JP2004502008A - Covalently crosslinked polymers and polymer membranes via sulfinate alkylation - Google Patents

Covalently crosslinked polymers and polymer membranes via sulfinate alkylation Download PDF

Info

Publication number
JP2004502008A
JP2004502008A JP2002505894A JP2002505894A JP2004502008A JP 2004502008 A JP2004502008 A JP 2004502008A JP 2002505894 A JP2002505894 A JP 2002505894A JP 2002505894 A JP2002505894 A JP 2002505894A JP 2004502008 A JP2004502008 A JP 2004502008A
Authority
JP
Japan
Prior art keywords
polymer
groups
group
halogen
blend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002505894A
Other languages
Japanese (ja)
Other versions
JP2004502008A5 (en
Inventor
ヨヒェン ケレス
ツァン ウェイ
タン チー−ミン
Original Assignee
ウニヴェルズィテート ステュットガルト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10024575A external-priority patent/DE10024575A1/en
Application filed by ウニヴェルズィテート ステュットガルト filed Critical ウニヴェルズィテート ステュットガルト
Publication of JP2004502008A publication Critical patent/JP2004502008A/en
Publication of JP2004502008A5 publication Critical patent/JP2004502008A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • B01D71/5222Polyetherketone, polyetheretherketone, or polyaryletherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)
  • Secondary Cells (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、以下の官能基:(M=ハロゲン(F,Cl,Br,I)、OR、NR;R=アルキル、ヒドロキシアルキル、アリール;(Me=H、Li、Na、K、Cs、または他の金属陽イオンもしくはアンモニウムイオン):a)陽イオン交換基の前駆体:SOMおよび/またはPOMおよび/またはCOM、b)スルフィナート基SOMeを有することができ、以下の有機化合物:a)スルフィナート基SOMeと反応することにより、得られた架橋がポリマー/ポリマーブレンド/ポリマー膜(Y=架橋)、X=ハロゲン(F、Cl、Br、I)、OR、Y=−(CH−;−アリーレン−;−(CH−アリーレン−;−(CH)−アリーレン−(CH)−、x=3〜12):ポリマー−SO−Y−SO−ポリマー中に存在する、二官能性、三官能性、またはオリゴ官能性 (origofunctional)ハロアルカンまたはハロ芳香族、および/またはb)一方(ハロゲン)がスルフィナート基SOMeと反応し、他方(−NHR)がSOM−基と反応することによって、得られた架橋がポリマー/ポリマーブレンド/ポリマー膜:ポリマー−SO−(CH−NR−SO−ポリマー中に存在する、以下の基:ハロゲン−(CH−NHRを含む化合物、および/またはc)スルフィナート基SOMeと反応することによって、得られた架橋がポリマー/ポリマーブレンド/ポリマー膜:ポリマー−SO−NR−(CH−NR−SO−ポリマー中に存在する、以下の基:NHR−(CH−NHRを含む化合物を用いて共有結合することができる、1つまたは複数のポリマーからなる共有結合架橋ポリマーまたはポリマー膜に関する。The present invention provides the following functional groups: (M = halogen (F, Cl, Br, I), OR, NR 2 ; R = alkyl, hydroxyalkyl, aryl; (Me = H, Li, Na, K, Cs, Or other metal cations or ammonium ions): a) precursors of the cation exchange groups: SO 2 M and / or POM 2 and / or COM, b) having sulfinate groups SO 2 Me and the following organic Compound: a) By reacting with sulfinate group SO 2 Me, the resulting crosslinks are polymer / polymer blend / polymer film (Y = crosslinking), X = halogen (F, Cl, Br, I), OR, Y = - (CH 2) x -; - arylene - ;-( CH 2) x - arylene - ;-( CH 2) - arylene - (CH 2) -, x = 3~12): polymer -SO 2 -Y-SO 2 - present in the polymer, difunctional, trifunctional, or oligo-functional (Origofunctional) haloalkanes or haloaromatic, and / or b) one (halogen) and a sulfinate groups SO 2 Me React, while the other (—NHR) reacts with the SO 2 M—group, resulting in a polymer / polymer blend / polymer membrane: polymer—SO 2 — (CH 2 ) x —NR—SO 2 —polymer present in the following groups: halogen - (CH 2) a compound containing x -NHR, and / or c) by reacting with sulfinate groups SO 2 Me, resulting crosslinked polymer / polymer blend / polymer film polymer -SO 2 -NR- (CH 2) x -NR-SO 2 - present in the polymer, the following groups It can be covalently attached using the compounds containing NHR- (CH 2) x -NHR, relates covalently crosslinked polymer or polymer film of one or more polymers.

Description

【0001】
(技術分野)本発明は、スルフィナートアルキル化を介した共有結合架橋ポリマーおよびポリマー膜に関する。
【0002】
(背景技術)本出願明細書の執筆者は、スルフィナート基を含むポリマー、ポリマーブレンド、およびポリマー(ブレンド)膜のアルキル化反応に基づく、共有結合架橋アイオノマー膜の新規な調製法を開発した(J.Kerres、W.Cui、W.Schnurnberger:「Vernetzung von modifdizierten Engineering Thermoplasten」、ドイツ特許第19622337.7号(出願日:1996年6月4日)、ドイツ特許庁(1997)、「Reticulation de Materiaux Thermoplastiques Industriels Modifies」、1997年3月30付けのフランス特許F9706706号)。共有結合網状構造の利点は、高温でさえも加水分解に耐性を示すことである。上記発明に記載のイオン伝導物質、共有結合架橋ポリマー、およびポリマーブレンドの不利な点は、膜形成におけるスルフィナート基のアルキル化時に疎水性網状構造が形成されることであり、この疎水性網状構造はイオン伝導性ポリマー(ブレンド)成分(スルホン化ポリマー:ポリマー−SOMe)と部分的に相溶性がないので、不均一なポリマー(ブレンド)形態になり、機械的安定性が減少し(乾燥により脆化する)、スルフィナート相とスルホネート相が部分的に分離し完全な架橋が阻害される。
【0003】
(発明の開示)従って、本発明の目的は、共有結合架橋ポリマー(ブレンド)成分がイオン伝導性ポリマー(ブレンド)成分と十分に相溶している新規の共有結合架橋ポリマー/膜を提供することにある。
【0004】この目的は、請求項1に記載の膜を得ることによって達成される。
さらに、本発明の方法がこの目的に加わる。
それに対して、以下の官能基:
・スルフィナート基−SOMe
・スルホクロリド基および/または陽イオン交換基の他の前駆体
を含むポリマーを含むポリマー溶液を調製する。さらに、二官能性またはオリゴ官能性(origofunctional)アルキル化架橋剤(典型的には、α,ω−ジハロアルカン)および任意選択的に第2級ジアミン架橋剤NHR−(CH2)−NHRを、ポリマー溶液に添加する。スルフィナート基のアルキル化および任意選択的にポリマー中に存在するスルホハロゲニド基とジアミン架橋剤の第2級アミノ基との反応を介したスルホンアミドの形成により溶媒を蒸発する際のに膜を形成する間に共有結合架橋が形成される。膜を形成後に膜を酸性および/または塩基性および/または中性水溶液で後処理する間に、陽イオン交換基の前駆体が加水分解されて陽イオン交換基が形成される。
【0005】本発明の複合物は以下の官能基を有するポリマーからなる。膜調製後で、且つ加水分解前では、
・−SOMおよび/または−POMおよび/または−COM(M=ハロゲン(F、Cl、Br、I)、OR、NR2;R=アルキル、ヒドロアルキル、アリール)、
架橋:
a)ポリマー−SO−Y−SO−ポリマー、
b)ポリマー−SO−Y’−NR−SO−ポリマー、
c)ポリマー−SO−NR−Y’’−NR−SO−ポリマー、
加水分解後では、
・−SOM−、−PO−、−COOM基、
・上記の架橋。
陽イオン交換ポリマー前駆体との混合物中のスルフィナートポリマーの共有結合架橋により、ブレンド段階でより良好に混合されるので架橋度が高くなり、陽イオン交換ポリマーおよび重合体スルフィナートから作製される共有結合架橋ポリマー(ブレンド)フィルムと比較して得られたポリマーフィルムの機械的安定性はより向上する。ポリマーの網状構造中の陽イオン交換基の前駆体と反応するアミノ基を含む架橋成分の組み込みを制御することにより、機械的特徴がさらに改良される。
【0006】
(実施例)本発明を、以下の2つの実施例でさらに詳細に例示する。使用した成分の重量/体積を、表1に示す。
【0007】膜調製の説明。スルホクロル化PSU Udel(商標名)(ICE=1.8meq SOCl/g)およびPSUSOLi(ICE=1.95meq SOLi/g)(ポリマーの構造については図2を参照のこと)を、N−メチルピロリジノン(NMP)に溶解する。次いで、α,ω−ジヨードブタンを架橋剤溶液に添加する。15分間撹拌後、溶液を濾過して脱気する。ポリマー溶液の薄膜をガラスプレート上にナイフコーターでコートした。ガラスプレートを減圧乾燥オーブンにおき、700から最終的に15mbarの低圧の80〜130℃の温度で溶媒を除去する。フィルムを乾燥オーブンから取り出し、冷却する。ポリマーフィルムを水中でガラスプレートから剥離し、10%塩酸中で加水分解/最初に後処理し、それぞれの水を60〜90℃で24時間完全に脱塩する。
【0008】2.反応物質の使用量および結果の特徴
【表1】

