JP2004364229A - Two-element antenna with cardioid directivity - Google Patents

Two-element antenna with cardioid directivity Download PDF

Info

Publication number
JP2004364229A
JP2004364229A JP2003193922A JP2003193922A JP2004364229A JP 2004364229 A JP2004364229 A JP 2004364229A JP 2003193922 A JP2003193922 A JP 2003193922A JP 2003193922 A JP2003193922 A JP 2003193922A JP 2004364229 A JP2004364229 A JP 2004364229A
Authority
JP
Japan
Prior art keywords
antenna
element antenna
directivity
cardioid
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003193922A
Other languages
Japanese (ja)
Other versions
JP4174763B2 (en
Inventor
Seiji Mano
清司 真野
Yukio Saito
幸雄 斉藤
Yoshihiro Takechi
吉博 武市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Musen Co Ltd
Original Assignee
Taiyo Musen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Musen Co Ltd filed Critical Taiyo Musen Co Ltd
Priority to JP2003193922A priority Critical patent/JP4174763B2/en
Publication of JP2004364229A publication Critical patent/JP2004364229A/en
Application granted granted Critical
Publication of JP4174763B2 publication Critical patent/JP4174763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a two-element antenna with cardioid directivity that has directivity with a high front-to-rear ratio over a wide frequency band, that is, null (zero) in the opposite direction of a main beam regardless of a distance between the two-element antennas. <P>SOLUTION: When one of the element antennas has a feeding amplitude of a, the other element antenna has a feeding amplitude of -a, and a difference in feeding phase between the two element antennas is set at 360 d/λ(degree). Alternatively, the two element antennas are made equal in the feeding amplitude, and the difference in feeding phase is set at 360 d/λ±180(degree). Further, the distance between the two-element antennas is set to be not larger than λ/2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明は、一つの主ビームと、この主ビームの反対の方向に放射のヌル(零点)を持つ指向性、すなわちカージオイド型指向性を持つ2素子アンテナにおいて、上記2素子アンテナ間の距離に制約されず,かつ広い周波数帯域にわたってアンテナ放射ビームの前後比の高い指向性を保持することのできるカージオイド型指向性を持つ2素子アンテナに関するものである。
【0002】
【従来の技術】
図1の1にカージオイド指向性を示す。図1で円周方向が観測角度(度)、半径方向が振幅(dB値)である。カージオイド指向性1はこの図1のように主ビームと、この主ビームの反対の方向に放射のヌル(零点)を持つ指向性である。このような特性は、アンテナの前方に電波をよく放射し、あるいは前方からの電波をよく受信すると共に、アンテナ後方への放射のない、あるいは後方からの電波を受信しない、いわゆるアンテナ指向性の前後比の高い効果をもたらす。このような特性を持つアンテナは、例えば新幹線列車無線システムにおいて、列車の前方(あるいは後方)の基地局アンテナと通信する列車側のアンテナに利用されている。あるいは、このようなカージオイド指向性は放射の零点が一つのために、この特性を利用して方向探知用のアンテナに用いられることもある。
【0003】
図2は、このようなカージオイド指向性をもつ従来の2素子アンテナである。図2において、2は第1素子アンテナ、3は第2素子アンテナ、4がこれら2つの素子アンテナから成る2素子アンテナである。2つの素子アンテナ2,3の間の距離をd、電波の波長をλ、かつ観測角度を図のようにφとする。また、第1素子アンテナ2の給電位相は180d/λ(度)で、第2素子アンテナ3の給電位相は−180d/λ(度)である。給電振幅は共に1である。この2素子アンテナ4は、φ=0方向にビームを指向するいわゆる2素子エンドファイアアレーアンテナである。このとき、この2素子アンテナ4の放射指向性は、各素子アンテナの指向性を無指向性と仮定すれば次のようになる

