JP2004363028A - Polyelectrolyte membrane and its manufacturing method - Google Patents

Polyelectrolyte membrane and its manufacturing method Download PDF

Info

Publication number
JP2004363028A
JP2004363028A JP2003162092A JP2003162092A JP2004363028A JP 2004363028 A JP2004363028 A JP 2004363028A JP 2003162092 A JP2003162092 A JP 2003162092A JP 2003162092 A JP2003162092 A JP 2003162092A JP 2004363028 A JP2004363028 A JP 2004363028A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
porous substrate
electrolyte membrane
solution
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003162092A
Other languages
Japanese (ja)
Other versions
JP4496718B2 (en
Inventor
Tetsuharu Hirano
徹治 平野
Masayuki Kiuchi
政行 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2003162092A priority Critical patent/JP4496718B2/en
Publication of JP2004363028A publication Critical patent/JP2004363028A/en
Application granted granted Critical
Publication of JP4496718B2 publication Critical patent/JP4496718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer electrolyte membrane in which a polyelectrolyte is filled in a porous substrate made of an aromatic polymer that can be manufactured easily and has a thermal resistance, and its manufacturing method. <P>SOLUTION: In the polyelectrolyte membrane, a phenol resin having sulfonic acid group or its salt is filled in a porous substrate that does not have a glass transition temperature of less than 100°C. And in the manufacturing method of the polyelectrolyte membrane, (1) phenol and/or its derivative, (2) sulfite and /or hydrogen sulfite, (3) formaldehyde water solution and/or a fomaldehyde compound such as fomal, paraformaldehyde, and, as required, (4) water are mixed and the solution obtained by the reaction is filled in the porous substrate, and then the polyelectrolyte is heated and hardened. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、スルホン酸、および/または、そのアルカリ金属塩を有するフェノ−ル樹脂が多孔基材に充填された高分子電解質膜に関するものであり、さらに詳しくは、燃料電池、2次電池、キャパシタ、イオン交換膜、分離膜などの用途に好適な高分子電解質膜に関するものである。
【0002】
【従来の技術】
固体高分子型燃料電池用イオン交換膜として、パ−フロロスルホン酸膜や炭化水素系高分子電解質膜が多く検討されている。しかし、耐熱性、燃料バリア性、力学的強度、価格、環境などの点から、まだ多くの問題を有している。
高分子電解質膜の耐熱性や強度を高め、また、燃料の透過性を調節する方法として、多孔基材に高分子電解質を充填する方法は有用である。
【0003】
例えば、オレフィン多孔基材に高分子電解質が充填されたもの(特許文献1)や、フッ素系多孔基材に高分子電解質が充填されたものが知られている(特許文献2、特許文献3)。しかし、これらの多孔基材は、耐熱性や燃料透過性が不十分であり、フッ素系多孔基材では、その製造時あるいは廃棄時に環境負荷が大きい問題もある。耐熱性炭化水素系高分子からなる多孔基材を用いた高分子電解質膜として、例えば、芳香族ポリアミド系多孔基材にパ−フルオロスルホン酸系電解質を充填したものが知られている(特許文献4)が、フッ素系電解質の使用は、前述したように価格や環境などに問題がある。
