JP2004364349A - Rotor of rotary machine - Google Patents

Rotor of rotary machine Download PDF

Info

Publication number
JP2004364349A
JP2004364349A JP2003156353A JP2003156353A JP2004364349A JP 2004364349 A JP2004364349 A JP 2004364349A JP 2003156353 A JP2003156353 A JP 2003156353A JP 2003156353 A JP2003156353 A JP 2003156353A JP 2004364349 A JP2004364349 A JP 2004364349A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic plate
plate laminate
permanent magnet
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003156353A
Other languages
Japanese (ja)
Inventor
Toru Kuwabara
徹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2003156353A priority Critical patent/JP2004364349A/en
Publication of JP2004364349A publication Critical patent/JP2004364349A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent coming off of a permanent magnet 10 of a rotor 2 of a rotary machine. <P>SOLUTION: The rotor of a rotary machine comprises a magnetic plate laminate 6 where a magnetic plate 14 on which a plurality of insert holes 18 are formed are laminated, a movement regulating plate 8 which is overlapped on the outside of both end faces, with a plurality of through holes 22 formed, and a permanent magnet 10 inserted into an insert hole 22. The movement regulating plate 8 and the magnetic plate laminate 6 are provided with a plurality of through holes 20. Both outside surfaces of the movement regulating plate 8 and both end faces of the permanent magnet 10 are covered with a layer 12 of meltable nonmagnetic material. The through holes 20 and 22 are filled with the nonmagnetic material so as to be integral with the layers 12. The lateral cross section area of the through holes 22 of the movement regulating plate 8 is smaller than that of the permanent magnet 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発電機又は電動機である回転機のロータ、更に詳しくは、ダイキャストにより一体成形可能である回転機のロータに関する。
【0002】
【従来の技術】
ダイキャストにより一体成形可能である回転機のロータは、本出願人であるいすゞ自動車株式会社によりすでに提案されている。いすゞ自動車株式会社により提案されている上記形態の回転機のロータの一つの典型例は、それぞれ複数の、溶融可能な非磁性材を充填するための充填穴(空洞)及び永久磁石を挿入するための挿入穴(貫通穴)が形成された磁性板を積層してなる磁性板積層体(磁性体)と、該挿入穴の各々内に挿入された永久磁石とを備えている。該充填穴及び該挿入穴の各々は磁性板積層体の軸方向に延在する。磁性板積層体には回転軸が装着されている。磁性板積層体と永久磁石の各々の軸方向両端面は該非磁性材の層により覆われ、該充填穴の各々は該非磁性材により該層の各々と一体となるよう充填されている(特許文献1参照)。
【0003】
例えばアルミニウムから構成することができる非磁性材は、ダイキャストにより、回転軸、磁性板積層体及び永久磁石の各々を、磁性板積層体の半径方向外側面を除き、実質的に一体に鋳込むことができる。上記ダイキャストにおいて、溶融したアルミニウムを鋳型内に流し込んで所定の圧力を付加した際、磁性板積層体の該挿入穴の各々内に挿入された永久磁石の軸方向の一端面と他端面とに作用する圧力の差により、1個以上の永久磁石が該挿入穴から抜け出すおそれがある。
【0004】
【特許文献1】
特開2002−171702号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、ダイキャストによる成形時において、磁性板積層体の挿入穴に挿入された全ての永久磁石の抜け出しを確実に防止することができる、新規な回転機のロータを提供することである。
【0006】
【課題を解決するための手段】
本発明の一局面によれば、永久磁石を挿入するための複数の挿入穴が形成された磁性板を積層してなる磁性板積層体と、磁性板積層体の軸方向一端面の外側に重合して配置されかつ該挿入穴の各々と整合する位置に貫通穴が形成されて永久磁石の移動を規制する少なくとも1個の移動規制板と、磁性板積層体の該挿入穴の各々内に挿入された永久磁石とを備え、移動規制板及び磁性板積層体には、移動規制板の軸方向外側面と磁性板積層体の軸方向他端面との間を延在する複数の空間部が形成され、移動規制板の軸方向外側面と磁性板積層体の軸方向他端面及び永久磁石の各々の軸方向両端面は溶融可能な非磁性材の層により覆われ、該空間部及び該貫通穴の各々は該非磁性材により該層の各々と一体となるよう充填され、移動規制板の貫通穴の各々の横断面積は、該貫通穴の各々に隣接する、永久磁石の軸方向一端面の横断面積よりも小さく形成される、
ことを特徴とする回転機のロータ、が提供される。
本発明の他の局面によれば、永久磁石を挿入するための複数の挿入穴が形成された磁性板を積層してなる磁性板積層体と、磁性板積層体の軸方向両端面の外側に重合して配置されかつ該挿入穴の各々と整合する位置に貫通穴が形成されて永久磁石の移動を規制する少なくとも1個の移動規制板と、磁性板積層体の該挿入穴の各々内に挿入された永久磁石とを備え、移動規制板及び磁性板積層体には、磁性板積層体を通って移動規制板の軸方向両外側面間を延在する複数の空間部が形成され、移動規制板の軸方向両外側面及び永久磁石の各々の軸方向両端面は溶融可能な非磁性材の層により覆われ、該空間部及び該貫通穴の各々は該非磁性材により該層の各々と一体となるよう充填され、移動規制板の貫通穴の各々の横断面積は、該貫通穴の各々に隣接する、永久磁石の軸方向両端面の横断面積よりもそれぞれ小さく形成される、
ことを特徴とする回転機のロータ、が提供される。
永久磁石の各々は、磁性板積層体の該挿入穴内に隙間をおいて挿入され、永久磁石の各々と該挿入穴との間の隙間の少なくとも一部領域には該非磁性材が充填される、ことが好ましい。
【0007】