Figure 2004364229
ただし、kは電波の伝搬定数でk=2π/λである。上記(数1)は係数を省いて次のように変形される。
Figure 2004364229
【0004】
(数2)よりφ=0ではD(0)=1となりビームの最大方向となる。一方、φ=π(=180°)ではD(π)=cos(2πd/λ)となり、d=λ/4(=0.25λ)のときだけゼロになりカージオイド指向性になる。しかし、一般にdがλ/4以外ではカージオイド指向性にならない。
【0005】
例えば、d=0.2λの場合には、図2の従来の2素子アンテナの指向性は図3の5のようになる。すなわち、ビームの後方ではヌル(零点)が埋まり、いわゆるビームの前後比が悪い不完全なカージオイド指向性である。あるいは、ある周波数でd=λ/4にしたとしても、このアンテナを広い周波数帯域にわたって使用する場合には他の周波数でヌル(零点)が埋まる。
【0006】
【発明が解決しようとする課題】
従来のカージオイド型2素子アンテナは、上記のように2つの素子アンテナの間隔がλ/4でなければならず、かつ広い周波数帯域にわたってカージオイド指向性が得られないという欠点があった。
【0007】
この発明は、このような欠点を解決するためになされたもので、2つの素子アンテナ間の間隔に制約がなく、かつ広い周波数帯域にわたって前後比の高いカージオイド指向性を有する2素子アンテナを提供するものである。
【0008】
【課題を解決するための手段】
この発明に係るカージオイド型指向性を持つ2素子アンテナは、従来の2素子アンテナとは異なる給電振幅と給電位相が与えられる。
【0009】
【作用】
この発明においては、2つの素子アンテナ間の距離をλ/2以下の任意とし、2つの素子アンテナの給電位相を従来と比べて進み・遅れを逆にし、さらに給電振幅を一方をaとすれば他方を−aとするものである。
【0010】
【実施例】
以下、本発明によるカージオイド型指向性を持つ2素子アンテナについて、図面を参照して説明する。
図4は本発明の実施例の2素子アンテナである。図4で、6は第1素子アンテナ、7は第2素子アンテナ、8は2素子アンテナである。第1素子アンテナ6の給電位相は−180d/λ(度)で、第2素子アンテナ7の給電位相は180d/λ(度)である。これらは、図2の従来の2素子アンテナの場合と給電位相の正負が逆である。また、第1素子アンテナ6の給電振幅は1で、第2素子アンテナ7の給電振幅は−1である。
【0011】
各素子アンテナの指向性を無指向性と仮定すれば、図4の2素子アンテナの指向性D(φ)は次のようになる
Figure 2004364229
ただし、kは電波の伝搬定数でk=2π/λである。上記(数3)は変形すると係数を省いて次のようになる。
Figure 2004364229
この
【数4】より、φ=π=180°では、指向性は素子間の距離dや波長λに関係なく、常にゼロになることが分かる。これが本発明によるカージオイド型指向性を持つ2素子アンテナの最大のすぐれた特長である。従来の2素子アンテナの場合の指向性である上記(数2)と比較すると、式全体のcosがsinに変わり、cosφの符号が−から+に変わっていることが分かる。
【0012】
また、φ=0がビームの最大方向であり、そのレベルは上記(数4)より、
Figure 2004364229
が、dがλ/4以上λ/2未満でもヌル(零点)が1つのカージオイド指向性になることが分かる。
【0013】
図5は、本発明の実施例に2素子アンテナの指向性であり、素子アンテナの距離がd=0.2λの場合である。従来例の図3と異なり、図5のカージオイド指向性9ではφ=180°方向に完全なヌル(零点)が形成されている。
【0014】
なお、上記の図4の実施例では、第1素子アンテナ6の給電振幅を1、第2素子アンテナ7の給電振幅を−1としたが、一般に一方がaであれば、他方が−aであればよい。また、実施例では、第1素子アンテナ6の給電位相を−180d/λ(度)で、第2素子アンテナ7の給電位相を180d/λ(度)としたが、2つの素子アンテナの給電位相の差が360d/λであればよい。
【0015】
さらに、使用する周波数帯域が比較的狭い場合には、上記の給電振幅が正負逆であることを位相に置き換えて、一方の位相を0とするとき他方の位相を180度とし、この位相差180度と上記360d/λの位相差の両方を加味して互いの給電位相を決めてももちろん構わない。すなわち、2つの素子アンテナの給電振幅が等しく、給電位相の差が360d/λ±180(度)であればよい。
【0016】
また、素子アンテナ6,7のアンテナ形式は特に示さなかったが、例えば、ダイポールアンテナ、モノポールアンテナ、マイクロストリップアンテナ、ループアンテナなど全ての種類のアンテナを用いて本発明を実施することができる。さらに、偏波についても任意であり、垂直偏波、水平偏波、あるいは円偏波を用いてこの発明は実施することができる。
【0017】
【発明の効果】
以上のようにこの発明によれば、2つの素子アンテナに適切な給電振幅と給電位相を与えるために、2つの素子アンテナ間の距離がλ/4に固定されることなく、かつ広い周波数帯域にわたって前後比の高いカージオイド指向性を実現することができる。
【図面の簡単な説明】
【図1】カージオイド指向性の説明図である。
【図2】従来の2素子アンテナの説明図である。
【図3】従来の不完全なカージオイド指向性の説明図である。
【図4】本発明による2素子アンテナの説明図である。
【図5】本発明によるカージオイド指向性の説明図である。
【符号の説明】
1;カージオイド指向性
2;第1素子アンテナ
3;第2素子アンテナ
4;2素子アンテナ
5;不完全カージオイド指向性
6;第1素子アンテナ
7;第2素子アンテナ
8;2素子アンテナ
9;カージオイド指向性[0001]
[Industrial applications]
The present invention relates to a two-element antenna having one main beam and directivity having radiation null (zero point) in a direction opposite to the main beam, that is, a cardioid type directivity. The present invention relates to a two-element antenna having a cardioid type directivity that is not restricted and can maintain a high directivity of a front-to-back ratio of an antenna radiation beam over a wide frequency band.
[0002]
[Prior art]
FIG. 1 shows the cardioid directivity. In FIG. 1, the circumferential direction is the observation angle (degree), and the radial direction is the amplitude (dB value). The cardioid directivity 1 is a directivity having a main beam and a null (zero point) of radiation in a direction opposite to the main beam as shown in FIG. Such characteristics are that the antenna radiates radio waves well in front of the antenna or receives radio waves from the front well, and there is no radiation to the rear of the antenna or no radio waves from the rear. It has a high effect. An antenna having such characteristics is used as a train-side antenna that communicates with a base station antenna in front of (or behind) a train, for example, in a Shinkansen train radio system. Alternatively, such cardioid directivity has only one zero point of radiation, and may be used for an antenna for direction finding utilizing this characteristic.
[0003]
FIG. 2 shows a conventional two-element antenna having such cardioid directivity. In FIG. 2, 2 is a first element antenna, 3 is a second element antenna, and 4 is a two-element antenna composed of these two element antennas. The distance between the two element antennas 2 and 3 is d, the wavelength of the radio wave is λ, and the observation angle is φ as shown in the figure. The feeding phase of the first element antenna 2 is 180 d / λ (degree), and the feeding phase of the second element antenna 3 is -180 d / λ (degree). The power supply amplitudes are both 1. The two-element antenna 4 is a so-called two-element endfire array antenna that directs a beam in the φ = 0 direction. At this time, the radiation directivity of the two-element antenna 4 is as follows, assuming that the directivity of each element antenna is non-directional.
Figure 2004364229
Here, k is a propagation constant of a radio wave, and k = 2π / λ. The above (Equation 1) is modified as follows by omitting the coefficient.
Figure 2004364229
[0004]
From (Equation 2), when φ = 0, D (0) = 1 and the beam is in the maximum direction. On the other hand, when φ = π (= 180 °), D (π) = cos (2πd / λ), and becomes zero only when d = λ / 4 (= 0.25λ), resulting in cardioid directivity. However, in general, the cardioid directivity is not obtained when d is other than λ / 4.
[0005]
For example, when d = 0.2λ, the directivity of the conventional two-element antenna in FIG. 2 is as shown in 5 in FIG. That is, a null (zero point) is buried behind the beam, which is a so-called imperfect cardioid directivity having a poor front-to-back ratio of the beam. Alternatively, even if d = λ / 4 at a certain frequency, when this antenna is used over a wide frequency band, nulls (zero points) are filled at other frequencies.
[0006]
