JP2004517582A - セルラtdma−cdmaネットワークにおける無衝突アクセス・スケジューリング - Google Patents

セルラtdma−cdmaネットワークにおける無衝突アクセス・スケジューリング Download PDF

Info

Publication number
JP2004517582A
JP2004517582A JP2002557155A JP2002557155A JP2004517582A JP 2004517582 A JP2004517582 A JP 2004517582A JP 2002557155 A JP2002557155 A JP 2002557155A JP 2002557155 A JP2002557155 A JP 2002557155A JP 2004517582 A JP2004517582 A JP 2004517582A
Authority
JP
Japan
Prior art keywords
access
mobile station
network
signature
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002557155A
Other languages
English (en)
Other versions
JP2004517582A5 (ja
Inventor
デ ベネディッティス ロッセラ
バーレンブルク シュテファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2004517582A publication Critical patent/JP2004517582A/ja
Publication of JP2004517582A5 publication Critical patent/JP2004517582A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

TDMA−CDMA技術で構築した無線インタフェースを有するセルラ・ネットワークに移動局がアクセスするスケジューリングを行う無衝突のアクセス方法を開示し、ここではアクセス手順を2ステップで実行し、第1ステップでは、移動局が署名を送信してネットワークの確認応答を取得し、第2ステップではRACHメッセージを送信し、RACHメッセージは可変のサイズにすることができる。本発明の方法はセルラ・ネットワークのマルチモード動作を可能にし、マルチモード動作では、異なるモードにおいてRACHメッセージのサイズを異ならせることができ、このことは、移動局が、サポートされているモードに応じて送信を要求されるRACHメッセージのパラメータ値にもとづいて、アクセス手順を制御するパラメータ値を適応させる、ということにもとづく。