【発明の実施の形態】
以下、本発明に従って構成された回転機のロータの好適な実施の形態を、添付図面を参照して詳細に説明する。
【0008】
図1〜図6を参照して、発電機又は電動機である回転機に適用されるロータ2は、軸手段を構成する回転軸4が装着された磁性板積層体6と、磁性板積層体の軸方向の一端又は両端、実施形態においては両端の外側に重合して配置されて永久磁石の軸方向の移動を規制する、それぞれ少なくとも1個の移動規制板、実施形態においてはそれぞれ1個の移動規制板8と、複数個(偶数個)の、実施形態においては6個の永久磁石10と、溶融可能な非磁性材からなる層12とを備えている。
【0009】
磁性板積層体6は、相互に実質上同一の構成を有する複数の磁性板14を積層することにより構成されている。磁性板14の各々は、電磁鋼板、例えば珪素鋼板から形成される。複数の磁性板を積層することにより構成される磁性板積層体6は、円形の外周面と、磁性板積層体6の軸線に直交する平坦面からなる両端面とを有している。磁性板積層体6の軸心部には取付穴16が形成され、取付穴16には回転軸4が嵌合され、相対回転できないように一体的に装着されている。磁性板積層体6には、永久磁石10を挿入するための、複数個(偶数個)の、実施形態においては6個の挿入穴18が、相互に周方向に間隔をおいて軸方向に延在するよう形成されている。相互に実質上同じ形状及び大きさを有する挿入穴18の各々は、比較的細長い矩形状の横断面を有し、磁性板積層体6を軸方向に見て、それぞれ接線方向に直線状に延在して、全体として正6角形の辺の一部をなすような形態で配列されている。磁性板積層体6における挿入穴18の各々間には、それぞれ空間部、実施形態においては貫通穴20が形成されている。貫通穴20の各々は、磁性板積層体6の軸方向一端面と他端面との間を軸方向に延在して貫通するよう形成されている。
【0010】
磁性板積層体6の挿入穴18の各々内には、例えばNd−Fe−B系の永久磁石10が挿入されている。相互に実質上同じ形状及び大きさを有する永久磁石10の各々は、比較的細長い矩形状の横断面を有しており、全体としては細長い直方体形状に形成されている。永久磁石10の各々の横断面は一端から他端まで実質的に一定である。永久磁石10の各々は、対応する挿入穴18内に挿入されている。実施形態において、永久磁石10の各々は、対応する挿入穴18内に隙間をおいて挿入されている(後述するダイキャスト前の組み付け段階の状態)。永久磁石10の各々の全長(磁性板積層体6の軸方向における全長)は、磁性板積層体6の軸方向長さ、すなわち磁性板積層体6の両端面間の距離と実質上同じに形成されている。永久磁石10の各々の磁極面は、永久磁石10の各々における各面のうち、最大の面積を有する表面及び裏面に形成されている。そして永久磁石10の各々は、各々の磁極面が実質上半径方向に向けられて、対応する挿入穴18に挿入される。永久磁石8の各々が、対応する挿入穴18に挿入された状態で、周方向に隣接する永久磁石10の各々間における半径方向外側の磁極同士は互いに異極をなし、したがって半径方向内側の磁極同士も互いに異極をなすよう配置される。
【0011】
磁性板積層体6の軸方向両端面の外側に重合して配置される移動規制板8の各々は、相互に実質的に同じ形状及び大きさを有すると共に磁性板積層体6を構成する磁性板14と同じ材料から形成されている。移動規制板8の各々には複数個の空間部である貫通穴20と、複数個の貫通穴22が形成されている。貫通穴20の各々は磁性板積層体6の貫通穴20の各々と整合する位置に形成され、また貫通穴22の各々は磁性板積層体6の挿入穴18の各々と整合する位置に形成されている。移動規制板8の各々は、磁性板積層体6を構成する磁性板14に対し、貫通穴22の各々の形状が挿入穴18の各々の形状と相違する以外は、実質的に同じ形状及び大きさを有しているので、同一部分は同一符号を付し、説明は省略する。移動規制板8の各々が、磁性板積層体6の軸方向両端面の外側に重合して配置された状態で、空間部である貫通穴20の各々は、磁性板積層体6を通って移動規制板8の軸方向両外側面間を延在する。回転軸4は、磁性板積層体6の軸方向両端面の軸方向外側に重合して配置された移動規制板8の各々の取付穴16を貫通して移動規制板8の各々の軸方向外側に延び出している。
【0012】
磁性板積層体6の軸方向一端面の外側に重合して配置された移動規制板8の貫通穴22の各々の横断面積は、該貫通穴22の各々に隣接する、永久磁石10の軸方向一端面の横断面積よりも小さく形成され、磁性板積層体6の軸方向他端面の外側に重合して配置された移動規制板8の貫通穴22の各々の横断面積は、該貫通穴22の各々に隣接する、永久磁石10の軸方向他端面の横断面積よりも小さく形成されている。更に具体的に説明すると、実施形態において、移動規制板8の各々の貫通穴22の周縁部であって、半径方向に相互に対向する周縁部の、実質的に周方向における中央部には、該周縁部の各々から相互に接近する方向に延び出す突出片22aが形成されている。移動規制板8の各々の貫通穴22の周縁部は、突出片22aの各々が存在しない状態で、磁性板積層体6の挿入穴18の各々の周縁部とほぼ同じ大きさであり、突出片22aの各々の存在により、貫通穴22の各々の横断面積は、貫通穴22の各々に隣接する、永久磁石10の軸方向一端面及び他端面の横断面積よりもそれぞれ小さくなる。なお、永久磁石10の軸方向一端面及び他端面は、それぞれ対応する移動規制板8の貫通穴22の突出片22aの各々に対向して位置付けられる。
【0013】
移動規制板8の各々の外側面及び永久磁石10の各々の軸方向両端面は溶融可能な非磁性材からなる層12により実質的に覆われ、貫通穴20及び22の各々は非磁性材により該層12の各々と一体となるよう充填されている。非磁性材からなる層12の各々は、相互に実質的に等しい軸方向厚さと、磁性板積層体6及び移動規制板8の各々の外周面と実質的に同じ外周面とを備えている。非磁性材としては、アルミニウム、アルミニウム合金あるいは亜鉛合金等を挙げることができる。非磁性材は、それ自体は周知のダイキャストにより、回転軸4、磁性板積層体6、移動規制板8及び永久磁石10の各々を、磁性板積層体6及び移動規制板8の各々の外周面を除き、実質上一体に鋳込むことができる。
【0014】
上記ダイキャストにおいて、溶融したアルミニウムを鋳型内に流し込んで所定の圧力を付加した際、磁性板積層体6の挿入穴18の各々内に挿入された永久磁石10の軸方向の一端面と他端面とに作用する圧力の差(圧力が均一に作用する前の段階で発生する圧力の差)により、1個以上の永久磁石10が挿入穴18から抜け出そうとする軸方向の力を受ける。しかしながら、本発明においては、上記したように、移動規制板8の各々の貫通穴22の周縁部に一対の突出片22aを形成することにより、貫通穴22の各々の横断面積が、貫通穴22の各々に隣接する、永久磁石10の軸方向一端面及び他端面の横断面積よりもそれぞれ小さくせしめられているので、永久磁石10の軸方向の一端面と他端面との間に上記圧力差が生じて永久磁石10が軸方向の一方又は他方に移動させられようとしても、永久磁石10の軸方向一端面又は他端面が、対応する貫通穴22の一対の突出片22aに当接して該移動は確実に阻止される。すなわち、本発明によれば、ダイキャストによる成形時において、磁性板積層体6の挿入穴18に挿入された全ての永久磁石10の抜け出しを確実に防止することができるのである。
【0015】
ダイキャストによる成形時において、永久磁石10の各々と挿入穴18との間の隙間の少なくとも一部領域には非磁性材が押し湯の圧力により充填されるので、冷却後においては、永久磁石10の各々は挿入穴18内に非磁性材を介してしっかりと固着される。その結果、ロータ2の輸送時あるいは運転時において、永久磁石10の各々の振動が確実に防止され、性能が損なわれることはない。
【0016】
