JP2004363379A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2004363379A
JP2004363379A JP2003160892A JP2003160892A JP2004363379A JP 2004363379 A JP2004363379 A JP 2004363379A JP 2003160892 A JP2003160892 A JP 2003160892A JP 2003160892 A JP2003160892 A JP 2003160892A JP 2004363379 A JP2004363379 A JP 2004363379A
Authority
JP
Japan
Prior art keywords
support substrate
semiconductor device
electrode
back surface
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003160892A
Other languages
Japanese (ja)
Inventor
Kiyoshi Mita
清志 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Sanyo Semiconductors Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Kanto Sanyo Semiconductors Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Sanyo Semiconductors Co Ltd, Sanyo Electric Co Ltd filed Critical Kanto Sanyo Semiconductors Co Ltd
Priority to JP2003160892A priority Critical patent/JP2004363379A/en
Priority to TW093114610A priority patent/TWI251451B/en
Priority to KR1020040038413A priority patent/KR100629830B1/en
Priority to CNB2004100452293A priority patent/CN100336208C/en
Publication of JP2004363379A publication Critical patent/JP2004363379A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device in which breakdown due to thermal stress is prevented. <P>SOLUTION: This semiconductor device 10A has a structure in which it is provided with a supporting substrate 11, a front surface electrode 13 and a rear surface electrode 14 which are formed on the front and rear surfaces of the supporting substrate 11 and connected via a penetrating section 15, a semiconductor element 16 firmly fixed on the surface of the supporting substrate 11 and electrically connected to the surface electrode 13, and a sealing resin 18 for sealing the semiconductor element 16. A groove 12 is provided on the rear surface of the supporting substrate 11. Accordingly, cracks due to thermal stress can be prevented from being generated on a connecting portion between the penetrating portion 15 and the surface electrode 14, or a connecting portion between the penetrating portion 15 and the rear surface electrode 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、支持基板を有する半導体装置に関する。
【0002】
【従来の技術】
図5を参照して、従来型の実装基板および半導体装置装置に関して説明する。図5(A)は半導体装置100の断面図であり、図5(B)はその裏面図である(特許文献1参照)。
【0003】
図5(A)を参照して、ガラスエポキシ等から成る支持基板101の上面に銅箔等から成る電極104が形成されている。また支持基板101の裏面には裏面電極105が形成され、ビアホール106により電極104と接続されている。また、電極104および裏面電極105はメッキ膜により被覆されている。