[Problems to be solved by the invention]
As described above, the conventional cardioid two-element antenna has a disadvantage that the distance between the two element antennas must be λ / 4 and that cardioid directivity cannot be obtained over a wide frequency band.
[0007]
The present invention has been made in order to solve such a drawback, and provides a two-element antenna having a cardioid directivity with a high front-to-back ratio over a wide frequency band, without any restriction on the interval between the two element antennas. Is what you do.
[0008]
[Means for Solving the Problems]
The two-element antenna having cardioid directivity according to the present invention is provided with a different feeding amplitude and feeding phase from the conventional two-element antenna.
[0009]
[Action]
In the present invention, if the distance between the two element antennas is arbitrarily equal to or less than λ / 2, and the feed phases of the two element antennas are reversed in lead and lag as compared with the conventional case, and one of the feed amplitudes is a. The other is -a.
[0010]
【Example】
Hereinafter, a two-element antenna having cardioid directivity according to the present invention will be described with reference to the drawings.
FIG. 4 shows a two-element antenna according to the embodiment of the present invention. In FIG. 4, reference numeral 6 denotes a first element antenna, 7 denotes a second element antenna, and 8 denotes a two-element antenna. The feeding phase of the first element antenna 6 is -180 d / λ (degree), and the feeding phase of the second element antenna 7 is 180 d / λ (degree). These are opposite in the polarity of the feeding phase from the case of the conventional two-element antenna of FIG. The power supply amplitude of the first element antenna 6 is 1, and the power supply amplitude of the second element antenna 7 is -1.
[0011]
Assuming that the directivity of each element antenna is omni-directional, the directivity D (φ) of the two-element antenna of FIG.
Figure 2004364229
Here, k is a propagation constant of a radio wave, and k = 2π / λ. When the above (Equation 3) is transformed, the following is obtained by omitting the coefficient.
Figure 2004364229
From this, it can be seen that, when φ = π = 180 °, the directivity is always zero irrespective of the distance d between the elements and the wavelength λ. This is the most outstanding feature of the two-element antenna having cardioid directivity according to the present invention. Comparing with the above-mentioned (Equation 2) which is the directivity in the case of the conventional two-element antenna, it can be seen that cos in the entire expression changes to sin, and the sign of cos φ changes from-to +.
[0012]
Φ = 0 is the maximum direction of the beam, and its level is given by (Equation 4)
Figure 2004364229
However, it can be seen that even when d is λ / 4 or more and less than λ / 2, a null (zero point) becomes one cardioid directivity.
[0013]
FIG. 5 shows the directivity of a two-element antenna according to the embodiment of the present invention, in which the distance between the element antennas is d = 0.2λ. Unlike the conventional example of FIG. 3, in the cardioid directivity 9 of FIG. 5, a complete null (zero point) is formed in the φ = 180 ° direction.
[0014]
In the embodiment of FIG. 4 described above, the feed amplitude of the first element antenna 6 is set to 1 and the feed amplitude of the second element antenna 7 is set to −1, but generally, if one is a, the other is −a. I just need. In the embodiment, the feeding phase of the first element antenna 6 is -180 d / λ (degree) and the feeding phase of the second element antenna 7 is 180 d / λ (degree). Should be 360d / λ.
[0015]
Further, when the frequency band to be used is relatively narrow, the fact that the power supply amplitude is opposite in polarity is replaced with a phase. When one phase is set to 0, the other phase is set to 180 degrees, and the phase difference is set to 180 degrees. It is a matter of course that both power supply phases may be determined in consideration of both the degree and the phase difference of 360 d / λ. That is, it is only necessary that the two element antennas have the same feeding amplitude and the difference between the feeding phases is 360 d / λ ± 180 (degrees).
[0016]
Although the antenna types of the element antennas 6 and 7 are not particularly shown, the present invention can be implemented using all types of antennas such as a dipole antenna, a monopole antenna, a microstrip antenna, and a loop antenna. Furthermore, the polarization is arbitrary, and the present invention can be implemented using vertical polarization, horizontal polarization, or circular polarization.
[0017]
【The invention's effect】
As described above, according to the present invention, in order to provide appropriate feed amplitude and feed phase to the two element antennas, the distance between the two element antennas is not fixed to λ / 4 and over a wide frequency band. Cardioid directivity with a high front-to-back ratio can be realized.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of cardioid directivity.
FIG. 2 is an explanatory diagram of a conventional two-element antenna.
FIG. 3 is an explanatory diagram of a conventional incomplete cardioid directivity.
FIG. 4 is an explanatory diagram of a two-element antenna according to the present invention.
FIG. 5 is an explanatory diagram of cardioid directivity according to the present invention.
[Explanation of symbols]
1; cardioid directivity 2; first element antenna 3; second element antenna 4; two-element antenna 5; incomplete cardioid directivity 6; first element antenna 7; second element antenna 8; Cardioid directivity