上記実施形態において、移動規制板8の貫通穴22の各々の横断面積を、該貫通穴22の各々に隣接する、永久磁石10の端面の横断面積よりも小さく形成する手段として、貫通穴22の周縁部であって、半径方向に相互に対向する周縁部の、実質的に周方向における中央部に、該周縁部の各々から相互に接近する方向に延び出す突出片22aを形成しているが、永久磁石10の該移動を阻止できるのであれば、1個の貫通穴22について1個の突出片22aを形成する実施形態もありうる。また、突出片22aの形成位置も上記実施形態に限定されるものではなく、貫通穴22の周縁部の適宜の位置を選定することができる。例えば図7に示されているように、突出片22aを、貫通穴22の周縁部であって、半径方向に相互に対向する周縁部の、周方向における中央に対し、周方向の対称位置における該周縁部の各々から相互に接近する方向に延び出すよう形成してもよい。上記実施形態において、突出片22aの各々の形状は矩形状であるが、永久磁石10の該移動を阻止できる形状であればいずれでもよい。また、移動規制板8の貫通穴22の各々の横断面積を、該貫通穴22の各々に隣接する、永久磁石10の端面の横断面積よりも小さく形成する手段として、貫通穴22の周縁部に突出片22aを形成しないで、図8に示されているように、貫通穴22全体の大きさ(横断面積)を永久磁石10の端面の横断面積よりも小さく形成してもよい。
【0017】
上記実施形態において、磁性板積層体6の貫通穴20の各々は、挿入穴18に対し独立して形成されているが、貫通穴20の各々が周方向に隣接する挿入穴18と連通するよう形成されたものであってもよい。移動規制板8の貫通穴20の各々もこれに整合するように形成される(図9及び図10参照)。
【0018】
図11〜図13には、本発明による回転機のロータ2の他の実施形態が示されている。この実施形態において、永久磁石30の各々を挿入するための、磁性板積層体6の挿入穴32は、周方向に間隔をおいて半径方向に延在するよう形成されている。磁性板積層体6の空間部は、軸心まわりの領域に形成された1個の貫通穴34と、周方向に間隔をおいて周縁部に形成された溝部36とからなる。溝部36の各々と貫通穴34とは、挿入穴32の各々を介してそれぞれ連通されている。磁性板積層体6の軸方向両端面に重合された移動規制板8の貫通穴38には、図1〜図6を参照して説明した先の実施形態におけるのと同様に、突出片38aが形成されている。移動規制板8の各々は、磁性板積層体6を構成する磁性板14に対し、貫通穴38の各々の形状が挿入穴32の各々の形状と相違する以外は、実質的に同じ形状及び大きさを有しているので、同一部分は同一符号を付し、説明は省略する。
【0019】
ロータ2の中間品の段階で磁性板積層体6の外周面の直径は、2点鎖線で示すように完成品の直径よりも大きく形成されており、該中間品の外周面を切削することにより図示の完成品の外周面が形成される。したがって、中間品の段階では、溝部36の各々の半径方向外端部は円弧状のブリッジ部により連結されているので、溝部36の各々は貫通穴を構成している。1個の貫通穴34内には、軸手段であるスリーブ40と、スリーブ40と一体回転しうるようスリーブ40に嵌合された回転軸4とが、半径方向に隙間をおいて同心に配置される。
【0020】
移動規制板8の各々の軸方向外側面及び永久磁石30の各々の軸方向両端面は溶融可能な非磁性材からなる層12により実質的に覆われ、貫通穴34及び溝部36の各々は非磁性材により該層12の各々と一体となるよう充填されている。非磁性材は、それ自体は周知のダイキャストにより、回転軸4、スリーブ40、磁性板積層体6、移動規制板8及び永久磁石30の各々を、磁性板積層体6及び移動規制板8の各々の外周面を除き、実質上一体に鋳込むことができる。軸手段であるスリーブ40及び回転軸4は、貫通穴34に充填された非磁性材により、磁性板積層体6及び移動規制板8の各々の中心領域に一体に鋳込まれる。なお、永久磁石30の各々の磁極面は周方向の両側面に形成される。永久磁石30の各々において、周方向に相互に対向する磁極同士は互いに同極をなすよう規定される。この実施形態においても、先の実施形態におけるのと実質的に同じ特徴ある構成を備えているので、改めて説明するまでもなく、ダイキャストによる成形時において、磁性板積層体6の挿入穴30に挿入された全ての永久磁石30の抜け出しを確実に防止することができる。
【0021】
本発明の上記実施形態において、磁性板積層体6の軸方向の両端の外側に、それぞれ1個の移動規制板8が重合するよう配置されているが、その数は限定されるものではない。また、ダイキャストにおける押し湯の方向に起因して、永久磁石10又は30の各々の両端面に作用する圧力が均一に作用する前の段階において、一端面に作用する圧力が他端面に作用する圧力よりも高いことが確実な場合には、永久磁石10又は30の各々が抜け出そうとする側の、磁性板積層体6の軸方向の一端の外側に、少なくとも1個の移動規制板8を重合して配置する実施形態もある。この実施形態の場合、移動規制板8が、磁性板積層体6の軸方向の一端の外側に重合された状態において、移動規制板8及び磁性板積層体6の空間部である貫通穴20の各々、又は貫通穴34及び溝部36の各々は、移動規制板8の軸方向外側面と磁性板積層体6の軸方向他端面との間を延在する。なお、移動規制板8は、磁性板積層体6を構成する磁性板14と同じ磁性材料で形成されているが、これに代えて、他の磁性材料からなる磁性板、又は非磁性板(例えば非磁性であるステンレス鋼板)を使用する実施形態もある。上記永久磁石10又は30の各々は、一般的に、磁性板積層体6の挿入穴18内に着磁前に挿入され、ダイキャストにより鋳込まれた後に着磁される。
【0022】
本発明が適用される回転機のロータ2の形態は上記実施形態に限定されるものではなく、ダイキャストによる成形が可能であり、しかも、ダイキャストによる成形時に磁性板積層体6の挿入穴18又は32内に挿入された永久磁石10又は30に対し軸方向の圧力が作用する形態の回転機のロータであれば、どのような形態のものに対しても適用可能であることはいうまでもない。
【0023】
【発明の効果】
本発明による回転機のロータによれば、ダイキャストによる成形時において、磁性板積層体の挿入穴に挿入された全ての永久磁石の抜け出しを確実に防止することができる。
【図面の簡単な説明】
【図1】本発明に従って構成された回転機のロータの実施形態を半径方向外側から見た図。
【図2】図1に示されるロータを、非磁性材の層と移動規制板との境界を横断面にして示す斜視図。
【図3】図2に示すロータを軸線に沿ったA方向に見た図。
【図4】図3のB部拡大図。
【図5】図4のC−C矢視断面図。
【図6】図5のD−D矢視断面図。
【図7】移動規制板の他の実施形態を示す図であって、図4に相当する図。
【図8】移動規制板の更に他の実施形態を示す図であって、図4に相当する図。
【図9】本発明に従って構成された回転機のロータの更に他の実施形態を示す図であって、移動規制板と磁性板積層体における磁性板との境界において磁性板を軸方向に見た横断面図。
【図10】図9に示す回転機のロータの、非磁性材の層と移動規制板との境界において移動規制板を軸方向に見た横断面図。
【図11】本発明に従って構成された回転機のロータの更に他の実施形態を半径方向外側から見た図。
【図12】図11のE−E矢視断面図(図11に示す回転機のロータの、移動規制板と磁性板積層体における磁性板との境界において磁性板を軸方向に見た横断面図)。
【図13】図11のF−F矢視断面図(図11に示す回転機のロータの、非磁性材の層と移動規制板との境界において移動規制板を軸方向に見た横断面図)。
【符号の説明】
2 回転機のロータ
4 回転軸
6 磁性板積層体
8 磁性板
10 永久磁石
12 非磁性材の層
14 磁性板
16 取付穴
18 挿入穴
20 貫通穴(空間部)
22 貫通穴
22a 突出片
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotor of a rotating machine that is a generator or an electric motor, and more particularly, to a rotor of a rotating machine that can be integrally formed by die casting.
[0002]
[Prior art]
A rotary machine rotor that can be integrally formed by die casting has already been proposed by the present applicant, Isuzu Motors Limited. One typical example of the rotor of the rotary machine of the above type proposed by Isuzu Motor Co., Ltd. is to insert a plurality of filling holes (cavities) for filling a non-magnetic material capable of melting and a permanent magnet. A magnetic plate laminated body (magnetic material) formed by laminating magnetic plates having the insertion holes (through holes) formed therein, and permanent magnets inserted into each of the insertion holes. Each of the filling hole and the insertion hole extends in the axial direction of the magnetic plate laminate. A rotating shaft is mounted on the magnetic plate laminate. Both end faces in the axial direction of the magnetic plate laminate and the permanent magnet are covered with a layer of the non-magnetic material, and each of the filling holes is filled with the non-magnetic material so as to be integrated with each of the layers. 1).
[0003]
For example, the non-magnetic material, which can be made of aluminum, is substantially integrally cast by die casting, except for the rotating shaft, the magnetic plate laminate, and the permanent magnet, except for the radially outer surface of the magnetic plate laminate. be able to. In the die-casting, when a predetermined pressure is applied by pouring molten aluminum into a mold, the permanent magnet inserted into each of the insertion holes of the magnetic plate laminate has one end face and the other end face in the axial direction. One or more permanent magnets may fall out of the insertion hole due to the difference in acting pressure.
[0004]
[Patent Document 1]
JP-A-2002-171702
[Problems to be solved by the invention]
An object of the present invention is to provide a novel rotary machine rotor that can surely prevent all permanent magnets inserted into the insertion holes of the magnetic plate laminate during molding by die casting. is there.
[0006]
[Means for Solving the Problems]
According to one aspect of the present invention, a magnetic plate laminate formed by laminating a magnetic plate having a plurality of insertion holes for inserting permanent magnets, and a magnetic plate laminated on one side in the axial direction of the magnetic plate laminate. At least one movement restricting plate having a through hole formed at a position aligned with each of the insertion holes to restrict the movement of the permanent magnet, and inserted into each of the insertion holes of the magnetic plate laminate. And a plurality of spaces extending between the axially outer surface of the movement restricting plate and the other axial end surface of the magnetic plate laminate are formed in the movement restricting plate and the magnetic plate laminate. The axially outer surface of the movement restricting plate, the other axial end surface of the magnetic plate laminate, and the axial both end surfaces of each of the permanent magnets are covered with a fusible nonmagnetic material layer, and the space and the through-hole are covered. Are filled with the non-magnetic material so as to be integral with each of the layers, and the Each cross-sectional area of the adjacent each of the through holes is smaller than the cross-sectional area of the axial end face of the permanent magnet,
A rotor of a rotating machine is provided.
According to another aspect of the present invention, a magnetic plate laminate formed by laminating magnetic plates formed with a plurality of insertion holes for inserting permanent magnets, and a magnetic plate laminate outside of both axial end surfaces of the magnetic plate laminate. A through hole is formed at a position aligned with each of the insertion holes, and at least one movement restricting plate for restricting the movement of the permanent magnet is provided in each of the insertion holes of the magnetic plate laminate. A plurality of spaces are formed in the movement restricting plate and the magnetic plate laminate so as to extend between the axially outer surfaces of the movement restricting plate through the magnetic plate laminate. Both the axial outer side surfaces of the regulating plate and the axial end surfaces of each of the permanent magnets are covered with a layer of a non-magnetic material that can be melted, and each of the space and the through hole is connected to each of the layers by the non-magnetic material. The cross-sectional area of each of the through holes of the movement restriction plate is filled so as to be integral with each of the through holes. Adjacent, are respectively smaller than the cross-sectional area of the axial end surfaces of the permanent magnets,
A rotor of a rotating machine is provided.
Each of the permanent magnets is inserted with a gap into the insertion hole of the magnetic plate laminate, and at least a part of the gap between each of the permanent magnets and the insertion hole is filled with the non-magnetic material. Is preferred.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a rotor of a rotating machine configured according to the present invention will be described in detail with reference to the accompanying drawings.
[0008]
Referring to FIGS. 1 to 6, a rotor 2 applied to a rotating machine that is a generator or an electric motor includes a magnetic plate laminate 6 on which a rotating shaft 4 constituting shaft means is mounted, and a magnetic plate laminate At least one movement restricting plate, which is arranged at one end or both ends in the axial direction and overlaps the outside of both ends in the embodiment to restrict the movement of the permanent magnet in the axial direction. It comprises a regulating plate 8, a plurality (even number), in this embodiment, six permanent magnets 10, and a layer 12 made of a non-magnetic material that can be melted.