【0004】
半導体素子102は支持基板101上に固着され、金属細線103により電極104と接続される。また半導体素子102を被覆するように封止樹脂107が形成されている。
【0005】
図5(B)を参照して、支持基板101の裏面には、外周部と平行に2列に整列して、裏面電極105が設けられている。
【0006】
【特許文献1】
特開平11−233688号公報(図7参照)
【0007】
【発明が解決しようとする課題】
上述した半導体装置100では、裏面電極105に形成されるロウ材を介して実装基板に実装される。しかしながら、半導体装置100に内蔵される半導体素子102と、実装基板とでは熱膨張係数が大きく異なるので、温度変化により熱応力が発生する。従来では、この熱応力の緩和を支持基板101やロウ材が担ってきた。しかしながら、支持基板101による熱応力の緩和を促進させるためには、支持基板101を厚く形成する必要があり、このことが半導体装置の薄型化を阻害していた。更に、熱応力が作用することにより、ビアホール106と電極104との接続部を含む接続経路が破壊されてしまう問題があった。
【0008】
本発明は上記した問題点を鑑みて成されたものであり、本発明の主な目的は、熱応力による破壊を防止した半導体装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、支持基板と、前記支持基板の表面および裏面に形成されて貫通部により接続された表面電極および裏面電極と、前記支持基板の表面に固着されて前記表面電極と電気的に接続された半導体素子と、前記半導体素子を封止する封止樹脂とを具備し、前記支持基板の裏面には溝が設けられることを特徴とする。
【0010】
更に本発明は、前記裏面電極は前記支持基板の裏面にマトリックス状に形成され、前記溝は前記裏面電極の間に格子状に設けられることを特徴とする。
【0011】
更に本発明は、前記溝は、前記裏面電極間の中間部に形成されることを特徴とする。
【0012】
更に本発明は、前記裏面電極にロウ材を付着することにより、実装基板に実装されることを特徴とする。
【0013】
【発明の実施の形態】
図1を参照して、本発明の半導体装置10の構成を説明する。図1(A)は半導体装置10の断面図であり、図1(B)はその裏面図である。
【0014】
図1(A)を参照して、本発明の半導体装置10Aは、支持基板11と、支持基板の表面および裏面に形成されて貫通部15により接続された表面電極13および裏面電極14と、支持基板11の表面に固着されて表面電極13と電気的に接続された半導体素子16と、半導体素子16を封止する封止樹脂18とを具備し、支持基板11の裏面には溝12が設けられる構成と成っている。これら各要素の詳細を以下にて説明する。
【0015】
支持基板11は、半導体装置10の各構成要素を支持する働きを有し、例えばガラスエポキシ基板から成る。また、支持基板11の材料としてはガラスエポキシ基板以外でも良く、他の有機材料をその材料とすることもできる。また、ここでは、支持基板11は、単層の配線構造を有するが、多層の配線構造を構成する支持基板11が構成されても良い。
【0016】
表面電極13は導電性の材料から成り、支持基板11の表面に形成される。表面電極13は、金属細線17が接続されるパッド部を形成し、更に、半導体素子16の下方に引き回される配線部も構成している。
【0017】
裏面電極14は、支持基板11の裏面に形成され、支持基板11を貫通する貫通部15を介して表面電極13と電気的に接続されている。
【0018】
半導体素子16は、LSI(Large Scale Integration)チップであり、フェイスアップで、接着剤19を介して支持基板11の表面に固着されている。そして、半導体素子16の取り出し電極と表面電極13とは、金属細線17を介して電気的に接続されている。また、半導体素子以外の素子が半導体装置10に内蔵されても良い。
【0019】
封止樹脂18は、半導体素子16、金属細線17、および、支持基板11の表面を被覆している。また、封止樹脂18は、機械的強度の向上および耐湿性の向上のために、無機フィラーが混入された遮光性のものを採用することができる。封止樹脂18に用いる樹脂としては、熱可塑性樹脂または熱硬化性樹脂の両方を全般的に採用することができる。
【0020】
溝12は、支持基板11の裏面をハーフスクライブすることにより形成され、裏面電極14間の中間部付近に設けられる。図1(B)を参照して、裏面電極14は、BGA(Ball Grid Array)やLGA(Land Grid Array)構造が実現できるように、マトリックス状に形成されている。そして、溝12は、各行および各列の裏面電極14の間に、格子状に形成されている。
【0021】
図2を参照して、上記した半導体素子14の実装構造を説明する。図2(A)を参照して、実装基板20の表面には導電路21が形成されている。そして、裏面電極14の裏面に付着されたロウ材22を介して、実装基板20の導電路21と半導体装置10とは接続されている。ここで、ロウ材22としては、半田等を採用することができる。
【0022】
半導体装置10に内蔵される半導体素子16と、実装基板20とでは、熱膨張係数が大きく相違する。具体的には、半導体素子16の熱膨張係数は2ppm程度であり、実装基板20が樹脂製のものである場合はその熱膨張係数は20ppm程度である。従って、使用状況下の温度変化により、半導体装置10および実装基板20が加熱された場合、半導体素子16より実装基板20の方が大きな膨張量を示す。従って、半導体素子16と実装基板20との間に介在する、導電路21、ロウ材22、裏面電極14、貫通部15、支持基板11、および、表面電極13には熱応力が発生する。本発明では、支持基板11に溝12を設けることにより、この熱応力を低減している。
【0023】
図2(B)を参照して、溝12の詳細を説明する。上述したように、半導体素子16の熱膨張係数は、実装基板の10分の1程度である。従って、半導体素子16と実装基板20の両方が温度上昇した場合、半導体素子16に比べて実装基板20が大きく膨張することから、支持基板11や貫通部15に大きな熱応力が発生する。具体的には、支持基板11や貫通部15に横方向の剪断力が作用する。本発明では、支持基板11に溝を設けて、裏面電極14が形成される箇所の近傍の支持基板を可動にすることにより、支持基板11や貫通部15に作用する熱応力を低減させている。同図を参照して、溝12が設けられた箇所の支持基板11は、右方向に変形している。このように、熱応力が作用した際に、裏面電極14が設けられた箇所の支持基板11を横方向に可動にするために、溝12は形成されている。支持基板11を部分的に可動にすることにより、貫通部15と表面電極13との接続箇所、または、貫通部15と裏面電極14との接続箇所が剥離してしまうのを防止することができる。
【0024】
また、半導体装置10と実装基板20との間に大きな熱応力が作用した場合でも、裏面電極14付近の支持基板が横方向に可動であることで、その熱応力は吸収される。更にまた、従来の半導体装置では、上記した熱応力を吸収するために、支持基板を厚く形成していたが、本発明の構成により、支持基板11を薄くすることができる。上記の説明では、溝12は支持基板11の厚みの途中まで設けられるが、支持基板11が分離される程度の深さまで溝12を形成しても良い。
【0025】
図3を参照して、他の形態の半導体装置10Bの構成を説明する。半導体装置10Bの基本的な構成は、図1を参照して説明した半導体装置と同様であり、相違点は、半導体素子16がフェイスダウンでフリップチップ実装されている点にある。この様な構成を有する半導体装置10Bの場合でも、上記した溝12の形成による効果を奏することができる。
【0026】
図4を参照して、半導体装置10Bの製造方法を説明する。図4(A)を参照して、支持基板の11の表面および裏面に、表面電極13および裏面電極14を形成する。表面電極13及び裏面電極14は、支持基板11を貫通して形成された貫通部15により電気的に接続されている。
【0027】
図4(B)を参照して、接着剤19を介して半導体素子16の固着を行い、半導体素子16の電極と表面電極14とを、金属細線17により電気的に接続する。
【0028】
図4(C)を参照して、半導体素子16および金属細線17が被覆されるように、封止樹脂18を形成する。封止樹脂18の形成方法としては、トランスファーモールド、インジェクションモールド、ポッティング等が考えられる。
【0029】
図4(D)を参照して、ダイシングブレードを用いて支持基板11の裏面をハーフスクライブすることにより、溝12を形成する。溝12の深さは、支持基板11の厚みよりも浅く形成する。そして、各半導体装置の境界線で封止樹脂18および支持基板11を分割することにより、例えば図1に示すような半導体装置10が完成する。ここで、溝12の形成は、図4(A)に示す工程で行っても良い。また、ダイシング以外の方法により溝12の形成を行っても良い。具体的には、エッチングやレーザー等の除去方法により溝12の形成を行うことができる。
【0030】
【発明の効果】
本発明では、以下に示すような効果を奏することができる。
【0031】
支持基板11の裏面に溝12を形成したので、半導体素子16と実装基板20の熱膨張係数の差により支持基板11に熱応力が作用した場合でも、支持基板11を部分的に可動にすることにより、発生する熱応力を低減させることができる。従って、熱応力により、貫通部15と表面電極14との接続箇所、または、貫通部15と裏面電極14との接続箇所にクラックが発生してしまうのを防止することができる。
【0032】
更に、溝12が設けられた支持基板11により、熱応力の吸収を行うので、半導体装置10と実装基板20とを接続するロウ材22に作用する応力を緩和することができる。
【0033】
更に、溝12を支持基板11に設けることにより、半導体装置10を実装する際にロウ材22同士が短絡するのを防止することができる。従って、ソルダーレジストの形成をせずとも、ろう材22の短絡を防止することができる。
【図面の簡単な説明】
【図1】本発明の半導体装置を説明する断面図(A)、裏面図(B)である。
【図2】本発明の半導体装置を説明する断面図(A)、断面拡大図(B)である。
【図3】本発明の半導体装置を説明する断面図である。
【図4】本発明の半導体装置の製造方法を説明する断面図(A)−(D)である。
【図5】従来の半導体装置を説明する断面図(A)、裏面図(B)である。
【符号の説明】
10 半導体装置
11 支持基板
12 溝
13 表面電極
14 裏面電極
15 貫通部
16 半導体素子
17 金属細線
18 封止樹脂
19 接着剤
20 実装基板
21 導電路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device having a support substrate.
[0002]
[Prior art]
With reference to FIG. 5, a conventional mounting substrate and a semiconductor device will be described. FIG. 5A is a cross-sectional view of the semiconductor device 100, and FIG. 5B is a rear view thereof (see Patent Document 1).
[0003]
Referring to FIG. 5A, an electrode 104 made of copper foil or the like is formed on the upper surface of a support substrate 101 made of glass epoxy or the like. A back surface electrode 105 is formed on the back surface of the support substrate 101, and is connected to the electrode 104 through a via hole 106. The electrode 104 and the back electrode 105 are covered with a plating film.
[0004]
The semiconductor element 102 is fixed on a support substrate 101 and connected to an electrode 104 by a thin metal wire 103. Further, a sealing resin 107 is formed so as to cover the semiconductor element 102.
[0005]
Referring to FIG. 5B, on the back surface of supporting substrate 101, back electrodes 105 are provided in two rows in parallel with the outer peripheral portion.
[0006]
[Patent Document 1]
JP-A-11-233688 (see FIG. 7)
[0007]
[Problems to be solved by the invention]
In the above-described semiconductor device 100, the semiconductor device 100 is mounted on the mounting board via the brazing material formed on the back surface electrode 105. However, since the semiconductor element 102 incorporated in the semiconductor device 100 and the mounting substrate have significantly different coefficients of thermal expansion, thermal stress occurs due to a change in temperature. Conventionally, the support substrate 101 and the brazing material have been responsible for relaxing this thermal stress. However, in order to promote the relaxation of thermal stress by the support substrate 101, it is necessary to form the support substrate 101 thick, which hinders the thinning of the semiconductor device. Further, there is a problem that a connection path including a connection portion between the via hole 106 and the electrode 104 is broken due to a thermal stress.
[0008]
The present invention has been made in view of the above problems, and a main object of the present invention is to provide a semiconductor device in which destruction due to thermal stress is prevented.
[0009]
[Means for Solving the Problems]
The present invention provides a support substrate, a front surface electrode and a back surface electrode formed on the front surface and the back surface of the support substrate and connected by a penetrating portion, and fixed to the surface of the support substrate and electrically connected to the front electrode. And a sealing resin for sealing the semiconductor element, wherein a groove is provided on the back surface of the support substrate.
[0010]
Further, the present invention is characterized in that the back electrodes are formed in a matrix on the back surface of the support substrate, and the grooves are provided in a lattice pattern between the back electrodes.
[0011]
Further, the present invention is characterized in that the groove is formed at an intermediate portion between the back electrodes.
[0012]
Furthermore, the present invention is characterized in that the back electrode is mounted on a mounting substrate by attaching a brazing material to the back electrode.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The configuration of a semiconductor device 10 according to the present invention will be described with reference to FIG. FIG. 1A is a cross-sectional view of the semiconductor device 10, and FIG. 1B is a rear view thereof.
[0014]
Referring to FIG. 1A, a semiconductor device 10A according to the present invention includes a support substrate 11, a front electrode 13 and a back electrode 14 formed on the front and back surfaces of the support substrate and connected by through-holes 15, and The semiconductor device includes a semiconductor element fixed to the surface of the substrate and electrically connected to the front electrode, and a sealing resin for sealing the semiconductor element. Configuration. Details of each of these elements will be described below.
[0015]
The support substrate 11 has a function of supporting each component of the semiconductor device 10, and is made of, for example, a glass epoxy substrate. Further, the material of the support substrate 11 may be other than the glass epoxy substrate, and another organic material may be used as the material. Although the support substrate 11 has a single-layer wiring structure here, the support substrate 11 having a multilayer wiring structure may be configured.
[0016]
The surface electrode 13 is made of a conductive material and is formed on the surface of the support substrate 11. The surface electrode 13 forms a pad portion to which the thin metal wire 17 is connected, and also forms a wiring portion that is routed below the semiconductor element 16.
[0017]
The back surface electrode 14 is formed on the back surface of the support substrate 11 and is electrically connected to the front surface electrode 13 through a penetrating portion 15 penetrating the support substrate 11.
[0018]
The semiconductor element 16 is an LSI (Large Scale Integration) chip, and is fixed to the surface of the support substrate 11 via an adhesive 19 in a face-up manner. The extraction electrode of the semiconductor element 16 and the surface electrode 13 are electrically connected via a thin metal wire 17. Further, an element other than the semiconductor element may be built in the semiconductor device 10.
[0019]
The sealing resin 18 covers the surfaces of the semiconductor element 16, the fine metal wires 17, and the support substrate 11. Further, as the sealing resin 18, a light-shielding resin mixed with an inorganic filler can be employed in order to improve mechanical strength and moisture resistance. As the resin used for the sealing resin 18, both a thermoplastic resin and a thermosetting resin can be generally employed.
[0020]
The groove 12 is formed by half-scribed the back surface of the support substrate 11, and is provided near an intermediate portion between the back electrodes 14. Referring to FIG. 1B, the back surface electrode 14 is formed in a matrix so that a BGA (Ball Grid Array) or LGA (Land Grid Array) structure can be realized. The grooves 12 are formed in a lattice shape between the back electrodes 14 in each row and each column.
[0021]
With reference to FIG. 2, the mounting structure of the semiconductor element 14 will be described. Referring to FIG. 2A, conductive paths 21 are formed on the surface of mounting substrate 20. The conductive path 21 of the mounting substrate 20 and the semiconductor device 10 are connected via the brazing material 22 attached to the back surface of the back electrode 14. Here, solder or the like can be adopted as the brazing material 22.
[0022]
The semiconductor element 16 incorporated in the semiconductor device 10 and the mounting substrate 20 have significantly different coefficients of thermal expansion. Specifically, the thermal expansion coefficient of the semiconductor element 16 is about 2 ppm, and when the mounting substrate 20 is made of resin, the thermal expansion coefficient is about 20 ppm. Therefore, when the semiconductor device 10 and the mounting substrate 20 are heated due to a temperature change under a use condition, the mounting substrate 20 exhibits a larger expansion amount than the semiconductor element 16. Therefore, thermal stress is generated in the conductive path 21, the brazing material 22, the back electrode 14, the penetrating portion 15, the support substrate 11, and the front electrode 13 interposed between the semiconductor element 16 and the mounting board 20. In the present invention, the thermal stress is reduced by providing the groove 12 in the support substrate 11.
[0023]
The details of the groove 12 will be described with reference to FIG. As described above, the thermal expansion coefficient of the semiconductor element 16 is about one-tenth of the mounting substrate. Therefore, when the temperature of both the semiconductor element 16 and the mounting board 20 rises, the mounting board 20 expands significantly as compared with the semiconductor element 16, so that a large thermal stress is generated in the support substrate 11 and the penetrating portion 15. Specifically, a lateral shearing force acts on the support substrate 11 and the penetrating portion 15. In the present invention, the thermal stress acting on the support substrate 11 and the penetrating portion 15 is reduced by providing a groove in the support substrate 11 and making the support substrate in the vicinity of the location where the back electrode 14 is formed movable. . Referring to FIG. 3, support substrate 11 at a location where groove 12 is provided is deformed rightward. As described above, the groove 12 is formed so that the support substrate 11 at the position where the back electrode 14 is provided can be moved in the lateral direction when a thermal stress is applied. By making the support substrate 11 partially movable, it is possible to prevent the connection portion between the through portion 15 and the front surface electrode 13 or the connection portion between the through portion 15 and the back surface electrode 14 from peeling off. .
[0024]
Even when a large thermal stress acts between the semiconductor device 10 and the mounting substrate 20, the thermal stress is absorbed by the support substrate in the vicinity of the back electrode 14 being movable in the lateral direction. Furthermore, in the conventional semiconductor device, the supporting substrate is formed thick in order to absorb the above-mentioned thermal stress. However, according to the configuration of the present invention, the supporting substrate 11 can be made thin. In the above description, the groove 12 is provided halfway through the thickness of the support substrate 11, but the groove 12 may be formed to such a depth that the support substrate 11 is separated.
[0025]
With reference to FIG. 3, a configuration of a semiconductor device 10B of another embodiment will be described. The basic configuration of the semiconductor device 10B is the same as that of the semiconductor device described with reference to FIG. 1, except that the semiconductor element 16 is flip-chip mounted face down. Even in the case of the semiconductor device 10 </ b> B having such a configuration, the effect of the formation of the groove 12 can be obtained.
[0026]
With reference to FIG. 4, a method for manufacturing the semiconductor device 10B will be described. Referring to FIG. 4A, a front surface electrode 13 and a back surface electrode 14 are formed on the front surface and the back surface of the support substrate 11, respectively. The front surface electrode 13 and the back surface electrode 14 are electrically connected by a penetrating portion 15 formed through the support substrate 11.
[0027]
Referring to FIG. 4B, semiconductor element 16 is fixed via adhesive 19, and the electrode of semiconductor element 16 and surface electrode 14 are electrically connected by thin metal wire 17.
[0028]
Referring to FIG. 4C, sealing resin 18 is formed so as to cover semiconductor element 16 and thin metal wires 17. As a method of forming the sealing resin 18, transfer molding, injection molding, potting, and the like can be considered.
[0029]
Referring to FIG. 4D, grooves 12 are formed by half-scribe the back surface of support substrate 11 using a dicing blade. The depth of the groove 12 is formed smaller than the thickness of the support substrate 11. Then, by dividing the sealing resin 18 and the support substrate 11 at the boundary of each semiconductor device, for example, the semiconductor device 10 as shown in FIG. 1 is completed. Here, the formation of the groove 12 may be performed in a step shown in FIG. The grooves 12 may be formed by a method other than dicing. Specifically, the groove 12 can be formed by a removing method such as etching or laser.
[0030]
【The invention's effect】
According to the present invention, the following effects can be obtained.
[0031]
Since the groove 12 is formed on the back surface of the support substrate 11, the support substrate 11 can be partially movable even when a thermal stress acts on the support substrate 11 due to a difference in thermal expansion coefficient between the semiconductor element 16 and the mounting substrate 20. Thereby, the generated thermal stress can be reduced. Therefore, it is possible to prevent the occurrence of cracks at the connection portion between the through portion 15 and the front electrode 14 or at the connection portion between the through portion 15 and the back surface electrode 14 due to thermal stress.
[0032]
Further, since the thermal stress is absorbed by the support substrate 11 in which the groove 12 is provided, the stress acting on the brazing material 22 connecting the semiconductor device 10 and the mounting substrate 20 can be reduced.
[0033]
Further, by providing the groove 12 in the support substrate 11, it is possible to prevent short-circuit between the brazing materials 22 when the semiconductor device 10 is mounted. Therefore, a short circuit of the brazing material 22 can be prevented without forming a solder resist.
[Brief description of the drawings]
FIGS. 1A and 1B are a cross-sectional view and a rear view, respectively, illustrating a semiconductor device of the present invention.
2A and 2B are a cross-sectional view and a cross-sectional enlarged view illustrating a semiconductor device of the present invention.
FIG. 3 is a cross-sectional view illustrating a semiconductor device of the present invention.
4A to 4D are cross-sectional views illustrating a method for manufacturing a semiconductor device of the present invention.
5A and 5B are a cross-sectional view and a rear view, respectively, illustrating a conventional semiconductor device.
[Explanation of symbols]
REFERENCE SIGNS LIST 10 semiconductor device 11 support substrate 12 groove 13 front electrode 14 back electrode 15 penetrating portion 16 semiconductor element 17 thin metal wire 18 sealing resin 19 adhesive 20 mounting substrate 21 conductive path

Claims (4)

支持基板と、前記支持基板の表面および裏面に形成されて貫通部により接続された表面電極および裏面電極と、前記支持基板の表面に固着されて前記表面電極と電気的に接続された半導体素子と、前記半導体素子を封止する封止樹脂とを具備し、
前記支持基板の裏面には溝が設けられることを特徴とする半導体装置。
A support substrate, a front surface electrode and a back surface electrode formed on the front surface and the back surface of the support substrate and connected by a through portion, and a semiconductor element fixed to the surface of the support substrate and electrically connected to the front electrode. And a sealing resin for sealing the semiconductor element,
A semiconductor device, wherein a groove is provided on a back surface of the support substrate.
前記裏面電極は前記支持基板の裏面にマトリックス状に形成され、前記溝は前記裏面電極の間に格子状に設けられることを特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the back surface electrodes are formed in a matrix on the back surface of the support substrate, and the grooves are provided in a lattice pattern between the back surface electrodes. 3. 前記溝は、前記裏面電極間の中間部に形成されることを特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the groove is formed at an intermediate portion between the back electrodes. 前記裏面電極にロウ材を付着することにより、実装基板に実装されることを特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the semiconductor device is mounted on a mounting substrate by attaching a brazing material to the back surface electrode.
JP2003160892A 2003-06-05 2003-06-05 Semiconductor device Pending JP2004363379A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003160892A JP2004363379A (en) 2003-06-05 2003-06-05 Semiconductor device
TW093114610A TWI251451B (en) 2003-06-05 2004-05-24 Semiconductor device
KR1020040038413A KR100629830B1 (en) 2003-06-05 2004-05-28 Semiconductor device
CNB2004100452293A CN100336208C (en) 2003-06-05 2004-06-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003160892A JP2004363379A (en) 2003-06-05 2003-06-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2004363379A true JP2004363379A (en) 2004-12-24

Family

ID=34053537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160892A Pending JP2004363379A (en) 2003-06-05 2003-06-05 Semiconductor device

Country Status (4)

Country Link
JP (1) JP2004363379A (en)
KR (1) KR100629830B1 (en)
CN (1) CN100336208C (en)
TW (1) TWI251451B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303191A (en) * 2005-04-20 2006-11-02 Matsushita Electric Works Ltd Led unit
JP2006313802A (en) * 2005-05-09 2006-11-16 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2006339278A (en) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp Resin wiring board and its joining method
FR3117303A1 (en) * 2020-12-09 2022-06-10 Safran Electronics & Defense Reduction of stress zones in the soldered joints of an electronic board
WO2022131156A1 (en) * 2020-12-16 2022-06-23 株式会社村田製作所 High frequency module and communication device
JP2022533441A (en) * 2019-06-24 2022-07-22 維沃移動通信有限公司 Printed Circuit Board Assembly & Terminal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227840B2 (en) * 2010-11-24 2012-07-24 Nanya Technology Corp. Integrated circuit device and method of forming the same