Figure 2004502008
* 2SOCl基/PSU繰返しユニット
【0009】
(第2部)共有結合架橋複合膜
(先行技術)さらなる出願を基礎とする本発明は、ドイツ特許出願DE10024575.7(Kovalent vernetzte Polymere und Polymermembran via Sulfinatalkylierung)の継続出願または変更に関する。このドイツ特許の先願DE10024575.7の内容は、参照して本明細書中に取り込むことを明示する。
【0010】この上記特許出願の生成物および方法は、それぞれ以下の不利益を有する。
【0011】記載の方法によって調製された膜については、水素燃料電池における操作に含水ガスがさらに必要である。ガスが湿っていない場合、膜は乾燥し、プロトン伝導性が大幅に減少する。
【0012】この問題を解決するために、本出願は、親出願に従って、特に共有結合網状構造に任意選択的に官能基が導入されたテクトシリケートおよびフィロシリケートの組み込みを提案する。
【0013】親出願は、共有結合網状構造へのポリマーの組み込みのみを記載している。官能基導入フィロシリケートおよび/またはテクトシリケートを使用する場合、驚くべきことに、低分子量官能基を有し且つフィロシリケートおよび/またはテクトシリケートに結合した化合物は、特に水素燃料電池で使用される場合、膜の使用時に放出しないか、穏やかにのみ放出することが見出された。これにより、膜の機械的特徴を非常に悪化させる通常みられる影響(脆性または大きな膨潤)を有することなく共有結合網状構造内のイオン伝導性基の濃度が増加する。従って、極端な場合、共有結合網状構造中に封入されたイオン伝導性ポリマーを使用することを完全にやめることが可能となる。イオン伝導性は、官能基を有するシリケートを介して排他的に得られる。
【0014】したがって、本発明は、膜の乾燥および膜内のイオン伝導性基の数の限定という問題を解決する。
【0015】したがって、本発明の目的は、湿らせていないかわずかしか湿らせていないガスの使用時でさえプロトン伝導性を示す新規の共有結合架橋ポリマー/膜を提供することにある。さらに、さらなる目的は、産業的に有用な期間膜中に残存するように共有結合網状構造にカップリングされた低分子量の官能基導入化合物を組み込むことにある。
【0016】さらに、本発明の方法は、この目的を解決するのを支援する。
【0017】
(発明の説明)以下の文章は、親特許出願DE10024575.7を詳細に示す。ポリマーおよび官能基導入テクトシリケートおよび/またはフィロキシリケートおよび任意選択的に低分子化合物を含む適切な溶媒、好ましくは非プロトン性溶媒溶液の混合物を調製する。
【0018】混合物は、ポリマーおよび以下の基を含む:
・スルフィナート基SOMe(Meは1価または多価金属陽イオン)、
・スルホクロリド基および/または他の陽イオン交換基の前駆体。
さらに、二官能性またはオリゴ官能性(origofunctional)アルキル化架橋剤(典型的にはα,ω−ジハロアルカン)および任意選択的に第2級ジアミン架橋ジアミンNHR−(CH−NHRを混合物、好ましくはポリマー溶液に添加する。スルフィナート基のアルキル化および任意選択的なポリマー中に存在するスルホハライド基のジアミン架橋剤の第2級アミノ基との反応を介したスルホンアミドの形成によって溶媒を蒸発させ、膜形成中に共有結合架橋が形成される。巻く形成後、酸性および/または塩基性および/または中性水溶液による膜処理において、イオン交換基の前駆体は加水分解および酸化されて、イオン交換基を形成する。
【0019】本発明の複合物は、以下の官能基を有するポリマーからなる。膜調製後で、且つ加水分解前では、
・SOMおよび/またはPOMおよび/またはCOM(M=ハロゲン(F、Cl、Br、I)、OR、NR;R=アルキル、ヒドロアルキル、アリール)、
・架橋:
a)ポリマー−SO−Y−SO−ポリマー、
任意選択的に、
b)ポリマー−SO−Y’−NR−SO−ポリマー、
c)ポリマー−SO−NR−Y’’−NR−SO−ポリマー、
加水分解後では、
・−SOM−、−PO−、−COOM基、
・上記の架橋。
官能基導入フィロシリケートおよび/またはテクトシリケートの存在下でのイオン交換ポリマー、特に、陽イオン交換ポリマーの前駆体と混合したスルフィナートポリマーを共有結合架橋することにより、ブレンド相が良好に混合され、架橋度もより高くなるので、得られたポリマーフィルムは陽イオン交換ポリマーおよび重合体スルフィナートから作製された共有結合ポリマー(ブレンド)フィルムと比較して機械的安定性がより高い。ポリマー網状構造への陽イオン交換基の前駆体と反応するアミノ基を有する架橋成分の封入の制御により機械的特徴がさらに改良される。
【0020】膜形成中の共有結合網状構造への官能基導入テクトシリケートおよび/またはフィロシリケートの組込みにより、膜の水分保持能力が増加する。官能基導入テクトシリケートまたはフィロシリケートの表面から突出した官能基により、その機能性に関する膜の特徴がさらに変化する。
【0021】無機充填剤の説明。無機活性充填剤は、モントモリロナイト、スメクタイト、イライト、海泡石、パリゴルスカイト、白雲母、アレバルダイト(allevardite)、アメサイト(amesite)、ヘクトライト(hectorite)、タルク、フルオロヘクトライト(fluorohectorite)、サポナイト、ベイデライト(beidelite)、ノントロナイト(nontronite)、ステベンサイト(stevensite)、ベントナイト、マイカ、バーミキュライト、フルオロバーミキュライト、ハロイサイト、合成タルク型を含むホタル石、または2つまたはそれ以上の上記フィロシリケートのブレンドベースのフィロシリケートである。フィロシリケートの層間を剥離するか、架橋することができる。モンモリロナイトが特に好ましい。フィロシリケートの重量比は、好ましくは1〜80重量%、より好ましくは2〜30重量%、最も好ましくは5〜20重量%である。
官能基導入充填材、とくhにベイデライト系及びベントナイトのゼオライト及び部材が唯一のイオン伝導性成分である場合、その重量比は通常5〜80重量%、好ましくは20〜70重量%、最も好ましくは30〜60重量%である。
【0022】官能基導入フィロシリケートの説明。用語「フィロシリケート」は、通常、SiO四面体が二次元で無限大に網状構造に接続されたシリケートを意味する。(陰イオンの実験によるう形態は(SiO 2−である)。単層膜は、その間に存在する陽イオン(天然に存在するフィロシリケートでは、通常、Na、K、Mg、Al、または/およびCa)によって互いに連結している。
【0023】用語「脱アミノ化官能基導入フィロシリケート」は、いわゆる官能基導入剤との反応によって最初に層間の距離が増すフィロシリケートと理解される。このようなシリケートの脱アミノ化前の層の厚さは、好ましくは5〜100Å、より好ましくは5〜50Å、最も好ましくは8〜20Åである。層間の距離の増加させる(疎水化)ために、フィロシリケートを(本発明の複合物の生成前に)しばしばオニウムイオンまたはオニウム塩と呼ばれるいわゆる官能基導入疎水化剤と反応させる。
【0024】フィロシリケートの陽イオンを、有機官能基導入疎水化剤と置換することによって所望の層間距離が得られるが、この距離はフィロシリケートに組み込まれる反応性官能基導入分子またはポリマーの種類に依存し、有機残基の種類によって調整することができる。
【0025】金属イオンまたはプロトンの交換を、完全または部分的に行うことができる。金属イオンまたはプロトンの完全な交換が好ましい。金属イオンまたはプロトンの交換量を、通常、1gのフィロシリケートまたはテクトシリケートあたりのミリ当量(meq)で示し、これをイオン交換容量という。
【0026】少なくとも0.5meq/g、好ましくは0.8〜1.3meq/gの陽イオン交換容量を有するフィロシリケートまたはテクトシリケートが好ましい。
【0027】適切な有機官能基導入疎水化剤は、1つまたは複数の有機残基を保有することができるオキソニウム、アンモニウム、ホスホニウム、およびスルホニウムイオンに由来する。
【0028】適切な官能基導入疎水化剤として、以下の一般式Iおよび/またはIIを示す。
【化1】
Figure 2004502008
【0029】式中、置換基は、以下の意味を有する。R1、R2、R3、R4は、互いに独立して水素、1〜40個、好ましくは1〜20個の炭素原子を有する直鎖、分岐鎖、飽和、または不飽和炭化水素ラジカル由来であり、任意選択的に少なくとも1つの官能基を有し、2つのラジカルが互いに好ましくは5〜10個の炭素原子、より好ましくは1つまたは複数のN原子を有する複素環の残基に連結している。
【0030】Xはリン、窒素、または炭素を示し、Yは酸素または硫黄を示し、nは1〜5、好ましくは1〜3の整数であり、Zはアニオンである。
【0031】適切な官能基は、ヒドロキシル基、ニトロ基、スルホ基であり、カルボキシル基またはスルホン酸基が特に好ましい。同様に、スルホクロリド基およびカルボン酸クロリド基が特に好ましい。
【0032】適切な陰イオンZは、プロトンを発生する酸、特に鉱酸に由来し、塩素、臭素、フッ素、ヨウ素などのハロゲン、硫酸塩、スルホン酸塩、リン酸塩、りん酸塩、亜リン酸塩、およびカルボン酸塩、特に酢酸塩がに好ましい。出発物質として使用されるフィロシリケートは、通常、懸濁液として反応する。好ましい懸濁媒は、水であり、任意選択的にアルコール、特に1〜3個の炭素原子を有する低級アルコールと混合されている。官能基導入疎水化剤が水溶性でない場合、薬剤が溶解する溶媒が好ましい。このような場合、これは特に非プロトン性溶媒である。懸濁剤のさらなる例は、ケトンおよび炭化水素である。通常、水混和性懸濁剤が好ましい。フィロシリケートに疎水化剤を添加すると、イオン交換が起こり、通常、フィロシリケートが溶液から沈殿する。イオン交換の副産物として得られた金属塩は水溶性であることが好ましく、この場合、疎水化フィロシリケートが例えば濾過によって結晶性固体として分離することができる。
【0033】イオン交換は、反応温度とはほとんど無関係である。反応温度は溶剤の凝固点以上で且つ沸点未満であることが好ましい。水系では、温度は、0℃と100℃との間、好ましくは40℃と80℃との間である。
【0034】陽イオンおよび陰イオン交換ポリマーでは、特に官能基としてさらにカルボキシル酸クロリドまたはスルホン酸クロリドが同一分子に存在する場合、アルキルアンモニウムイオンが好ましい。アルキルアンモニウムイオンを、通常のメチル化試薬(ヨウ化メチルなど)を介して得ることができる。適切なアンモニウムイオンは、ω−アミノカルボン酸であり、ω−アミノアリールスルホン酸およびω−アルキルアミノスルホン酸が特に好ましい。ω−アミノアリールスルホン酸およびω−アルキルアミノスルホン酸を、通常の鉱酸(例えば、塩酸、硫酸、またはリン酸)を用いるか、ヨウ化メチルなどのメチル化試薬によって得ることができる。
【0035】さらに好ましいアンモニウムイオンは、ピリジンイオンおよびラウリルアンモニウムイオンである。疎水化後、フィロシリケートの膜間距離は、一般に、10Åと90Åとの間、好ましくは13Åと40Åとの間である。
【0036】乾燥によって疎水化および官能基導入フィロシリケートから水を除去する。一般に、そのようにして処理したフィロシリケートは、0〜5重量%の水を未だ含んでいる。その後、疎水化フィロシリケートを、できるだけ水を含まない懸濁剤中での懸濁液の形態で記載のポリマーと混合し、さらに処理して膜を得ることができる。
【0037】特に好ましいテクトシリケートおよび/またはフィロシリケートの官能基導入を、一般に、修飾色素またはその前駆体、特にトリフェニルメタン色素を用いて行う。これらを、以下の一般式で示す。
【化2】
Figure 2004502008
(式中、R=アルキル(特に、CH;C))
【0038】本発明では、以下の基本骨格に由来する色素を使用する。
【化3】
Figure 2004502008
(式中、RはC〜C20、0〜4個のN原子、0〜3個のS原子を含み、Rを陽性に変化させることができる)
【0039】フィロシリケートに官能基を導入するために、色素またはその還元前駆体を、容器中のシリケートと共に非プロトン性溶媒(例えば、テトラヒドロフラン、DMAc、NMP)中で撹拌する。24時間後、色素およびその前駆体をそれぞれフィロシリケートの空洞にインターカレーションする。イオン伝導基がシリケート粒子の表面上に存在するようにインターかレーションされなければならない。
【0040】以下の図は、この過程を概略的に示す。
【化4】
Figure 2004502008
【0041】したがって、出願DE10024575.7に記載のように、官能基導入フィロシリケートを添加物としてポリマー溶液に添加する。色素前駆体を使用することが特に好ましいことが見出された。酸性の場合のみ、処理後、水の分解によって色素自体が形成される。
【化5】
Figure 2004502008
【0042】トリフェニルメタン色素の場合、驚くべきことに、本発明によって調製された膜中でこれらの色素がプロトン伝導性を支持することが見出された。これが水を含まない場合でさえ、プロトン伝導性を十分な確実性をもって明言することはできない。色素がシリケートと結合しない場合、つまり、色素が遊離形態で膜中に存在する場合、色素は短期間で反応水を有する燃料電池から排出される。
【0043】本発明によれば、上記の親出願のスルフィナート基を含むポリマーブレンド、最も好ましくは熱可塑性官能基導入ポリマー(アイオノマー)を疎水化フィロシリケートの懸濁液に添加する。これを、既に溶解させた形態のポリマーを使用して行うことができるか、ポリマーを懸濁液自体に溶解する。好ましくは、フィロシリケートの量は、1〜70重量%、より好ましくは2〜40重量%、最も好ましくは5〜15重量%である。
【0044】親特許出願に関するさらなる改良は、膜ポリマー溶液およびフィロシリケートおよび/またはテクトシリケートの空洞への塩化ジルコニル(ZrOCl)をさらに混入させることにより可能となる。リン酸中で膜の後処理を行った場合、膜中のシリケート粒子のすぐ近くにほとんど溶解しないリン酸ジルコニウムが沈殿する。リン酸ジルコニウムは、燃料電池を稼動させた場合、自己プロトン伝導性を示す。プロトン伝導性は、中間工程としてのリン酸水素の形成を介して作用し、これは、本技術水準の一部である。貯水剤(シリケート)のすぐ近くへの封入を制御することは新規である。
【0045】1.膜調製の実施形態。スルホクロル化PSU Udel(商標名)(IEC=1.8meq SOCl/g)およびPSUSOLi(IEC=1.95meq SOLi/g)(ポリマーの構造については、図2を参照のこと)およびトリフェニルメタン色素を官能基導入したモントモリロナイトを、N−メチルピロリドン(NMP)に溶解する。次いで、架橋剤としてα,ω−ジヨードブタンを溶液に添加する。15分間撹拌後、溶液を濾過し、脱気する。ポリマー溶液の薄膜をガラスプレート上にナイフコーターでコートする。ガラスプレートを減圧乾燥オーブンに置き、80〜130℃、700mbarから最終的に15mbarの低圧下で溶媒を除去する。このフィルムを乾燥オーブンから取り出して、冷却する。ポリマーフィルムを水中でガラスプレートから剥離し、10%塩酸中で加水分解/最初に後処理し、それぞれの水を60〜90℃で24時間完全に脱塩する。
【0046】2.実施形態。スルホクロル化PSU Udel(商標名)(IEC=1.2meq SOCl/g)およびPSUSOLi(IEC=1.95meq SOLi/g)、およびα,ω−アミノアルキルスルホクロリド(外側に面してスルホクロリド基を有する)で処理したモントモリロナイトを、N−メチルピロリドン(NMP)に溶解する。次いで、架橋剤としてα,ω−ジヨードブタンを溶液に添加する。15分間撹拌後、溶液を濾過および脱気して、実施例1に記載のように膜を処理する。
【0047】この膜は、官能基導入フィロシリケートを含まない対照例よりも硬化後高いIEC値を有する。
【0048】3.実施形態。スルホクロル化PSU Udel(商標名)(IEC=1.8meq SOCl/g)およびPSUSOLi(IEC=1.95meq SOLi/g)(ポリマーの構造については、図2を参照のこと)および塩化ジルコニルで処理したモントモリロナイトを、ジメチルホルムアミド(DMSO)に溶解する。
【0049】以下の順序で溶解させる。最初に、モントモリロナイトK10をDMSO中に懸濁し、全膜量に基づいて10重量%の塩化ジルコニルを添加する。次いで、他のポリマー成分を添加する。架橋剤α,ω−ジヨードブタンを溶液に添加する。15分間撹拌後、溶液を濾過および脱気する。ポリマー溶液の薄膜をガラスプレート上にナイフコーターでコートした。ガラスプレートを減圧乾燥オーブンにおき、700から最終的に15mbarの低圧の80〜130℃の温度で溶媒を除去する。フィルムを乾燥オーブンから取り出し、冷却する。ポリマーフィルムをリン酸中でガラスプレートから剥離し、30℃と90℃との間の温度で約10時間リン酸中で保存し、任意選択的に10%塩酸でさらに加水分解/後処理し、それぞれの水を60〜90℃で24時間完全に脱塩する。