[0009]
The magnetic plate laminate 6 is formed by laminating a plurality of magnetic plates 14 having substantially the same configuration. Each of the magnetic plates 14 is formed from an electromagnetic steel plate, for example, a silicon steel plate. The magnetic plate laminate 6 configured by laminating a plurality of magnetic plates has a circular outer peripheral surface and both end surfaces formed of flat surfaces orthogonal to the axis of the magnetic plate laminate 6. A mounting hole 16 is formed in the axial center portion of the magnetic plate laminate 6, and the rotating shaft 4 is fitted in the mounting hole 16, and is integrally mounted so as not to rotate relative to each other. In the magnetic plate laminate 6, a plurality of (even number), in this embodiment, six insertion holes 18 for inserting the permanent magnets 10 are axially extended at intervals from each other in the circumferential direction. It is formed to exist. Each of the insertion holes 18 having substantially the same shape and size as each other has a relatively elongated rectangular cross-section, and extends linearly in a tangential direction when the magnetic plate laminate 6 is viewed in the axial direction. Therefore, they are arranged in such a manner that they form part of the sides of a regular hexagon as a whole. Between each of the insertion holes 18 in the magnetic plate laminate 6, a space portion, in the embodiment, a through hole 20 is formed. Each of the through holes 20 is formed so as to extend in the axial direction between the one end face and the other end face in the axial direction of the magnetic plate laminate 6 and pass therethrough.
[0010]
In each of the insertion holes 18 of the magnetic plate laminate 6, for example, an Nd—Fe—B-based permanent magnet 10 is inserted. Each of the permanent magnets 10 having substantially the same shape and size as each other has a relatively elongated rectangular cross section, and is formed in an elongated rectangular parallelepiped shape as a whole. The cross section of each of the permanent magnets 10 is substantially constant from one end to the other. Each of the permanent magnets 10 is inserted into a corresponding insertion hole 18. In the embodiment, each of the permanent magnets 10 is inserted into the corresponding insertion hole 18 with a gap therebetween (state of an assembling step before die casting described later). The total length of each of the permanent magnets 10 (the total length in the axial direction of the magnetic plate laminate 6) is substantially the same as the axial length of the magnetic plate laminate 6, that is, the distance between both end faces of the magnetic plate laminate 6. Have been. Each magnetic pole surface of the permanent magnet 10 is formed on the front surface and the back surface having the largest area among the respective surfaces of the permanent magnet 10. Each of the permanent magnets 10 is then inserted into a corresponding insertion hole 18 with each pole face oriented substantially radially. When each of the permanent magnets 8 is inserted into the corresponding insertion hole 18, the radially outer magnetic poles between the circumferentially adjacent permanent magnets 10 are different from each other, and thus the radially inner magnetic poles are different from each other. They are also arranged to have different polarities.
[0011]
Each of the movement restricting plates 8 superposed on the outer side of both axial end surfaces of the magnetic plate laminate 6 has substantially the same shape and size as each other, and the magnetic plates constituting the magnetic plate laminate 6. 14 is formed from the same material. Each of the movement restricting plates 8 is formed with a plurality of through-holes 20 as spaces and a plurality of through-holes 22. Each of the through holes 20 is formed at a position matching with each of the through holes 20 of the magnetic plate laminate 6, and each of the through holes 22 is formed at a position matching with each of the insertion holes 18 of the magnetic plate laminate 6. ing. Each of the movement restricting plates 8 has substantially the same shape and size as the magnetic plate 14 constituting the magnetic plate laminate 6 except that the shape of each of the through holes 22 is different from the shape of each of the insertion holes 18. Therefore, the same portions are denoted by the same reference numerals and description thereof will be omitted. In a state in which each of the movement restricting plates 8 is arranged so as to be overlapped on the outer sides of both ends in the axial direction of the magnetic plate laminate 6, each of the through holes 20 as the space moves through the magnetic plate laminate 6. The regulating plate 8 extends between both axially outer surfaces. The rotation shaft 4 penetrates through each mounting hole 16 of the movement restricting plate 8 disposed on the axially outer side of both end surfaces in the axial direction of the magnetic plate laminate 6, and extends outside each of the movement restricting plates 8 in the axial direction. It extends to.
[0012]
The cross-sectional area of each of the through holes 22 of the movement restricting plate 8 that is arranged so as to overlap the outer side of one end in the axial direction of the magnetic plate laminate 6 is equal to the axial direction of the permanent magnet 10 adjacent to each of the through holes 22. The cross-sectional area of each of the through holes 22 of the movement restricting plate 8 formed to be smaller than the cross-sectional area of one end face and arranged outside the other end face in the axial direction of the magnetic plate laminate 6 is equal to that of the through-hole 22. It is formed smaller than the cross-sectional area of the other end face in the axial direction of the permanent magnet 10 adjacent to each. More specifically, in the embodiment, in the peripheral portion of each through hole 22 of the movement restricting plate 8, the peripheral portions facing each other in the radial direction, substantially at the central portion in the peripheral direction, A protruding piece 22a is formed extending from each of the peripheral edges in a direction approaching each other. The peripheral edge of each through hole 22 of the movement restricting plate 8 is substantially the same size as each peripheral edge of the insertion hole 18 of the magnetic plate laminate 6 in a state where each of the projecting pieces 22a does not exist. Due to the presence of each of the holes 22a, the cross-sectional area of each of the through holes 22 is smaller than the cross-sectional area of the one end face and the other end face in the axial direction of the permanent magnet 10 adjacent to each of the through holes 22. The one end surface and the other end surface in the axial direction of the permanent magnet 10 are positioned so as to face each of the protruding pieces 22 a of the through hole 22 of the corresponding movement restricting plate 8.
[0013]
The outer surface of each of the movement restricting plates 8 and both end surfaces in the axial direction of each of the permanent magnets 10 are substantially covered with a layer 12 of a non-magnetic material that can be melted, and each of the through holes 20 and 22 is made of a non-magnetic material. It is filled so as to be integral with each of the layers 12. Each of the layers 12 made of the nonmagnetic material has an axial thickness substantially equal to each other, and an outer peripheral surface substantially the same as the outer peripheral surfaces of the magnetic plate laminate 6 and the movement restricting plate 8. Examples of the nonmagnetic material include aluminum, an aluminum alloy, and a zinc alloy. The non-magnetic material is formed by a known die-casting method, and the rotating shaft 4, the magnetic plate laminate 6, the movement restricting plate 8 and the permanent magnet 10 are formed on the outer periphery of each of the magnetic plate laminate 6 and the movement restricting plate 8. Except for the surface, it can be substantially integrally cast.