Claims (2)

2個の素子アンテナから構成され、前記2個の素子アンテナ間の距離をd、電波の波長をλとし、一方の素子アンテナの給電振幅をaとするとき、他方の素子アンテナの給電振幅が−aで、かつ上記2個の素子アンテナの給電位相の差が360d/λ(度)であり、さらに上記2素子アンテナ間の距離dがλ/2以下であることを特徴とするカージオイド型指向性を持つ2素子アンテナ。When the distance between the two element antennas is d, the wavelength of the radio wave is λ, and the feeding amplitude of one element antenna is a, the feeding amplitude of the other element antenna is − a, wherein the difference between the feeding phases of the two element antennas is 360 d / λ (degrees), and the distance d between the two element antennas is λ / 2 or less. A two-element antenna with a characteristic. 2個の素子アンテナから構成され、前記2個の素子アンテナ間の距離をd、電波の波長をλとするとき、上記2個の素子アンテナの給電位相の差が360d/λ±180(度)であり、さらに上記2素子アンテナ間の距離dがλ/2以下であることを特徴とするカージオイド型指向性を持つ2素子アンテナ。When the distance between the two element antennas is d and the wavelength of the radio wave is λ, the difference between the feeding phases of the two element antennas is 360 d / λ ± 180 (degrees). And a distance d between the two-element antennas is λ / 2 or less, wherein the two-element antenna has cardioid directivity.
JP2003193922A 2003-06-05 2003-06-05 2-element antenna with cardioid directivity Expired - Fee Related JP4174763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193922A JP4174763B2 (en) 2003-06-05 2003-06-05 2-element antenna with cardioid directivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193922A JP4174763B2 (en) 2003-06-05 2003-06-05 2-element antenna with cardioid directivity