KR20140050387A (en) * 2012-10-19 2014-04-29 삼성테크윈 주식회사 Leadframe for semiconductor package and the fabrication method thereof
JP2015177116A (en) * 2014-03-17 2015-10-05 株式会社東芝 semiconductor device
CN110957277B (en) * 2019-08-20 2021-02-12 中腾微网(深圳)科技有限公司 Inverter power system and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3842478B2 (en) * 1999-02-26 2006-11-08 京セラ株式会社 Mounting structure of semiconductor device mounting wiring board
JP2003037344A (en) * 2001-07-25 2003-02-07 Sanyo Electric Co Ltd Circuit device and its manufacturing method
JP4068336B2 (en) * 2001-11-30 2008-03-26 株式会社東芝 Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303191A (en) * 2005-04-20 2006-11-02 Matsushita Electric Works Ltd Led unit
JP4655735B2 (en) * 2005-04-20 2011-03-23 パナソニック電工株式会社 LED unit
JP2006313802A (en) * 2005-05-09 2006-11-16 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP4614818B2 (en) * 2005-05-09 2011-01-19 パナソニック株式会社 Semiconductor device and manufacturing method thereof
JP2006339278A (en) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp Resin wiring board and its joining method
JP4678241B2 (en) * 2005-05-31 2011-04-27 富士フイルム株式会社 Resin wiring board
JP2022533441A (en) * 2019-06-24 2022-07-22 維沃移動通信有限公司 Printed Circuit Board Assembly & Terminal
JP7335980B2 (en) 2019-06-24 2023-08-30 維沃移動通信有限公司 Printed Circuit Board Assembly & Terminal
FR3117303A1 (en) * 2020-12-09 2022-06-10 Safran Electronics & Defense Reduction of stress zones in the soldered joints of an electronic board
WO2022131156A1 (en) * 2020-12-16 2022-06-23 株式会社村田製作所 High frequency module and communication device

Also Published As

Publication number Publication date
TWI251451B (en) 2006-03-11
KR20040108563A (en) 2004-12-24
TW200505302A (en) 2005-02-01
CN100336208C (en) 2007-09-05
CN1574303A (en) 2005-02-02
KR100629830B1 (en) 2006-09-29

Similar Documents

Publication Publication Date Title
US9117815B2 (en) Method of fabricating a packaged semiconductor
US8994161B2 (en) Semiconductor device package and methods for producing same
JP2023033351A (en) Semiconductor device
JP2011086767A (en) Semiconductor device and method of manufacturing the same
US20080233679A1 (en) Semiconductor package with plated connection
US7821117B2 (en) Semiconductor package with mechanical stress isolation of semiconductor die subassembly
JP2010238731A (en) Semiconductor device, and method of manufacturing the same
US9842794B2 (en) Semiconductor package with integrated heatsink
JP2011155203A (en) Semiconductor device
JP2009117450A (en) Module and its manufacturing method
JP2004023103A (en) High-voltage ball grid array (bga) package, manufacture of heat spreader for high voltage bga package, and heat spreader for high-voltage bga package
JP2004363379A (en) Semiconductor device
KR101676225B1 (en) Semiconductor device and method of manufacturing the same
US20170018487A1 (en) Thermal enhancement for quad flat no lead (qfn) packages
JP2006156574A (en) Circuit device and its manufacturing method
JP2006100666A (en) Semiconductor device and manufacturing method thereof
CN116097400A (en) Multilayer semiconductor package with stacked passive components
KR20170124769A (en) Electric component module and manufacturing method threrof
JP2004207278A (en) Circuit device and its manufacturing method
JP4589743B2 (en) Semiconductor device
JP2004165525A (en) Semiconductor device and its manufacture
US20060240592A1 (en) Integrated circuit package and method for producing it
JP2002270726A (en) Semiconductor device and its manufacturing method
KR100608348B1 (en) method for fabricating stacked chip package
JP4090354B2 (en) Built-in module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507