[0014]
In the above die casting, when the molten aluminum is poured into the mold and a predetermined pressure is applied, one end face and the other end face of the permanent magnet 10 inserted into each of the insertion holes 18 of the magnetic plate laminate 6 in the axial direction. The one or more permanent magnets 10 receive an axial force that tries to escape from the insertion hole 18 due to the pressure difference acting on the permanent magnet 10 (the pressure difference generated at a stage before the pressure uniformly acts). However, in the present invention, as described above, by forming a pair of protruding pieces 22a on the periphery of each through hole 22 of the movement restricting plate 8, the cross-sectional area of each of the through holes 22 is reduced. Are smaller than the cross-sectional areas of the one end face and the other end face in the axial direction of the permanent magnet 10 adjacent to each other, so that the pressure difference between the one end face and the other end face in the axial direction of the permanent magnet 10 is reduced. Even when the permanent magnet 10 is caused to move in one or the other direction in the axial direction, one end surface or the other end surface in the axial direction of the permanent magnet 10 comes into contact with a pair of protruding pieces 22 a of the corresponding through hole 22, and the movement is caused. Is reliably prevented. That is, according to the present invention, it is possible to reliably prevent all the permanent magnets 10 inserted into the insertion holes 18 of the magnetic plate laminate 6 from coming off during molding by die casting.
[0015]
At the time of molding by die-casting, at least a part of the gap between each of the permanent magnets 10 and the insertion hole 18 is filled with a non-magnetic material by the pressure of the hot water. Are firmly fixed in the insertion holes 18 via a non-magnetic material. As a result, when the rotor 2 is transported or operated, the vibration of each of the permanent magnets 10 is reliably prevented, and the performance is not impaired.
[0016]
In the above embodiment, as means for forming the cross-sectional area of each of the through holes 22 of the movement restricting plate 8 smaller than the cross-sectional area of the end face of the permanent magnet 10 adjacent to each of the through holes 22, A protruding piece 22a extending from each of the peripheral edges in a direction approaching to each other is formed at a substantially peripheral central portion of the peripheral edges which are radially opposed to each other. If the movement of the permanent magnet 10 can be prevented, there may be an embodiment in which one projecting piece 22a is formed for one through hole 22. Further, the formation position of the protruding piece 22a is not limited to the above embodiment, and an appropriate position of the peripheral portion of the through hole 22 can be selected. For example, as shown in FIG. 7, the projecting piece 22 a is positioned at a circumferentially symmetrical position with respect to a circumferential center of circumferential edges of the through-hole 22 and facing each other in the radial direction. It may be formed so as to extend from each of the peripheral portions in a direction approaching each other. In the above embodiment, the shape of each protruding piece 22a is rectangular, but any shape may be used as long as the movement of the permanent magnet 10 can be prevented. As means for forming the cross-sectional area of each of the through holes 22 of the movement regulating plate 8 smaller than the cross-sectional area of the end face of the permanent magnet 10 adjacent to each of the through holes 22, Instead of forming the protruding piece 22a, the size (cross-sectional area) of the entire through hole 22 may be formed smaller than the cross-sectional area of the end face of the permanent magnet 10, as shown in FIG.
[0017]
In the above embodiment, each of the through holes 20 of the magnetic plate laminate 6 is formed independently of the insertion hole 18, but each of the through holes 20 communicates with the insertion hole 18 adjacent in the circumferential direction. It may be formed. Each of the through holes 20 of the movement restricting plate 8 is also formed so as to match this (see FIGS. 9 and 10).
[0018]
11 to 13 show another embodiment of the rotor 2 of the rotating machine according to the present invention. In this embodiment, the insertion holes 32 of the magnetic plate laminate 6 for inserting each of the permanent magnets 30 are formed so as to extend in the radial direction at intervals in the circumferential direction. The space portion of the magnetic plate laminate 6 includes one through hole 34 formed in a region around the axis and a groove portion 36 formed in the peripheral portion at intervals in the circumferential direction. Each of the groove portions 36 and the through hole 34 communicate with each other via each of the insertion holes 32. As in the previous embodiment described with reference to FIGS. 1 to 6, a projecting piece 38 a is formed in the through hole 38 of the movement restricting plate 8, which is superposed on both end surfaces in the axial direction of the magnetic plate laminate 6. Is formed. Each of the movement restricting plates 8 has substantially the same shape and size as the magnetic plate 14 constituting the magnetic plate laminate 6 except that the shape of each through hole 38 is different from the shape of each of the insertion holes 32. Therefore, the same portions are denoted by the same reference numerals and description thereof will be omitted.
[0019]
At the stage of the intermediate product of the rotor 2, the diameter of the outer peripheral surface of the magnetic plate laminate 6 is formed to be larger than the diameter of the finished product as shown by a two-dot chain line, and by cutting the outer peripheral surface of the intermediate product The outer peripheral surface of the illustrated finished product is formed. Therefore, at the stage of the intermediate product, the respective radially outer ends of the grooves 36 are connected by the arc-shaped bridges, so that each of the grooves 36 constitutes a through hole. In one through hole 34, a sleeve 40 as a shaft means and a rotating shaft 4 fitted to the sleeve 40 so as to be able to rotate integrally with the sleeve 40 are arranged concentrically with a gap in the radial direction. You.
[0020]
The axially outer surface of each of the movement restricting plates 8 and the axially opposite end surfaces of each of the permanent magnets 30 are substantially covered with the layer 12 made of a non-magnetic material that can be melted, and each of the through-holes 34 and the groove portions 36 is non-magnetic. It is filled with a magnetic material so as to be integrated with each of the layers 12. The non-magnetic material is formed by die casting, which is known per se, by rotating the rotating shaft 4, the sleeve 40, the magnetic plate laminate 6, the movement restricting plate 8 and the permanent magnet 30 to the magnetic plate laminate 6 and the movement restricting plate 8, respectively. Except for each outer peripheral surface, it can be cast substantially integrally. The sleeve 40 and the rotating shaft 4, which are shaft means, are integrally cast in the central regions of the magnetic plate laminate 6 and the movement restricting plate 8 by a nonmagnetic material filled in the through hole 34. The magnetic pole surfaces of the permanent magnet 30 are formed on both sides in the circumferential direction. In each of the permanent magnets 30, the magnetic poles that face each other in the circumferential direction are defined to be the same. This embodiment also has substantially the same characteristic configuration as that of the previous embodiment, so it is needless to explain again, and it is necessary to insert into the insertion hole 30 of the magnetic plate laminate 6 at the time of molding by die casting. It is possible to reliably prevent all of the inserted permanent magnets 30 from coming off.