【図面の簡単な説明】
【図1】スルホクロル化ポリマーとスルフィナート化ポリマーとのブレンドにおける共有結合架橋の形成を概略的に示した図である。
【図2】スルフィナート基およびスルホクロリド基の両方を含むポリマー中の共有結合架橋の形成を示す図である。[0001]
TECHNICAL FIELD The present invention relates to covalently crosslinked polymers and polymer membranes via sulfinate alkylation.
[0002]
BACKGROUND ART The authors of the present application have developed a novel method of preparing covalently crosslinked ionomer membranes based on alkylation reactions of polymers, polymer blends, and polymer (blend) membranes containing sulfinate groups (J Kerres, W. Cui, W. Scharnberger: "Vernetzung von modifdizierten Engineering Thermoplasten", German Patent No. 1962237.77 (filing date: June 4, 1996), German Patent Office (xeiter, Germany). Industriels Modifications ", French Patent F9707066, March 30, 1997). An advantage of the covalent network is that it is resistant to hydrolysis even at high temperatures. A disadvantage of the ion conducting material, covalently crosslinked polymer, and polymer blend described in the above invention is that a hydrophobic network is formed upon alkylation of a sulfinate group in film formation, and the hydrophobic network is ion-conducting polymer (blend) component (sulfonated polymer: polymer -SO 3 Me) since the partial compatibility is not, becomes uneven polymer (blend) form, the mechanical stability is reduced (by drying Embrittlement), the sulfinate phase and the sulfonate phase are partially separated, and complete crosslinking is inhibited.
[0003]
Accordingly, it is an object of the present invention to provide a novel covalently crosslinked polymer / membrane in which the covalently crosslinked polymer (blend) component is fully compatible with the ionically conductive polymer (blend) component. It is in.
This object is achieved by obtaining a membrane according to claim 1.
Furthermore, the method of the invention adds to this purpose.
In contrast, the following functional groups:
・ Sulfinate group -SO 2 Me
Prepare a polymer solution containing a polymer containing other precursors of sulfochloride groups and / or cation exchange groups. Additionally, a difunctional or oligofunctional alkylating crosslinker (typically an α, ω-dihaloalkane) and optionally a secondary diamine crosslinker NHR- (CH2) x- NHR is Add to polymer solution. During the formation of a film upon evaporation of the solvent by alkylation of the sulfinate groups and, optionally, the reaction of the sulfohalogenide groups present in the polymer with the secondary amino groups of the diamine crosslinker to form a sulfonamide. To form a covalent crosslink. During post-treatment of the membrane with an acidic and / or basic and / or neutral aqueous solution after formation of the membrane, the precursor of the cation exchange group is hydrolyzed to form a cation exchange group.
The composite of the present invention comprises a polymer having the following functional groups. After membrane preparation and before hydrolysis,
· -SO 2 M and / or POM 2 and / or -COM (M = halogen (F, Cl, Br, I ), OR, NR2; R = alkyl, hydroalkyl, aryl),
Crosslinking:
a) a polymer -SO 2 -Y-SO 2 - polymer,
b) a polymer -SO 2 -Y'-NR-SO 2 - polymer,
c) Polymer -SO 2 -NR-Y '' - NR-SO 2 - polymer,
After hydrolysis,
· -SO 3 M -, - PO 3 M 2 -, - COOM group,
-Crosslinking as described above.
Covalent cross-linking of the sulfinate polymer in a mixture with the cation exchange polymer precursor increases the degree of cross-linking as it is better mixed in the blending step, and the covalent cross-link made from the cation exchange polymer and the polymer sulfinate The mechanical stability of the resulting polymer film is more improved compared to the bonded crosslinked polymer (blend) film. By controlling the incorporation of crosslinking components containing amino groups that react with precursors of the cation exchange groups in the polymer network, the mechanical characteristics are further improved.
[0006]
EXAMPLES The present invention is illustrated in more detail by the following two examples. Table 1 shows the weight / volume of the components used.
Description of membrane preparation. The sulfochlorinated PSU Udel ™ (ICE = 1.8 meq SO 2 Cl / g) and PSUSO 2 Li (ICE = 1.95 meq SO 2 Li / g) (see FIG. 2 for polymer structure) , N-methylpyrrolidinone (NMP). Then, α, ω-diiodobutane is added to the crosslinking agent solution. After stirring for 15 minutes, the solution is filtered and degassed. A thin film of the polymer solution was coated on a glass plate with a knife coater. The glass plate is placed in a vacuum drying oven and the solvent is removed at a low pressure of 700 to 15 mbar and a temperature of 80-130 ° C. Remove the film from the drying oven and cool. The polymer film is peeled from the glass plate in water, hydrolyzed / first worked up in 10% hydrochloric acid and the respective water is completely desalted at 60-90 ° C. for 24 hours.
[0008] 2. Reactant usage and results characteristics [Table 1]
Figure 2004502008
* 2SO 2 Cl-based / PSU repeat unit
(Part 2) Covalently crosslinked composite membranes (prior art) The invention based on a further application relates to the continuation or modification of the German patent application DE 100 24 5.75.7 (Kovalent vernetzte Polymere und Polymermembrane via Sulfinatalkylierung). The contents of the German patent application DE 100 24 5.75.7 are expressly incorporated herein by reference.
The products and methods of this patent application each have the following disadvantages.
For membranes prepared by the described method, operation in a hydrogen fuel cell requires additional hydrous gas. If the gas is not wet, the membrane dries and the proton conductivity is greatly reduced.
To solve this problem, the present application proposes, according to the parent application, the incorporation of tectosilicates and phyllosilicates, in particular with functional groups optionally introduced into the covalent network.
The parent application only describes the incorporation of the polymer into a covalent network. When using functionalized phyllosilicates and / or tectosilicates, it is surprising that compounds having low molecular weight functional groups and bound to phyllosilicates and / or tectosilicates, especially when used in hydrogen fuel cells Was found to not release or only release slowly when the membrane was used. This increases the concentration of ion-conducting groups in the covalent network without having the usual effects (brittle or large swelling) that greatly degrade the mechanical properties of the membrane. Thus, in extreme cases, it is possible to completely dispense with the use of ion-conducting polymers encapsulated in a covalent network. Ionic conductivity is obtained exclusively via silicates with functional groups.
Thus, the present invention solves the problem of drying the membrane and limiting the number of ion-conducting groups in the membrane.
It is, therefore, an object of the present invention to provide a novel covalently crosslinked polymer / membrane that exhibits proton conductivity even when using un-wet or only slightly-wetted gases. Yet a further object is to incorporate a low molecular weight functionalized compound coupled to a covalent network to remain in the membrane for an industrially useful period.
Furthermore, the method of the invention helps to solve this object.
[0017]
DESCRIPTION OF THE INVENTION The following text details the parent patent application DE 100 24 5.75.7. A mixture of a suitable solvent, preferably an aprotic solvent, comprising the polymer and the functionalized tectosilicate and / or phyloxysilicate and optionally low molecular weight compounds is prepared.
The mixture comprises a polymer and the following groups:
A sulfinate group SO 2 Me (Me is a monovalent or polyvalent metal cation),
Precursors of sulfochloride groups and / or other cation exchange groups.
Additionally, a mixture of a difunctional or oligofunctional alkylating crosslinker (typically an α, ω-dihaloalkane) and optionally a secondary diamine-bridged diamine NHR- (CH 2 ) x -NHR , Preferably to the polymer solution. Evaporation of the solvent by formation of the sulfonamide via alkylation of the sulfinate groups and optional reaction of the sulfohalide groups present in the polymer with the secondary amino groups of the diamine crosslinker to form covalent bonds during film formation Crosslinks are formed. After winding, in a membrane treatment with an acidic and / or basic and / or neutral aqueous solution, the precursor of the ion exchange group is hydrolyzed and oxidized to form an ion exchange group.
The composite of the present invention comprises a polymer having the following functional groups. After membrane preparation and before hydrolysis,
SO 2 M and / or POM 2 and / or COM (M = halogen (F, Cl, Br, I), OR, NR 2 ; R = alkyl, hydroalkyl, aryl),
・ Crosslinking:
a) a polymer -SO 2 -Y-SO 2 - polymer,
Optionally,
b) a polymer -SO 2 -Y'-NR-SO 2 - polymer,
c) Polymer -SO 2 -NR-Y '' - NR-SO 2 - polymer,
After hydrolysis,
· -SO 3 M -, - PO 3 M 2 -, - COOM group,
-Crosslinking as described above.
By covalently crosslinking the ion exchange polymer in the presence of the functionalized phyllosilicate and / or tectosilicate, especially the sulfinate polymer mixed with the precursor of the cation exchange polymer, the blend phase is well mixed. Because of the higher degree of crosslinking, the resulting polymer films have higher mechanical stability as compared to covalent polymer (blend) films made from cation exchange polymers and polymer sulfinates. Controlling the encapsulation of crosslinking components having amino groups that react with the precursors of the cation exchange groups in the polymer network further improves the mechanical characteristics.
The incorporation of the functionalized tectosilicate and / or phyllosilicate into the covalent network during film formation increases the water retention capacity of the film. The functional groups protruding from the surface of the functional group-introduced tectosilicate or phyllosilicate further change the characteristics of the membrane with respect to its functionality.
Description of the inorganic filler. Inorganic active fillers include montmorillonite, smectite, illite, sepiolite, palygorskite, muscovite, allevaldite, amesite, hectorite, talc, fluorohectorite, Saponite, beidelite, nontronite, stevensite, bentonite, mica, vermiculite, fluorovermiculite, halloysite, fluorite including synthetic talc type, or two or more of the above phyllosilicates Is a blend-based phyllosilicate. The phyllosilicate can be delaminated or crosslinked. Montmorillonite is particularly preferred. The weight ratio of phyllosilicate is preferably 1-80% by weight, more preferably 2-30% by weight, most preferably 5-20% by weight.
When the functional group-introduced filler, in particular h and the beidellite and bentonite zeolites and the components are the only ion-conducting components, the weight ratio is usually 5-80% by weight, preferably 20-70% by weight, most preferably 30 to 60% by weight.
Explanation of the functional group-introduced phyllosilicate. The term "phyllosilicate" usually means a silicate in which SiO 4 tetrahedra are connected in a two-dimensional infinite network. (Embodiment Cormorants experimental anion is (SiO 2 O 5 2-) n ). The monolayers are interconnected by the cations present (typically Na, K, Mg, Al, and / or Ca for naturally occurring phyllosilicates).
The term “deaminated functionalized phyllosilicate” is understood as a phyllosilicate in which the distance between the layers initially increases by reaction with a so-called functionalizing agent. The thickness of such a silicate layer before deamination is preferably between 5 and 100 °, more preferably between 5 and 50 °, most preferably between 8 and 20 °. In order to increase the distance between layers (hydrophobizing), the phyllosilicate is reacted (prior to the formation of the composite of the invention) with a so-called functionalized hydrophobizing agent, often referred to as onium ions or onium salts.
The desired interlayer distance can be obtained by replacing the cation of the phyllosilicate with the organic functional group-introducing hydrophobizing agent. This distance depends on the type of the reactive functional group-introduced molecule or polymer incorporated in the phyllosilicate. Depending on the type of organic residue.
The exchange of metal ions or protons can take place completely or partially. Complete exchange of metal ions or protons is preferred. The amount of metal ion or proton exchange is usually indicated in milliequivalents (meq) per gram of phyllosilicate or tectosilicate, and is referred to as ion exchange capacity.
A phyllosilicate or tectosilicate having a cation exchange capacity of at least 0.5 meq / g, preferably 0.8 to 1.3 meq / g is preferred.
Suitable organic-functionalized hydrophobizing agents are derived from oxonium, ammonium, phosphonium, and sulfonium ions, which can possess one or more organic residues.
Suitable functionalized hydrophobizing agents are represented by the following general formulas I and / or II:
Embedded image
Figure 2004502008
In the formula, the substituent has the following meaning. R 1, R 2, R 3, R 4 independently of one another are derived from hydrogen, straight-chain, branched, saturated or unsaturated hydrocarbon radicals having 1 to 40, preferably 1 to 20 carbon atoms, Optionally having at least one functional group, the two radicals are linked to each other preferably to the residue of a heterocycle having 5 to 10 carbon atoms, more preferably one or more N atoms.
X represents phosphorus, nitrogen or carbon, Y represents oxygen or sulfur, n is an integer of 1 to 5, preferably 1 to 3, and Z is an anion.
Suitable functional groups are hydroxyl, nitro, sulfo, carboxyl or sulfonic acid being particularly preferred. Similarly, sulfochloride and carboxylic chloride groups are particularly preferred.
Suitable anions Z are derived from proton generating acids, especially mineral acids, halogens such as chlorine, bromine, fluorine, iodine, sulfates, sulfonates, phosphates, phosphates, suboxides. Phosphates and carboxylates, especially acetates, are preferred. The phyllosilicate used as starting material usually reacts as a suspension. A preferred suspending medium is water, optionally mixed with an alcohol, especially a lower alcohol having 1 to 3 carbon atoms. When the functional group-introduced hydrophobizing agent is not water-soluble, a solvent in which the drug is dissolved is preferable. In such cases, this is especially an aprotic solvent. Further examples of suspending agents are ketones and hydrocarbons. Usually, water-miscible suspensions are preferred. When a hydrophobizing agent is added to the phyllosilicate, ion exchange occurs and the phyllosilicate usually precipitates from solution. The metal salt obtained as a by-product of ion exchange is preferably water-soluble, in which case the hydrophobized phyllosilicate can be separated as a crystalline solid, for example by filtration.
[0033] Ion exchange is almost independent of reaction temperature. The reaction temperature is preferably higher than the freezing point of the solvent and lower than the boiling point. In aqueous systems, the temperature is between 0 ° C and 100 ° C, preferably between 40 ° C and 80 ° C.
In cation and anion exchange polymers, alkylammonium ions are preferred, especially when carboxylic acid chloride or sulfonic acid chloride is present in the same molecule as a functional group. Alkylammonium ions can be obtained via conventional methylating reagents (such as methyl iodide). Suitable ammonium ions are ω-aminocarboxylic acids, with ω-aminoarylsulfonic acids and ω-alkylaminosulfonic acids being particularly preferred. ω-Aminoarylsulfonic acids and ω-alkylaminosulfonic acids can be obtained using conventional mineral acids (eg, hydrochloric acid, sulfuric acid, or phosphoric acid) or with a methylating reagent such as methyl iodide.
Further preferred ammonium ions are pyridine ion and lauryl ammonium ion. After hydrophobization, the transmembrane distance of the phyllosilicate is generally between 10 ° and 90 °, preferably between 13 ° and 40 °.
The water is removed from the hydrophobized and functionalized phyllosilicate by drying. In general, the phyllosilicate so treated still contains 0 to 5% by weight of water. Thereafter, the hydrophobized phyllosilicate can be mixed with the described polymer in the form of a suspension in a suspension containing as little water as possible and further processed to give a membrane.
The particularly preferred functionalization of the tectosilicate and / or phyllosilicate is generally carried out using a modified dye or its precursor, in particular a triphenylmethane dye. These are represented by the following general formula.
Embedded image
Figure 2004502008
(Wherein, R 1 = alkyl (particularly, CH 3 ; C 2 H 5 ))
In the present invention, a dye derived from the following basic skeleton is used.
Embedded image
Figure 2004502008
(Wherein R comprises C 1 -C 20 , 0-4 N atoms, 0-3 S atoms and can change R to positive)
To introduce a functional group into the phyllosilicate, the dye or its reducing precursor is stirred with the silicate in a vessel in an aprotic solvent (eg, tetrahydrofuran, DMAc, NMP). After 24 hours, the dye and its precursor are each intercalated into the phyllosilicate cavity. The ion-conducting groups must be interrelated so that they are present on the surface of the silicate particles.
The following diagram schematically illustrates this process.
Embedded image
Figure 2004502008
Therefore, as described in application DE 100 24 5.75.7, a functionalized phyllosilicate is added to the polymer solution as an additive. It has been found particularly preferred to use a dye precursor. Only in the acidic case, after treatment, the dye itself is formed by the decomposition of water.
Embedded image
Figure 2004502008
In the case of triphenylmethane dyes, it has surprisingly been found that these dyes support proton conductivity in the membranes prepared according to the invention. Even if this does not contain water, the proton conductivity cannot be stated with sufficient certainty. If the dye does not bind to the silicate, that is, if the dye is present in the membrane in free form, the dye is discharged from the fuel cell with the water of reaction in a short period of time.
According to the present invention, the polymer blend containing the sulfinate groups of the parent application described above, most preferably a thermoplastic functionalized polymer (ionomer), is added to a suspension of the hydrophobized phyllosilicate. This can be done using the polymer in dissolved form, or the polymer is dissolved in the suspension itself. Preferably, the amount of phyllosilicate is 1-70% by weight, more preferably 2-40% by weight, most preferably 5-15% by weight.
Further improvements with respect to the parent patent application are made possible by further incorporating zirconyl chloride (ZrOCl 2 ) into the membrane polymer solution and the phyllosilicate and / or tectosilicate cavities. When the membrane is post-treated in phosphoric acid, the insoluble zirconium phosphate precipitates very close to the silicate particles in the membrane. Zirconium phosphate exhibits self-proton conductivity when operating a fuel cell. Proton conductivity acts through the formation of hydrogen phosphate as an intermediate step, which is part of the state of the art. Controlling the immediate encapsulation of water storage agents (silicates) is novel.
1. Embodiment of membrane preparation. Sulfochlorinated PSU Udel ™ (IEC = 1.8 meq SO 2 Cl / g) and PSUSO 2 Li (IEC = 1.95 meq SO 2 Li / g) (see FIG. 2 for polymer structure) And montmorillonite into which a triphenylmethane dye has been introduced into a functional group is dissolved in N-methylpyrrolidone (NMP). Next, α, ω-diiodobutane is added to the solution as a crosslinking agent. After stirring for 15 minutes, the solution is filtered and degassed. A thin film of the polymer solution is coated on a glass plate with a knife coater. The glass plate is placed in a vacuum drying oven and the solvent is removed at 80-130 ° C. under a low pressure of 700 mbar to a final pressure of 15 mbar. The film is removed from the drying oven and cooled. The polymer film is peeled from the glass plate in water, hydrolyzed / first worked up in 10% hydrochloric acid and the respective water is completely desalted at 60-90 ° C. for 24 hours.
2. Embodiment. Sulfochlorinated PSU Udel ™ (IEC = 1.2 meq SO 2 Cl / g) and PSUSO 2 Li (IEC = 1.95 meq SO 2 Li / g), and α, ω-aminoalkyl sulfochloride (external surface Montmorillonite treated with N-methylpyrrolidone (NMP). Next, α, ω-diiodobutane is added to the solution as a crosslinking agent. After stirring for 15 minutes, the solution is filtered and degassed and the membrane is treated as described in Example 1.
This membrane has a higher IEC value after curing than the control without functionalized phyllosilicate.
3. Embodiment. Sulfochlorinated PSU Udel ™ (IEC = 1.8 meq SO 2 Cl / g) and PSUSO 2 Li (IEC = 1.95 meq SO 2 Li / g) (see FIG. 2 for polymer structure) And montmorillonite treated with zirconyl chloride are dissolved in dimethylformamide (DMSO).
The components are dissolved in the following order. First, Montmorillonite K10 is suspended in DMSO and 10% by weight, based on total membrane weight, of zirconyl chloride is added. Then, other polymer components are added. The crosslinking agent α, ω-diiodobutane is added to the solution. After stirring for 15 minutes, the solution is filtered and degassed. A thin film of the polymer solution was coated on a glass plate with a knife coater. The glass plate is placed in a vacuum drying oven and the solvent is removed at a low pressure of 700 to 15 mbar and a temperature of 80-130 ° C. Remove the film from the drying oven and cool. Peeling the polymer film from the glass plate in phosphoric acid, storing in phosphoric acid at a temperature between 30 ° C. and 90 ° C. for about 10 hours, optionally further hydrolyzing / post-treating with 10% hydrochloric acid; Each water is completely desalted at 60-90 ° C. for 24 hours.
[Brief description of the drawings]
FIG. 1 schematically illustrates the formation of covalent crosslinks in a blend of a sulfochlorinated polymer and a sulfinated polymer.
FIG. 2 illustrates the formation of covalent crosslinks in a polymer containing both sulfinate and sulfochloride groups.

Claims (17)

任意選択的に以下の官能基:(M=ハロゲン(F,Cl,Br,I)、OR、NR;R=アルキル、ヒドロキシアルキル、アリール;Me=H、Li、Na、K、Cs、または他の金属陽イオンもしくはアンモニウムイオン):
a)陽イオン交換基の前駆体:SOMおよび/またはPOMおよび/またはCOM、
b)スルフィナート基SOMe
を有し、以下の有機化合物:
a)スルフィナート基SOMeと反応することにより、得られた架橋がポリマー/ポリマーブレンド/ポリマー膜(Y=架橋)、X=ハロゲン(F、Cl、Br、I)、OR、Y=−(CH−;−アリーレン−;−(CH−アリーレン−;−(CH)−アリーレン−(CH)−、x=3〜12):ポリマー−SO−Y−SO−ポリマー中に存在する、二官能性、三官能性、またはオリゴ官能性(origofunctional)ハロアルカンまたはハロ芳香族、および/または
b)一方(ハロゲン−)がスルフィナート基SOMeと反応し、他方(−NHR)がSOM−基と反応することによって、得られた架橋がポリマー/ポリマーブレンド/ポリマー膜:ポリマー−SO−(CH−NR−SO−ポリマー中に存在する、以下の基:ハロゲン−(CH−NHRを含む化合物、および/または
c)SOMe基と反応することによって、得られた架橋がポリマー/ポリマーブレンド/ポリマー膜:ポリマー−SO−NR−(CH−NR−SO−ポリマー中に存在する、以下の基:NHR−(CH−NHRを含む化合物と共有結合することができる、1つまたは複数のポリマーを含む共有結合架橋ポリマーまたは共有結合架橋ポリマー膜。
Optionally, the following functional groups: (M = halogen (F, Cl, Br, I), OR, NR 2 ; R = alkyl, hydroxyalkyl, aryl; Me = H, Li, Na, K, Cs, or Other metal cations or ammonium ions):
a) precursors of the cation exchange groups: SO 2 M and / or POM 2 and / or COM;
b) sulfinate group SO 2 Me
Having the following organic compound:
a) By reacting with the sulfinate group SO 2 Me, the resulting crosslinks are polymer / polymer blend / polymer membrane (Y = crosslinking), X = halogen (F, Cl, Br, I), OR, Y = − ( CH 2) x -; - arylene - ;-( CH 2) x - arylene - ;-( CH 2) - arylene - (CH 2) -, x = 3~12): polymer -SO 2 -Y-SO 2 - present in the polymer, difunctional, trifunctional, or oligo-functional (Origofunctional) haloalkanes or haloaromatic, and / or b) one (halogen -) is reacted with sulfinate groups SO 2 Me, the other ( by -NHR) is reacted with SO 2 M- group, resulting crosslinked polymer / polymer blend / polymer film: polymer -SO 2 - (CH 2) -NR-SO 2 - present in the polymer, the following groups: halogen - (CH 2) a compound containing x -NHR, and / or c) by reacting with SO 2 Me group, the resulting crosslinked polymer / polymer blend / polymer film: polymer -SO 2 -NR- (CH 2) x -NR-SO 2 - present in the polymer, the following groups: NHR- (CH 2) covalently attached to a compound containing x -NHR A covalently crosslinked polymer or a covalently crosslinked polymer membrane comprising one or more polymers.
以下のポリマー:
a)少なくともSOM基を含むポリマー、
b)少なくともSOMe基を含むポリマーから構成されることを特徴とする、請求項1に記載の共有結合架橋ポリマーブレンドまたはポリマーブレンド膜。
The following polymers:
a) a polymer comprising at least SO 2 M groups,
2. A covalently crosslinked polymer blend or polymer blend membrane according to claim 1, characterized in that b) is composed of a polymer containing at least SO2Me groups.
以下の基:SOM基およびSOMe基を含むポリマーからなることを特徴とする、請求項1または請求項2に記載の共有結合架橋ポリマーブレンドまたはポリマーブレンド膜。Following groups: characterized by comprising the polymer comprising SO 2 M group and SO 2 Me group, according to claim 1 or covalently crosslinked polymer blend or polymer blend membrane according to claim 2. 官能基を有する基材ポリマーがポリエーテルスルホン、ポリスルホン、ポリフェニルスルホン、ポリエーテルエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリジフェニルフェニレンエーテル、ポリフェニレンスルフィド、またはこれらの化合物の少なくとも1つを含むコポリマーからなる群から選択されることを特徴とする、請求項1〜請求項3のいずれか1項に記載の共有結合架橋ポリマーブレンドまたはポリマーブレンド膜。The base polymer having a functional group is polyether sulfone, polysulfone, polyphenyl sulfone, polyether ether sulfone, polyether ketone, polyether ether ketone, polyphenylene ether, polydiphenylphenylene ether, polyphenylene sulfide, or at least one of these compounds. The covalently crosslinked polymer blend or polymer blend membrane according to any one of claims 1 to 3, characterized in that it is selected from the group consisting of: 基材ポリマーとして、以下のポリマー:ポリスルホン、ポリフェニレンエーテル、またはリチウム化することができる他のポリマーが好ましいことを特徴とする、請求項1〜請求項4のいずれか1項に記載の共有結合およびイオン結合架橋ポリマーブレンドまたはポリマーブレンド膜。The base polymer is preferably the following polymers: polysulfone, polyphenylene ether, or other polymers that can be lithiated. An ionically bonded crosslinked polymer blend or polymer blend membrane. 架橋剤としてハロゲン−(CH−ハロゲンまたはハロゲン−CH−フェニレン−CH−ハロゲン(x=3〜12、ハロゲン=F、Cl、Br、I)が好ましいことを特徴とする、請求項1〜請求項5のいずれか1項に記載の共有結合架橋ポリマーブレンドまたはポリマーブレンド膜。As a crosslinking agent, halogen- (CH 2 ) x -halogen or halogen-CH 2 -phenylene-CH 2 -halogen (x = 3 to 12, halogen = F, Cl, Br, I) is preferable. The covalently crosslinked polymer blend or polymer blend membrane according to any one of claims 1 to 5. 前記ポリマー/ポリマー(ブレンド)膜のSOM基および/またはPOM基および/またはCOM基が、以下の後処理(硬化)工程:
a)T=RT−95℃での1〜50重量%のアルカリ水溶液、
b)T=RT−95℃での完全に脱塩した水、
c)T=RT−95℃での1〜50重量%の鉱酸水溶液、
d)T=RT−95℃での完全に脱塩した水、
によって陽イオン交換基SOMeおよび/またはPOMeおよび/またはCOOMe(Me=H、Li、Na、K、Cs、または他の金属陽イオンまたはアンモニウムイオン)に加水分解されるが、1つまたは複数の前記硬化工程を任意選択的に省略することができることを特徴とする、請求項1〜請求項6のいずれか1項に記載の共有結合架橋ポリマーブレンドまたはポリマーブレンド膜。
The SO 2 M groups and / or POM 2 groups and / or COM groups of the polymer / polymer (blend) membrane are subjected to the following post-treatment (curing) steps:
a) T = 1-50 wt% aqueous alkaline solution at RT-95 ° C.
b) T = completely desalted water at RT-95 ° C.
c) T = 1-50% by weight aqueous mineral acid at RT-95 ° C.
d) T = RT-95 ° C. completely desalinated water,
Is hydrolyzed by the cation exchange groups SO 3 Me and / or PO 3 Me 2 and / or COOMe (Me = H, Li, Na, K, Cs or other metal cations or ammonium ions), The covalently crosslinked polymer blend or polymer blend membrane according to any one of claims 1 to 6, wherein one or more of the curing steps can be optionally omitted.
前記ポリマーをN,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)、またはスルホラン(sulfolane)からなる群から選択される双極性非プロトン性溶媒中に同時または連続して溶解後、架橋剤を添加し、前記架橋剤を撹拌によって前記ポリマー溶液中で均一に分散させ、前記ポリマー溶液を濾過して脱気し、前記ポリマー溶液を薄膜として基板(ガラスプレート、金属プレート、織物、不織布など)上に広げ、前記溶媒を80〜130℃での加熱または低圧または循環エアドライヤーによって除去し、前記ポリマーフィルムを任意選択的に基板から剥離し、前記ポリマーフィルムを以下の工程:
a)T=RT−95℃での1〜50重量%のアルカリ水溶液、
b)T=RT−95℃での完全に脱塩した水、
c)T=RT−95℃での1〜50重量%の鉱酸水溶液、
d)T=RT−95℃での完全に脱塩した水によって硬化するが、1つまたは複数の前記硬化工程を任意選択的に省略することができることを特徴とする、請求項1〜請求項7のいずれか1項に記載の共有結合架橋ポリマー、ポリマーブレンド、またはポリマーブレンド膜の調製法。
The polymer is a bipolar electrode selected from the group consisting of N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), dimethylsulfoxide (DMSO), and sulfolane. After simultaneous or continuous dissolution in the aprotic solvent, a crosslinking agent is added, the crosslinking agent is uniformly dispersed in the polymer solution by stirring, the polymer solution is filtered and degassed, The solution is spread as a thin film on a substrate (glass plate, metal plate, woven fabric, non-woven fabric, etc.) and the solvent is removed by heating at 80-130 ° C. or low pressure or circulating air dryer , optionally removing the polymer film from the substrate. And peeling said polymer film from the following steps:
a) T = 1-50 wt% aqueous alkaline solution at RT-95 ° C.
b) T = completely desalted water at RT-95 ° C.
c) T = 1-50% by weight aqueous mineral acid at RT-95 ° C.
d) curing with completely demineralized water at T = RT-95 [deg.] C., wherein one or more of said curing steps can optionally be omitted. 8. A method for preparing the covalently crosslinked polymer, polymer blend, or polymer blend membrane according to any one of items 7 to 7.
電気化学的経路でエネルギーを産出するために、請求項1〜請求項8のいずれか1項に記載の膜を使用する方法。A method of using the membrane according to any one of claims 1 to 8 to produce energy by an electrochemical route. 0〜180℃の温度での膜燃料電池(水素または直接メタノール型燃料電池)の構成要素としての、請求項1〜請求項8のいずれか1項に記載の膜を使用する方法。A method of using the membrane according to any one of claims 1 to 8 as a component of a membrane fuel cell (hydrogen or direct methanol fuel cell) at a temperature of 0 to 180 ° C. 化学電池において、請求項1〜請求項8のいずれか1項に記載の膜を使用する方法。A method for using the membrane according to any one of claims 1 to 8 in a chemical battery. 二次電池において、請求項1〜請求項8のいずれか1項に記載の膜を使用する方法。A method for using the membrane according to any one of claims 1 to 8 in a secondary battery. 電解槽において、請求項1〜請求項8のいずれか1項に記載の膜を使用する方法。A method for using the membrane according to any one of claims 1 to 8 in an electrolytic cell. ガス分離法、浸透気化法、膜抽出、逆浸透法、電気透析法、および拡散透析法などの膜分離工程において、請求項1〜請求項8のいずれか1項に記載の膜を使用する方法。
(第2部)
A method using the membrane according to any one of claims 1 to 8 in a membrane separation step such as a gas separation method, a pervaporation method, a membrane extraction, a reverse osmosis method, an electrodialysis method, and a diffusion dialysis method. .
(Part 2)
1つまたは複数のポリマーおよびテクトシリケートおよび/またはフィロシリケートを含み、存在する前記テクトシリケートおよび/またはフィロシリケートは官能基が導入されていても導入されていなくても良く、
前記ポリマーは、以下の官能基(M=ハロゲン(F、Cl、Br、I)、OR、NR;R=アルキル、ヒドロキシアルキル、アリール;Me=H、Li、Na、K、Cs、または他の金属陽イオンまたはアンモニウムイオン):
a)陽イオン交換基の前駆体:SOMおよび/またはPOMおよび/またはCOM、
b)スルフィナート基SOMe
を有することができ、以下の有機化合物:
a)スルフィナート基SOMeと反応することにより、得られた架橋がポリマー/ポリマーブレンド/ポリマー膜(Y=架橋)、X=ハロゲン(F、Cl、Br、I)、OR、Y=−(CH−;−アリーレン−;−(CH−アリーレン−;−(CH)−アリーレン−(CH)−、x=3〜12):ポリマー−SO−Y−SO−ポリマー中に存在する、二官能性、三官能性、またはオリゴ官能性(origofunctional)ハロアルカンまたはハロ芳香族、および/または
b)一方(ハロゲン−)がスルフィナート基SOMeと反応し、他方(−NHR)がSOM−基と反応することによって、得られた架橋がポリマー/ポリマーブレンド/ポリマー膜:ポリマー−SO−(CH−NR−SO−ポリマー中に存在する、以下の基:ハロゲン−(CH−NHRを含む化合物、および/または
c)SOMe基と反応することによって、得られた架橋がポリマー/ポリマーブレンド/ポリマー膜:ポリマー−SO−NR−(CH−NR−SO−ポリマー中に存在する、以下の基:NHR−(CH−NHRを含む化合物と共有結合することができるという点で特徴づけられる、共有結合架橋複合ポリマーまたは共有結合架橋複合ポリマー膜。
Comprising one or more polymers and tectosilicate and / or phyllosilicate, wherein said tectosilicate and / or phyllosilicate present may or may not have functional groups introduced,
The polymer has the following functional groups (M = halogen (F, Cl, Br, I), OR, NR 2 ; R = alkyl, hydroxyalkyl, aryl; Me = H, Li, Na, K, Cs, or other Metal cation or ammonium ion):
a) precursors of the cation exchange groups: SO 2 M and / or POM 2 and / or COM;
b) sulfinate group SO 2 Me
The following organic compounds can have:
a) By reacting with the sulfinate group SO 2 Me, the resulting crosslinks are polymer / polymer blend / polymer membrane (Y = crosslinking), X = halogen (F, Cl, Br, I), OR, Y = − ( CH 2) x -; - arylene - ;-( CH 2) x - arylene - ;-( CH 2) - arylene - (CH 2) -, x = 3~12): polymer -SO 2 -Y-SO 2 - present in the polymer, difunctional, trifunctional, or oligo-functional (Origofunctional) haloalkanes or haloaromatic, and / or b) one (halogen -) is reacted with sulfinate groups SO 2 Me, the other ( by -NHR) is reacted with SO 2 M- group, resulting crosslinked polymer / polymer blend / polymer film: polymer -SO 2 - (CH 2) -NR-SO 2 - present in the polymer, the following groups: halogen - (CH 2) a compound containing x -NHR, and / or c) by reacting with SO 2 Me group, the resulting crosslinked polymer / polymer blend / polymer film: polymer -SO 2 -NR- (CH 2) x -NR-SO 2 - present in the polymer, the following groups: NHR- (CH 2) covalently attached to a compound containing x -NHR Or a covalently crosslinked composite polymer membrane characterized in that it can
以下のポリマー:
a)少なくともSOM基を含むポリマー、
b)少なくともSOMe基を含むポリマーから構成されることを特徴とする、請求項15に記載の共有結合架橋ポリマーブレンドまたはポリマーブレンド膜。
The following polymers:
a) a polymer comprising at least SO 2 M groups,
b) characterized in that it is composed of a polymer containing at least SO 2 Me group, covalently crosslinked polymer blend or polymer blend membrane according to claim 15.
以下の基:SOM基およびSOMe基を含むポリマーからなることを特徴とする、請求項15または請求項16に記載の共有結合架橋ポリマーブレンドまたはポリマーブレンド膜。Following groups: characterized by comprising the polymer comprising SO 2 M group and SO 2 Me group, covalently crosslinked polymer blend or polymer blend membrane according to claim 15 or claim 16.
JP2002505894A 2000-05-19 2001-05-21 Covalently crosslinked polymers and polymer membranes via sulfinate alkylation Pending JP2004502008A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10024575A DE10024575A1 (en) 2000-11-02 2000-05-19 Covalently crosslinked polymer or membrane, used e.g. in fuel cells, batteries or separation processes, comprises reacting polymers with chlorosulphonyl or sulfinate groups with bifunctional crosslinker, e.g. dihalo-alkane
DE10054233A DE10054233A1 (en) 2000-05-19 2000-11-02 Covalently cross-linked composite membranes
PCT/EP2001/005826 WO2002000773A2 (en) 2000-05-19 2001-05-21 Polymers and polymer membranes covalently cross-linked by sulphinate alkylation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012066401A Division JP5937856B2 (en) 2000-05-19 2012-03-22 Covalently crosslinked polymers and polymer membranes via sulfinate alkylation

Publications (2)

Publication Number Publication Date
JP2004502008A true JP2004502008A (en) 2004-01-22
JP2004502008A5 JP2004502008A5 (en) 2008-07-10

Family

ID=26005738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002505894A Pending JP2004502008A (en) 2000-05-19 2001-05-21 Covalently crosslinked polymers and polymer membranes via sulfinate alkylation

Country Status (9)

Country Link
EP (1) EP1290069A2 (en)
JP (1) JP2004502008A (en)
CN (1) CN100354344C (en)
AU (2) AU784360B2 (en)
BR (1) BR0106652A (en)
CA (1) CA2379962C (en)
DE (1) DE10054233A1 (en)
IL (1) IL147726A0 (en)
WO (1) WO2002000773A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501961A (en) * 2001-09-01 2005-01-20 ウニヴェルズィテート ステュットガルト インスティチュート フューア ケミシェ フェアファーレンステヒニク Oligomer and polymer containing sulfinate group and method for producing the same
WO2005090480A1 (en) * 2004-03-23 2005-09-29 Mitsubishi Gas Chemical Co., Inc. Solid polyelectrolyte, solid-polymer gel film, solid polyelectrolyte film, and fuel cell
JP2005534722A (en) * 2002-02-28 2005-11-17 ウニヴェルズィテート シュトゥットガルト Oligomer and polymer containing sulfinate group, and method for producing the same
US7357999B2 (en) 2002-12-12 2008-04-15 Samsung Sdi Co., Ltd. Nanocomposite electrolyte membrane and fuel cell employing the same
JP2014089862A (en) * 2012-10-30 2014-05-15 Institute Of National Colleges Of Technology Japan Electrolyte membrane for fuel cell and fuel cell

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10024575A1 (en) * 2000-11-02 2001-11-22 Univ Stuttgart Covalently crosslinked polymer or membrane, used e.g. in fuel cells, batteries or separation processes, comprises reacting polymers with chlorosulphonyl or sulfinate groups with bifunctional crosslinker, e.g. dihalo-alkane
WO2003050169A2 (en) * 2001-05-21 2003-06-19 Haering Thomas Covalently cross-linked composite membranes
KR100403754B1 (en) * 2001-06-19 2003-10-30 송민규 Composite Polymeric Electrolyte Membrane, Preparation Method Thereof and Fuel Cell Containing the Same
WO2003072641A1 (en) * 2002-02-28 2003-09-04 Universität Stuttgart Oligomers and polymers containing sulfinate groups, and methods for producing the same
DE10391005D2 (en) * 2002-02-28 2005-04-14 Thomas Haering Layer structures and methods for their production
CN108258170B (en) * 2017-12-05 2021-07-16 宜宾天原集团股份有限公司 Preparation method of polyether-ether-ketone-based lithium battery diaphragm
CN109659601B (en) * 2018-12-12 2021-09-28 南京师范大学 Application of polyacid/high-molecular polymer hybrid nanowire material as solid electrolyte
PL3772129T3 (en) 2019-07-31 2021-09-27 Innolith Technology AG So2-based electrolyte for rechargeable battery cell and rechargeable battery cell comprising the same
CN115646223B (en) * 2022-10-19 2023-06-27 安徽省海徽化工有限公司 Pollution-resistant polyethersulfone ultrafiltration membrane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693114A (en) * 1992-06-13 1994-04-05 Hoechst Ag Polyelectrolyte film and its preparation
JPH06196016A (en) * 1992-09-01 1994-07-15 Alcatel Alsthom Co General Electricite Proton-conductive polymer solid electrolyte
DE19622337C1 (en) * 1996-06-04 1998-03-12 Dlr Deutsche Forschungsanstalt Networking of modified engineering thermoplastics
JP2001527505A (en) * 1998-02-03 2001-12-25 エイシーイーピー インコーポレイテッド New substances useful as electrolytic solutes
JP2002522607A (en) * 1998-08-12 2002-07-23 ウニヴェズィテート シュトゥットゥガルト Modification of engineering polymer side chains with basic nitrogen and ion exchange groups
JP2002524631A (en) * 1998-09-11 2002-08-06 ビクトレックス マニュファクチャリング リミテッド Ion exchange polymer
JP2002543244A (en) * 1999-04-30 2002-12-17 トーマス へーリング Stepwise alkylation of polymeric amines
JP2003533560A (en) * 2000-05-19 2003-11-11 ウンベルシテート シュトゥットガルト インスティチュート フュア ヘミシェ フェアファーレンステヒーク Covalent and ionic bond crosslinked polymers and polymer membranes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859264B2 (en) * 1997-12-01 2012-01-25 アセップ・インク Perfluorinated sulfone salts and their use as ionic conducting materials

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693114A (en) * 1992-06-13 1994-04-05 Hoechst Ag Polyelectrolyte film and its preparation
JP2002220458A (en) * 1992-06-13 2002-08-09 Hoechst Ag Polymer electrolyte film
JP2003086023A (en) * 1992-06-13 2003-03-20 Hoechst Ag Macromolecular electrolyte film
JPH06196016A (en) * 1992-09-01 1994-07-15 Alcatel Alsthom Co General Electricite Proton-conductive polymer solid electrolyte
DE19622337C1 (en) * 1996-06-04 1998-03-12 Dlr Deutsche Forschungsanstalt Networking of modified engineering thermoplastics
JP2001527505A (en) * 1998-02-03 2001-12-25 エイシーイーピー インコーポレイテッド New substances useful as electrolytic solutes
JP2002522607A (en) * 1998-08-12 2002-07-23 ウニヴェズィテート シュトゥットゥガルト Modification of engineering polymer side chains with basic nitrogen and ion exchange groups
JP2002524631A (en) * 1998-09-11 2002-08-06 ビクトレックス マニュファクチャリング リミテッド Ion exchange polymer
JP2002543244A (en) * 1999-04-30 2002-12-17 トーマス へーリング Stepwise alkylation of polymeric amines
JP2003533560A (en) * 2000-05-19 2003-11-11 ウンベルシテート シュトゥットガルト インスティチュート フュア ヘミシェ フェアファーレンステヒーク Covalent and ionic bond crosslinked polymers and polymer membranes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501961A (en) * 2001-09-01 2005-01-20 ウニヴェルズィテート ステュットガルト インスティチュート フューア ケミシェ フェアファーレンステヒニク Oligomer and polymer containing sulfinate group and method for producing the same
JP2005534722A (en) * 2002-02-28 2005-11-17 ウニヴェルズィテート シュトゥットガルト Oligomer and polymer containing sulfinate group, and method for producing the same
JP4827044B2 (en) * 2002-02-28 2011-11-30 ウニヴェルズィテート シュトゥットガルト Oligomer and polymer containing sulfinate group, and method for producing the same
US7357999B2 (en) 2002-12-12 2008-04-15 Samsung Sdi Co., Ltd. Nanocomposite electrolyte membrane and fuel cell employing the same
WO2005090480A1 (en) * 2004-03-23 2005-09-29 Mitsubishi Gas Chemical Co., Inc. Solid polyelectrolyte, solid-polymer gel film, solid polyelectrolyte film, and fuel cell
JP2014089862A (en) * 2012-10-30 2014-05-15 Institute Of National Colleges Of Technology Japan Electrolyte membrane for fuel cell and fuel cell

Also Published As

Publication number Publication date
CA2379962A1 (en) 2002-01-03
IL147726A0 (en) 2002-08-14
DE10054233A1 (en) 2002-05-08
WO2002000773A2 (en) 2002-01-03
EP1290069A2 (en) 2003-03-12
WO2002000773A9 (en) 2003-02-13
CN1440438A (en) 2003-09-03
AU784360B2 (en) 2006-03-16
CN100354344C (en) 2007-12-12
WO2002000773A3 (en) 2002-07-18
AU9369501A (en) 2002-01-08
CA2379962C (en) 2016-10-18
AU2006202592A1 (en) 2006-07-13
BR0106652A (en) 2002-04-09

Similar Documents

Publication Publication Date Title
US6982303B2 (en) Covalently cross-linked polymers and polymer membranes via sulfinate alkylation
AU2006202592A1 (en) Polymers and polymer membranes covalently cross-linked by sulphinate alkylation
AU780722B2 (en) Composites and composite membranes
JP3688201B2 (en) Engineering ionomer blends and engineering ionomer blend membranes
JP4435560B2 (en) Ion exchange membrane and method for producing the same
US20150376360A1 (en) Modification of drawn film
JP2005520291A (en) Ion conductive composite membrane material in which optionally modified zirconium phosphate is dispersed in a polymer matrix, method for preparing the membrane material, and use thereof
JP2004530020A5 (en)
JP5937856B2 (en) Covalently crosslinked polymers and polymer membranes via sulfinate alkylation
Kerres et al. Covalently cross-linked ionomer (blend) membranes for fuel cells
DE10295737B4 (en) Covalently cross-linked composite, covalent cross-linked composite membrane, process for their preparation and use of the membranes

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110629

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110706

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110729

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110805

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110826

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122