Description

【0001】
(発明の分野)
本発明は、第3世代(3G)のセルラシステムの分野に関するものであり、特にセルラTDMA−CDMAネットワークにおける無衝突アクセス・スケジューリングに関するものである。
【0002】
(背景技術)
上記技術分野において持ち上がる問題は、将来のUMTS(Universal Mobile Telecommunication System:欧州次世代移動体通信システム)第3世代セルラシステムへの移行をどのように行うか、ということである。こうしたシステムが既存のシステムに取って代わるのに要する期間は、楽観的に見て2、3年である。その間に製造業者は、既存の基盤(インフラストラクチャ)を置き去りにしないで将来のシステムの技術的特徴を見据えることのできる混成的な解決法を探索している。本願の出願人は、TD−SCDMA(Time Division − Synchronous Code Division Multiple Access:時分割−同期符号分割多重アクセス)と称する無線アクセス技術を利用するセルラシステムのCATT(中国電信科学技術研究院)との共同開発に関係してきた。この技術は、2つの規格のために用いられるものと予見されている。その一方は、中国の標準化機構CWTS(Chinese Wireless Telecommunication )によって指定され、他方は、低チップレートTDD(Time Division Duplexing:時分割多重)のオプション、あるいは1.28McpsのTDDとして表記されている3GPP規格である。CWTSによって指定されているシステムはGSM(Global System for Mobile communications:欧州から世界に広がったディジタル移動電話方式)のプロトコル・スタック(集大成)にもとづくものであり、そしてGSMではTD−SCDMA&GSMと称され、TSMという名の仕様に記載されている。これに対し3GPP規格は、UTRAN(UTMS Terrestrial Radio Access Network:3GPPが規定する移動体通信網、UTMS:Universal Traffic Management System:新交通管理システム)の概念にもとづくものであり、そしてUTRANではTD−SCDMA&UTRANと称する。TD−SCDMA&GSM製品とTD−SCDMA&UTRAN製品との間の円滑な移行が保証されなければならず、即ち、ある程度の移行期間中に、TD−SCDMA&GSM端末を後にTD−SCDMA&UTRANシステムで使用できるようにしなければならない。早期の段階には、TD−SCDMA&GSMのようなシステムを2G(第2世代)のコア・ネットワークに接続することになる。(CWTSによって規格化された)TD−SCDMA&GSM及び(3GPPによって規格化された)TD−SCDMA&UTRANの物理層は同じものになる。TD−SCDMA&GSM規格用の製品は、TD−SCDMA&UTRAN規格用の製品よりも早く市場に出るものと見られている。TD−SCDMA&UTRAN規格用の製品の方がずっと後に入手可能になる。さらに将来的には、TD−SCDMA&UTRAN製品が使用されるものと見られている。両システムが同じ周波数スペクトル上に共存する必要のある移行期間が存在することになる。TD−SCDMA&GSMからTD−SCDMA&UTRANへの円滑な移行を可能にするためには、少なくともある程度の期間は、TD−SCDMA&GSM端末をTD−SCDMA&UTRANシステムで使用可能にしなければならない。
【0003】
こうした円滑な移行の問題は、2つの規格間にある程度の整合性をもたせる必要性をもたらす。
【0004】
図1に、TSM規格と3GPP規格に共通の、物理的なTDMA−TDD基本フレームを示す。このフレームは、後に説明する他の3つの特別な時間スロットに加えて、7つの時間間隔または時間スロットが連続する構成を有する。セル内で使用中の搬送波(キャリア)のうちで一般的な搬送波を使用するために、基本フレームを無制限に反復する。図1の基本フレームは、移動局(MS:Mobile Station)またはユーザ装置(UE:User Equipment)から来るm個の時間スロットUL#0, ... ,UL#m(アップリンク)、及び基地局(BTSC)から来るn個の時間スロットDL#0, ... ,DL#m(ダウンリンク)を含み、ここではTDD型の全二重が実現されている。
【0005】
図1のTDMA−TDD基本フレームにCDMAの能力を追加することによって、結果的に生じる、搬送波、この搬送波を利用した時間スロット、及び拡散符号(コード)の組が、無線インタフェースの物理チャンネルを形成し、このチャンネルは、論理の観点からチャンネルを特徴付ける情報をサポート(支援)するために予約されている。図には示していないが、TSM及び3GPPシステムで使用するすべての搬送波において観測されるより階層的なレベルには、連続的なフレームが構成される。例えば、信号化の機会としては、図1の基本フレームが2つ連続するものを、2倍の持続時間を有する新たなフレームの2つのサブフレームと考えることが可能であり、この新たなフレームは、720msの合計持続時間を有する72個の新たなフレームから成るマルチ(多)フレームに属する。
【0006】
1つのBTSCが送信する複数の搬送波が、互いに同期したフレームを搬送して、これにより、隣接するセル間の同期を簡略化する。本発明では、限界を設定することなく、異なるクラスタのすべてのセル間の一般的なフレーム同期を行うことが好都合である。図1を左から右に見ていけば、基本フレームが、他の3つの特別な時間スロットに加えて、各スロットが0.675msの持続時間を有するn+m=7個の有効な時間スロットを含み、これらの特別なスロットは順に、持続時間75μsのDwPTS時間スロット(ダウンリンクのパイロット時間スロット)、75μsのガード時間GP、及び持続時間125μsのUpPTS時間スロット(アップリンク時間スロット)である。基本フレームの合計持続時間は5msである。基本フレーム内では、ガード期間GPがDL/ULの切換点(スイッチング・ポイント)を表わす。ガード期間GPは、アップリンク送信とダウンリンク送信との間の干渉を回避するため、並びに移動局が最初の信号をUpPCHチャンネル上に送信する際の、移動局と基地局との間の伝播遅延を吸収するために使用し、この段階では、伝播遅延は実際には未知である。ガード期間GPの直前には特別なDwPTS時間スロットが存在し、ガード期間GPの直後にはUpPTS時間スロットが存在し、両者は拡散符号の影響を受けない同期バーストを含む。残りの時間スロットは、同じ構造であるが拡散符号の影響を受けるバーストを含み、これらのバーストはトラフィックあるいは信号化のためにとってある。図2に、基本フレームが取り得る構成を示し、この基本フレームは高い対称性を有し、そして特に、UpPTSを始点として、Ts0、Ts1及びTs2の順に示す3つのアップリンク時間スロットがこれに続き、そしてTs3、Ts4、Ts5及びTs6の順に示す4つのダウンリンク時間スロットが続き、最後にDwPTS及びガード時間GPが続く。時間スロットTs2とTs3の間にUL/DLの切換点が存在する。図2では、異なる有効な時間スロットの持続時間を、持続時間0.78125μsのチップと称する測定単位によって表現し、これはチップレート=1.28Mcpsの反復に等しく、CDMA技術による拡散スペクトルを実行するために有効な時間スロット内で使用する一組のN個の符号列の共通周波数に相当する。