[0021]
In the above embodiment of the present invention, one movement regulating plate 8 is arranged outside each of both ends in the axial direction of the magnetic plate laminated body 6, but the number is not limited. Also, due to the direction of the riser in the die casting, the pressure acting on one end face acts on the other end face before the pressure acting on both end faces of each of the permanent magnets 10 or 30 acts uniformly. If it is certain that the pressure is higher than the pressure, at least one movement restricting plate 8 is provided outside the one end in the axial direction of the magnetic plate laminate 6 on the side from which each of the permanent magnets 10 or 30 is to escape. In some embodiments, they are arranged in a superposed manner. In the case of this embodiment, in a state where the movement restricting plate 8 is overlapped on the outside of one end in the axial direction of the magnetic plate laminated body 6, the through hole 20 which is a space between the movement restricting plate 8 and the magnetic plate laminated body 6 is formed. Each or each of the through hole 34 and the groove 36 extends between the axially outer surface of the movement restricting plate 8 and the other axial end surface of the magnetic plate laminate 6. The movement restricting plate 8 is formed of the same magnetic material as the magnetic plate 14 constituting the magnetic plate laminate 6, but instead of this, a magnetic plate made of another magnetic material or a non-magnetic plate (for example, In some embodiments, a non-magnetic stainless steel plate is used. Each of the permanent magnets 10 or 30 is generally inserted into the insertion hole 18 of the magnetic plate laminate 6 before magnetization, and is magnetized after being cast by die casting.
[0022]
The form of the rotor 2 of the rotating machine to which the present invention is applied is not limited to the above embodiment, but can be formed by die-casting. It is needless to say that the present invention can be applied to any type of rotor of a rotating machine in which axial pressure acts on the permanent magnet 10 or 30 inserted in the rotor 32. Absent.
[0023]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the rotor of the rotating machine by this invention, at the time of shaping | molding by die-casting, it can prevent reliably that all the permanent magnets inserted in the insertion hole of the magnetic plate laminated body come out.
[Brief description of the drawings]
FIG. 1 is a diagram of an embodiment of a rotor of a rotating machine configured according to the present invention as viewed from a radially outer side.
FIG. 2 is a perspective view showing a cross section of a boundary between a nonmagnetic material layer and a movement regulating plate in the rotor shown in FIG. 1;
FIG. 3 is a view of the rotor shown in FIG. 2 as viewed in a direction A along an axis.
FIG. 4 is an enlarged view of a portion B in FIG. 3;
FIG. 5 is a sectional view taken along the line CC of FIG. 4;
FIG. 6 is a cross-sectional view taken along line DD of FIG. 5;
FIG. 7 is a view showing another embodiment of the movement restricting plate, corresponding to FIG. 4;
FIG. 8 is a view showing still another embodiment of the movement restricting plate, corresponding to FIG. 4;
FIG. 9 is a view showing still another embodiment of the rotor of the rotating machine constituted according to the present invention, wherein the magnetic plate is viewed in the axial direction at the boundary between the movement restricting plate and the magnetic plate in the magnetic plate laminate. Cross-sectional view.
FIG. 10 is a cross-sectional view of the rotor of the rotating machine shown in FIG. 9 when the movement regulating plate is viewed in the axial direction at the boundary between the nonmagnetic material layer and the movement regulating plate.
FIG. 11 is a view of still another embodiment of the rotor of the rotating machine configured according to the present invention, as viewed from the outside in the radial direction.
12 is a cross-sectional view taken along the line EE in FIG. 11 (a cross-sectional view of the rotor of the rotating machine shown in FIG. 11 when the magnetic plate is viewed in the axial direction at the boundary between the movement restricting plate and the magnetic plate in the magnetic plate laminate; Figure).
13 is a cross-sectional view taken along the line FF of FIG. 11 (a cross-sectional view of the rotor of the rotating machine shown in FIG. 11 at the boundary between the layer of nonmagnetic material and the movement restriction plate, as viewed in the axial direction of the movement restriction plate). ).
[Explanation of symbols]
2 Rotor 4 of rotating machine Rotary shaft 6 Magnetic plate laminate 8 Magnetic plate 10 Permanent magnet 12 Layer of non-magnetic material 14 Magnetic plate 16 Mounting hole 18 Insertion hole 20 Through hole (space)
22 through hole 22a projecting piece

Claims (3)

永久磁石を挿入するための複数の挿入穴が形成された磁性板を積層してなる磁性板積層体と、磁性板積層体の軸方向一端面の外側に重合して配置されかつ該挿入穴の各々と整合する位置に貫通穴が形成されて永久磁石の移動を規制する少なくとも1個の移動規制板と、磁性板積層体の該挿入穴の各々内に挿入された永久磁石とを備え、移動規制板及び磁性板積層体には、移動規制板の軸方向外側面と磁性板積層体の軸方向他端面との間を延在する複数の空間部が形成され、移動規制板の軸方向外側面と磁性板積層体の軸方向他端面及び永久磁石の各々の軸方向両端面は溶融可能な非磁性材の層により覆われ、該空間部及び該貫通穴の各々は該非磁性材により該層の各々と一体となるよう充填され、移動規制板の貫通穴の各々の横断面積は、該貫通穴の各々に隣接する、永久磁石の軸方向一端面の横断面積よりも小さく形成される、
ことを特徴とする回転機のロータ。
A magnetic plate laminate formed by laminating magnetic plates each having a plurality of insertion holes for inserting permanent magnets, and a magnetic plate laminate that is superposed and arranged outside one end surface in the axial direction of the magnetic plate laminate; A through hole is formed at a position corresponding to each of the at least one movement regulating plate for regulating movement of the permanent magnet; and a permanent magnet inserted into each of the insertion holes of the magnetic plate laminate, The restriction plate and the magnetic plate laminate have a plurality of spaces formed between the axial outer surface of the movement restriction plate and the other axial end surface of the magnetic plate laminate, and are formed outside the movement restriction plate in the axial direction. The side surface, the other axial end surface of the magnetic plate laminate, and both axial end surfaces of the permanent magnet are covered with a layer of fusible non-magnetic material, and each of the space and the through-hole is covered with the non-magnetic material. The cross-sectional area of each of the through holes of the movement control plate is Adjacent to each of the throughbore is formed smaller than the cross-sectional area of the axial end face of the permanent magnet,
A rotor of a rotating machine characterized by the above-mentioned.