Publications (2)

Publication Number Publication Date
JP2004364229A true JP2004364229A (en) 2004-12-24
JP4174763B2 JP4174763B2 (en) 2008-11-05

Family

ID=34055629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193922A Expired - Fee Related JP4174763B2 (en) 2003-06-05 2003-06-05 2-element antenna with cardioid directivity

Country Status (1)

Country Link
JP (1) JP4174763B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047702B1 (en) * 2016-09-16 2021-06-29 Apple Inc. Tracking systems for electronic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047702B1 (en) * 2016-09-16 2021-06-29 Apple Inc. Tracking systems for electronic devices

Also Published As

Publication number Publication date
JP4174763B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
US7030831B2 (en) Multi-polarized feeds for dish antennas
US6807401B2 (en) Antenna diversity arrangement
CA2511684A1 (en) Null-fill antenna, omni antenna, and radio communication equipment
CN105161835B (en) A kind of broad beam plane circular polarized antenna
JP2006258762A (en) Radar device
JPWO2018164018A1 (en) Patch antenna with slot
Euzière et al. Time modulated array for dual function radar and communication
US7236129B2 (en) Apparatus and method for a multi-polarized antenna
US3144648A (en) Dual mode spiral antenna
JPH11261335A (en) Polarization diversity antenna system
Mandal et al. Thinned concentric circular array antennas synthesis using genetic algorithm
JP4174763B2 (en) 2-element antenna with cardioid directivity
Li et al. Direction of arrival estimation using amplitude and phase information in low-profile MIMO arrays
JP6218990B1 (en) Reflector antenna device
KR101823365B1 (en) Folded Reflectarray Antenna and Polarizing Grid Substrate
Bucci et al. Optimal synthesis of circularly symmetric aperture sources with shaped patterns
Mandal et al. Thinned concentric circular array antenna synthesis using particle swarm optimization with constriction factor and inertia weight approach
JPS62281501A (en) Microstrip antenna having unexcited element
JP2011015203A (en) Curved surface reflector antenna and position measuring system using the same
Rahaman et al. Linearly-arranged Concentric Circular Antenna Array Using Robust VDL technique
Zandamela et al. Electrically Small Multimodal 3D Beamforming MIMO Antenna for PHY-Layer Security
Rahaman et al. Performane analysis of linearly-arranged concentric circular antenna array using robust ODL technique
WO2004004070A1 (en) Antenna device and its directional gain adjusting method
JP2013093710A (en) Antenna device
Radway et al. Pattern purity of coiled-arm spiral antennas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A131 Notification of reasons for refusal

Effective date: 20070911

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20071102

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080311

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees