid myopathy, mitochondrial myopathy, thyrotoxic myopathy Transport-related heart diseases such as, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious arthritis, and polymyositis; Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disease Transport-related neuropathy such as neuropathy, paranoid psychosis, and schizophrenia, as well as neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, Wilson's disease, cataract, infertility, and pulmonary artery Stenosis, autosomal sensorineural hearing loss, hyper / hypoglycemia, Graves' disease, goiter, Cushing's disease and adrenal insufficiency, glucose-galactose malabsorption syndrome, hypercholesterolemia, adrenal leukodystrophy, Zellweger Syndrome, Menkes disease, dorsal horn syndrome, von Gilke syndrome, cystinuria, iminoglycinuria, Hartup , Including Fanconi's disease, among neurological disorders, including epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasm, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, Amyotrophic lateral sclerosis and other motor neuron disorders, progressive neuromuscular atrophy, retinitis pigmentosa, hereditary ataxia, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis Cerebral abscess, subdural pyometra, epidural abscess, purulent intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, Kuru and Creutzfeldt-Jakob disease, Gerstmann syndrome, Gerstmann syndrome -Prion disease including Straussler-Scheinker syndrome, fatal familial insomnia, nervous nutritional and metabolic diseases, gods Central nervous system mental retardation and other developmental disorders including fibromatosis, tuberous sclerosis, cerebellar retinal hemangioblastomatosis, trigeminal neurovascular syndrome, Down syndrome, cerebral palsy, neuroskeletal abnormalities, autonomic nervous system Systemic disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral neuropathy, dermatomyositis and polymyositis, hereditary, metabolic, endocrine, and toxic myopathy, myasthenia gravis, cycle Sexual limb paralysis, mood and anxiety psychiatric disorders, and paranoid psychosis, seasonal emotional disorders (SAD), restlessness, amnesia, catatonia, diabetic neuropathy, extrapyramidal terminal deficiency syndrome, Includes dystonia, schizophrenic psychiatric disorders, postherpetic neuralgia, and Tourette's disease. Some muscle disorders include cardiomyopathy, Myositis, Duchenne muscular dystrophy, Becker pseudohypertrophic muscular dystrophy, myotonic dystrophy, central core disease, nemarin myopathy lanemarin myopathy, central nucleus myopathy, lipid myopathy, mitochondrial myopathy, infectious ganglionitis, polymyositis, skin Myositis, inclusion body myositis, thyrotoxic myopathy, ethanol myopathy, ethanol myopathy, canalitis, anaphylaxis, arrhythmia, asthma, cardiovascular shock, Cushing's disease, hypertension, hypoglycemia, myocardial infarction, migraine, chromophore Myopathy, including cell tumors, encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonus disease, ophthalmoplegia, and acid maltase deficiency (AMD, also known as Pompe disease) Is an inflammation and solar horn Disease, acquired immunodeficiency syndrome (AIDS) and adrenal insufficiency, adult respiratory distress syndrome, allergy, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmunity Thyroiditis, autoimmune polyglandular endocrine candidal ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes, emphysema, lymphocytic temporary Lymphopenia, erythroblastosis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis Disease, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome , Systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenia, ulcerative colitis, Werner syndrome, cancer complications, hemodialysis, extracorporeal circulation, viral infections, bacterial infections, For fungal, parasitic, protozoal, helminthic, trauma, and cell overgrowth, actinic keratosis and atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue Disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and adenocarcinoma and leukemia, lymphoma, melanoma, myeloma, sarcoma, and teratocarcinoma, specifically Specifically, adrenal gland, bladder, bone, bone marrow, brain, breast, neck, gallbladder, ganglion, digestive tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary gland, skin , Spleen, testis, thymus, instep Gland, it includes cancer of the uterus.
[0156]
In another embodiment, a vector capable of expressing SAT or a fragment or derivative thereof for the treatment or prevention of a disease associated with reduced SAT expression or activity, including, but not limited to, the diseases listed above. It can also be administered to patients.
[0157]
In yet another embodiment, a composition comprising substantially purified SAT for the treatment or prevention of a disease associated with reduced SAT expression or activity, including but not limited to the diseases listed above. Can be administered to a patient together with a suitable pharmaceutical carrier.
[0158]
In yet another embodiment, an agonist that modulates the activity of SAT is administered to a patient to treat or prevent a disease associated with decreased SAT expression or activity, including but not limited to the diseases described above. It is possible.
[0159]
In a further example, a patient can be administered an antagonist of SAT for the treatment or prevention of a disease associated with increased SAT expression or activity. Examples of such diseases include, but are not limited to, vesicular transport disorders, transport disorders, neurological disorders, autoimmune / inflammatory disorders and abnormal cell proliferation described above. In one embodiment, an antibody that specifically binds SAT can be used directly as an antagonist or indirectly as a targeting or delivery mechanism to deliver an agent to cells or tissues that express SAT.
[0160]
In another embodiment, the complementary sequence of a polynucleotide encoding SAT is expressed for the treatment or prevention of a disease associated with increased SAT expression or activity, including but not limited to the diseases listed above. The vector can be administered to a patient.
[0161]
In another embodiment, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with another suitable therapeutic agent. Suitable therapeutic agents for use in combination therapy can be selected by one skilled in the art according to conventional pharmaceutical principles. Combination with a therapeutic agent can have a synergistic effect in the treatment or prevention of the various diseases described above. By using this method, a medicinal effect can be obtained with a small amount of each drug, thereby reducing the possibility of side effects.
[0162]
SAT antagonists can be prepared using methods common in the art. Specifically, it is possible to produce antibodies using purified SAT or to screen a library of therapeutic agents to identify those that specifically bind to SAT. SAT antibodies can also be produced using methods generally known in the art. Such antibodies include, but are not limited to, polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments produced by Fab expression libraries. Neutralizing antibodies (ie, antibodies that inhibit dimer formation) are generally suitable for therapeutic use.
[0163]
For the production of antibodies, various hosts, including goats, rabbits, rats, mice, humans and others, are immunized by injection of SAT or any fragment, or oligopeptide thereof with immunogenic properties. Can be done. Depending on the host species, various adjuvants can be used to enhance the immune response. Such adjuvants include, but are not limited to, Freund's adjuvant, mineral gel adjuvants such as aluminum hydroxide, and lysolecithin, pluronic polyols, polyanions, peptides, oily emulsions, surface activities such as sky guy's hemocyanin and dinitrophenol. There are agents. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are particularly preferred.
[0164]
Oligopeptides, peptides, or fragments used to elicit antibodies against SAT are composed of at least about 5 amino acids, and generally are preferably composed of about 10 or more amino acids. Desirably, these oligopeptides, peptides or fragments are identical to a portion of the amino acid sequence of the native protein and include the entire amino acid sequence of the small native molecule. Short stretches of SAT amino acids can be fused to sequences of another protein, such as KLH, to produce antibodies against the chimeric molecule.
[0165]
Monoclonal antibodies to SAT can be made using any technique that produces antibody molecules by continuous cell lines in culture. Such techniques include, but are not limited to, hybridoma technology, human B cell hybridoma technology, and EBV-hybridoma technology (Kohler, G. et al. (1975) Nature 256: 495-497; Kozbor, D. et al.). (1985) J. Immunol. Methods 81: 31-42, Cote, RJ, et al. (1983) Proc. Natl. Acad. Sci. USA 80: 2026-2030, Cole, SP, et al. (1984). Mol. Cell Biol. 62: 109-120, etc.).
[0166]
In addition, techniques such as splicing a mouse antibody gene with a human antibody gene developed for the production of "chimeric antibodies" are used to obtain molecules with suitable antigen specificity and biological activity (eg, Morrison (1984) Proc. Natl. Acad. Sci. 81: 68516855, Neuberger, MS et al. (1984) Nature 312: 604-608; Takeda, S. et al. (1985) Nature. 314: 452, 454, etc.). Alternatively, the techniques described for the production of single-chain antibodies are applied using methods well known in the art to generate SAT-specific single-chain antibodies. Antibodies with related specificities but differing idiotypic compositions can also be produced by chain shuffling from random combinations of immunoglobulin libraries (Bulton DR (1991) Proc. Natl. Acad. Sci. USA). 88: 10134-10137 etc.).
[0167]
Antibody production in the lymphocyte populationin VivoIt can also be done by inducing production or by screening immunoglobulin libraries or a panel of highly specific binding reagents as disclosed in the literature (Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA). 86: 3833-3837, Winter, G. et al. (1991) Nature 349: 293-299).
[0168]
Antibodies containing specific binding sites for SAT can also be obtained. For example, but not by way of limitation, such fragments may include F (ab ') 2 produced by pepsin digestion of the antibody molecule.2 Fragment and F (ab ')2 Some Fab fragments are made by reducing the disulfide bridges of the fragment. Alternatively, the production of a Fab expression library allows the monoclonal Fab fragment to be identified quickly and easily with the desired specificity (see Huse, WD, et al. (1989) Science 246: 12751281). .
[0169]
Screening can be performed using various immunoassays to identify antibodies with the desired specificity. Numerous protocols for competitive binding, using either polyclonal or monoclonal antibodies with sequestered specificity, or immunoradioactivity, are well known in the art. Usually such immunoassays involve the measurement of complex formation between the SAT and its specific antibody. Two-site, monoclonal-based immunoassays using monoclonal antibodies reactive to two non-interfering SAT pitopes are commonly used, but competitive binding assays can also be used (Pound, supra).
[0170]
Various methods such as Scatchard analysis are used with radioimmunoassay techniques to assess the affinity of the antibody for SAT. Affinity is represented by the binding constant Ka, which is the value obtained by dividing the molar concentration of the SAT antibody complex by the molar concentration of free antibody and free antigen under equilibrium conditions. Polyclonal antibodies have heterogeneous affinities for various SAT pitopes, and the Ka determined for a polyclonal antibody reagent represents the average affinity or avidity of the SAT antibody. The Ka of a monoclonal antibody drug monospecific for a particular SAT pitope represents a true measure of affinity. Ka value is 109-1012The liter / mol high affinity antibody drug is preferably used in immunoassays where the SAT antibody complex must withstand severe manipulations. Ka value is 106-107The liter / mol low affinity antibody drug is preferably used for immunopurification and similar treatments where the SAT must eventually dissociate from the antibody in an activated state. (Catty, D. (1988)Antibodies, Volume I: A Practical Approach. IRL Press, Washington, DC; E. FIG. And Cryer, A .; (1991)A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
[0171]
The titer and avidity of the polyclonal antibody reagents can be further evaluated to determine the quality and suitability of such reagents for certain subsequent applications. For example, polyclonal antibody medicaments containing at least 1-2 mg / ml specific antibody, preferably 5-10 mg / ml specific antibody, are generally used in processes where the SAT antibody complex must be precipitated. Information on antibody specificity, titer, avidity, and guidelines for antibody quality and use in various applications is generally available. (Refer to the above-mentioned Catty reference and the same reference by Coligan et al.).
[0172]
In another embodiment of the present invention, a polynucleotide encoding SAT, or any fragment or complement thereof, can be used for therapeutic purposes. In one embodiment, gene expression can be altered by designing sequences and antisense molecules (DNA and RNA, modified nucleotides) that are complementary to the coding and regulatory regions of the gene encoding SAT. Such techniques are well known in the art, and sense or antisense oligonucleotides or large fragments can be designed from the control region of the SAT-encoding sequence or from various locations along the coding region. (Agrawal, S., ed. (1996)Antisense Therapeutics, Humana Press Inc. , Totawa NJ).
[0173]
For use in therapy, any gene delivery system suitable for introducing the antisense sequences into suitable target cells can be used. The antisense sequence can be transported intracellularly in the form of an expression plasmid that, upon transcription, expresses a sequence complementary to at least a portion of the cell sequence encoding the target protein (Slater, JE et al. ( 1998) J. Allergy Clin. Immunol. 102 (3): 469-475 and Scanlon, KJ. Et al. (1995) 9 (13): 1288-1296.) Antisense sequences may also be retroviruses, for example. It can also be introduced into cells using a virus vector such as a virus vector or an adeno-associated virus vector. (See Miller, AD (1990) Blood 76: 271, supra, Ausubel, Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63 (3): 323-347). Other gene delivery mechanisms include liposome systems, artificial viral envelopes and other systems known in the art (Rossi, JJ (1995) Br. Med. Bull. 51 (1): 217). -225; Bodo, RJ, et al. (1998) J. Pharm. Sci. 87 (11): 1308-1315, Morris, MC, et al. (1997) Nucleic Acids Res. 25 (14): 2730-2736. Etc.).
[0174]
In another embodiment of the present invention, the polynucleotide encoding SAT can be used for somatic or germ cell gene therapy. Gene therapy results in (i) severe combined immunodeficiency (SCID) characterized by a gene deficiency (eg, X chromosomal strand inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288: 669-672)). -X1), severe combined immunodeficiency associated with congenital adenosine deaminase (ADA) deficiency (Blaese, RM et al. (1995) Science 270: 475-480; Bordignon, C. et al. (1995) Science 270: 470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75: 207-216: Crystal, RG et al. (1995) Hum. Gene Therapy 6: 643-666, Crystal, RG et al. (1995) Hum. Gene Therapy 6: 667-703), thalassemia, familial hypercholesterolemia, hemophilia due to deficiency of factor VIII or factor IX (Crystal, RG (1995)). Science 270: 404-410, Verma, IM and Somia N. (1997) Nature 389: 239-242), and (ii) expressing a conditional lethal gene product (eg, uncontrollable cells). (Iii) cancers caused by proliferation), (iii) parasites in cells (eg, human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335: 395-396, Poescbla, E. et al. (1996) Proc). Natl.Acad.S .. I USA 93: 11395-11399), B-type or C hepatitis virus (HBV, HCV),Candida albicansas well asParacoccidioides brasiliensisFungal parasites, etc., andPlasmodium falciparumas well asTrypanosoma cruziAnd other proteins having a protective function against protozoan parasites. If deficiency of SAT or a gene required for regulation causes a disease, SAT can be expressed from a suitable population of the introduced cells to alleviate the symptoms caused by the gene deficiency.
[0175]
In a further embodiment of the invention, diseases and disorders due to SAT deficiency are treated by creating mammalian expression vectors encoding SAT and introducing these vectors into SAT deficient cells by mechanical means. .in VivoOrex in vitroThe mechanical transfection techniques used for cells of (i) include (i) direct DNA microinjection into individual cells, (ii) gene guns, (iii) transfection via liposomes, and (iv) receptors. Mediated gene transfer and (v) the use of DNA transposons (Morgan, RA and WF Anderson (1993) Annu. Rev. Biochem. 62: 191-217, Ivics, Z. (1997) Cell. 91: 501-510; Boulay, JL and H. Recipon (1998) Curr. Opin. Biotechnol. 9: 445-450).
[0176]
Expression vectors that can exert SAT include, but are not limited to, PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vector (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH / PERV (Stratagene, La Jolla CA), PET-OFF, PET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). In order to express SAT, (i) a constitutively active promoter (eg, cytomegalovirus (CMV), rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin gene); (Ii) Inducible promoters (eg, a tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. Inc.) contained in a commercially available T-REX plasmid (Invitrogen). U.S.A. 89: 5547-5551; Gossen, M. et al. (1995) Science 268: 1766-1769; Rossi, FMV and HM Blau (1998) Curr. Opin. Biotechnol. 9: 451-456)), ecdysone inducible promoter (included in commercially available plasmids PVGRXR and PIND: Invitrogen), FK506 / rapamycin inducible promoter, or RU486 / mifepristone inducible promoter (Rossi, FMV and HM Blau, supra), or (iii) the natural or tissue-specific promoter of an endogenous gene encoding SAT from a normal individual. .
[0177]
The use of commercially available liposome transformation kits (eg, PerFect Lipid Transfection Kit from Invitrogen) allows those skilled in the art to introduce polynucleotides into target cells in culture without much experience. Alternative methods include the calcium phosphate method (Graham. FL and AJ Eb (1973) Virology 52: 456-467) or the electroporation method (Neumann, B. et al. (1982) EMBO J. 1: 841-845). ). (1982) EMBO J .; 1: 84845). The introduction of DNA into primary cultures requires modification of standardized mammalian transfection protocols.
[0178]
In another embodiment of the present invention, the disease or disorder caused by a genetic defect associated with the expression of SAT comprises the steps of: (i) controlling the retroviral long terminal repeat (LTR) promoter or an independent promoter to control the SAT Nucleotides and (ii) a suitable RNA packaging signal and (iii) a Rev responsive element (RRE) with additional retroviral cis-acting RNA sequences and coding sequences necessary for efficient vector propagation. Retroviral vectors can be made and treated. Retroviral vectors (eg, PFB and PFBNEO) are commercially available from Stratagene and published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92: 6733-6737). Based on The above data is incorporated herein by reference. (1995) Proc. Natl. Acad. Sci. ScL USA 92: 6733-6737) and described in references. The vector is propagated in a suitable vector-producing cell line (VPCL), which expresses an envelope gene having tropism for a receptor on target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. 1987) J. Virol. 61: 1647-1650; Bender, MA et al. (1987) J. Virol. 61: 1639-1646, Adam, MA. And AD Miller (1988) J. Virol. 62: 3802-3806, Dull, T. et al. (1998) J. Virol. 72: 8463-8471, Zufferey, R. et al. (1998) J. Virol. 72: 9873-9880). U.S. Patent No. 5,910,434 to RIGG ("Method for observing retrovirus packaging cell lines producing high transducing effect"; a method for disseminating the virus in a retrospective system) Citation is incorporated herein by reference. Propagation of retroviral vectors, cell populations (eg, CD4+ The transduction of T cells) and the return of the transduced cells to the patient are methods known to those skilled in the art of gene therapy and are described in a large number of documents (Ranga, U. et al. (1997). 71) 7020-7029, Bauer, G. et al. (1997) Blood 89: 2259-2267, Bonyhadi, ML (1997) J. Virol. 71: 4707-4716, Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95: 1201-1206, Su, L. (1997) Blood 89: 2283- 2290).
[0179]
Alternatively, an SAT-encoding polynucleotide is delivered to cells having one or more genetic abnormalities associated with SAT expression using an adenovirus-based gene therapy delivery system. The production and packaging of adenovirus-based vectors are known to those skilled in the art. Replication-defective adenovirus vectors have been shown to be variable to introduce genes encoding immunomodulatory proteins into intact pancreatic islets of the pancreas (Csete, ME et al. (1995) Transplantation). 27: 263-268). Adenoviral vectors that may be used are described in US Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), which is hereby incorporated by reference. And For adenovirus vectors, see Antinozzi, P. et al. A. (1999) Annu. Rev .. Nutr. 19: 511-544 and Verma, I .; M. And N.I. See also Somia (1997) Nature 18: 389: 239-242. Both documents are incorporated herein by reference.
[0180]
Alternatively, a herpes-based gene therapy delivery system is used to deliver a SAT-encoding polynucleotide to target cells that have one or more genetic abnormalities associated with SAT expression. Herpes simplex virus (HSV) -based vectors are particularly important in introducing SAT into HSV-affected central nervous cells. The production and packaging of herpes-based vectors is known to those skilled in the art. Vectors of the replication-competent herpes simplex virus (HSV) type I system have been used to deliver reporter genes to primate eyes (Liu, X. et al. (1999) Exp. Eye Res. 169: 385-). 395). The construction of the HSV-1 viral vector is also disclosed in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex viruses against genes transfer"), which is hereby incorporated by reference. Partial. US Patent No. 5,804,413 describes a recombinant HSV d92 comprising a genome having at least one exogenous gene introduced into a cell under the control of a promoter suitable for purposes including human gene therapy. There is a description. The patent also discloses the generation and use of recombinant HSV strains that are eliminated for ICP4, ICP27 and ICP22. For HSV vectors, see Goins, W. et al. F. (1999) J. Am. Virol. 73: 519-532 and Xu, H .; (1994) Dev. Biol. 163: 152-161. Both documents are incorporated herein by reference. Manipulation of the cloned herpesvirus sequence, production of recombinant virus after transfection of multiple plasmids containing different parts of the genome of the herpesvirus giant, growth and propagation of the herpesvirus, and infection of cells with the herpesvirus This is a technique known to those skilled in the art.
[0181]
Alternatively, an SAT-encoding polynucleotide is delivered to target cells using an alphavirus (positive single-stranded RNA virus) vector. Biological studies of the prototype alphavirus, Semliki Forest Virus (SFV), have been extensively performed and gene transfer vectors have been found to be based on the SFV genome (Garoff, H. and K.-J. Li (1998) Cun. Opin. Biotech. 9: 464-469). During the replication of alpha viral RNA, subgenomic RNA is created, usually encoding the viral capsid protein. This subgenomic RNA is replicated to a higher level than full-length genomic RNA, resulting in overproduction of capsid proteins relative to viral proteins having enzymatic activity (eg, proteases and polymerases). Similarly, by introducing a sequence encoding SAT into the region encoding the capsid of the alphavirus genome, a large number of RNAs encoding SAT are produced in the vector-transfected cells, and SAT is synthesized at a high level. The ability to establish persistent infection of hamster normal kidney cells (BHK-21) harboring a mutant of Sindbis virus (SIN), while infection of the alpha virus is usually associated with cell lysis within a few days, (Dryga, SA et al. (1997) Virology 228: 74-83). Since the α virus can be introduced into various hosts, SAT can be introduced into various types of cells. Specific transduction of a subset of cells in a population may require sorting of cells prior to transduction. Methods for treating infectious cDNA clones of the α virus, transfecting the cDNA and RNA of the α virus, and infecting the α virus are known to those skilled in the art.
[0182]
It is also possible to inhibit gene expression using an oligonucleotide derived from the transcription start site. The transcription start site is, for example, between about -10 and about +10 counted from the start site. Similarly, inhibition can be achieved using triple helix base pairing methods. Triple helix base pairing is useful because triple helix base pairing inhibits the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors or regulatory molecules. Recent advances in therapy using triple helix DNA are described in the literature (Gee, JE et al. (1994) in: Huber, BE and BI Carr, Molecular and Immunological Approaches, Futura Publishing). Co., Mt. Kisco, NY, pp. 163-177). Complementary sequences or antisense molecules can also be designed to prevent translation of the mRNA by preventing the transcript from binding to the ribosome.
[0183]
Ribozymes are enzymatic RNA molecules, and ribozymes can also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA prior to nucleotide strand breaks. For example, it includes a recombinant hammerhead ribozyme molecule that specifically and effectively catalyzes nucleotide chain cleavage of a sequence encoding SAT.
[0184]
Specific ribozyme cleavage sites within any potential RNA target are first identified by scanning the target molecule for ribozyme cleavage sites, including GUA, GUU, GUC sequences. GUA, GUU, GUC. Once identified, it is possible to evaluate short RNA sequences of 15-20 ribonucleotides corresponding to regions of the target gene containing cleavage sites for secondary structural features that render the oligonucleotide dysfunctional. . Evaluation of the suitability of a candidate target can also be performed by testing the feasibility of hybridization with a complementary oligonucleotide using a ribonuclease protection assay.
[0185]
The complementary ribonucleic acid molecules and ribozymes of the invention can be made using any method well known in the art for nucleic acid molecule synthesis. Optional methods include chemically synthesizing oligonucleotides such as solid phase phosphoramidite compounds. Alternatively, the DNA sequence encoding SATin in vitroas well asin VivoRNA molecules can be produced by transcription. Such a DNA sequence can be incorporated into a variety of vectors using a suitable RNA polymerase promoter such as T7 or SP6. Alternatively, these cDNA products that constitutively or inducibly synthesize complementary RNA can be introduced into a cell line, cell or tissue.
[0186]
RNA molecules can be modified to increase intracellular stability and half-life. Possible, but not limiting, modifications include the addition of flanking sequences at the 5 ′ end, 3 ′ end, or both, of the molecule, and phosphorothioate or 2 ′ rather than phosphodiesterase linkages within the backbone of the molecule. 'Using O-methyl. This concept is unique to the production of PNA and can be extended to all these molecules. These include adenine, cytidine, guanine, thymine, and uridine, which are not readily recognized by endogenous endonucleases, with acetyl-, methyl-, thio-, and similar modifications, as well as non-conventional bases such as inosine, queosine. (Queousine), wybutosine and the like.
[0187]
A further embodiment of the present invention includes a method of screening for a compound that is effective in altering the expression of a polynucleotide encoding SAT. Compounds useful for, but not limited to, mutagenesis of specific polynucleotides include oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and interact with specific polynucleotide sequences. There are non-polymeric entities that can act. Effective compounds can mutate polynucleotide expression by acting as either inhibitors or enhancers of polynucleotide expression. Therefore, in the treatment of diseases associated with increased SAT expression or activity, compounds that specifically inhibit the expression of a polynucleotide encoding SAT are therapeutically useful, and are associated with reduced SAT expression or activity. In treating disease, compounds that specifically promote the expression of a polynucleotide encoding SAT may be therapeutically useful.
[0188]
At least one to a plurality of test compounds may be screened for efficacy in mutagenizing a specific polynucleotide. Test compounds are obtained by any method commonly known in the art. Such methods include mutating the expression of the polynucleotide, selecting from existing, commercially available or proprietary, natural or non-natural compound libraries, and chemically and / or structurally modifying the target polynucleotide. There are chemical modifications of compounds that are known to be effective when rationally designing compounds based on properties and when selecting from libraries of combinatorially or randomly generated compounds. A sample comprising a polynucleotide encoding SAT is obtained by exposing to at least one test compound. The sample can be, for example, an intact cell, a permeabilized cell, a cell-free reconstituted system or a reconstituted biochemical system. Changes in the expression of a polynucleotide encoding SAT are assayed by any method known in the art. Usually, the expression of a specific nucleotide is detected by hybridization using a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding SAT. The amount of hybridization can be quantified, thereby forming the basis for a comparison of the expression of polynucleotides exposed and unexposed to one or more test compounds. Detection of a change in expression of the polynucleotide exposed to the test compound indicates that the test compound is effective in mutating expression of the polynucleotide. For a compound effective for mutation expression of a specific polynucleotide, for example,Schizosaccharomyces pombeGene expression system (Atkins, D. et al. (1999) US Patent No. 5,932,435, Arndt, GM et al. (2000) Nucleic Acids Res. 28: E15) or human cell lines such as HeLa cells (Clarke). , ML, et al. (2000) Biochem. Biophys. Res. Commun. 268: 8-13). Certain embodiments of the invention involve screening a combinatorial library of oligonucleotides (deoxyribonucleotides, ribonucleotides, peptide nucleic acids, modified oligonucleotides) for antisense activity against a specific polynucleotide sequence ( Bruice, TW, et al. (1997) U.S. Patent No. 5,686,242, Bruice, TW, et al. (2000) U.S. Patent No. 6,022,691).
[0189]
Numerous methods for introducing vectors into cells or tissues are available,in Vivo,in in vitroas well asex VivoEqually suitable for the use ofex VivoFor treatment, the vector can be introduced into stem cells taken from a patient, cloned and propagated and returned to the same patient by autotransplantation. Transfection, ribosome injection or transport by polycation amino polymer can be performed using methods well known in the art. (Goldman, CK, et al. (1997) Nat. Biotechnol. 15: 462-466., Etc. (1997) Nat. Biotechnol. 15: 462-466.)
Any of the above treatment methods can be applied to all subjects in need of treatment, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, monkeys, and the like.
[0190]
An additional embodiment of the present invention involves the administration of an ingredient having an active ingredient usually formulated in a pharmaceutically acceptable excipient. Excipients include, for example, sugars, starches, celluloses, gums and proteins. Various prescriptions are usually known,Remington's Pharmaceutical Sciences(Maack Publishing, Easton PA). Such compositions comprise SAT, antibodies to SAT, mimetics, agonists, antagonists, or inhibitors of SAT, and the like.
[0191]
The components used in the present invention can be administered by any number of routes, including but not limited to oral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, Intraventricular, lung, transdermal, subcutaneous, intraperitoneal, intranasal, intestinal, topical, sublingual or rectal.
[0192]
Components for pulmonary administration can be prepared in liquid or dry powder form. Such components typically aerosolize shortly before inhalation by the patient. For small molecules (eg, traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is known in the art. In the case of macromolecules (eg, larger peptides and proteins), the recent improvement in the art of pulmonary delivery through the alveolar region of the lung results in the transport of drugs such as insulin substantially into the blood circulation. (See Patton, JS, et al., US Pat. No. 5,997,848, etc.). Pulmonary delivery is advantageous in that it is administered without needle injection, eliminating the need for potentially toxic penetration enhancers.
[0193]
Ingredients suitable for use in the present invention include those that contain as much active ingredient as necessary to achieve the intended purpose. Determination of the effective dosage is within the ability of those skilled in the art.
[0194]
Preferably, the composition is prepared in a special form to deliver the macromolecule containing SAT or a fragment thereof directly into cells. For example, a liposome formulation comprising a cell-impermeable polymer may facilitate cell fusion and intracellular delivery of the polymer. Alternatively, SAT or a fragment thereof can be attached to the short cationic N-terminus of the HIV Tat-1 protein. The fusion protein thus produced is known to transduce cells of all tissues including the mouse model system brain (Schwarze, SR, et al. (1999) Science 285: 1569-1572). .
[0195]
For any compound, an effective dosage of treatment can be initially estimated in cell culture assays, such as those for neoplastic cells, or in animal models such as mice, rabbits, dogs or pigs. . Animal models can also be used to determine suitable concentration ranges and routes of administration. Such information can then be used to determine useful doses and routes for administration in humans.
[0196]
A medically effective dose relates to the amount of the active ingredient that ameliorates the symptoms or condition, eg, SAT or a fragment thereof, an antibody to SAT, an agonist or antagonist of SAT, an inhibitor, and the like. Therapeutic efficacy and toxicity can be determined by standard pharmaceutical techniques in cell culture or animal studies, for example by ED50(Pharmaceutically effective amount of 50% of the population) or LD50(A lethal dose of 50% of the population). The dose ratio of toxic to medicinal effects is the therapeutic index, LD50/ ED50It can be expressed as a ratio. Components that exhibit a high therapeutic index are desirable. The data obtained from the cell culture assays and animal studies is used in formulating a range of dosage for use in humans. Dosages containing such compositions will contain little or no toxicity, ED50It is preferable that the concentration be in the blood concentration range containing Depending on the dosage form employed, the sensitivity of the patient and the route of administration, the dosage will vary within this range.
[0197]
The exact dosage will be determined by the practitioner, in light of factors related to the subject that requires treatment. Dosage and administration are adjusted to provide effective levels of the active ingredient or to maintain the desired effect. Factors relating to the subject include the severity of the disease, the patient's general health, the patient's age, weight and gender, the time and frequency of administration, drug combination, response sensitivity and response to treatment. Components with a longer duration of action may be administered once every 3 to 4 days, once a week, or once every two weeks depending on the half-life and clearance rate of the particular formulation.
[0198]
Normal dosage amounts range from about 0.1 to 100,000 μg, depending on the route of administration, up to a total of about 1 g. Guidance on specific dosages and methods of delivery is provided in the literature and is generally available to physicians in the field. One skilled in the art will utilize formulations for nucleotides that are different from those for proteins or inhibitors. Similarly, delivery of a polynucleotide or polypeptide will be specific to a particular cell, condition, location, etc.
[0199]
(Diagnosis)
In another embodiment, an assay for diagnosing a disease characterized by expression of SAT, or monitoring a patient being treated with SAT or an agonist or antagonist or inhibitor of SAT, wherein the antibody that specifically binds to SAT is used. Used for Antibodies useful for diagnostic purposes are prepared in the same manner as described above for treatment. SAT diagnostic assays include methods that use antibodies and labels to detect SAT from human body fluids or those collected from cells or tissues. The antibody can be modified or unmodified and can be labeled covalently or non-covalently with a reporter molecule. A wide variety of reporter molecules are known in the art and can be used, some of which are described above.
[0200]
Various protocols for measuring SAT, including ELISA, RIA, and FACS, are well known in the art and provide a basis for diagnosing abnormal or abnormal levels of SAT expression. Normal or standard SAT expression values are determined by combining an antibody against SAT with body fluids or cells collected from a subject, such as a normal mammal, eg, a human, under conditions suitable for complex formation. I do. The amount of the standard complex formed can be determined by various methods, for example, by photometry. A sample from the subject's SAT expression, control and disease, biopsy tissue is compared to a reference value. The deviation between the standard value and the subject is a parameter for diagnosing the disease.
[0201]
According to another embodiment of the present invention, polynucleotides encoding SAT may be used for diagnosis. Polynucleotides that can be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNA. This polynucleotide is used to detect and quantify gene expression in biopsied tissues that express SAT that can be correlated with disease. This diagnostic assay is used to check for the presence of SAT, as well as its overexpression, and to monitor the modulation of SAT levels during treatment.
[0202]
In one embodiment, the nucleic acid sequence encoding SAT can be identified by hybridization with a PCR probe capable of detecting a polynucleotide sequence comprising the gene sequence encoding SAT or a closely related molecule. The specificity of a probe, whether it is made from a highly specific region, for example, the 5 'regulatory region, or a region of relatively low specificity, such as a conserved motif, and the stringency of hybridization or amplification, Will identify only the natural sequence that encodes the SAT, or only the natural sequence that encodes the allele or related sequence.
[0203]
Probes can also be used to detect related sequences and have at least 50% sequence identity with any sequence encoding SAT. The target hybridization probe of the present invention can be DNA or RNA, and can be derived from the sequence of SEQ ID NO: 10-18 or a genomic sequence containing the SAT gene promoter, enhancer, and intron.
[0204]
As a method for preparing a hybridization probe specific to DNA encoding SAT, there is a method of cloning a polynucleotide sequence encoding SAT and a SAT derivative into a vector for preparing an mRNA probe. Vectors for making mRNA probes are known to those of skill in the art and are commercially available, by adding a suitable RNA polymerase and a suitable labeled nucleotide,in in vitroCan be used to synthesize RNA probes. Hybridization probes can be labeled with a population of different reporters. Examples of reporter populations include:32P or35Radionuclides such as S; or enzyme labels such as alkaline phosphatase bound to the probe via an avidin / biotin binding system.
[0205]
SAT-encoding polynucleotide sequences can be used to diagnose diseases associated with SAT expression. Among such disorders include, but are not limited to, movement disorders such as ataxia, amyotrophic lateral sclerosis, ataxia telangiectasia, Becker muscular dystrophy, facial paralysis, Charcot-Marie-Tooth disease, Diabetes, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemia periodic limb paralysis, normokalemia periodic limb paralysis, Parkinson's disease, malignant high fever, multidrug resistance, myasthenia gravis, myotonic dystrophy Disease, catatonia, extrapyramidal terminal deficiency syndrome, dystonia, peripheral neuropathy, cerebral tumor, prostate cancer, and canalitis, bradyarrhythmia, tachyarrhythmia, hypertension, hereditary long QT syndrome, Myocarditis, cardiomyopathy, nemarin myopathy lanemarin myopathy, central nucleus myopathy, lipid myopathy, mitochondrial myopathy, thyrotoxic myopathy Transport-related heart diseases such as, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious arthritis, and polymyositis; Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disease Transport-related neuropathy such as neuropathy, paranoid psychosis, and schizophrenia, as well as neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, Wilson's disease, cataract, infertility, and pulmonary artery Stenosis, autosomal sensorineural hearing loss, hyper / hypoglycemia, Graves' disease, goiter, Cushing's disease and adrenal insufficiency, glucose-galactose malabsorption syndrome, hypercholesterolemia, adrenal leukodystrophy, Zellweger Syndrome, Menkes disease, dorsal horn syndrome, von Gilke syndrome, cystinuria, iminoglycinuria, Hartup , Including Fanconi's disease, among neurological disorders, including epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasm, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, Amyotrophic lateral sclerosis and other motor neuron disorders, progressive neuromuscular atrophy, retinitis pigmentosa, hereditary ataxia, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis Cerebral abscess, subdural pyometra, epidural abscess, purulent intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, Kuru and Creutzfeldt-Jakob disease, Gerstmann syndrome, Gerstmann syndrome -Prion disease including Straussler-Scheinker syndrome, fatal familial insomnia, nervous nutritional and metabolic diseases, gods Central nervous system mental retardation and other developmental disorders including fibromatosis, tuberous sclerosis, cerebellar retinal hemangioblastomatosis, trigeminal neurovascular syndrome, Down syndrome, cerebral palsy, neuroskeletal abnormalities, autonomic nervous system Systemic disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral neuropathy, dermatomyositis and polymyositis, hereditary, metabolic, endocrine, and toxic myopathy, myasthenia gravis, cycle Sexual limb paralysis, mood and anxiety psychiatric disorders, and paranoid psychosis, seasonal emotional disorders (SAD), restlessness, amnesia, catatonia, diabetic neuropathy, extrapyramidal terminal deficiency syndrome, Includes dystonia, schizophrenic psychiatric disorders, postherpetic neuralgia, and Tourette's disease. Some muscle disorders include cardiomyopathy, Myositis, Duchenne muscular dystrophy, Becker pseudohypertrophic muscular dystrophy, myotonic dystrophy, central core disease, nemarin myopathy lanemarin myopathy, central nucleus myopathy, lipid myopathy, mitochondrial myopathy, infectious ganglionitis, polymyositis, skin Myositis, inclusion body myositis, thyrotoxic myopathy, ethanol myopathy, ethanol myopathy, canalitis, anaphylaxis, arrhythmia, asthma, cardiovascular shock, Cushing's disease, hypertension, hypoglycemia, myocardial infarction, migraine, chromophore Myopathy, including cell tumors, encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonus disease, ophthalmoplegia, and acid maltase deficiency (AMD, also known as Pompe disease) Is an inflammation and solar horn Disease, acquired immunodeficiency syndrome (AIDS) and adrenal insufficiency, adult respiratory distress syndrome, allergy, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmunity Thyroiditis, autoimmune polyglandular endocrine candidal ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes, emphysema, lymphocytic temporary Lymphopenia, erythroblastosis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis Disease, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome , Systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenia, ulcerative colitis, Werner syndrome, cancer complications, hemodialysis, extracorporeal circulation, viral infections, bacterial infections, For fungal, parasitic, protozoal, helminthic, trauma, and cell overgrowth, actinic keratosis and atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue Disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and adenocarcinoma and leukemia, lymphoma, melanoma, myeloma, sarcoma, and teratocarcinoma, specifically Specifically, adrenal gland, bladder, bone, bone marrow, brain, breast, neck, gallbladder, ganglion, digestive tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary gland, skin , Spleen, testis, thymus, instep Gland, it includes cancer of the uterus. Polynucleotide sequences encoding SAT can be obtained by Southern, Northern, dot blot, or other membrane-based techniques, PCR, dipstick, pin, ELISA, and mutant SAT expression. Can be used in microarrays that use body fluids or tissues collected from patients to detect Such qualitative or quantitative methods are known in the art.
[0206]
In certain embodiments, a nucleotide sequence encoding a SAT may be useful in an assay to detect a related disease, particularly the diseases described above. The nucleotide sequence encoding SAT could be labeled by standard methods and added to a sample of body fluid or tissue taken from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared to a standard value. If the amount of signal in the patient's sample varies significantly compared to the control sample, the level of mutation in the nucleotide sequence encoding SAT in the sample will reveal the presence of the associated disease. Such assays can also be used to estimate the effect of a particular treatment in animal studies, clinical trials, or to monitor the treatment of individual patients.
[0207]
A normal or standard profile of SAT expression is established to provide a basis for the diagnosis of diseases associated with SAT expression. This can be achieved by combining a SAT-encoding sequence or a fragment thereof with a body fluid or cell extracted from a normal animal or human subject under conditions suitable for hybridization or amplification. . Standard hybridization can be quantified by comparing values obtained from experiments performed with known amounts of the substantially purified polynucleotide to values obtained from normal subjects. The standard values thus obtained can be compared to values obtained from samples obtained from patients showing signs of the disease. Deviation from standard values is used to determine the presence of disease.
[0208]
Once the presence of the disease has been determined and the treatment protocol has begun, the hybridization assay can be repeated on a regular basis to determine whether the patient's expression levels have begun to approach those observed in normal subjects. The results from serial assays can be used to show the effect of treatment over a period of days to months.
[0209]
With respect to cancer, the presence of abnormal amounts of transcripts (under- or over-expression) in living tissue from an individual indicates the predisposition of the disease or a method of detecting the disease before actual clinical symptoms appear. Or offer. This type of more definitive diagnosis allows medical professionals to use preventative or aggressive treatment early on, thereby preventing the development or further progression of cancer.
[0210]
Additional diagnostic uses for oligonucleotides designed from SAT-encoding sequences can include the use of PCR. These oligomers can be chemically synthesized, produced enzymatically, orin in vitroCan be produced in The oligomer preferably includes a fragment of a polynucleotide encoding SAT, or a fragment of a polynucleotide complementary to the polynucleotide encoding SAT, and is used to identify a specific gene or condition under optimal conditions. You. Oligomers can also be used under relatively mild stringent conditions for detection, quantification, or both, of closely related DNA or RNA sequences.
[0211]
In certain embodiments, single nucleotide polymorphisms (SNPs) may be detected using oligonucleotide primers derived from the polynucleotide sequence encoding SAT. SNPs are substitutions, insertions and deletions that often cause a congenital or acquired genetic disease in humans. Although not limited, SNP detection methods include single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP). In SSCP, DNA is amplified by the polymerase chain reaction (PCR) using oligonucleotide primers derived from the polynucleotide sequence encoding SAT. DNA can be derived, for example, from diseased or normal tissue, biopsy samples, body fluids, and the like. SNPs in DNA cause differences in the secondary and tertiary structure of single-stranded PCR products. Differences can be detected using gel electrophoresis in a non-denaturing gel. In fSCCP, oligonucleotide primers are fluorescently labeled. This allows the detection of amplimers on high throughput equipment such as DNA sequencing machines. Furthermore, a sequence database analysis method called in silico SNP (isSNP) identifies polymorphisms by comparing the sequences of individual overlapping DNA fragments as arranged in a common consensus sequence. obtain. These computer-based methods filter out sequence variations due to sequencing errors using laboratory preparation and statistical models of DNA and automated analysis of DNA sequence chromatograms. In another embodiment, SNPs are detected and characterized by mass spectrometry, for example, using a high-throughput MASSARRAY system (Sequenom, Inc., San Diego CA).
[0212]
Methods that can be used to quantify SAT expression also include radiolabeling or biotin labeling of nucleotides, co-amplification of regulatory nucleic acids, and interpolation of results from standard curves (see, eg, Melby, PC. (1993) J. Immunol. Methods, 159: 235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212: 229-236). The rate of quantification of multiple samples can be accelerated by performing high-throughput assays where the oligomer of interest is present in various diluents and quantitation is rapid by spectrophotometry or colorimetric reactions. .
[0213]
In yet another example, oligonucleotides or longer fragments from any of the polynucleotide sequences described herein can be used as elements in a microarray. Microarrays can be used in transcription imaging techniques to simultaneously monitor the relevant expression levels of multiple genes. This is described below. Microarrays can also be used to identify genetic variants, mutations and polymorphisms. This information can be used to determine gene function, understand the genetic basis of disease, diagnose disease, monitor disease progression / regression as a function of gene expression, and develop drug activity in disease treatment And can be monitored. In particular, this information can be used to develop a patient's pharmacogenomic profile to select the most appropriate and effective treatment for the patient. For example, based on a patient's pharmacogenomic profile, a therapeutic agent that is highly effective and has few side effects for the patient can be selected.
[0214]
In another embodiment, SAT, fragments of SAT, and antibodies specific for SAT can be used as elements on the microarray. Microarrays can be used to monitor or measure protein-protein interactions, drug-target interactions and gene expression profiles as described above.
[0215]
Certain embodiments relate to the use of a polynucleotide of the invention to produce a transcribed image of a tissue or cell type. The transcribed image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns can be analyzed by quantifying the number and relative abundance of genes expressed at a given time under given conditions (Seilliamer et al., US Pat. No. 5,840,484 "Comparative"). Gene Transcript Analysis, which is hereby incorporated by reference.) Thus, transcribed images can be generated by hybridizing the polynucleotide of the present invention or its complement to the entire transcription or reverse transcription of a particular tissue or cell type. In certain embodiments, hybridization occurs in a high-throughput format such that the polynucleotide of the invention or its complement comprises a plurality of subsets of the elements on the microarray. The resulting transcribed image can provide a profile of gene activity.
[0216]
Transcript images can be generated using transcripts isolated from tissues, cell lines, biopsies, or biological samples thereof. The transcribed image is therefore in the case of a tissue or biopsy samplein VivoOr in the case of cell linesin in vitroReflects gene expression at
[0217]
Transcribed images that generate the expression profile of the polynucleotides of the present invention can also be used for toxicity testing of industrial or natural environmental compounds,in in vitroIt can be used in connection with preclinical evaluation of model systems and drugs. All compounds elicit a characteristic pattern of gene expression, often referred to as molecular fingerprints or toxicity signatures, which suggests mechanisms of action and toxicity (Nuwaysir, EF et al. (1999) Mol. 24: 153-159, Steiner, S. and NL Anderson (2000) Toxicol. Lett. 112-113: 467-471, which are hereby incorporated by reference in their entirety. And) If the test compounds have the same signature as the signature of the compound with known toxicity, they may share toxic properties. A fingerprint or signature is most useful and accurate if it contains expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression will provide the highest quality signature. Even if genes whose expression is not altered by any of the tested compounds are equally important, the expression levels of such genes are used to normalize the remaining expression data. The normalization procedure is useful for comparing expression data after treatment with different compounds. Assigning gene function to elements of a toxic signature helps to interpret the toxic mechanism, but knowledge of the gene function is not required to statistically match the signatures leading to toxicity prediction (eg, February 29, 2000). See Press Release 00-02, published by the National Institute of Environmental Health Sciences, which is available at http://www.niehs.nih.gov/oc/news/toxchip.htm. Therefore, it is important and desirable to include all expressed gene sequences using toxic signatures during toxicological screening.
[0218]
In certain embodiments, the toxicity of a test compound is calculated by treating a biological sample containing nucleic acids with the test compound. Nucleic acids expressed in the treated biological sample can be hybridized with one or more probes specific for a polynucleotide of the invention, thereby quantifying the level of transcription corresponding to the polynucleotide of the invention. The transcript level in the treated biological sample is compared to the level in an untreated biological sample. The difference in transcription level between the two samples indicates a toxic reaction caused by the test compound in the treated sample.
[0219]
Another example involves analyzing a tissue or cell type proteome using the polypeptide sequences of the invention. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of the proteome can be individually further analyzed. Proteome expression patterns or profiles can be analyzed by quantifying the number and relative abundance of proteins expressed at a given time under given conditions. Thus, a proteomic profile of a cell can be generated by separating and analyzing polypeptides of a particular tissue or cell type. In some embodiments, separation is achieved by two-dimensional gel electrophoresis, such as separating proteins from a sample by one-dimensional isoelectric focusing and separating according to molecular weight by two-dimensional sodium dodecyl sulfate slab gel electrophoresis ( Steiner and Anderson, supra). Proteins are visualized in the gel as dispersed, uniquely located points, usually by staining the gel with a substance such as Coomassie blue or silver or a fluorescent stain. The optical density of each protein spot is usually proportional to the protein level in the sample. The optical densities of protein spots obtained from different samples, eg, biological samples, either treated or untreated with a test compound or therapeutic agent, are compared to identify changes in protein spot density associated with the treatment. The proteins in the spots are partially sequenced using standard methods using, for example, chemical or enzymatic cleavage followed by mass spectrometry. The identity of a protein within a spot can be determined by comparing its subsequence, preferably at least 5 consecutive amino acid residues, to a polypeptide sequence of the invention. In some cases, additional sequences are obtained for definitive protein identification.
[0220]
Proteome profiles can also be generated by quantifying SAT expression levels using antibodies specific for SAT. In one embodiment, protein expression levels are quantified by using antibodies as elements on the microarray and exposing the microarray to a sample to detect the level of protein binding to each array element (Lueking, A. et al. (1999) Anal. Biochem.270: 103-111; Mendose, LG et al. (1999) Biotechniques 27: 778-788). Detection can be performed by various methods known in the art, for example, the proteins in the sample can be reacted with a thiol or amino-reactive fluorescent compound to detect the amount of fluorescent binding at the elements of each array.
[0221]
Toxicity signatures at the proteome level are also useful for toxicological screening and should be analyzed in parallel with those at the transcript level. For some proteins in certain tissues, the correlation between transcription and protein abundance may be poor (Anderson, NL and J. Seilhammer (1997) Electrophoresis 18: 533-537). The proteome toxicity signature may be useful in the analysis of compounds that do not significantly affect but alter the profile of the protein. In addition, protein profiling is more reliable and informative in such cases, since the analysis of transcription in body fluids is difficult due to the rapid degradation of mRNA.
[0222]
In another example, the toxicity of a test compound is calculated by treating a biological sample containing the protein with the test compound. The proteins expressed in the processed biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in the untreated biological sample. The difference in protein amount between the two samples indicates the response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these subsequences to the polypeptides of the invention.
[0223]
In another example, the toxicity of a test compound is calculated by treating a biological sample containing the protein with the test compound. Proteins obtained from a biological sample are incubated with an antibody specific for a polypeptide of the invention. The amount of protein recognized by the antibody is quantified. The amount of protein in the treated biological sample is compared to the amount of protein in the untreated biological sample. The difference in protein amount between the two samples indicates the response to the test compound in the treated sample.
[0224]
Microarrays are prepared, used, and analyzed using methods well known in the art (Brennan, TM et al. (1995) US Patent No. 5,474,796; Schena, M.). (1996) Proc. Natl. Acad. Sci. USA 93: 10614-10619, Baldeschweiler et al. (1995) PCT Application No. WO95 / 251116, Shalon, D. et al. (1995) PCT Application No. WO95 / 35505. (1997) Proc. Natl. Acad. Sci. USA 94: 2150-2155; Heller, MJ. Et al. (1997) US Patent No. 5,605,662, etc.). . Various types of microarrays are well known, and for more informationDNA Microarrays: A Practical Approach, M .; Schena, ed. (1999) Oxford University Press, London. This document is hereby incorporated by reference.
[0225]
In another embodiment of the present invention, nucleic acid sequences encoding SAT can be used to generate hybridization probes useful for mapping native genomic sequences. Either coding or non-coding sequences can be used; in certain instances, non-coding sequences are preferred throughout the coding sequence. For example, conservation of a coding sequence within a member of a multigene family can result in unwanted cross-hybridization during chromosome mapping. The nucleic acid sequence may be a specific chromosome, a specific region of a chromosome or an artificially formed chromosome, such as a human artificial chromosome (HAC), a yeast artificial chromosome (YAC), a bacterial artificial chromosome (BAC), a bacterial P1 product, or a single chromosomal cDNA. Mapped to the library (Harrington, JJ et al. (1997) Nat Genet. 15: 345-355, Price, CM (1993) Blood Rev. 7: 127-134, Trask, B.J. (1991) Trends Genet. 7: 149-154 and the like). Once mapped, the nucleic acid sequences of the present invention can be used to generate a genetic linkage map, for example, that correlates the inheritance of a disease state with the inheritance of a particular chromosomal region or restriction fragment length polymorphism (RFLP). (See, for example, Lander, ES, and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83: 7353-7357.)
Fluorescence in situ hybridization (FISH) can correlate with other physical and genetic map data (see Heinz-Ulrich, et al. (1995) in Meyers, supra, 1995, Meyers, 965-968, etc.). Examples can be found in various scientific journals or on the website of the Online Mendelian Inheritance in Man (OMIM). Since the correlation between the location of the SAT-encoding gene on the physical chromosomal map and a particular disease, or a predisposition to a particular disease, can help determine the DNA region associated with such a disease, additional locations may be needed. Determining cloning is performed.
[0226]
The genetic map can be extended using physical mapping techniques such as binding analysis using established chromosomal markers and chromosome sample in situ hybridization. Placing a gene on the chromosome of another mammal, such as a mouse, can reveal relevant markers even when the exact chromosomal locus is not known. This information is valuable to researchers searching for disease genes using positional cloning and other gene discovery techniques. Once the disease or syndrome has been loosely located by genetic linkage to a particular genetic region, such as the 11q22-23 region of ataxia telangiectasia, any mapping to that region will result in the relevant gene being identified for further investigation. Alternatively, it can represent a regulatory gene (see Gatti, RA, et al. (1988) Nature 336: 577-580, etc.) between a healthy person, a carrier, and an infected person due to translocation, inversion, and the like. The nucleotide sequence of the present invention may be used to discover differences in chromosomal location in.
[0227]
In another embodiment of the invention, SAT, its catalytic or immunogenic fragments or its oligopeptides can be used to screen libraries of compounds in any of a variety of drug screening techniques. The fragments used for drug screening will be free in solution, fixed to a solid support, retained on the cell surface, or located intracellularly. Complex formation due to binding of the SAT to the agent to be tested may be measured.
[0228]
Another drug screening method is used to screen compounds having suitable binding affinity to the protein of interest with high throughput (see, eg, Geysen, et al. (1984) PCT Application No. WO 84/03564). In this method, a number of different small test compounds are synthesized on a solid substrate. The test compound is washed after reacting with SAT or a fragment thereof. Next, the bound SAT is detected by methods well known in the art. Purified SAT can also be coated directly on plates used in the drug screening techniques described above. Alternatively, the peptide can be captured using a non-neutralizing antibody and the peptide immobilized on a solid support.
[0229]
In another example, a competitive drug screening assay can be used in which neutralizing antibodies capable of binding SAT specifically compete with the test compound for binding SAT. In this method, the antibody detects the presence of any peptide that shares one or more antigenic determinants with the SAT.
[0230]
In another embodiment, using nucleotide sequences encoding SATs in developing molecular biology techniques, characteristics of nucleotide sequences such as, but not limited to, the currently known triplet code and specific base pairing interactions Can provide new technologies that depend on
[0231]
Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. Accordingly, the examples described below are for illustrative purposes only and are not intended to limit the invention in any way.
[0232]
Reference is made to all patent applications, patents, and publications mentioned above and below, particularly US patent applications Ser. Nos. 60 / 215,465, 60 / 239,384 and 60 / 253,639. Is a part of this specification.
[0233]
1. Preparation of cDNA library
Incyte cDNA is derived from the cDNA library described in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA) and listed in column 5 of Table 4. Some tissues are homogenized and dissolved in a guanidinium isothiocyanate solution, while others are homogenized and dissolved in a mixture of phenol or a suitable denaturant. The mixture of the denaturing agent is, for example, TRIZOL (Life Technologies) which is a single-phase solution of phenol and guanidinium isothiocyanate. The resulting lysate was centrifuged on a cesium chloride cushion or extracted with chloroform. RNA was precipitated from the lysate using isopropanol, sodium acetate and ethanol, or either, or another method.
[0234]
Extraction and precipitation of RNA with phenol were repeated as necessary to increase the purity of the RNA. In some cases, the RNA was treated with DNase. For most libraries, poly (A +) RNA was isolated using oligo d (T) -linked magnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Valencia CA) or OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using another RNA isolation kit, such as the POLY (A) PURE mRNA purification kit (Ambion, Austin TX).
[0235]
In some cases, RNA was provided to Stratagene, and a corresponding cDNA library was sometimes produced by Stratagene. Otherwise, cDNA was synthesized using the UNIZAP vector system (Stratagene) or the SUPERSCRIPT plasmid system (Life Technologies) according to the recommended method known in the art or a similar method, and a cDNA library was prepared (Ausubel, supra). , 1997, unit 5.1-6.6 etc.). Reverse transcription was started with oligo d (T) or random primer. The synthetic oligonucleotide adapter was ligated to the double-stranded cDNA, and the cDNA was digested with a suitable restriction enzyme. For most libraries, cDNA size (300-1000 bp) selection was performed using SEPHACRYL S1000, SEPHAROSE CL2B or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. The synthetic oligonucleotide adapter was ligated to the double-stranded cDNA, and the cDNA was digested with a suitable restriction enzyme or enzyme. Suitable plasmids are, for example, PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid (Life Technologies) or plNCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent Escherichia coli cells containing XL1-Blue, XL1-BIueMRF or SOLR from Stratagene, or DH5α, DH10B or ELECTROMAX DH10B from Life Technologies.
[0236]
2 Isolation of cDNA clone
UNIZAP vector system (Stratagene) was used.in VivoBy excision or by cell lysisExample 1The plasmid obtained as described above was recovered from the host cells. Magic or WIZARD Minipreps DNA Purification System (Promega), AGTC Miniprep Purification Kit (Edge Biosystems, Gaithersburg MD), QIAWELL 8PlaimPlasmid, QIAWELLPlasmid, QIAWELLPlasmid, QIAWELLPlasmid E. FIG. A. L. Plasmids were purified using at least one of the Prep 96 plasmid kits. After precipitation, they were resuspended in 0.1 ml of distilled water and stored at 4 ° C. with or without lyophilization. Magic or WIZARD Minipreps DNA Purification System (Promega), AGTC Miniprep Purification Kit (Edge Biosystems, Gaithersburg MD), QIAWELL 8PlaimPlasmid, QIAWELLPlasmid, QIAWELLPlasmid, QIAWELLPlasmid E. FIG. A. L. Prep 96 plasmid kit. After precipitation, they were resuspended in 0.1 ml of distilled water and stored at 4 ° C. with or without lyophilization.
[0237]
Alternatively, plasmid DNA was amplified from host cell lysates using direct binding PCR in a high-throughput format (Rao, VB (1994) Anal. Biochem. 216: 1-14). The lysis and thermal cycling process of the host cells was performed in a single reaction mixture. Samples were processed, stored in 384-well plates, and the concentration of amplified plasmid DNA was determined fluorometrically using a PICOGREEN dye (Molecular Probes, Eugene OR) and a Fluoroskan II fluorescence scanner (Labsystems Oy, Helsinki, Finland). Quantified.
[0238]
3 Sequencing and analysis
Example 2The Incyte cDNA recovered from the plasmid as described in, was sequenced as shown below. The cDNA sequencing reaction can be performed using standard methods or high-throughput equipment such as an ABI CATALYST 800 thermal cycler (Applied Biosystems) or a PTC-200 thermal cycler (MJ Research) with a HYDRA microdispenser (Robbins ScientificLMIBlOMIBOMICRiMbO2MCR) Treated in conjunction with the system. The sequencing reaction of cDNA was performed by using a reagent provided by Amersham Pharmacia Biotech or an ABI sequencing kit, for example, an ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied reagent prepared by using a reagent provided by Applied Biosystems). For electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides, the MEGABACE 1000 DNA sequencing system (Molecular Dynamics) or the ABI PRISM 373 or 377 sequencing system using standard ABI protocols and base pairing software ( Applied Biosystems) or other sequence analysis systems well known in the art. The reading frame within the cDNA sequence was determined using standard methods (reviewed in Ausubel, 1997, unit 7.7, supra). Select some of the cDNA sequences,Example 8The sequence was extended by the method described in (1).
[0239]
The polynucleotide sequence derived from the Incyte cDNA sequence was validated by removing the vector, linker and poly (A) sequences and masking ambiguous base pairs. At that time, algorithms and programs based on BLAST, dynamic programming and adjacent dinucleotide frequency analysis were used. Then, using programs based on BLAST, FASTA and BLIMPS, to obtain annotations in the program, public databases such as GenBank primates and rodents, mammals, vertebrates, eukaryotes, The Incyte cDNA sequence or its translation was queried for a selection of Hidden Markov Model (HMM) based protein family databases such as BLOCKS, PRINTS, DOMO, PRODOM and PFAM (HMM is a probabilistic analysis of the consensus primary structure of a gene family). (See, eg, Eddy, SR (1996) Curr. Opin. Struct. Biol. 6: 361-365). Eddy, S.M. R. (1996) Cuff. Opin. Struct. Biol. 6: 361-365) was queried for the Incyte cDNA sequence or its translation. Queries were made using programs based on BLAST, FASTA, BLIMPS and HMMER. Incyte cDNA sequences were constructed to yield full-length polynucleotide sequences. Alternatively, GenBank cDNA, GenBank EST, stitched sequence, stretched sequence or Genscan predicted coding sequence (Examples 4 and 5) Was used to extend the population of Incyte cDNA to full length. A population of cDNAs was screened for open reading frames using a program based on Phred, Prap and Consed, and a program based on GenMark, BLAST and FASTA. The full length polynucleotide sequence was translated to derive the corresponding full length polypeptide sequence. Alternatively, the polypeptides of the invention may start at any methionine residue of the full length translated polypeptide. Subsequently, full-length polypeptide sequences were analyzed by queries against the GenBank protein database (genpept), databases such as SwissProt, BLOCKS, PRINTS, DOMO, PRODOM and Prosite, and Hidden Markov Model (HMM) based protein family databases such as PFAM. . Full-length polynucleotide sequences were also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm, such as that incorporated into the MEGALIGN Multi-Sequence Alignment Program (DNASTAR), which also calculates the percent identity between aligned sequences.
[0240]
Table 7 outlines the tools, programs and algorithms used for analysis and assembly of Incyte cDNA and full-length sequences, along with applicable descriptions, references and threshold parameters. The tools, programs and algorithms used are shown in column 1 of Table 7, and a brief description of them is shown in column 2. Column 3 is a preferred citation, all of which are incorporated by reference in their entirety. If applicable, column 4 shows the score, probability value and other parameters used to evaluate the strength of the match between the two sequences (the higher the score, the higher the homology between the two sequences) ).
[0241]
The programs described above for assembling and analyzing full-length polynucleotide and polypeptide sequences can also be used to identify polynucleotide sequence fragments of SEQ ID NOs: 10-18. Fragments of about 20 to about 4000 nucleotides that are useful for hybridization and amplification techniques are set forth in Table 4, column 4.
[0242]
4 Identification and editing of coding sequences from genomic DNA
Putative secretory and transport molecules were initially identified by running the Genscan gene identification program in public genomic sequence databases (eg, gbpri and gbhtg). Genscan is a universal gene identification program that analyzes genomic DNA sequences from a variety of organisms (Burge, C. and S. Karlin (1997) J. Mol. Biol. 268: 78-94 and Burge, C. and S. Karl). Karlin (1998) Cuff. Opin. Struct. Biol. 8: 346-354). The program ligates the predicted exons to form a structured cDNA sequence ranging from methionine to stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequences analyzed at one time by Genscan was set at 30 kb. To determine which of these Genscan putative cDNA sequences encode secreted and transported molecules, the encoded polypeptides were interrogated and analyzed for secreted and transported molecules in a PFAM model. Potential secretory and transport molecules were identified based on homology to the in-site cDNA sequence annotated as secretory and transport molecule. The Genscan predicted sequences thus selected were then compared by BLAST analysis to the public databases gbpri and gbhtg. If necessary, edit the Genscan predicted sequence by comparing to the top BLAST hit from genpept to correct errors in the Genscan predicted sequence, such as extra or removed exons. BLAST analysis also provides evidence of transcription as it is used to find the public cDNA coverage of any Incyte cDNA or Genscan predicted sequence. If Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence. The full-length polynucleotide sequence isExample 3Obtained by constructing the Genscan predicted coding sequence with the Incyte cDNA sequence and / or the public cDNA sequence using the construction process described in US Pat. Alternatively, the full-length polynucleotide sequence is completely derived from the edited or unedited Genscan predicted coding sequence.
[0243]
5 Construction of genomic sequence data using cDNA sequence data
Stitch arrangement ( Stitched Sequence )
The partial cDNA sequence isExample 4Were extended using the exons predicted by the Genscan gene identification program described in (1).Example 3The partial cDNAs constructed as described in were mapped to genomic DNA and decomposed into clusters containing the related cDNA and Genscan exons predicted from one or more genomic sequences. Analyze each cluster using algorithms based on graph theory and dynamic programming to integrate cDNA and genomic information, and subsequently confirm, edit or extend to generate potential splice variants that yield full-length sequences did. Sequences were identified in which the length of the entire interval was present in more than one sequence in the cluster, and the intervals so identified were considered equal over time. For example, if there is an interval between one cDNA and two genomic sequences, all three intervals are considered equal. This process can link unrelated but contiguous genomic sequences together by cDNA sequences. The sections thus identified are stitched together with a stitching algorithm so that they appear along the parent sequence to create the longest possible sequence and variant sequences. The linkage of intervals generated along one parent sequence (cDNA-cDNA or genomic sequence-genomic sequence) took precedence over the linkage that changed parent type (cDNA-genomic sequence). The resulting stitch sequences were translated into public databases genpept and gbpri by BLAST analysis and compared. Incorrect exons predicted by Genscan were corrected by comparing to the top BLAST hit from genpept. If necessary, the sequence was further extended using additional cDNA sequences or by inspection of genomic DNA.
[0244]
Stretch array ( Stretched Sequence )
The partial DNA sequence was extended to full length by an algorithm based on BLAST analysis. First, the BLAST program was used to access public databases such as GenBank primates, rodents, mammals, vertebrates and eukaryotes databases.Example 3Were queried for the partial cDNAs constructed as described in. Next, the closest GenBank protein homolog was analyzed by BLAST analysis for the Incyte cDNA sequence orExample 4As described in any of the GenScan exon predicted sequences described above. The resulting high scoring segment pair (HSP) was used to generate a chimeric protein and the translated sequence was mapped onto a GenBank protein homolog. Insertions or deletions can occur within the chimeric protein relative to the original GenBank protein homolog. GenBank protein homologs, chimeric proteins or both were used as probes to search homologous genomic sequences from public human genome databases. In this way, the partial DNA sequence was stretched or extended by the addition of a homologous genomic sequence. The resulting stretch sequences were examined to determine if they contained the complete gene.
[0245]
6 Chromosome mapping of polynucleotide encoding SAT
The sequences used to construct SEQ ID NOs: 10-18 were compared to those in the Incyte LIFESEQ database and the public domain database using the BLAST and Smith-Waterman algorithms. Sequences from these databases consistent with SEQ ID NOs: 10-18 were incorporated into clusters of contiguous and overlapping sequences using construction algorithms such as Phrap (Table 7). Whether clustered sequences were previously mapped using radiation hybrid and genetic map data available from public sources such as the Stanford Human Genome Center (SHGC), Whitehead Genome Institute (WIGR), and Genethon Was measured. As a result of the inclusion of the mapped sequence in a cluster, the entire sequence of that cluster, including the individual sequence numbers, was assigned to locations on the map.
[0246]
Locations on the map are represented as ranges or intervals of human chromosomes. The location on the map of centiMorgan spacing is measured relative to the end of the p-arm of the chromosome. (Centimorgan (cM) is a unit of measure based on the frequency of recombination between chromosomal markers. On average, 1 cM is approximately equal to one megabase (Mb) of DNA in humans. The cM distance varies widely with Genethon-mapped genetic markers such that sequences provide boundaries for radiation hybrid markers such that they are included within each cluster due to hot spots and cold spots. Using human genetic maps and other sources available to the general public, such as the NCBI "GeneMap99" (http: //www.ncbi.nlm.nih.gpv/genemap), the above-mentioned sections have already been identified. Can be determined within or near the disease gene map that is present.
[0247]
7. Analysis of polynucleotide expression
Northern analysis is an experimental technique used to detect the presence of transcribed genetic information and involves the hybridization of a labeled nucleotide sequence to a membrane to which RNA from a particular cell type or tissue is bound. ing. (See Sambrook, supra, Chapter 7, and Ausubel. FM et al., Chapters 4 and 16, etc.).
[0248]
Similar computer techniques applied to BLAST are used to search the same or related molecules in nucleotide databases such as GenBank and LifeSeq (Incyte Pharmaceuticals). Northern analysis is much faster than multi-membrane based hybridization. In addition, the sensitivity of the computer search can be modified to determine whether to classify a particular identity as exact or homologous. The search criterion is the product product score, which is defined by the following equation.
(Equation 1)
Figure 2004528002
The product product score takes into account both the similarity between the two sequences and the length at which the sequences match. The product product score is a standardized value of 0 to 100, and is obtained as follows. Multiply the BLAST score by the percent sequence identity of the nucleotides and divide the product by 5 times the shorter length of the two sequences. The BLAST score is calculated by assigning a score of +5 to each base matching the high scoring segment pair (HSP) and -4 to each mismatched base pair. The two sequences may share more than one HSP (can be separated by a gap). If there is more than one HSP, calculate the product product score using the base pair with the highest BLAST score. The product product score represents a balance between fragmented overlap and the quality of the BLAST alignment. For example, a product product score of 100 is only obtained if there is a 100% match over the shorter length of the two compared sequences. The product product score 70 is obtained when one end matches 100% and overlaps 70%, or the other end matches 88% and overlaps 100%. The product product score 50 is obtained when one end matches 100% and overlaps 50%, or the other end matches 79% and overlaps 100%.
[0249]
Alternatively, the polynucleotide sequence encoding SAT is analyzed against the tissue from which it was derived. For example, one full-length sequence is the Incyte cDNA sequence (Example 3) Are constructed so as to at least partially overlap with the above. Each cDNA sequence is derived from a cDNA library made from human tissue. Each cDNA sequence is derived from a cDNA library made from human tissue. Each human tissue has the following organism / tissue categories: cardiovascular system, connective tissue, digestive system, embryonic structure, endocrine system, exocrine glands, female genitalia, male genitalia, germ cells, blood and immune system, liver, musculoskeletal System, nervous system, pancreas, respiratory system, sensory organ, skin, stomatognathic system, non-classified / mixed or urinary tract. Count the number of libraries in each category and divide by the total number of libraries in all categories. Similarly, each human tissue is classified into one of the following disease / pathology categories: cancer, cell line, development, inflammation, nervous, trauma, cardiovascular, congestion, and others. Count the number of libraries in each category and divide by the total number of libraries in all categories. The percentage obtained reflects the disease-specific expression of the cDNA encoding SAT. cDNA sequence and cDNA library / tissue information can be obtained from the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA).
[0250]
8. Elongation of polynucleotide encoding SAT
Full-length polynucleotide sequences were also generated by extending the fragment using oligonucleotide primers designed from the appropriate fragment of the full-length molecule. One primer was synthesized to initiate 5 'extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment. The starting primer is about 22-30 nucleotides in length, has a GC content of about 50% or more, and anneals to the target sequence at a temperature of about 68-72 ° C., using OLIGO 4.06 software (National Biosciences) or another primer. Was designed from the cDNA using the appropriate program from All hairpin structures and nucleotide extensions resulting in primer-primer dimers were avoided.
[0251]
To extend the sequence, a selected human cDNA library was used. If more than one step extension was needed or desired, additional primers or nested sets of primers were designed.
[0252]
High fidelity amplification was obtained by PCR using methods well known to those skilled in the art. PCR was performed in a 96-well plate using a PTC-200 thermal cycler (MJ Research, Inc.). The reaction mixture was composed of template DNA and 200 nmol of each primer, Mg2 +And (NH4)2SO4And a buffer containing β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene). Amplification was performed on the primer set, PCI A and PCI B, with the following parameters. Step 1: 94 ° C. for 3 minutes, Step 2: 94 ° C. for 15 seconds, Step 3: 60 ° C. for 1 minute, Step 4: 68 ° C. for 2 minutes, Step 5: Repeat steps 2, 3, and 4 20 times . Step 6: Store at 68 ° C for 5 minutes, Step 7: Store at 4 ° C. Alternatively, amplification was performed with the following parameters for the primer pair, T7 and SK +. Step 1: 94 ° C. for 3 minutes, Step 2: 94 ° C. for 15 seconds, Step 3: 57 ° C. for 1 minute, Step 4: 68 ° C. for 2 minutes, Step 5: Repeat steps 2, 3, and 4 20 times . Step 6: Store at 68 ° C for 5 minutes, Step 7: Store at 4 ° C.
[0253]
The DNA concentration in each well was determined by adding 100 μl of PICOGREEN quantitative reagent (0.25 (v / v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1 × TE and 0.5 μl of undiluted PCR product to opaque fluorescence. The DNA is distributed to each well of a counting plate (Coming Costar, Acton MA) so that the DNA can bind to the reagent, and the measurement is performed. The plate was scanned with a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and quantify the DNA concentration. Aliquots of 5-10 μl of the reaction mixture were analyzed by electrophoresis on a 1% agarose minigel to determine which reactions were successful in extending the sequence.
[0254]
The extended nucleotides are desalted and concentrated, transferred to a 384-well plate, digested using CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and ligated into a pUC18 vector (Amersham Pharmacia Biotech). Sonicated or sheared before. For shotgun sequencing, the digested nucleotides were separated on a low concentration (0.6-0.8%) agarose gel, the fragments were excised, and the agar was digested with Agar ACE (Promega). The extended clone was religated to a pUC18 vector (Amersham Pharmacia Biotech) using T4 ligase (New England Biolabs, Beverly MA), treated with Pfu DNA polymerase (Stratagene), and treated with Pfu DNA polymerase (Stratagene). And transfected into E. coli cells. The transfected cells were selected and transferred to a medium containing an antibiotic, and each colony was cut out and cultured in a 384-well plate of LB / 2X carbenicillin culture at 37 ° C. overnight.
[0255]
The cells were lysed, and the DNA was PCR-amplified using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) according to the following procedure. Step 1: 94 ° C. for 3 minutes, Step 2: 94 ° C. for 15 seconds, Step 3: 60 ° C. for 1 minute, Step 4: 72 ° C. for 2 minutes, Step 5: Repeat steps 2, 3, and 4 20 times . Step 6: Store at 72 ° C for 5 minutes, Step 7: Store at 4 ° C. DNA was quantified with the PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recovery were reamplified using the same conditions as above. Samples of 20% dimethyl sulfoxide: diluted with (1 2, v / v), using DYENAMIC energy transfer sequencing primer and DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems) Sequenced.
[0256]
Similarly, the above procedure is used to verify full-length nucleotide sequences, or to obtain 5 'regulatory sequences using oligonucleotides designed for such extension and appropriate genomic libraries.
[0257]
9 Labeling and use of individual hybridization probes
The cDNA, genomic DNA or mRNA is screened using the hybridization probe obtained from SEQ ID NO: 10-18. Although the labeling of oligonucleotides of about 20 base pairs is specifically described, the same procedure is used for larger nucleotide fragments. Oligonucleotides were designed using the latest software such as OLIGO 4.06 software (National Biosciences) and 50 pmol of each oligomer and [γ-32[P] Adenosine triphosphate (Amersham Pharmacia Biotech) 250 μCi is bound to T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotide is sufficiently purified using a SEPHADEX G-25 ultrafine molecular size exclusion dextran bead column (Amersham Pharmacia Biotech). In a typical membrane-based hybridization analysis of human genomic DNA digested with any one of the endonucleases of Ase I, Bgl II, Eco RI, Pst I, Xbal or Pvu II (DuPont NEN), 10 per minute7An aliquot containing a count of labeled probes is used.
[0258]
DNA from each digest is fractionated on a 0.7% agarose gel and transferred to a nylon membrane (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is performed at 40 ° C. for 16 hours. To remove non-specific signals, the blot is washed sequentially at room temperature, for example, under conditions consistent with 0.1 × sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized and compared using autoradiography or an alternative imaging means.
[0259]
10 microarray
Chaining or synthesizing array elements on the surface of a microarray can be achieved using photolithography, piezoelectric printing (see inkjet printing, see Baldschweiler, supra), mechanical microspotting techniques and derivatives thereof. It is. In each of the above techniques, the substrate should be a uniform, non-porous solid (Schena (1999), supra). Recommended substrates include silicon, silica, glass slides, glass chips and silicon wafers. Alternatively, an array similar to dot blot or slot blot may be used to place and attach elements to the surface of the substrate using thermal, ultraviolet, chemical or mechanical binding procedures. Regular arrays can be made manually or using available methods and machines and can have any suitable number of elements (Schena, M. et al. (1995) Science 270: 467-470; Shalon. (1996) Genome Res. 6: 639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16: 27-31.).
[0260]
Full-length cDNA, expressed sequence tags (ESTs), or fragments or oligomers thereof, can be elements of a microarray. Fragments or oligomers suitable for hybridization can be selected using software known in the art, such as Laser GENE software (DNASTAR). Array elements are hybridized with polynucleotides in a biological sample. Polynucleotides in a biological sample are conjugated to a fluorescent label or other molecular tag to facilitate detection. After hybridization, unhybridized nucleotides are removed from the biological sample and hybridization is detected at each array element using a fluorescence scanner. Alternatively, hybridization can be detected using laser desorption and mass spectrometry. The degree of complementarity and relative abundance of each polynucleotide that hybridizes to an element on the microarray can be calculated. The preparation and use of the microarray in one embodiment is described in detail below.
[0261]
Preparation of tissue or cell samples
Total RNA was isolated from tissue samples using the guanidinium thiocyanate method and poly (A) was isolated using the oligo (dT) cellulose method.+Purify the RNA. Each poly (A)+RNA samples were MMLV reverse transcriptase, 0.05 pg / μl oligo (dT) primer (21 mer), 1 × first strand buffer, 0.03 unit / μl RNase inhibitor, 500 μM dATP, 500 μM dGTP , 500 μM dTTP, 40 μM dCTP, 40 μM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction was performed using a GEMBRIGHT kit (Incyte) using 200 ng of poly (A).+Performed in 25 volume ml containing RNA. Specific control poly (A)+RNA was incubated at 370 ° C. for 2 hours,in in vitroIt is synthesized from non-coding yeast genomic DNA by transcription. Each reaction sample (one labeled Cy3 and the other labeled Cy5) is treated with 2.5 ml of 0.5 M sodium hydroxide and incubated at 85 ° C. for 20 minutes to stop the reaction and degrade RNA. Samples are purified using two consecutive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA). After binding, the two reaction samples are ethanol precipitated with 1 ml glycogen (1 mg / ml), 60 ml sodium acetate and 300 ml 100% ethanol. The sample is then dried and finished using SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 μl of 5 × SSC / 0.2% SDS.
[0262]
Preparation of microarray
An array element is generated using the sequences of the present invention. Each array element is amplified from vector-containing bacterial cells by a cloned cDNA insert. PCR amplification uses primers complementary to the vector sequence flanking the cDNA insert. Amplify array elements from an initial amount of 1-2 ng to a final amount greater than 5 μg in 30 cycles of PCR. The amplified array elements are purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).
[0263]
The purified array element is immobilized on a polymer-coated glass slide. Microscope slides (Corning) are washed during and after treatment by sonication in 0.1% SDS and acetone, and very well washed with distilled water. Slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and 0.05% aminopropylsilane (Sigma) in 95% ethanol. ). The coated glass slide is cured with an oven at 110 ° C.
[0264]
Array elements are added to a coated glass substrate using the method described in US Pat. No. 5,807,522. The specification is incorporated herein by reference. 1 μl of array element DNA having an average concentration of 100 ng / μl is filled into an open capillary printing element by a high-speed mechanical device. The apparatus now deposits about 5 nl of array element samples per slide.
[0265]
The microarray is UV cross-linked using a STRATALLINKER UV cross-linking agent (Stratagene). The microarray is washed once with 0.2% SDS at room temperature and three times with distilled water. After incubating the microarray in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60 ° C., 0.2% SDS and Non-specific binding sites are blocked by washing with distilled water.
[0266]
Hybridization
The hybridization reaction has 9 μl of the sample mixture containing 0.2 μg each of Cy3 and Cy5 labeled cDNA synthesis products in 5 × SSC, 0.2% SDS hybridization buffer. The sample mixture was heated to 65 ° C. for 5 minutes and aliquoted 1.8 cm on the microarray surface.2 Cover with cover glass. The array is transferred to a waterproof chamber with a cavity slightly larger than the microscope slide. The interior of the chamber is kept at a humidity of 100 by adding 140 μl of 5 × SSC to the corner of the chamber. The chamber containing the array is incubated at 60 ° C. for about 6.5 hours. The arrays were washed in the first wash buffer (1 × SSC, 0.1% SDS) at 45 ° C. for 10 minutes and in the second wash buffer (0.1 × SSC) at 45 ° C. for 10 minutes each. Wash and dry.
[0267]
detection
The reporter-labeled hybridization complex uses an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) that can generate spectral lines at 488 nm for Cy3 excitation and 632 nm for Cy35 excitation. Detect with a microscope equipped. The excitation laser light is focused on the array using a 20 × microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer controlled XY stage of a microscope and raster scanned through an objective. The 1.8 cm × 1.8 cm array used in this example was scanned at a resolution of 20 μm.
[0268]
Of the two different scans, the mixed gas multiline laser excites the two fluorescent dyes sequentially. The emitted light is separated based on the wavelength and sent to two photomultiplier detectors (PMT R1277, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorescent dyes. The signal is filtered using a suitable filter placed between the array and the photomultiplier. The maximum emission wavelength of the fluorescent dye used is 565 nm for Cy3 and 650 nm for Cy5. The instrument can record spectra from both fluorochromes simultaneously, but scans once for each fluorochrome using a suitable filter in the laser source, and typically scans each array twice.
[0269]
The sensitivity of the scan is usually calibrated using the signal intensity generated by a cDNA control species added to a known concentration of the sample mixture. A specific location on the array contains a complementary DNA sequence, and the intensity of the signal at that location correlates to a 1: 100,000 weight ratio of hybridizing species. When two samples from different sources (eg, cells to be tested and control cells) are each labeled with a different fluorescent dye and hybridized to a single array to identify differentially expressed genes Is performed by labeling a sample of the cDNA to be calibrated with two fluorescent dyes and adding equal amounts of each to the hybridization mixture.
[0270]
The output of the photomultiplier is digitized using a 12-bit RTI-835H analog-to-digital (A / D) converter board (Analog Devices, Inc., Norwood MA) installed on an IBM compatible PC computer. The digitized data is displayed as an image in which the signal intensities have been mapped using a linear 20-color conversion from a blue (low signal) to a pseudo-color range from red (high signal). The data is also analyzed quantitatively. If two different fluorochromes are excited and measured simultaneously, the data is first corrected for optical crosstalk between the fluorochromes (due to overlapping emission spectra) using the emission spectra of each fluorochrome.
[0271]
A grid is overlaid on the fluorescent signal image, whereby the signal from each spot is collected on each element of the grid. The fluorescent signal in each element is integrated, and a value corresponding to the average intensity of the signal is obtained. The software used for signal analysis is a GEMTOOOLS gene expression analysis program (Incyte).
[0272]
11 Complementary polynucleotide
A sequence encoding the SAT or a sequence complementary to any portion thereof is used to reduce or inhibit the expression of native SAT. Although the use of oligonucleotides containing about 15-30 base pairs is described, essentially the same method can be used for fragments of smaller or larger sequences. The appropriate oligonucleotides are designed using the Oligo 4.06 software (National Biosciences) and the coding sequence of the SAT. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5 'sequence and used to inhibit the promoter from binding to the coding sequence. To inhibit translation, complementary oligonucleotides are designed to prevent ribosomes from binding to SAT-encoding transcripts.
[0273]
12 Expression of SAT
SAT expression and purification can be performed using bacterial or viral based expression systems. For expression of the SAT in bacteria, the cDNA is subcloned into a suitable vector containing an inducible promoter that increases antibiotic resistance and the level of cDNA transcription. Such promoters include, but are not limited to, the T5 or T7 bacteriophage promoter associated with the lac operator regulatory element and the trp-lac (tac) hybrid promoter. The recombinant vector is transformed into a suitable bacterial host, such as BL21 (DE3). Bacteria with antibiotic resistance express SAT when induced with isopropyl β-D thiogalactopyranoside (IPTG). Expression of SAT in eukaryotic cells is commonly known as baculovirus in insect or mammalian cell lines.Autographica californicaIt is performed by infecting with a nuclear pleiotropic virus (AcMNPV). The non-essential polyhedrin gene of the baculovirus is replaced with cDNA encoding SAT by either homologous recombination or bacterial-mediated gene transfer with transfer plasmid-mediated. The infectivity of the virus is maintained and a strong polyhedron promoter drives high levels of cDNA transcription. Recombinant baculoviruses are oftenSpodoptera frugiperda(Sf9) Used for infection of insect cells, but may also be used for infection of human hepatocytes. In the latter case, further genetic modification of the baculovirus is required. (See Engelhard. EK et al. (1994) Proc. Natl. Acad. Sci. USA 91: 3224-2327, Sandig, V. et al. (1996) Hum. Gene Ther. 7: 1937-1945.).
[0274]
In most expression systems, SAT is a fusion protein synthesized with, for example, glutathione S-transferase (GST) or a peptide epitope tag such as FLAG or 6-His. Can be performed quickly and in one go. GST is a 26 kDa enzyme from Schistosoma japonicum, which allows purification of the fusion protein on immobilized glutathione while maintaining protein activity and antigenicity (Amersham Pharmacia Biotech). After purification, the GST moiety can be proteolytically cleaved from the SAT at specific manipulation sites. FLAG is an 8-amino acid peptide that allows immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His in which six histidine residues are continuously extended enables purification on a metal chelating resin (QIAGEN). Methods for protein expression and purification are described in Ausubel (1995) supra, Chapters 10 and 16. The assays of Examples 16 and 17 below can be performed directly using SAT purified by these methods.
[0275]
13 Functional Assay
SAT function is assessed by expression of SAT-encoding sequences at physiologically elevated levels in mammalian cell culture systems. The cDNA is subcloned into a mammalian expression vector containing a strong promoter that expresses the cDNA at high levels. Selected vectors include the pCMV SPORT plasmid (Life Technologies) and the pCR 3.1 plasmid (Invitrogen), both with the cytomegalovirus promoter. Using a liposome formulation or electroporation, 5-10 μg of the recombinant vector is transiently transfected into a human cell line, eg, an endothelial or hematopoietic cell line. In addition, 1-2 μg of plasmid containing the sequence encoding the labeled protein is co-transfected. Expression of the labeled protein provides a means of distinguishing transfected from non-transfected cells. In addition, the expression of the cDNA from the recombinant vector can be accurately predicted by the expression of the labeled protein. The labeling protein can be selected from, for example, green fluorescent protein (GFP; Clontech), CD64 or a CD64-GFP fusion protein. Identify transfected cells expressing GFP or CD64-GFP and evaluate their apoptotic status and other cellular properties using an automated, laser optics-based technique, flow cytometry (FCM) I do. FCM detects and quantifies the uptake of fluorescent molecules that diagnose a phenomenon that precedes or coincides with cell death. Such phenomena include changes in nuclear DNA content measured by DNA staining with propidium iodide, changes in cell size and granularity measured by forward light scattering and 90 ° side light scattering, Downregulation of DNA synthesis as measured by reduced uptake of bromodeoxyuridine, changes in cell surface and intracellular protein expression as measured by reactivity with specific antibodies, and cells with fluorescent complex annexin V protein There is a change in plasma membrane composition as measured by binding to the surface. For flow cytometry, see Ormerod, M .; G. FIG. (1994)Flow Cytometry Oxford, New York, NY. There is a description.
[0276]
The effect of SAT on gene expression can be assessed using a highly purified cell population transfected with a sequence encoding SAT and either CD64 or CD64-GFP. CD64 or CD64-GFP is expressed on the transformed cell surface and binds to a conserved region of human immunoglobulin G (IgG). Transformed and non-transformed cells can be separated using magnetic beads coated with either human IgG or an antibody against CD64 (DYNAL. Lake Success. NY). mRNA can be purified from cells by methods well known in the art. Expression of mRNA encoding SAT and other genes of interest can be analyzed by Northern analysis or microarray technology.
[0277]
Preparation of 14 SAT-specific antibodies
Standard protocols using SAT substantially purified using polyacrylamide gel electrophoresis (PAGE; see Harrington, MG (1990) Methods Enzymol. 182: 488-495) or other purification techniques. To immunize rabbits to produce antibodies.
Alternatively, the SAT amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine the region of high immunogenicity, and the corresponding oligopeptide is synthesized and used to generate antibodies using methods well known to those skilled in the art. Produce. The selection of suitable epitopes, such as those near the C-terminus or in adjacent hydrophilic regions, is well known in the art (see, eg, Ausubel, 1995, supra, Chapter 11).
[0278]
Usually, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer using Fmoc chemistry (Applied Biosystems) and reacted with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS). It binds to KLH (Sigma-Aldrich, St. Louis MO) to enhance immunogenicity (see Ausubel, 1995, supra). Rabbits are immunized with the oligopeptide-KLM complex in complete Freund's adjuvant. In order to examine the anti-peptide activity and anti-SAT activity of the obtained antiserum, the peptide or SAT was bound to a substrate, blocked with 1% BSA, reacted with rabbit antiserum, washed, and further radioactively washed. React with iodine-labeled goat anti-rabbit IgG.
[0279]
15 Purification of natural SAT using specific antibodies
The natural or recombinant SAT is substantially purified by immunoaffinity chromatography using an antibody specific for SAT. The immunoaffinity column is formed by covalently binding an anti-SAT antibody to an activation chromatography resin such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After binding, block and wash the resin according to the manufacturer's instructions.
[0280]
The culture solution containing SAT is passed through an immunoaffinity column, and the column is washed under conditions that allow preferential adsorption of SAT (for example, with a buffer having a high ionic strength in the presence of a surfactant). The column is eluted under conditions that disrupt the binding of the antibody to the SAT (eg, with a buffer of pH 2-3 or a high concentration of chaotropic ions such as urea or thiocyanate ions) and the SAT is recovered.
[0281]
16 Identification of molecules interacting with SAT
SAT or a biologically active SAT fragment is125Label with I Bolton Hunter reagent. (See, for example, Bolton AE and WM Hunter (1973) Biochem. J. 133: 529-539.) Pre-arranged candidate molecules in a multiwell plate are incubated with labeled SAT. Wash and assay all wells with labeled SAT complex. Using the data obtained at the various SAT concentrations, values are calculated for the quantity and affinity of SAT bound to the candidate molecule and for association.
[0282]
Alternatively, molecules that interact with SAT are identified in Fields, S .; And O. The analysis is performed using a commercially available kit based on a two-hybrid system such as the yeast two-hybrid system described in Song (1989, Nature 340: 245-246) or the MATCHMAKER system (Clontech).
[0283]
SAT also uses the PATHHCALLING process (CuraGen Corp., New Haven CT) using a yeast two-hybrid system in a high-throughput manner to determine all interactions between genes encoded in two large libraries of genes. (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101). (2000) U.S. Patent No. 6,057,101).