永久磁石を挿入するための複数の挿入穴が形成された磁性板を積層してなる磁性板積層体と、磁性板積層体の軸方向両端面の外側に重合して配置されかつ該挿入穴の各々と整合する位置に貫通穴が形成されて永久磁石の移動を規制する少なくとも1個の移動規制板と、磁性板積層体の該挿入穴の各々内に挿入された永久磁石とを備え、移動規制板及び磁性板積層体には、磁性板積層体を通って移動規制板の軸方向両外側面間を延在する複数の空間部が形成され、移動規制板の軸方向両外側面及び永久磁石の各々の軸方向両端面は溶融可能な非磁性材の層により覆われ、該空間部及び該貫通穴の各々は該非磁性材により該層の各々と一体となるよう充填され、移動規制板の貫通穴の各々の横断面積は、該貫通穴の各々に隣接する、永久磁石の軸方向両端面の横断面積よりもそれぞれ小さく形成される、
ことを特徴とする回転機のロータ。
A magnetic plate laminate formed by laminating magnetic plates formed with a plurality of insertion holes for inserting permanent magnets, and a magnetic plate laminate that is superposed and disposed on the outside of both axial end surfaces of the magnetic plate laminate, and A through hole is formed at a position corresponding to each of the at least one movement regulating plate for regulating movement of the permanent magnet; and a permanent magnet inserted into each of the insertion holes of the magnetic plate laminate, The regulating plate and the magnetic plate laminated body are formed with a plurality of spaces extending between the axially outer surfaces of the movement regulating plate through the magnetic plate laminated body. Both end faces in the axial direction of each magnet are covered with a layer of a non-magnetic material that can be melted, and each of the space and the through hole is filled with the non-magnetic material so as to be integrated with each of the layers. The cross-sectional area of each of the through holes is the axis of the permanent magnet adjacent to each of the through holes. Are each smaller than the cross-sectional area of direction both end faces,
A rotor of a rotating machine characterized by the above-mentioned.
永久磁石の各々は、磁性板積層体の該挿入穴内に隙間をおいて挿入され、永久磁石の各々と該挿入穴との間の隙間の少なくとも一部領域には該非磁性材が充填される、請求項1又は請求項2記載の回転機のロータ。Each of the permanent magnets is inserted with a gap into the insertion hole of the magnetic plate laminate, and at least a part of the gap between each of the permanent magnets and the insertion hole is filled with the non-magnetic material. The rotor of the rotating machine according to claim 1 or 2.
JP2003156353A 2003-06-02 2003-06-02 Rotor of rotary machine Withdrawn JP2004364349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156353A JP2004364349A (en) 2003-06-02 2003-06-02 Rotor of rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156353A JP2004364349A (en) 2003-06-02 2003-06-02 Rotor of rotary machine

Publications (1)

Publication Number Publication Date
JP2004364349A true JP2004364349A (en) 2004-12-24

Family

ID=34050461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156353A Withdrawn JP2004364349A (en) 2003-06-02 2003-06-02 Rotor of rotary machine

Country Status (1)

Country Link
JP (1) JP2004364349A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365466B2 (en) 2004-12-20 2008-04-29 Danfoss Compressors Gmbh Rotor for an electrical motor
US7612481B2 (en) 2004-12-20 2009-11-03 Danfoss Compressors Gmbh Rotor with a cover plate for securing a magnet in the rotor
US7619343B2 (en) 2004-12-20 2009-11-17 Danfoss Compressors Gmbh Rotor for an electrical motor
US20120139381A1 (en) * 2010-12-07 2012-06-07 Kingrey Harold C Permanent magnet rotors and methods of assembling the same
WO2015186292A1 (en) * 2014-06-04 2015-12-10 パナソニックIpマネジメント株式会社 Interior permanent magnet electric motor
US20180205302A1 (en) * 2017-01-19 2018-07-19 Hamilton Sundstrand Corporation Permanent magnet (pm) brushless machine with outer rotor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365466B2 (en) 2004-12-20 2008-04-29 Danfoss Compressors Gmbh Rotor for an electrical motor
US7612481B2 (en) 2004-12-20 2009-11-03 Danfoss Compressors Gmbh Rotor with a cover plate for securing a magnet in the rotor
US7619343B2 (en) 2004-12-20 2009-11-17 Danfoss Compressors Gmbh Rotor for an electrical motor
US20120139381A1 (en) * 2010-12-07 2012-06-07 Kingrey Harold C Permanent magnet rotors and methods of assembling the same
CN102570735A (en) * 2010-12-07 2012-07-11 Rbc制造公司 Permanent magnet rotors and methods of assembling the same
US8692432B2 (en) * 2010-12-07 2014-04-08 Regal Beloit America, Inc. Permanent magnet rotors and methods of assembling the same
EP2463989A3 (en) * 2010-12-07 2014-05-14 RBC Manufacturing Corporation Permanent magnet rotors and methods of assembling the same
US8901795B2 (en) 2010-12-07 2014-12-02 Regal Beloit America, Inc. Permanent magnet rotors and methods of assembling the same
WO2015186292A1 (en) * 2014-06-04 2015-12-10 パナソニックIpマネジメント株式会社 Interior permanent magnet electric motor
US20180205302A1 (en) * 2017-01-19 2018-07-19 Hamilton Sundstrand Corporation Permanent magnet (pm) brushless machine with outer rotor

Similar Documents

Publication Publication Date Title
EP1164683B1 (en) Permanent magnet rotor and method of making the same
JP3752946B2 (en) Manufacturing method of rotor of rotating machine
EP2553792B1 (en) Rotor of an electric machine with embedded permanent magnets and electric machine
CN101978584B (en) Axial gap type motor and method of manufacturing rotor of motor
JP5027169B2 (en) Axial gap type motor and rotor manufacturing method thereof
JP2001204146A (en) Rotor of rotating machine and its fabrication
JP5626267B2 (en) Rotating electrical machine rotor
JP5722301B2 (en) Embedded magnet type synchronous motor rotor and embedded magnet type synchronous motor
JP2011254677A (en) Rotor for motor and method for manufacturing the same
WO2004001930A1 (en) Rotor for external rotor-type permanent magnet motor
US20160079832A1 (en) Method for producing an individual-segment rotor and corresponding rotor
JP2008187778A (en) Rotator for permanent magnet embedded motor, blower, and compressor
JP2007074776A (en) Rotating electric machine
JP2006025573A (en) Structure of stator of disk type rotary electric machine
JP2015511110A (en) Rotor including anti-rotation mechanism for multipolar structures
JP2002171702A (en) Rotor of rotating machine
JP2004023864A (en) Rotor of permanent magnet rotary electric machine
JP2002218683A (en) Rotor of rotating machine
JP2004364349A (en) Rotor of rotary machine
AU2020392823B2 (en) Rotor for rotating electrical machine
JPH0833246A (en) Rotor for permanent magnet synchronous electric rotating machine
JP2004096925A (en) Rotor structure of permanent magnet type synchronous motor
JPH1014147A (en) Rotary machine having circumferentially magnetized rotor and manufacture thereof
JP2021087231A (en) Rotor of rotary electric machine
JP2016184991A (en) Magnet embedded type rotor and manufacturing method of the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905