図3に、アップリンク・パイロット時間スロットUpPTSが128チップのSYNC1シーケンス(列)を含み、32チップのガード期間GPがこれに続く様子を示す。図4に、ダウンリンク・パイロット時間スロットDwPTSが32チップのガード期間GPを含み、64チップのSYNCシーケンスがこれに続く様子を示す。最後に、図5に、有効な時間スロットTs0, ... ,Ts6が、352チップの等しい長さを有する2つのデータ用のフィールドを含み、それぞれの後または前に144チップのミッドアンブル(中文)が置かれ、末尾に16チップのガード期間GPが付いて合計864チップになる様子を示す。図5に示す2つのフィールドの各々を、事前設定した数の符号列によって変調して、この数に等しい数の無線チャンネルを拡散スペクトルの帯域内に生成して、個々の無線チャンネルは帯域全体を占有して、同数のいわゆるリソースユニットRU(Resource Unit)を表わし、リソースユニットRUはサービス及び信号化の処理時に設けられる。後に説明する目的のために、前記ミッドアンブルは、BTSC局及び移動局が使用する学習シーケンスを含んで、生成された無線チャンネルの数のインパルス応答を評価する。図5の主バーストに関しては、次式:
=Q×T
の関係が成り立ち、ここに、Qは拡散係数SF(Spreading Factor)であり、1、2、4、8、及び16の中から自由に選択することができ、これは前記の数Nに相当し、Tは送信するシンボル(記号)の持続時間であり、そしてTはチップの固定持続時間である。上式の関係より、拡散係数を増加させれば送信するシンボルの持続時間も増加し、換言すれば、主バーストに関連する物理チャンネル数は増加するが、チャンネルに許容される送信速度は低下する。
【0007】
図6に、図1の5msの基本フレームに属する有効なスロットの各々に関連する16個の新たなチャンネルを生成するための拡散係数16の効果を示す。広報(ブロードキャスト)システムの情報には、論理チャンネルと頭文字Pを付けた物理チャンネルとの関連性の経過を含ませる。図で考慮する制御チャンネルは、CCHset(Control CHannel Set:制御チャンネル組)と称する割付けの組を表わす。TSM及び3GPPシステム内には、2つ以上のCCHsetを構成することができる。図6に、基本フレーム内のCCHset及びP−FACHチャンネルの可能なレイアウト(配置)を示す。
【0008】
互いに異なるTSM及び3GPPの移動体に指向したBCHチャンネル(Broadcast CHannel:広報チャンネル)をネットワークが「透明的」に使用することに対比して、上記の可能性は、Siemens Information and Communication Network S.p.A.とSiemens Aktiengesellschaftの共同名義による出願の、欧州特許出願第00830552.6号に記載されている。その請求項に記載の解決法は、現在のフレームの内容を信号化するために、受信したDwPTS(ダウンリンク・パイロット時間スロット)のQPSK変調(Quadratic Phase Shift Keying:4相位相シフト変調)を利用するものである。45°、135°、225°及び315°の位相の組み合わせを用いて、BCHの位置、及び固定の位相基準に対するインターリーブのフレーム数を示す。換言すれば、TSM及び3GPPのような2つの規格のBCHチャンネルを、物理チャンネルP−CCPCH(Primary Common Control Physical Channel:主共通制御物理チャンネル)上に時間多重して、2種類のUE(User Equipment:ユーザ装置)が独立して、適正なBCHを多重分離することができる。この利点は、2つの規格に影響を与えることなしに、同じ周波数帯を使用する2つの異なる移動体システムが共存することによるものである。
【0009】
BCHチャンネルの「透明的」な使用に結び付く本発明の解決法は、これらのチャンネルがセルについての情報を搬送して、その後の動作がこの情報に完全に依存するので、疑いもなく重要である。本願出願人の研究所で行っている研究開発は、3GPPシステムにおけるBCHチャンネルを広く利用することを可能にした。結果的には、2つの規格間の整合性に関する限りでは、他の手順を考えなければならない。例えば、移動体がネットワークにアクセスした際にのみ、移動体の出所、従って移動体がサポートされているTSMまたは3GPPモードを、ネットワークが知ることができる、ということを考慮に入れれば、少なくともネットワーク側では、その時点より前に交換されたすべての手順及びメッセージを同じままに保つべきである、ということは明らかである。これらの手順のうちの1つは、ランダムアクセス手順、あるいはRACH手順と称され、移動体が座標を交換するメッセージによってシステムにアクセスすることを可能にする。RACH手順は、移動体からネットワークへの2つの異なるアクセスに関連する2つのステップで実質的に完了する。第1のステップは、署名あるいはSYNC1バーストを移動局からランダムに送信して、単一のバースト・メッセージによる回答をネットワークから受信して、このメッセージは、移動体において次にメッセージを送信するタイミング及びパワーレベルの適正な設定を可能にする。このメッセージは、TD−SCDMA&UTRAN仕様ではFPACH(Fast Physical Access CHannel:高速アクセス物理チャンネル)、TD−SCDMA&GSM仕様ではPFACH(Physical Forward Access CHannel:転送アクセス物理チャンネル)と称する。RACH手順の第2ステップ中には、移動体がRACHメッセージをネットワークに送信して、ネットワークのサービスにアクセスする(例えばチャンネルを要求する)目的で、移動体の出所を知らせる。
【0010】
3GPPのようなTDMA−SCDMA−TDDセルラシステムに関連するRACH手順の両ステップにおいて、出願人は、BCHチャンネル内に広報されるシステム情報を利用する機会を概要とする他の特許出願を行っている。第1ステップに関する関連議論は、国際特許出願PCT/IT00/00101に開示されている。
【0011】
開示されているアクセスチャンネル・スケジューリングの請求項1の特徴部分には、次のステップが記載されている。
a) 移動局が行う適切なアクセス・パラメータ(P1,P2,P3)の読出し。これらのパラメータは、ネットワークが、上述したサービスチャンネル(BCCH)によって搬送されるシステム情報中に挿入するか、あるいは、少なくともネットワークへのアクセスを要求している移動局に対して、ネットワークが専用チャンネル(TCH,SACCH,FACCH)を割当てる手順の開始時に、ネットワークが送信するメッセージ中に挿入する。
b) 移動局が、前記共用アクセスチャンネル(UpPCH)の共用アクセスサブチャンネル(UpPCHSUBCH)を生成すること、及び前記アクセス・パラメータ(P1,P2,P3)を使用することによって、各サブチャンネルをアクセスの類型に関連付けること。
c) 前記識別シーケンス(SYNC1)または署名シーケンスの一方を、前記共用アクセスサブチャンネル(UpPCHSUBCH)上に送信すること。
【0012】
ステップb)に記載の共用アクセスサブチャンネルは明らかに、アップリンク・パイロット時間スロットUpPTSである。スケジューリング・プロセス(過程)は少なくとも2つの広報アクセス・パラメータP1及びP2を必要とし、これらのパラメータは、移動局が次の公式:
(SFN mod [P1])=P2
中に導入し、移動局はこの公式を計算して、システムフレーム番号SFNで番号付けしたフレームに、前記サブチャンネル(UpPCHSUBCH)のうちの1つに属するものとして目印を付ける。異なるアクセスの類型に専用のサブチャンネルを導入することによって、移動局の共用チャンネル上におけるアクセスを調整する能力をCDMAシステムに与える。これにより、例えば発呼時、呼びの終了時、非同期のセル間ハンドオーバ(通信中のセル切換え)時、等のような、システムにおいて予見されるすべてのモードについて、ネットワークに対する接続要求のピーク時にアップリンク径路(パス)が輻輳する恐れが軽減される。
【0013】
RACH手順の第1及び第2ステップの両方に関する限り、Siemens AG名義のドイツ国特許出願第100 08 653.5号は、BCHチャンネルから搬送されるシステム情報中に、次の3つのチャンネルSYNC1−FPACH−PRACHの関連性を挿入する機会の概要を記載している。同様の関連性は、移動体からのシステム情報の体系的な読出しによる信号化の遅延を防止して、先行するSYNC1に対するネットワークの回答用、チャンネル要求に対するネットワークの回答用のそれぞれの適正なチャンネルを知ることができる。特に、どのPRACHが構成されているかを知って、これにより移動体が、他の移動体との(通信上の)衝突なしにランダムアクセス手順を実行することができる。
【0014】
(技術的課題の概要)
従来技術を紹介するために、ランダムアクセス手順を一般的なレベルで規定してきたが、ネットワークにアクセスする際には、より詳細な情報によって、前記2つのモード、即ちTSM及び3GPPの相違をより良く示す必要がある。TSM規格については、ランダムアクセス手順は次のステップをたどる。
1. ネットワークが広報チャンネル(BCH)上に、他のシステム情報に加えて、次のものも送信する。
構成されたPFACH、これは物理チャンネルであり、ネットワークはこのチャンネルから、検出した署名に対する確認応答(アクノレッジメント)を送信する。
構成されたPRACH、これは物理チャンネルであり、移動体は、先にFPACHから送信した署名に対する確認応答を検出した後に、自分のサービス要求を(RACHメッセージによって)このチャンネル上に送信しなければならない。
どの署名が、どのFPACHによって確認応答されるか、ということと、どのFPACHによって受信した確認応答用に、どのPRACHを使用すべきか、ということとの関連性。この関連性は、移動局における受信及び送信の最適化を可能にして、PRACH上での衝突を回避する。
2. 移動体が署名をUpPCH物理チャンネル上に送信して、これらの署名は、既知の値のチップ列によって与えられ、8つまでの異なる列が割り当てられる。移動体は、どの列がセル内で使用中であるか、という情報を、同期プロセスを通して取得する(詳しくはTSM及び3GPPを参照)。
3. 従って移動体は、サポートされている署名の中から1つを選択して、次の4つのサブフレーム(5ms)分だけ、関連するFPACHからの確認応答を待機して、構成されたFPACHによって受信した確認応答を検出する。
4. 移動体は、自分のRACHを、PFACHに関連するPRACH上に単一バースト(即ち5ms)で送信する。
【0015】
またTD−SCDMA 3GPP規格については、ネットワークが、構成されたPRACH及びPFACH(FPACHと称する)、及びこれらの関連性をBCH上に広報して、移動体は、UpPCH物理チャンネル上の署名を選択することによってランダムアクセス手順を開始して、確認応答を待機し、そして関連するPRACH(即ち、確認応答を受信したPFACHに関連するPRACH)上にRACHメッセージを送信する。TSM及び3GPPの両者について、UpPCHメッセージとPFACHメッセージとは全く同一に規定される。
【0016】
TSMモードと3GPPモードの相違
TSMモードと3GPPモードの大きな相違は、ランダムアクセス手順に関する限りでは、RACHメッセージの容量の期待値である。両モードにおいて、RACHメッセージは、移動体からの、ネットワークサービスへのアクセス要求を含み、移動体はこのメッセージを通して、自分の出所、及び自分にサポートされているモードを、アクセスしたシステムに対して宣言する。
【0017】
TSMモードについては、メッセージは32ビットを必要とするに過ぎず、3GPPモードについては、160ビットの平均ペイロードが必要であるものと見らるが、より大きい容量も可能である。この違いから、TSM RACHメッセージは単一バーストで搬送可能であり、このバーストが、1つの無線サブフレーム=5msの際に拡散係数(SF:Scaling Factor)16の単一のリソースユニットに合致する場合には、3GPPモードの160ビットのメッセージについては、各々がSF=16の2つの基本リソースユニットか、あるいは10msにわたるSF=8の2つの無線サブフレームが必要となり得る、ということになる。もちろん異なる組み合わせも可能であり、ここではSFが異なるか、または持続時間値が異なるか、あるいは両方のパラメータが異なる。
【0018】
デュアル(二重)モード・セルが、一組の署名のみ、及び1つのUpPCHチャンネルのみを有する、ということを考慮に入れれば、アクセス中の移動体のすべてが、そのモードにかかわらず、同じ署名を同じ物理チャンネル(UpPCH)上に送信し、このため、デュアルモードの基地局はこの時点では、送信中の移動体のモードを知らず、従って、同じFPACH確認応答メッセージ(即ち同一の内容及び大きさを有するメッセージ)で回答しなければならない、ということになる。
【0019】
ここで、TSMモードの1つの大きな利点は、PRACHチャンネルについては無衝突の状態にある、ということを考慮しなければならず、移動体が自分のRACHメッセージを送信するためにPRACHにアクセスする際には、他の移動体は同時にこのチャンネル上に送信すべきではない。(もちろん、両方の側、即ち移動局及び固定局の双方における誤検出による誤送信はあり得る。)TSMモードでは、RACHメッセージは1つのサブフレームを占めるに過ぎない。
【0020】
TSMモードにおけるRACH手順の詳細な記述は、関連の公開仕様(CWTS TSM技術仕様)の一部にある。解決すべき技術課題の開示にとって有用な短い要約として、TSM RACH手順の基本点を以下に報告する。
1. RACHメッセージは、1サブフレーム(例えば5ms)を要する。
2. RACHメッセージは、ネットワークからの確認応答として送信されたPFACHバーストを搬送するサブフレームのちょうど2サブフレーム後に送信する。
3. 署名の送信は、あらゆるサブフレームにおいて可能である。
4. 検出した署名に対する確認応答の送信は、あらゆるサブフレームにおいて可能である。
5. 移動体は、送信した署名を搬送するサブフレームの4Nサブフレーム後まで、確認応答を待機する。
【0021】
次に、上述したメッセージ交換についての、サブフレームの占有状況の例を報告する。図7に、TSMモードにおけるRACH手順についてのサブフレームの占有状況を示し、これ以降のすべての図についても、異なるユーザ(1、2、等)が異なる署名に対応し、ネットワークは、署名を検出したフレームのちょうど次のフレームで、検出した署名に対して回答するものとするが、もちろん、確認応答の供与における処理遅延はあり得る。この例に見られるように、RACHメッセージを送信する際に衝突が発生することがない。なお、ユーザ5は、予期した時間内、即ち4サブフレーム以内にネットワークによる確認応答をされていないので、システムにはアクセスしない。
【0022】
ここでは、RACH手順について3GPP規格の下で説明を行っているが、3GPP規格では、RACHメッセージはTSMに対してより大きいサイズを有して、さらに2つまたは4つのサブフレームが必要となり得る、ということは非常に確かなことである。
【0023】
本発明の目的は、3GPPモードにおいても、RACH上において無衝突であるという利点を保ち、同時に、デュアルモード・ネットワークが2モードの移動体を取り扱うことができるようにしておく、ということにある。従って、設計者は署名の検出に対するネットワークの挙動、及び確認応答メッセージの内容を変化させることなしに、RACHメッセージの持続時間を、所定の物理チャンネルPRACH上のサブフレーム数として考慮に入れる必要がある。このことは、3GPPのFPACH確認応答のバーストを、TSM用のPFACHと同様の方法で符号化して送信すべきである、ということを暗に意味する。
【0024】
以下の文章を読み易くするために、次の定義を導入する。
SFN:ネットワークが広報するシステム・サブフレーム数を示す。
L:RACHメッセージ長をサブフレーム数で表わす。
WT:移動体がネットワークの確認応答を待機する最大待機時間をサブフレーム数で表わす。
M:署名SYNC1を送信する最大頻度をサブフレーム数で表わし、(SFN mod M)=0(最終的にはこの式は0より大きい整数になるが、このことは考慮しない)となる毎に署名を送信できるようにする。
N:RACHメッセージの送信を開始する最大頻度をサブフレーム数で表わし、(SFN mod N)=0(最終的にはこの式は0より大きい整数になるが、このことも無視する)となる毎に新たなRACHメッセージを送信できるようにする。
【0025】
3GPPモードについては次の構成を取り、この構成は図1のTSMパラメータを最も良く再現する。
1.L=2(TSMとは異なる)
2.N=2(TSMと同様)
3.M=1(TSMと同様)
4.WT=4(TSMと同様)
5.あらゆるサブフレームにおいて、検出した署名に対して確認応答を送信することが可能である(TSMと同様)
【0026】
なお、デュアルモード・ネットワークの概念を可能にするために、TSMと同様に条件4を維持しなければならない。あるいは換言すれば、サポートするすべてのモードについて、ネットワークが検出した署名に対して、全く同じメッセージで、かつ全く同じタイミング制約条件の下で回答しなければならない。これらの仮定により、図8に示す例のように、PRACH上での衝突は不可避であり、この例は、上述の3GPPモードに関係する構成についてのサブフレームの占有状況の例であり、ここでは、ユーザ2とユーザ3の衝突に灰色を付けて示す。従って、上記の仮定の一部は変更しなければならない。
【0027】
WTの値を4から2に変更して他の条件は変更しなければ、図9の状況を得ることができ、これは3GPPモードにおける構成2についてのサブフレーム占有状況の例であり、この例でも衝突が発生する可能性があり、ユーザ4とユーザ5の衝突に灰色を付けて示す。なおユーザ3はアクセスしない、というのは、確認応答が来るのが遅過ぎるからである。
【0028】
3GPPモードにおける構成2に対してMの値を1から2に変更すれば、図10の条件が得られ、これは3GPPモードにおける構成3についてのサブフレーム占有状況の例である。ここでも、ユーザ4とユーザ5はRACHメッセージを送信する際に衝突する。なおユーザ3はアクセスしない、というのは、確認応答が来るのが遅過ぎるからである。
【0029】
最後の例では、構成3に対してNの値を2から1に変更し、状況は図11に示すようになり、これは3GPPモードにおける構成4についてのサブフレームの占有状況の例である。ここでも衝突は不可避であり、またユーザ3は、確認応答が来るのが遅過ぎるのでアクセスしない。
【0030】
(発明の目的)
本発明の主目的は、署名の送信、及びこれに対する確認応答に関係するパラメータを適正に設定する規則を示して、これにより、例えばTD−SCDMA&UTRANまたは等価な3GPPモードと、TD−SCDMA&GSMまたは等価なTSMモードのように、異なるモードの移動体が効率的な方法で、衝突なしに同一のマルチ(多)モード・ネットワークにアクセスして、マルチモード・ネットワークが、移動体の特定種類を前以て知る必要なしに、予期される方法で、異なるモードの移動体に対して回答できるようにすることにある。
【0031】
本発明によって規定されるものと同じ規則は、シングル(単一)モードのネットワークにも同等に適用することができ、ここでは、サポートするモードの移動局が送信するRACHメッセージは、可変サイズ(大きさ)のものであり得る。
【0032】
(発明の概要)
前記の目的を達成するために、本発明の主題は、請求項1に開示したセルラ電話システムにおけるアクセス・スケジューリング方法にある。
【0033】
(発明の利点)
本発明の第1の利点は、TSMモードとTSM以外のモードの移動体が同時にアクセスすることを可能にして、いかなるメッセージの持続時間であっても、両モードにおいてRACHメッセージの衝突を回避するような、デュアルモードのTD−SCDMAネットワークが構築可能になることである。
【0034】
本発明の第2の利点は、ランダムアクセスのパラメータが動的に構成可能なことにあり、これらのパラメータは例えば、RACHメッセージの持続時間、署名の送信及び署名に対する確認応答の頻度、移動体が確認応答を待機する待機時間である。
【0035】
(発明の実施例の詳細な説明)
本発明のこれら及び他の目的は、以下の図面を参照した複数の実施例の詳細な説明より明らかになる。
上述したすべての例の結論として、上述した定義のリストに記載した関連パラメータのすべてが互いに密接に関連するということ、及び、RACH上の衝突を回避しなければならない場合には、これらの各パラメータの定義が他のパラメータに影響を与えて、他のパラメータに対して要求を課す、ということになる。
【0036】
特にRACHのメッセージ長を変更すれば、最大許容の待機時間も変更して他のパラメータは無変更のままにするべきであるか、あるいは、署名を送信する最大頻度を変更すれば、他のパラメータは変更せずにRACHメッセージ長を変更しなければならない、等である。
【0037】
関連パラメータの値を規定するために次の規則を提案し、これによりRACH上での衝突を回避することができる。
L×WT=M [1]
【0038】
[1]式は、L個のサブフレームにおいて測定したRACHメッセージ長と、WT個のサブフレームにおいて測定した、送信された署名に対するネットワークの確認応答を待機する移動体側の最大待機時間と、M個のサブフレームにおいて測定した、署名を連続して送信する最小時間間隔との関係を表わすものである。例えば、最大待機時間を同じに保ったままでRACHメッセージ長を倍増させるには、連続する2つの署名間の最小時間間隔を倍増させることが必要である、等である。
【0039】
しかし、最大待機時間は次式の値の範囲内で設定しなければならない。
0<WT≦[1/(L−1)]+1−(L−N)−(L−M) [2]
ここに、[]は[]内の値を整数化したものを表わす(ガウス記号)。
【0040】
WTが負の値または0になった場合には、他のパラメータ(L、N、またはM)のうちの少なくとも1つの選択した設定値を変更しなければならないか、さもなければ移動体がアクセスに失敗する(即ち、移動体はネットワークの確認応答を得ることには決して成功しない)。(TSMについて)WTが無限大になった場合には、このことは、あらゆるWTの値が可能であり、従ってあらゆるMの値が可能であるが、ただしWTの好適な最大値は8であり、8はTSM及び3GPP共に、TD−SCDMAセルに割当てられた最大署名数である。
【0041】
[1]式は、ネットワークが署名を検出したわずか1サブフレーム後に確認応答することができる、ということを前提とし、そうでない場合には、そして実現上の理由で、(1サブフレーム程度の)固定値の処理遅延を考慮しなければならず、このことは、次のように考慮に入れる。
【0042】
Dを前記固定遅延のフレーム数として定義し、ネットワークは検出した署名に対して、この遅延をおいて回答し、[1]式及び[2]式を適用することによって関連するパラメータをすべて決定した後に、WTu(更新した待機時間)という新たなパラメータを、(得られたWTと得られた処理時間Dとの総計)−1として計算することができる。WTuが得られたRACHメッセージ以下であれば、適用すべきWTはWTuであり、さもなければ、得られたWTを確定しなければならない。
【0043】
ここで例として、[1]式及び[2]式を前述した構成3に適用してみれば、式[1]は満足されず、従って3つのパラメータ値(L、M、またはWT)のうちの1つを変更しなければならないことがわかる。Mを2から4に変更すれば、図12に示す新たなシナリオとなり、これは3GPPにおける構成5のサブフレームの占有状況の例である。
【0044】
この動作では、
1. TDMA−CDMAネットワークが、関連するBCH上に、次のパラメータ値またはその一部を広報(ブロードキャスト)するか、あるいは、移動局が、構成されたPRACHチャンネル毎に、これらのパラメータを知っているか、または導出可能である場合には、全く広報しない。
RACHメッセージ長L(サブフレーム数、またはビット数の相対値で表わす)
移動体が署名(SYNC1)の送信時にネットワークの確認応答を待機する最大待機時間(例えばサブフレーム数で表わす)
署名を送信する最大頻度(例えば連続する2つの署名間のサブフレーム数Mで表わす)
RACHメッセージが送信可能になる時点、例えばサブフレームN個毎に送信、ここにNは0より大きい整数値、あるいは署名の確認応答からちょうどK個のサブフレーム経過後に送信、等。
2. ネットワークがサポートする1つのモード(例えば3GPP)で動作中の移動体は、指示された(/あるいは既知の)サブフレームにおいて、ネットワークがサポートする他のモード(例えばTSM)で動作中の移動体と同じUpPCH物理チャンネル上に同じ署名を送信することができる。
3. TDMA−CDMAセルは、アクセスして来る移動体が何のモードであっても、検出した署名に対して、同じ確認応答メッセージを同じタイミングの制約条件で送信して回答する。
4. 移動体は、指示された(/あるいは既知の)最大待機時間まで、署名の確認応答を待機して、期限時間内に受信すれば、ネットワークが指示する(既知の)サブフレームで始まり、かつネットワークが指示する(既知の)長さを有するRACHメッセージを、(関連するBCH上に)指示されたPRACH上に送信する。
【0045】
アクセスチャンネルのスケジューリングへの拡張
本発明は、今まで説明してきた非限定的な実施例以外への拡張を施すことができる。特に、本発明の焦点は、前記2ステップのアクセス手順に置かれており、ここでは、割当てられたPRACH物理チャンネル上のRACHメッセージどうしの間に生じ得る衝突が、アクセス・パラメータを特定値に選択することによって回避されて、結果的に、異なるアクセス技術に準拠して構築したセルラシステムにおいても、本発明の教示を利用できる可能性が存在するが、これも同じ2ステップのアクセスが関係する。特に、本発明は次のシステムにも利用することができる。
広帯域(ワイドバンド)CDMAセルラ・ネットワーク
全二重FDD(Frequency Division Duplexing:周波数分割双方向多重)のCDMAセルラ・ネットワーク
TDMA−CDMA−FDDセルラ・ネットワーク
TDMA−CDMA−TDDセルラ・ネットワーク
TD−SCDMA−TDDセルラ・ネットワーク
【0046】
以上の説明では、本発明の主要な特徴を指摘して来ており、この特徴は、WT、N、Mのような算出されるアクセス・パラメータに関連する値がRACHメッセージの長さに依存する、ということにある。本発明の説明に入る前には、長さLは可変であることを想定し、それまでは明確に規定していなかった。このことは欠点ではないが、シングルモードのセルラシステムを実施する機会を力説するための良好なヒントであり、シングルモードでは、移動体が自分自身から、RACHメッセージの既知の異なる長さLにもとづいてアクセス・パラメータを計算する。結果的な大きな利点は動作の自由度であり、アクセス・パラメータに関するBCH情報を復号化する必要がない。この特徴はマルチ(多)モード・ネットワークでも維持することができ、マルチモード・ネットワークでは、この特徴を利用しないモードに応答する移動体が、BCH情報から、関連するアクセス・パラメータを有利に復号化することができる。
【図面の簡単な説明】
【図1】TSM及び3GPPのセルラ電話システムに共通の、基本無線フレーム及びこれに含まれるバーストの表現を示す図である。
【図2】TSM及び3GPPのセルラ電話システムに共通の、基本無線フレーム及びこれに含まれるバーストの表現を示す図である。
【図3】TSM及び3GPPのセルラ電話システムに共通の、基本無線フレーム及びこれに含まれるバーストの表現を示す図である。
【図4】TSM及び3GPPのセルラ電話システムに共通の、基本無線フレーム及びこれに含まれるバーストの表現を示す図である。
【図5】TSM及び3GPPのセルラ電話システムに共通の、基本無線フレーム及びこれに含まれるバーストの表現を示す図である。
【図6】図1の基本フレームに関連する物理及び論理チャンネルの表現を示す図である。
【図7】TSMモードにおけるRACHバーストのサブフレーム占有状況を示す表である。
【図8】本発明の方法によらない、3GPPモードにおける1つの構成についての、RACHバーストのサブフレーム占有状況を示す表である。
【図9】本発明の方法によらない、3GPPモードにおける1つの構成についての、RACHバーストのサブフレーム占有状況を示す表である。
【図10】本発明の方法によらない、3GPPモードにおける1つの構成についての、RACHバーストのサブフレーム占有状況を示す表である。
【図11】本発明の方法によらない、3GPPモードにおける1つの構成についての、RACHバーストのサブフレーム占有状況を示す表である。
【図12】本発明の方法による、TSMモードにおけるRACHバーストのサブフレーム占有状況を示す表である。

Claims (6)

  1. CDMA技術にもとづくセルラ電話システムにおけるアクセス・チャンネル・スケジューリング方法であって、CDMA技術によって、互いに直交する個々の符号列をそれぞれの移動局に割り当てて、前記移動局を無線インタフェースにおいて判別可能にして、前記移動局が、アップリンクでは共通搬送波をスペクトル拡散変調し、ダウンリンクの搬送波を逆拡散復調して、前記セルラ電話システムが、次の2ステップの手順:
    第1ステップでは、前記移動局が、互いに直交する複数の符号列の中から選択したそれぞれの移動局の署名バースト(SYNC1)を、第1構成の物理チャンネル上でネットワークに送信して、第2構成の物理チャンネル(PFACH)上に到来する前記ネットワークからの確認応答メッセージを特定時間間隔だけ待機して、前記第2構成の物理チャンネルが、前記第1構成の物理チャンネルと直接的または間接的な相互関係を有する。
    第2ステップでは、前記移動局が、前記確認応答メッセージを受信した後に、それぞれの移動局のアクセス要求メッセージ(RACH)を、第3構成の物理チャンネル(PRACH)上で前記ネットワークに送信して、前記第3構成の物理チャンネルが、前記第2構成及び/または前記第1構成の物理チャンネルと直接的または間接的な相互関係を有する。
    を採用して、前記移動局の前記ネットワークへのアクセスを維持するアクセス・チャンネル・スケジューリング方法において、この方法が、
    1つのセル内に、唯一の署名の組(SYNC1)及び唯一種類の確認応答メッセージを割り当てるステップと、
    前記移動局が、前記第3構成の物理チャンネル(PRACH)上での、他の移動局から送信されるアクセス要求メッセージ(RACH)のいずれかとの衝突が回避あるいは最小化されるように、第1時間間隔及び第2時間間隔を計算するステップとを具えて、前記第1時間間隔は、前記移動局がそれぞれの移動局の署名バースト(SYNC1)を送信すべき時間間隔であり、前記第2時間間隔は、前記移動局が前記ネットワークからの前記確認応答メッセージの到着を待機しているべき時間間隔であり、前記計算した第1及び第2時間間隔の持続時間が、前記それぞれの移動局のアクセス要求メッセージ(RACH)の持続時間、及び前記要求メッセージを発行するための遅延に共に依存することを特徴とするアクセス・チャンネル・スケジューリング方法。
  2. 前記ネットワークが、適切なシステム情報を、前記移動局に向けて広報チャンネル(BCH)内に送信し、前記システム情報が、次のパラメータ:
    前記移動局が自局の署名バースト(SYNC1)を送信しなければならない時間間隔である前記第1時間間隔の値、
    前記確認応答メッセージの到着の待機を中止すべき時間間隔である前記第2時間間隔の値、
    前記アクセス要求メッセージ(RACH)を発行するための前記遅延の値、
    前記アクセス要求メッセージ(RACH)の持続時間
    の全部または一部を含み、
    前記移動局が、前記システム情報を受信して自局のアクセス・パラメータを復号化して、前記自局のアクセス・パラメータの計算を回避または簡略化することを特徴とする請求項1に記載のアクセス・チャンネル・スケジューリング方法。
  3. 前記CDMAシステムがさらにTDMA技術を利用し、TDMA技術によって、搬送波を前記移動局に順に割り当てて、前記移動局が、基本サブフレーム中に挿入した固定持続時間の時間スロットを作成する拡散スペクトル変調、及びその逆の動作を完結させて、前記基本サブフレームは、無制限の反復により複数のフレームを構成して、多レベルのプロトコルにおけるトラフィックまたは交換信号伝送のいずれかを担う論理チャンネルを搬送する物理チャンネルに埋め込んだマルチフレームが、規格化した動作モードに準拠して、前記システムが、特定のパイロット時間スロット(DwPTS、UpPTS)中に挿入した適切な同期バーストによる前記移動体の同期手順を採用して、同期した前記移動局は、自局の署名バースト(SYNC1)及び該署名バーストを搬送するアップリンク・パイロット時間スロット(UpPTS)を知って、さらに、前記署名バースト(SYNC1)と、前記ネットワークからの前記確認応答メッセージを搬送する前記第2構成の物理チャンネル(PFACH)との関連性、及び前記第2構成の物理チャンネルと前記第3物理チャンネル(PRACH)との関連性を知って、1つのサブフレームまたはその整数倍の持続時間を有する前記アクセス要求メッセージを送信することを特徴とする請求項1または2に記載のアクセス・チャンネル・スケジューリング方法。
  4. 前記アクセス・パラメータに、次の割当て:
    アクセスメッセージ(RACH)長をLとし、サブフレーム数、あるいはビット数の相対値で表わす。
    移動局が、前記署名(SYNC1)を送信してから前記ネットワークの確認応答を待機する最大待機時間をWTとし、サブフレーム数で表わす。
    署名(SYNC1)を送信する最大頻度を、連続する2つの署名間のサブフレーム数Mで表わす。
    前記署名の確認応答の後にアクセス・メッセージ(RACH)の送信を開始する最大頻度を、サブフレーム数Nで表わし、Nは0より大きい整数とし、N個のサブフレーム毎に、新たなアクセスメッセージを送信できるものとする。
    を仮定すれば、
    前記パラメータの値が、次の数学的関係:
    前記ネットワークが、署名(SYNC1)を検出した1サブフレーム後に確認応答をすることができる、という条件下で
    L×WT=M [1]
    前記最大待機時間WTは、次式の値の範囲内に設定しなければならない。
    0<WT≦[1/(L−1)]+1−(L−N)−(L−M) [2]
    ここに、[]は[]内の値を整数化したものを表わす(ガウス記号)。
    WTが負の値または0になった場合には、他のパラメータL、N、Mのうちの少なくとも1つの選択した設定値を変更して、前記ネットワークの確認応答の取得を可能にする。
    を満たすことを特徴とする請求項3に記載のアクセス・チャンネル・スケジューリング方法。
  5. 追加的なステップとして、
    Dを、ネットワークが検出した署名に対して確認応答をするまでの固定遅延に等しいサブフレーム数として定義するステップと、
    WTuを、前記待機時間WTの更新値として定義するステップと、
    前記[1]式及び[2]式を適用することによって、関連するすべてのアクセス・パラメータ値を決定するステップと、
    次式:
    WTu=WT+D−1 [3]
    の計算を実行するステップと、
    次式:
    WTu≦L [4]
    の比較を実行するステップと、
    条件[4]が真であれば、WTuを新たなWTとして採用するステップと、
    条件[4]が偽であれば、WTを確定するステップと
    を具えていることを特徴とする請求項4に記載のアクセス・チャンネル・スケジューリング方法。
  6. 前記ネットワークが規格化された追加的な動作モードをサポートすることができ、この動作モードが、アクセスを完了した後に、同じサブフレーム、フレーム、及びマルチフレームを共用する多数組の移動局として動作するモードであり、前記ネットワークが、前記動作モード毎に割り当てた論理チャンネル(BCH)を通してシステム情報を広報して、前記追加的な移動局の各組が、自分の組のシステム情報を受信して前記アクセス・パラメータ値を復号化するための適切なチャンネル(BCH)を選択することを特徴とする請求項1〜5のいずれかに記載のアクセス・チャンネル・スケジューリング方法。
JP2002557155A 2001-01-12 2002-01-04 セルラtdma−cdmaネットワークにおける無衝突アクセス・スケジューリング Pending JP2004517582A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01830012A EP1223776A1 (en) 2001-01-12 2001-01-12 A collision free access scheduling in cellular TDMA-CDMA networks
PCT/EP2002/000031 WO2002056626A1 (en) 2001-01-12 2002-01-04 A collision free access scheduling in cellular tdma-cdma networks

Publications (2)

Publication Number Publication Date
JP2004517582A true JP2004517582A (ja) 2004-06-10
JP2004517582A5 JP2004517582A5 (ja) 2005-06-23

Family

ID=8184351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002557155A Pending JP2004517582A (ja) 2001-01-12 2002-01-04 セルラtdma−cdmaネットワークにおける無衝突アクセス・スケジューリング

Country Status (6)

Country Link
US (1) US20040005887A1 (ja)
EP (2) EP1223776A1 (ja)
JP (1) JP2004517582A (ja)
CN (1) CN1486578A (ja)
CA (1) CA2431534A1 (ja)
WO (1) WO2002056626A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504031A (ja) * 2006-09-15 2010-02-04 インターデイジタル テクノロジー コーポレーション ランダム・アクセス・パラメーターの動的な更新のための方法および装置
JP2014161133A (ja) * 2007-09-18 2014-09-04 Sharp Corp 無線通信システム、基地局装置、移動局装置およびランダムアクセス方法
JP2018085742A (ja) * 2010-08-03 2018-05-31 日本電気株式会社 Relayノード装置

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649091B2 (ja) * 2002-01-30 2011-03-09 株式会社エヌ・ティ・ティ・ドコモ 通信端末、サーバ装置、中継装置、放送通信システム、放送通信方法及びプログラム
US7852800B2 (en) 2002-07-23 2010-12-14 Qualcomm Incorporated Reducing interference between users in a communications system through time scattering
US8213994B2 (en) * 2002-08-07 2012-07-03 Interdigital Technology Corporation Mobile communications system and method for providing common channel coverage using beamforming antennas
US8861466B2 (en) 2002-08-07 2014-10-14 Interdigital Technology Corporation Mobile communication system and method for providing common channel coverage using beamforming antennas
US8194770B2 (en) * 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US7301988B2 (en) * 2002-10-07 2007-11-27 Golden Bridge Technology, Inc. Enhanced uplink packet transfer
US8548026B2 (en) 2002-10-07 2013-10-01 Emmanuel Kanterakis Enhanced uplink packet transfer
US7002900B2 (en) * 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US8134976B2 (en) * 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8169944B2 (en) * 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US8218609B2 (en) * 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8570988B2 (en) * 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
CN1512789A (zh) * 2002-12-27 2004-07-14 �ʼҷ����ֵ��ӹɷ����޹�˾ 多标准无线通信系统中的无线资源管理方法
US6970713B2 (en) 2003-07-09 2005-11-29 Interdigital Technology Corporation Method and system wherein timeslots allocated for common control channels may be reused for user traffic
CN1322780C (zh) * 2003-10-15 2007-06-20 华为技术有限公司 多模移动终端进行小区选择的方法
US9473269B2 (en) * 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
WO2005094100A1 (fr) * 2004-03-29 2005-10-06 Utstarcom Telecom Co., Ltd. Procede pour reguler les ressources et le service de commande dans un reseau radio multimodal
US20060204466A1 (en) * 2005-03-08 2006-09-14 Ecolab Inc. Hydroalcoholic antimicrobial composition with skin health benefits
GB2427097B (en) * 2005-05-03 2007-03-21 Ipwireless Inc Method and apparatus for transmitting uplink signalling information
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
CN100382654C (zh) * 2005-06-01 2008-04-16 中兴通讯股份有限公司 时分同步码分多址接入系统降低呼损方法
US8358714B2 (en) * 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
CN1905428B (zh) * 2005-07-25 2010-08-18 上海原动力通信科技有限公司 一种具有低时延特性的时分双工移动通信系统的传输方法
CN1937448A (zh) * 2005-09-20 2007-03-28 展讯通信(上海)有限公司 一种新的prach帧结构及其实现方法
KR20070047124A (ko) * 2005-11-01 2007-05-04 엘지전자 주식회사 무선 자원에 관한 정보를 송수신하는 방법
US7701919B2 (en) * 2006-05-01 2010-04-20 Alcatel-Lucent Usa Inc. Method of assigning uplink reference signals, and transmitter and receiver thereof
CN100426888C (zh) * 2006-07-18 2008-10-15 华为技术有限公司 一种基于物理随机接入信道帧的时隙格式配置方法
WO2008125905A2 (en) * 2006-08-08 2008-10-23 Nortel Networks Limited Method and system for wireless communication in multiple operating environments
CN101128035B (zh) * 2006-08-18 2011-08-24 中兴通讯股份有限公司 时分码分多址系统中信道间的定时方法
CN101141155B (zh) * 2006-09-06 2011-11-23 中国电信股份有限公司 规避phs和td-scdma系统共存干扰的方法
US8358988B2 (en) 2006-09-28 2013-01-22 Mediatek Inc. Interface between chip rate processing and bit rate processing in wireless downlink receiver
WO2008053342A2 (en) * 2006-11-02 2008-05-08 Nokia Corporation Alternative time division duplex frame structure optimization
US8743774B2 (en) 2007-01-30 2014-06-03 Qualcomm Incorporated Resource requests for a wireless communication system
US8892108B2 (en) * 2007-01-30 2014-11-18 Qualcomm Incorporated Control channel constraints in wireless communications
EP3110060B1 (en) * 2007-04-11 2018-06-13 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus in a telecommunication system
CN101399597B (zh) * 2007-09-27 2012-06-27 鼎桥通信技术有限公司 一种发送特殊突发帧的方法及装置
KR101093479B1 (ko) * 2007-11-02 2011-12-13 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 시분할 듀플렉싱 데이터 전송 방법 및 장치
US8780790B2 (en) * 2008-01-07 2014-07-15 Qualcomm Incorporated TDD operation in wireless communication systems
CN101489307B (zh) * 2008-01-14 2011-05-04 展讯通信(上海)有限公司 一种基于用户标识映射的增强型fach接入方法与系统
EP2244987A4 (en) * 2008-02-22 2013-07-31 Materials And Technologies Corp HIGH EFFICIENCY MONOFACE WET ENGRAVING AND WET TREATMENT APPARATUS AND METHOD
US20100034141A1 (en) * 2008-08-06 2010-02-11 Qualcomm Incorporated Method and apparatus for initiating random access procedure in wireless networks
US8630383B2 (en) * 2008-08-22 2014-01-14 Alcatel Lucent Communication system for transmitting sync-flags and pilot symbols and method thereof
CN101908906B (zh) * 2010-08-18 2012-11-14 西安空间无线电技术研究所 一种基于wcdma体制的用户信道星上捕获方法
CN102548014B (zh) * 2011-12-07 2014-11-05 北京邮电大学 机器与机器的通信终端接入网络的方法
CN102739362B (zh) * 2012-06-21 2015-08-19 华为技术有限公司 一种数据响应方法及装置
EP3736319A1 (en) 2014-02-07 2020-11-11 GOJO Industries, Inc. Compositions and methods with efficacy against spores and other organisms
EP2924885B1 (en) * 2014-03-28 2020-09-16 Sony Corporation Method, base station and terminal for determining channel properties in a cellular multiple-input and multiple-output system
US11683700B2 (en) 2020-12-14 2023-06-20 T-Mobile Usa, Inc. Digital signatures for small cells of telecommunications networks

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103459B1 (en) * 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
US5603081A (en) * 1993-11-01 1997-02-11 Telefonaktiebolaget Lm Ericsson Method for communicating in a wireless communication system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504031A (ja) * 2006-09-15 2010-02-04 インターデイジタル テクノロジー コーポレーション ランダム・アクセス・パラメーターの動的な更新のための方法および装置
JP2014161133A (ja) * 2007-09-18 2014-09-04 Sharp Corp 無線通信システム、基地局装置、移動局装置およびランダムアクセス方法
JP2018085742A (ja) * 2010-08-03 2018-05-31 日本電気株式会社 Relayノード装置
US10136378B2 (en) 2010-08-03 2018-11-20 Nec Corporation Relay station apparatus, mobile communication system, base station apparatus, and method for controlling relay station
US10645629B2 (en) 2010-08-03 2020-05-05 Nec Corporation Relay station apparatus, mobile communication system, base station apparatus, and method for controlling relay station

Also Published As

Publication number Publication date
EP1223776A1 (en) 2002-07-17
US20040005887A1 (en) 2004-01-08
CA2431534A1 (en) 2002-07-18
CN1486578A (zh) 2004-03-31
WO2002056626A1 (en) 2002-07-18
EP1350412A1 (en) 2003-10-08

Similar Documents

Publication Publication Date Title
JP2004517582A (ja) セルラtdma−cdmaネットワークにおける無衝突アクセス・スケジューリング
US20230164789A1 (en) Data communication method, communication system and mobile terminal
RU2426235C2 (ru) Способ конфигурирования восходящего и нисходящего канала связи в системе радиосвязи
US8427971B2 (en) Enhancement of LTE random access procedure
EP1976170B1 (en) A random access method for user equipment in time division synchronization code division multiple access communication system
US9131474B2 (en) Dedicated signature allocation and choice
EP1062829B1 (en) Signalling configuration in a radio communication system
EP2148548B1 (en) Method for connecting mobile station to base station, mobile station, base station and multi-carrier mobile communication system
EP1917764B1 (en) Resource assignment in an enhanced uplink mobile communication system
US8559362B2 (en) Random access channel hopping for frequency division multiplexing access systems
EP2169865B1 (en) Base station device and broadcast channel transmitting method
CN114900890A (zh) 基站、终端及随机接入前导检测、随机接入信道配置方法
EP1248479A2 (en) Method to offer packet services on radio resources shared by more users in a mobile system of the TDD-CDMA type
US20050117553A1 (en) Method and device for downlink packet access signaling for time division duplex (tdd) mode of a wireless communication system
CN101005308A (zh) 宽带时分双工移动通信系统的物理层随机接入方法
CN101999219A (zh) 执行随机接入过程的方法和装置
KR20110055014A (ko) 고속 무선통신 시스템에서 상향링크와 하향링크의 전환점 변경을 통한 동적 자원 할당 방법 및 그 시스템
Tseng et al. Design of Two-Step Random Access Procedure for URLLC Applications
KR20030025295A (ko) 무선 통신 시스템에서 액세스 제어를 위한 방법
CN101500266B (zh) 增强型fach中的基于多频点的随机签名序列分配方法
KR100311525B1 (ko) 효율적인 공통 패킷 채널 할당 방법
CN100579315C (zh) 用户站接入移动无线系统网络的方法
KR20020039122A (ko) 시분할 듀플렉스 모드에서의 랜덤 액세스 방법
Niththiyanathan et al. Performance analysis of the random access procedure in WCDMA
KR20030026756A (ko) 유.엠.티.에스. 단말의 물리계층에서 서브 채널 선택방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404