[0284]
17 Demonstration of SAT activity
SAT activity is measured by its inclusion in coated vesicles. SAT can be expressed by transforming a mammalian cell line such as COS7, HeLa, or CHO with a eukaryotic expression vector encoding SAT. Eukaryotic expression vectors are commercially available and techniques for introducing them into cells are well known to those skilled in the art. A small amount of a second plasmid that expresses any one of a plurality of marker genes, such as β-galactosidase, can be co-transformed into cells, allowing rapid identification of those cells that absorb and express foreign DNA. I do. After transformation, the cells are incubated for 48-72 hours under conditions suitable for the cell line to express and accumulate SAT and 13-galactosidase. Transformed cells are collected and cell lysates are analyzed for vesicle composition. A system that regenerates the non-hydrolyzable form of GTP, GTPγS, ATP, is added to the lysate and the mixture is incubated foroIncubate at C. Under these conditions, more than 90% of the vesicles remain coated (see Orci, L. et al. (1989) Cell 56: 357-368). Transport vesicles are released from the Golgi membrane by salts, subjected to a sucrose density gradient, and the fractions are collected and analyzed by SDS-PAGE. If SAT shows the same localization as clathrin or COP coatema, it indicates SAT activity during vesicle formation. The SAT contribution to vesicle formation can be confirmed by incubating the lysate with a SAT specific antibody prior to GTPγS addition. The antibody binds to SAT and interferes with its activity, thereby preventing vesicle formation. Alternatively, SAT activity can be measured by its ability to alter the vesicle transport pathway. Vesicle transport of SAT transformed cells is examined using a fluorescence microscope. Antibodies specific for vesicle coat proteins or typical vesicle transport substrates such as transferrin or mannose-6-phosphate receptor are commercially available. Various cellular components such as ER, Golgi, peroxisomes, endosomes, lysosomes and plasma membranes are examined. Changes in the number and location of vesicles in cells transformed with SAT as compared to control cells are characteristic of SAT activity.
[0285]
Those skilled in the art may make various modifications to the described methods and systems of the present invention without departing from the scope and spirit of the invention. While the invention has been described in connection with specific preferred embodiments, it should be understood that the scope of the invention should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.
[0286]
(Brief description of the table)
Table 1 outlines the nomenclature of the full length polynucleotide and polypeptide sequences of the present invention.
[0287]
Table 2 shows the GenBank identification numbers and annotations of the closest GenBank homolog to the polypeptide of the invention. The probability score that each polypeptide matches its GenBank homolog is also shown.
[0288]
Table 3 shows the structural features of the polynucleotide sequences of the present invention, including predicted motifs and domains, along with methods, algorithms and searchable databases for use in analyzing polypeptides.
[0289]
Table 4 shows the cDNA and genomic DNA fragments used to construct the polynucleotide sequences of the present invention, along with selected fragments of the polynucleotide sequence.
[0290]
Table 5 shows a representative cDNA library of the polynucleotide of the present invention.
[0291]
Table 6 is a supplementary table explaining tissues and vectors used for preparing the cDNA library shown in Table 5.
[0292]
Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the present invention, along with applicable descriptions, references, and threshold parameters.
[Table 1]
Figure 2004528002
[Table 2]
Figure 2004528002
[Table 3]
Figure 2004528002
[Table 4]
Figure 2004528002
[Table 5]
Figure 2004528002
[Table 6]
Figure 2004528002
[Table 7]
Figure 2004528002
[Table 8]
Figure 2004528002
[Table 9]
Figure 2004528002
[Table 10]
Figure 2004528002
[Table 11]
Figure 2004528002
[Table 12]
Figure 2004528002
[Table 13]
Figure 2004528002
[Table 14]
Figure 2004528002
[Table 15]
Figure 2004528002
[Table 16]
Figure 2004528002
[Table 17]
Figure 2004528002
[Table 18]
Figure 2004528002

Claims (62)

以下の(a)乃至(d)からなる群から選択した単離されたポリペプチド。
(a)SEQ ID NO:1−9(配列番号1乃至9)を有する群から選択したアミノ酸配列を含むポリペプチド
(b)SEQ ID NO:1−9からなる群から選択したアミノ酸配列と少なくとも90%が同一であるようなアミノ酸配列を含む天然のポリペプチドを有するポリペプチド
(c)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片
(d)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドの免疫抗原性断片
An isolated polypeptide selected from the group consisting of the following (a) to (d):
(A) a polypeptide comprising an amino acid sequence selected from the group having SEQ ID NOs: 1-9 (SEQ ID NOS: 1-9); and (b) at least 90 amino acid sequences selected from the group consisting of SEQ ID NOs: 1-9. (C) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group having SEQ ID NOs: 1-9 (d). Immunogenic fragments of a polypeptide having an amino acid sequence selected from the group having SEQ ID NOs: 1-9
SEQ ID NO:1−9を有する群から選択した請求項1に記載の単離されたポリペプチド。2. The isolated polypeptide of claim 1, selected from the group having SEQ ID NOs: 1-9. 請求項1のポリペプチドをコードする単離されたポリヌクレオチド。An isolated polynucleotide encoding the polypeptide of claim 1. 請求項2のポリペプチドをコードする単離されたポリヌクレオチド。An isolated polynucleotide encoding the polypeptide of claim 2. SEQ ID NO:10−18 (配列番号7乃至12)からなる群から選択した請求項4に記載の単離されたポリヌクレオチド。5. The isolated polynucleotide of claim 4, selected from the group consisting of SEQ ID NOs: 10-18 (SEQ ID NOs: 7-12). 請求項3に記載のポリヌクレオチドに機能的に結合したプロモーター配列を含む組換えポリヌクレオチド。A recombinant polynucleotide comprising a promoter sequence operably linked to the polynucleotide of claim 3. 請求項6に記載の組換えポリヌクレオチドを用いて形質転換した細胞。A cell transformed with the recombinant polynucleotide according to claim 6. 請求項6に記載の組換えポリヌクレオチドを含む遺伝形質転換体。A genetic transformant comprising the recombinant polynucleotide according to claim 6. 請求項1のポリペプチドを生産する方法であって、以下の過程を含む方法。
(a)前記ポリペプチドの発現に好適な条件下で、請求項1のポリペプチドをコードするポリヌクレオチドに機能的に結合されたプロモーター配列を含む組換えポリヌクレオチドで形質転換された細胞を培養する過程と、
(b)そのように発現した前記ポリペプチドを回収する過程。
A method for producing the polypeptide of claim 1, comprising the following steps.
(A) culturing cells transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1 under conditions suitable for expression of said polypeptide. Process
(B) recovering the polypeptide thus expressed.
請求項1に記載のポリペプチドと特異的に結合する単離された抗体。An isolated antibody that specifically binds to the polypeptide of claim 1. 以下の(a)乃至(d)からなる群から選択した単離されたポリヌクレオチド。
(a)SEQ ID NO:10−18を有する群から選択したポリヌクレオチド配列を有するポリヌクレオチド
(b)SEQ ID NO:10−18からなる群から選択したポリヌクレオチド配列と少なくとも90%が同一であるような天然のポリヌクレオチドを含むポリヌクレオチド
(c)(a)のポリヌクレオチドに相補的なポリヌクレオチド
(d)(b)のポリヌクレオチドに相補的なポリヌクレオチド
(e)(a)〜(d)のRNA等価物
An isolated polynucleotide selected from the group consisting of the following (a) to (d):
(A) a polynucleotide having a polynucleotide sequence selected from the group having SEQ ID NO: 10-18; (b) at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO: 10-18 (E) (a) to (d), which are complementary to the polynucleotides (d) and (b), which are complementary to the polynucleotides (c) and (a), including the natural polynucleotides RNA equivalent of
請求項11に記載のポリヌクレオチドの少なくとも60の連続したヌクレオチドを含む単離されたポリヌクレオチド。An isolated polynucleotide comprising at least 60 contiguous nucleotides of the polynucleotide of claim 11. 請求項11に記載のポリヌクレオチドの配列を有する標的ポリヌクレオチドをサンプル中から検出する方法であって、
(a)前記サンプル中の前記標的ポリヌクレオチドに相補的な配列を含む少なくとも20の連続したヌクレオチドを含むプローブを用いて前記サンプルをハイブリダイズする過程(ただし、前記プローブと前記標的ポリヌクレオチドまたは断片の間でハイブリダイゼーション複合体が形成されるような条件下で、前記プローブが前記標的ポリヌクレオチドに特異的にハイブリダイズする)と、
(b)前記ハイブリダイゼーション複合体の存在・不存在を検出し、該複合体が存在する場合にはオプションでその量を検出する過程からなり、 前記プローブと前記標的ポリヌクレオチドまたは断片の間でハイブリダイゼーション複合体が形成されるような条件下で、前記プローブが前記標的ポリヌクレオチドに特異的にハイブリダイズすることを特徴とする方法。
A method for detecting a target polynucleotide having a polynucleotide sequence according to claim 11 in a sample,
(A) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides containing a sequence complementary to the target polynucleotide in the sample (provided that the probe and the target polynucleotide or fragment The probe hybridizes specifically to the target polynucleotide under conditions such that a hybridization complex is formed between)
(B) detecting the presence / absence of the hybridization complex, and optionally detecting the amount of the complex, if present, wherein the hybridization between the probe and the target polynucleotide or fragment is high. A method wherein the probe specifically hybridizes to the target polynucleotide under conditions such that a hybridization complex is formed.
前記プローブが少なくとも60の連続したヌクレオチドを含むことを特徴とする請求項13に記載の方法。14. The method of claim 13, wherein said probe comprises at least 60 contiguous nucleotides. 請求項11に記載のポリヌクレオチドの配列を有する標的ポリヌクレオチドをサンプル中から検出する方法であって、
(a)ポリメラーゼ連鎖反応増幅を用いて前記標的ポリヌクレオチドまたはその断片を増幅する過程と、
(b)前記標的ポリヌクレオチドまたはその断片の存在・不存在を検出し、該標的ポリヌクレオチドまたはその断片が存在する場合にはオプションでその量を検出する過程を含むことを特徴とする方法。
A method for detecting a target polynucleotide having a polynucleotide sequence according to claim 11 in a sample,
(A) amplifying the target polynucleotide or a fragment thereof using polymerase chain reaction amplification;
(B) a method comprising detecting the presence or absence of the target polynucleotide or a fragment thereof, and optionally detecting the amount of the target polynucleotide or a fragment thereof, if present.
請求項1のポリペプチドと、薬剤として許容できる賦形剤とを含む組成物。A composition comprising the polypeptide of claim 1 and a pharmaceutically acceptable excipient. 前記ポリペプチドが、SEQ ID NO:1−9を有する群から選択したアミノ酸配列を含むことを特徴とする請求項16に記載の成分。17. The component of claim 16, wherein the polypeptide comprises an amino acid sequence selected from the group having SEQ ID NOs: 1-9. 機能的なSATの発現の低下に関連する疾患や病態の治療方法であって、そのような治療が必要な患者に請求項16の組成物を投与することを含むことを特徴とする治療方法。17. A method for treating a disease or condition associated with reduced expression of functional SAT, comprising administering to a patient in need of such treatment the composition of claim 16. 請求項1に記載のポリペプチドのアゴニストとして有効性を確認するために化合物をスクリーニングする方法であって、
(a)請求項1のポリペプチドを含むサンプルを化合物に曝露する過程と、
(b)前記サンプルにおいてアゴニスト活性を検出するステップとを含むことを特徴とするスクリーニング方法。
A method for screening a compound for confirming the efficacy of the polypeptide according to claim 1 as an agonist,
(A) exposing a sample comprising the polypeptide of claim 1 to a compound;
(B) detecting agonist activity in the sample.
請求項19に記載の方法によって同定したアゴニスト化合物と薬剤として許容できる賦形剤とを含む組成物。A composition comprising an agonist compound identified by the method of claim 19 and a pharmaceutically acceptable excipient. 機能的なSATの発現の低下に関連する疾患や病態の治療方法であって、そのような治療が必要な患者に請求項20の組成物を投与することを含むことを特徴とする治療方法。21. A method for treating a disease or condition associated with reduced expression of functional SAT, comprising administering a composition of claim 20 to a patient in need of such treatment. 請求項1に記載のポリペプチドのアンタゴニストとして有効性を確認するために化合物をスクリーニングする方法であって、
(a)請求項1のポリペプチドを含むサンプルを化合物に曝露する過程と、
(b)前記サンプルにおいてアンタゴニスト活性を検出するステップとを含むことを特徴とするスクリーニング方法。
A method for screening a compound for confirming its efficacy as an antagonist of the polypeptide according to claim 1, comprising:
(A) exposing a sample comprising the polypeptide of claim 1 to a compound;
(B) detecting antagonist activity in the sample.
請求項22に記載の方法によって同定したアンタゴニスト化合物と、薬剤として許容できる賦形剤とを含む組成物。A composition comprising an antagonist compound identified by the method of claim 22 and a pharmaceutically acceptable excipient. 機能的なSATの過剰な発現に関連する疾患や病態の治療方法であって、そのような治療が必要な患者に請求項23の組成物を投与することを含むことを特徴とする治療方法。24. A method for treating a disease or condition associated with overexpression of functional SAT, comprising administering to a patient in need of such treatment the composition of claim 23. 請求項1に記載のポリペプチドに特異結合する化合物をスクリーニングする方法であって、
(a)適切な条件下で請求項1に記載のポリペプチドを少なくとも1つの試験化合物に結合させるステップと、
(b)請求項1に記載のポリペプチドの試験化合物との結合を検出し、それによって請求項1に記載のポリペプチドに特異結合する化合物を同定する過程とを含むことを特徴とする方法。
A method for screening for a compound that specifically binds to the polypeptide according to claim 1,
(A) binding the polypeptide of claim 1 to at least one test compound under suitable conditions;
(B) detecting the binding of the polypeptide of claim 1 to a test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
請求項1に記載のポリペプチドの活性を調節する化合物をスクリーニングする方法であって、
(a)請求項1に記載のポリペプチドの活性が許容された条件下で、請求項1に記載のポリペプチドを少なくとも1つの試験化合物に結合させる過程と、
(b)請求項1に記載のポリペプチドの活性を試験化合物の存在下で算定する過程と、
(c)試験化合物の存在下での請求項1に記載のポリペプチドの活性を、試験化合物の不存在下での請求項1に記載のポリペプチドの活性と比較する過程とを含み、試験化合物の存在下での請求項1に記載のポリペプチドの活性の変化が、請求項1に記載のポリペプチドの活性を調節する化合物を標示することを特徴とする方法。
A method for screening a compound that modulates the activity of the polypeptide according to claim 1,
(A) binding the polypeptide of claim 1 to at least one test compound under conditions permitting the activity of the polypeptide of claim 1;
(B) calculating the activity of the polypeptide of claim 1 in the presence of a test compound;
(C) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound. A method according to claim 1, wherein the change in the activity of the polypeptide according to claim 1 in the presence of is indicative of a compound that modulates the activity of the polypeptide according to claim 1.
請求項5の配列を含む標的ポリヌクレオチドの発現を変化させるのに効果的な化合物をスクリーニングする方法であって、
(a)前記標的ポリヌクレオチドの発現に好適な条件下で、前記標的ポリヌクレオチドを含むサンプルを化合物に曝露する過程と、
(b)前記標的ポリヌクレオチドの変異発現を検出する過程と、
(c)可変量の前記化合物の存在下と前記化合物の不存在下で、前記標的ポリヌクレオチドの発現を比較する過程とを含むことを特徴とする方法。
A method for screening a compound effective for altering the expression of a target polynucleotide comprising the sequence of claim 5, comprising:
(A) exposing a sample containing the target polynucleotide to a compound under conditions suitable for expression of the target polynucleotide;
(B) detecting the mutant expression of the target polynucleotide;
(C) comparing the expression of said target polynucleotide in the presence of said compound in a variable amount and in the absence of said compound.
試験化合物の毒性を算定する方法であって、
(a)核酸を含む生物学的サンプルを前記試験化合物で処理する過程と、
(b)処理した前記生体サンプルの核酸と、請求項11のポリヌクレオチドの少なくとも20の連続するヌクレオチドを含むプローブをハイブリダイズさせるステップであって、このハイブリダイゼーションゼーションが、前記プローブと前記生体サンプルの標的ポリヌクレオチドとの間で特異的なハイブリダイゼーション複合体が形成される条件下で行われ、前記標的ポリヌクレオチドが、請求項11のポリヌクレオチドのポリヌクレオチド配列またはその断片を含むポリヌクレオチドである、前記ステップと、
(c)ハイブリダイゼーション複合体の収量を定量するステップと、
(d)前記処理された生物学的サンプル中の前記ハイブリタイゼーション複合体の量を、処理されていない生物学的サンプル中の前記ハイブリタイゼーション複合体の量と比較する過程とを含み、前記処理された生物学的サンプル中の前記ハイブリタイゼーション複合体の量の差が、前記試験化合物の毒性を標示することを特徴とする方法。
A method for calculating the toxicity of a test compound, comprising:
(A) treating a biological sample containing nucleic acids with the test compound;
(B) hybridizing the treated nucleic acid of the biological sample with a probe comprising at least 20 contiguous nucleotides of the polynucleotide of claim 11, wherein the hybridization comprises the hybridization of the probe and the biological sample. The method is carried out under conditions under which a specific hybridization complex is formed with the target polynucleotide, wherein the target polynucleotide is a polynucleotide comprising the polynucleotide sequence of the polynucleotide of claim 11 or a fragment thereof. Said steps;
(C) quantifying the yield of the hybridization complex;
(D) comparing the amount of the hybridization complex in the treated biological sample with the amount of the hybridization complex in an untreated biological sample. A method wherein the difference in the amount of said hybridization complex in a treated biological sample is indicative of the toxicity of said test compound.
生物学的サンプル中のSATの発現に関連する症状または疾患に対する診断試験法であって、
(a)前記抗体が前記ポリペプチドに結合し、抗体とポリペプチドとの複合体が形成されるのに適した条件下で、前記生物学的サンプルを請求項10に記載の抗体と結合する過程と、
(b)前記複合体を検出する過程とを含み、前記複合体の存在が、前記生物学的サンプル中の前記ポリペプチドの存在と相関することを特徴とする方法。
A diagnostic test for a condition or disease associated with the expression of SAT in a biological sample, comprising:
(A) binding the biological sample to the antibody of claim 10 under conditions suitable for the antibody to bind to the polypeptide and form a complex between the antibody and the polypeptide. When,
(B) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.
前記抗体が、
(a)キメラ抗体
(b)単鎖抗体
(c)Fab断片
(d)F(ab’) 断片
(e)ヒト化抗体 のいずれかであることを特徴とする請求項10に記載の抗体。
The antibody,
The antibody according to claim 10, which is any one of (a) a chimeric antibody, (b) a single-chain antibody, (c) a Fab fragment, (d) an F (ab ') 2 fragment, and (e) a humanized antibody.
請求項10に記載の抗体と、許容できる賦形剤とを含む化合物。A compound comprising the antibody of claim 10 and an acceptable excipient. 被検者のSATの発現に関連する病状又は疾患の診断方法であって、請求項31に記載の化合物の有効量を前記被検者に投与する過程を含むことを特徴とする方法。32. A method for diagnosing a condition or disease associated with the expression of SAT in a subject, comprising administering to the subject an effective amount of the compound of claim 31. 前記抗体が標識されることを特徴とする請求項31に記載の化合物。32. The compound of claim 31, wherein said antibody is labeled. 被検者のSATの発現に関連する病状又は疾患の診断方法であって、請求項33に記載の化合物の有効量を前記被検者に投与する過程を含むことを特徴とする方法。34. A method for diagnosing a condition or disease associated with the expression of SAT in a subject, comprising administering an effective amount of the compound of claim 33 to the subject. 請求項10に記載の抗体の特異性を有するポリクローナル抗体を調製する方法であって、
(a)抗体反応を誘発する条件下で、SEQ ID NO:1−9を有する群から選択したアミノ酸配列含むポリペプチドまたはその免疫抗原性断片を用いて動物を免疫化する過程と、
(b)前記動物から抗体を単離する過程と、
(c)前記単離された抗体をポリペプチドでスクリーニングし、それによって、SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドに特異結合するようなポリクローナル抗体を同定する過程とを含むことを特徴とする方法。
A method for preparing a polyclonal antibody having the specificity of the antibody according to claim 10,
(A) immunizing an animal with a polypeptide containing an amino acid sequence selected from the group having SEQ ID NOs: 1-9 or an immunogenic fragment thereof under conditions that induce an antibody response;
(B) isolating the antibody from the animal;
(C) screening the isolated antibody for a polypeptide, thereby identifying a polyclonal antibody that specifically binds to a polypeptide having an amino acid sequence selected from the group having SEQ ID NOs: 1-9. And a method comprising:
請求項35に記載の方法で産出した抗体。An antibody produced by the method of claim 35. 請求項36に記載の抗体及び適切なキャリアを含む化合物。A compound comprising the antibody of claim 36 and a suitable carrier. 請求項10に記載の抗体の特異性を有するモノクローナル抗体を製造する方法であって、
(a)抗体反応を誘発する条件下で、SEQ ID NO:1−9を有する群から選択したアミノ酸配列含むポリペプチドまたはその免疫抗原性断片を用いて動物を免疫化する過程と、
(b)前記動物から抗体産出細胞を単離する過程と、
(c)前記抗体産出細胞を不死化の細胞と融合して、モノクローナル抗体を産出するハイブリドーマ細胞を形成する過程と、
(d)前記ハイブリドーマ細胞を培養する過程と、
(e)SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドに特異結合するような前記培養モノクローナル抗体から単離する過程とを含むことを特徴とする方法。
A method for producing a monoclonal antibody having the specificity of the antibody according to claim 10,
(A) immunizing an animal with a polypeptide containing an amino acid sequence selected from the group having SEQ ID NOs: 1-9 or an immunogenic fragment thereof under conditions that induce an antibody response;
(B) isolating antibody-producing cells from the animal;
(C) fusing the antibody-producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells;
(D) culturing the hybridoma cells;
(E) isolating from the cultured monoclonal antibody that specifically binds to a polypeptide having an amino acid sequence selected from the group having SEQ ID NOs: 1-9.
請求項38に記載の方法で産出したモノクローナル抗体。A monoclonal antibody produced by the method of claim 38. 請求項39に記載の抗体及び適切なキャリアを含む化合物。A compound comprising the antibody of claim 39 and a suitable carrier. Fab発現ライブラリのスクリーニングにより前記抗体を産出することを特徴とする請求項10に記載の抗体。The antibody according to claim 10, wherein the antibody is produced by screening a Fab expression library. 組換え免疫グロブリンライブラリのスクリーニングにより前記抗体を産出することを特徴とする請求項10に記載の抗体。11. The antibody according to claim 10, wherein said antibody is produced by screening a recombinant immunoglobulin library. SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドを検出する方法であって、
(a)前記抗体と前記ポリペプチドの特異結合を許容する条件下で、サンプルを用いて請求項10に記載の抗体をインキュベートする過程と、
(b)特異結合を検出する過程とを含み、 該特異結合が、SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドがサンプル中に存在することを標示することを特徴とする方法。
A method for detecting a polypeptide having an amino acid sequence selected from the group having SEQ ID NOs: 1-9,
(A) incubating the antibody according to claim 10 with a sample under conditions permitting specific binding between the antibody and the polypeptide;
(B) detecting specific binding, wherein said specific binding indicates that a polypeptide having an amino acid sequence selected from the group having SEQ ID NO: 1-9 is present in the sample. And how.
SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有するポリペプチドを精製する方法であって、
(a)前記抗体と前記ポリペプチドの特異結合を許容する条件下で、サンプルを用いて請求項10に記載の抗体をインキュベートする過程と、
(b)前記サンプルから前記抗体を分離し、SEQ ID NO:1−9を有する群から選択したアミノ酸配列を有する精製ポリペプチドを得る過程とを含むことを特徴とする方法。
A method for purifying a polypeptide having an amino acid sequence selected from the group having SEQ ID NOs: 1-9,
(A) incubating the antibody according to claim 10 with a sample under conditions permitting specific binding between the antibody and the polypeptide;
(B) separating the antibody from the sample to obtain a purified polypeptide having an amino acid sequence selected from the group having SEQ ID NOs: 1-9.
SEQ ID NO:1のアミノ酸配列を含む請求項1に記載のポリペプチド。2. The polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO: 1. SEQ ID NO:2のアミノ酸配列を含む請求項1に記載のポリペプチド。The polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO: 2. 配SEQ ID NO:3のアミノ酸配列を含む請求項1に記載のポリペプチド。2. The polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO: 3. SEQ ID NO:4のアミノ酸配列を含む請求項1に記載のポリペプチド。The polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO: 4. SEQ ID NO:5のアミノ酸配列を含む請求項1に記載のポリペプチド。2. The polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO: 5. SEQ ID NO:6のアミノ酸配列を含む請求項1に記載のポリペプチド。The polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO: 6. SEQ ID NO:7のアミノ酸配列を含む請求項1に記載のポリペプチド。2. The polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO: 7. SEQ ID NO:8のアミノ酸配列を含む請求項1に記載のポリペプチド。The polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO: 8. SEQ ID NO:9のアミノ酸配列を含む請求項1に記載のポリペプチド。The polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO: 9. SEQ ID NO:10のポリヌクレオチド配列を有する請求項11に記載のポリヌクレオチド。The polynucleotide of claim 11, having the polynucleotide sequence of SEQ ID NO: 10. SEQ ID NO:11のポリヌクレオチド配列を有する請求項11に記載のポリヌクレオチド。The polynucleotide of claim 11 having the polynucleotide sequence of SEQ ID NO: 11. SEQ ID NO:12のポリヌクレオチド配列を有する請求項11に記載のポリヌクレオチド。The polynucleotide of claim 11 having the polynucleotide sequence of SEQ ID NO: 12. SEQ ID NO:13のポリヌクレオチド配列を有する請求項11に記載のポリヌクレオチド。12. The polynucleotide of claim 11, having the polynucleotide sequence of SEQ ID NO: 13. SEQ ID NO:14のポリヌクレオチド配列を有する請求項11に記載のポリヌクレオチド。The polynucleotide of claim 11, having the polynucleotide sequence of SEQ ID NO: 14. SEQ ID NO:15のポリヌクレオチド配列を有する請求項11に記載のポリヌクレオチド。The polynucleotide of claim 11 having the polynucleotide sequence of SEQ ID NO: 15. SEQ ID NO:16のポリヌクレオチド配列を有する請求項11に記載のポリヌクレオチド。The polynucleotide of claim 11, having the polynucleotide sequence of SEQ ID NO: 16. SEQ ID NO:17のポリヌクレオチド配列を有する請求項11に記載のポリヌクレオチド。The polynucleotide of claim 11 having the polynucleotide sequence of SEQ ID NO: 17. SEQ ID NO:18のポリヌクレオチド配列を有する請求項11に記載のポリヌクレオチド。The polynucleotide of claim 11, having the polynucleotide sequence of SEQ ID NO: 18.
JP2002507862A 2000-06-29 2001-06-28 Secretory and transport molecules Pending JP2004528002A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US21546500P 2000-06-29 2000-06-29
US23938400P 2000-10-10 2000-10-10
US25363900P 2000-11-28 2000-11-28
PCT/US2001/020704 WO2002002610A2 (en) 2000-06-29 2001-06-28 Secretion and trafficking molecules

Publications (1)

Publication Number Publication Date
JP2004528002A true JP2004528002A (en) 2004-09-16

Family

ID=27396128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002507862A Pending JP2004528002A (en) 2000-06-29 2001-06-28 Secretory and transport molecules

Country Status (5)

Country Link
EP (1) EP1294884A2 (en)
JP (1) JP2004528002A (en)
AU (1) AU2001273070A1 (en)
CA (1) CA2410679A1 (en)
WO (1) WO2002002610A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002234595A1 (en) * 2000-12-30 2002-07-16 Lion Bioscience Ag Mammalian nuclear receptor cofactor cf11 and methods of use
WO2002053591A1 (en) * 2000-12-30 2002-07-11 Lion Bioscience Ag Mammalian nuclear receptor cofactor cf12 and methods of use
WO2003093466A1 (en) * 2002-05-02 2003-11-13 Bayer Healthcare Ag Human rhomboid-related protein
WO2005090569A1 (en) * 2004-03-24 2005-09-29 The Council Of The Queensland Institute Of Medical Research Cancer and testis vsm1 and vsm2 nucleic acids, proteins and uses thereof
US8603992B2 (en) * 2008-07-18 2013-12-10 University Of Medicine And Dentistry Of New Jersey Compositions comprising MG29 nucleic acids, polypeptides, and associated methods of use

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688936A (en) * 1992-06-11 1997-11-18 The Regents Of The University Of California Vesicle membrane transport proteins
EP0971950A2 (en) * 1997-02-24 2000-01-19 Genetics Institute, Inc. Secreted proteins and polynucleotides encoding them
WO1999016875A1 (en) * 1997-09-30 1999-04-08 Yale University A method for selectively controlling membrane protein display and protein secretion in eukaryotic cells
WO2000012703A2 (en) * 1998-08-27 2000-03-09 Incyte Pharmaceuticals, Inc. Protein transport-associated molecules
CA2296792A1 (en) * 1999-02-26 2000-08-26 Genset S.A. Expressed sequence tags and encoded human proteins
JP2002543764A (en) * 1999-03-19 2002-12-24 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド 46 human secreted proteins

Also Published As

Publication number Publication date
CA2410679A1 (en) 2002-01-10
EP1294884A2 (en) 2003-03-26
AU2001273070A1 (en) 2002-01-14
WO2002002610A2 (en) 2002-01-10
WO2002002610A3 (en) 2002-09-19

Similar Documents

Publication Publication Date Title
JP2004528003A (en) Extracellular matrix and cell adhesion molecules
JP2004523203A (en) G protein-coupled receptor
JP2004513618A (en) Transporters and ion channels
JP2004537270A (en) Aminoacyl-tRNA synthetase
JP2004510407A (en) Aminoacyl-tRNA synthetase
JP2004533205A (en) Transporters and ion channels
JP2004516817A (en) G protein-coupled receptor
JP2004517604A (en) G protein-coupled receptor
JP2004516812A (en) Receptor
JP2004531213A (en) Transporters and ion channels
JP2004500870A (en) Secreted protein
JP2004537254A (en) Transporters and ion channels
JP2004500114A (en) Transcription factor
JP2004518402A (en) Secreted protein
JP2004512016A (en) Transporters and ion channels
JP2004530409A (en) Transmembrane protein
JP2004533233A (en) Transporters and ion channels
JP2005528079A (en) Secreted protein
JP2004537283A (en) Transporters and ion channels
JP2004529603A (en) Adenylyl cyclase and guanylyl cyclase
JP2004528002A (en) Secretory and transport molecules
JP2004511208A (en) RNA metabolism protein
WO2003063769A2 (en) Vesicle-associated proteins
JP2004507225A (en) Apoptosis regulator
JP2004509610A (en) Nuclear hormone receptor