【0004】
また、芳香族ポリイミド系多孔基材に、主にビニル系ポリマ−電解質を充填したものが知られている(特許文献5)が、ビニル系ポリマ−電解質は、耐熱性、耐酸化劣化性が低い問題がある。また種々の多孔膜にスルホン化されたポリマ−を充填したものが知られている(特許文献6、特許文献7)。しかし、浸透させる高分子電解質溶液はその溶液の粘度が高い、耐熱性高分子多孔基材との親和性が乏しいなどの原因により、簡単に耐熱性高分子多孔基材に高分子電解質を充填することができないという問題があった。また、これらの耐熱性炭化水素系行高分子からなる多孔基材に高分子電解質を充填した高分子電解質膜を記載した特許では、充填される高分子電解質として、スルホン化フェノ−ル樹脂についてなんら言及されていない。
【0005】
【特許文献1】
特開平1−22932号公報
【特許文献2】
特開平6−29032号公報
【特許文献3】
特開平9−194609号公報
【特許文献4】
特開2002−358979号公報
【特許文献5】
特開2002−083612号公報
【特許文献6】
特表2001−514431号公報
【特許文献7】
米国特許第6248469号明細書
【0006】
【本発明が解決しようとする問題】
本発明の目的は、容易に製造することのできる耐熱性のある芳香族高分子からなる多孔基材に高分子電解質が充填された高分子電解質膜およびその製造法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の課題に対し、スルホン酸基あるいはその塩を有するフェノ−ル樹脂が炭化水素系芳香族高分子に非常に馴染みが良く、容易に充填可能なことを見い出した。
従って、本発明は、ガラス転位温度を100℃より低い温度に持たない多孔基材に、スルホン酸基またはその塩を有するフェノ−ル樹脂が充填されたことを特徴とする高分子電解質膜に関する。
【0008】
また、本発明は、(1)フェノ−ル類および/またはその誘導体、(2)亜硫酸塩および/または亜硫酸水素塩、(3)ホルムアルデヒド水溶液および/またはホルマ−ル、パラホルムアルデヒドなどのホルムアルデヒド化合物必要ならば(4)水を混合後、反応して得られる溶液を多孔基材に充填後、高分子電解質を加熱し、硬化することを特徴とする高分子電解質膜の製造法に関する。
【0009】
【発明の実施の形態】
以下にこの発明の好ましい態様を列記する。
1)スルホン酸基またはその塩を有するフェノ−ル樹脂が、下記の化学式(1)
【0010】
【化2】

Figure 2004363028
【0011】
[ここで、Rは水素原子または炭素数1〜6のアルキル基を示し、RはなしあるいはCHを、Xは水素原子またはアルカリ金属を示す。]
からなる構造を含有するスルホン酸基またはその塩を有するフェノ−ル樹脂である上記の高分子電解質膜。
【0012】
2)ガラス転位温度を100℃より低い温度に持たない多孔基材が、芳香環を有する炭化水素系高分子である上記の高分子電解質膜。
3)ガラス転位温度を100℃より低い温度に持たない多孔基材が、芳香族ポリイミドである上記の高分子電解質膜。
4)ガラス転位温度を100℃より低い温度に持たない多孔基材が、芳香族ポリエ−テルである上記の高分子電解質膜。
5)スルホン酸基またはその塩を有するフェノ−ル樹脂のプレポリマ−溶液の粘度が200ポイズ以下である上記の高分子電解質膜の製造法。
【0013】
本発明においては、多孔基材として、ガラス転移温度を100℃より低い温度に持たない、好適には110℃より低い温度に持たない耐熱性高分子からなる高分子微多孔質膜を使用する。高分子微多孔質膜を構成する高分子の融点が高くても、ガラス転移温度が低いと高温使用時に機械的強度が劣る恐れがある。本発明においては、高温使用時の耐熱性、線膨張係数が小さいことによる多孔質構造保持性の観点から前記の耐熱性高分子からなる高分子微多孔質膜を選択する。
【0014】
そのような高分子微多孔質膜としては、ポリイミド、ポリエ−テルイミド、ポリスルホン、ポリエ−テルスルホン、ポリスルホン、ポリアリ−ルエ−テルスルホン、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリエ−テルケトン、ポリエ−テルエ−テルケトン、ポリベンズイミダゾ−ル、ポリキノキサリン、ポリフェニルキノキサリンなどの芳香族高分子微多孔質膜を好ましく挙げることができる。
特に、ポリイミド、ポリエ−テルイミド、ポリスルホン、ポリエ−テルスルホン、ポリエ−テルケトン、ポリエ−テルエ−テルケトン、ポリアリ−ルエ−テルスルホンが、充填のされやすさ、耐熱性、入手のしやすさの点から好ましい。
【0015】
上記多孔基材の厚みは、0.1〜500μmであり、好ましくは、1〜400μm、さらに好ましくは、3〜300μmである。厚みが、0.1μm以下となると、膜の強度が低くなることから好ましくなく、また、500μmより厚くなるとイオン伝導の抵抗が大きくなり好ましくない。
【0016】
多孔基材全体の体積から、高分子の占める体積を減じたものを多孔基材全体の体積で除した百分率である多孔基材の空隙率は、10〜95%、好ましくは、15〜90%、さらに好ましくは20〜85%である。空孔率が10%より小さいと、高分子電解質膜とした時のイオン伝導度が低くなり好ましくなく、一方、空孔率が95%より高いと高分子電解質膜の強度が低くなり好ましくない。
【0017】
本発明に用いられる多孔基材の平均孔径は、好ましくは、0.01〜50μmであり、さらに好ましくは、0.05〜10μmである。平均孔径が小さすぎるとスルホン酸基またはその塩を有するフェノ−ル樹脂の充填が困難となり、大きすぎると多孔基材の機械的強度が低下したり、スルホン酸基またはその塩を有するフェノ−ル樹脂を安定に保持できなくなるので好ましくない。また、ガ−レイ値は、10〜1000sec/100ccの膜が好適に使用できる。
【0018】
本発明に用いられる高分子微多孔質膜は、溶媒流延法、押出法、溶融法、延伸法などの公知の方法で製造することができ、市販のものを用いてもよい。
例えば、芳香族ポリエ−テルスルホン微多孔質膜は、一般的な溶媒流延法により製造される。芳香族ポリエ−テルスルホンを水と混和する溶媒に所定濃度に溶解し、ガラス板状に流延、これを水中に浸漬してポリマ−を析出させ、乾燥することによって芳香族ポリエ−テルスルホン微多孔質膜を得ることができる。また、市販のものを入手して用いることもできる。芳香族ポリエ−テルスルホンは、公知の方法で合成でき、市販のものを入手して用いることもできる。
【0019】
また、両面に貫通した細孔を有するポリイミド微多孔質膜は、例えば特開平11−310658、特開2000−306568に開示されている。すなわち、ポリイミド前駆体0.3〜60重量%と溶媒99.7〜40重量%からなる溶液を調製し、前記溶液をフィルム状に流延した後、溶媒の置換速度を調整するために、ポリオレフィン等の微多孔質膜で表面を覆い、凝固溶媒に接触させることによってポリイミド前駆体を析出、微多孔質化させる。その後、該ポリイミド前駆体微多孔質膜を熱処理或いは化学処理することでイミド化することにより該ポリイミド微多孔質膜を得ることができる。
【0020】
本発明で用いられるスルホン酸基またはその塩を有するフェノ−ル樹脂は、化学式(2)
【0021】
【化3】
Figure 2004363028
【0022】
[ここで、Rは、水素原子または炭素数1〜6のアルキル基を示し、Xは、水素原子またはアルカリ金属を示す。]
もしくは、化学式(1)
【0023】
【化4】
Figure 2004363028
[ここで、Rは、水素原子または炭素数1〜6のアルキル基を示し、Xは、水素原子またはアルカリ金属を示す。]
で表される構造を有するものである。このようなスルホン酸基またはその塩を有するフェノ−ル樹脂は、すでに公知であり、例えば、具体的な構造が、例えば、村山新一、「プラスチック材料講座15 フェノ−ル樹脂」、日刊工業新聞社、東京、78頁図(1970)などに記載されている。
【0024】
また、その合成法は、化学式(1)の構造を有するものならば、例えば、特公昭33−9490号公報に記載されており、化学式(2)の構造を有するものならば、例えば、米国特許2204539号明細書に記載されている。本発明においては、高分子電解質膜の容易さ、およびスルホン酸基またはその塩の安定性から、前記の化学式(1)で表される構造を有するものが好ましい。
【0025】
本発明において、前記の化学式(1)の構造を有するスルホン酸基またはその塩を有するフェノ−ル樹脂は、例えば、(1)フェノ−ル、クレゾ−ル、アニソ−ル、エトキシベンゼン、ブトキシベンゼンなどのフェノ−ル化合物および/またはその誘導体、(2)亜硫酸塩および/または亜硫酸水素塩、(3)ホルムアルデヒド水溶液および/またはホルマ−ル、パラホルムアルデヒドなどのホルムアルデヒド化合物とを原料として、必要ならば水を添加して、反応させることによって合成することができる。
【0026】
本発明において、スルホン酸基またはその塩を有するフェノ−ル樹脂の原料を混合しただけでは、その溶液は、固形成分の存在するスラリ−状である。したがって、多孔基材に充填するためには、充填する温度で均一溶液状態となる幾分反応が進行したプレポリマ−溶液を調整し、そのプレポリマ−溶液を充填する必要がある。このことから、高分子電解質膜は、(1)スルホン酸基またはその塩を有するフェノ−ル樹脂のプレポリマ−溶液を調整し、(2)その溶液を多孔基材に充填後、(3)スルホン酸基またはその塩を有するフェノ−ル樹脂のプレポリマ−を硬化させることによって、製造することができる。
【0027】
スルホン酸基またはその塩を有するフェノ−ル樹脂のプレポリマ−溶液は、上記原料を、所定の割合で、混合、加熱することによって、調整される。この時、フェノ−ル化合物および/またはその誘導体1モルに対して、ホルムアルデヒド水溶液および/またはホルマ−ル、パラホルムアルデヒドなどのホルムアルデヒド化合物は、1.5〜10モル、より好ましくは、1.5〜7モル用いることが好ましい。1.5モルより少ないと、硬化反応が不十分となり、一方、10モルより多くなると副反応や未反応のホルムアルデヒドが多くなり好ましくない。また、亜硫酸塩および/または亜硫酸水素塩は、フェノ−ル化合物またはその誘導体1モルに対して、0.2〜2モル、より好ましくは、0.3〜1.5モル用いることが好ましい。0.2モルより少ない、あるいは2モルより多くなると硬化反応が不十分となり好ましくない。
【0028】
本発明において、前記のフェノ−ル樹脂のプレポリマ−溶液は、必要ならば、水が添加され、50〜100℃で、1分〜24時間加熱することによって、調整される。このとき、フェノ−ル樹脂のプレポリマ−溶液の粘度は、多孔基材に充填する温度において、200ポイズ以下であることが好ましい。プレポリマ−溶液の粘度が200ポイズより高いと、多孔基材に充填することが困難となることから好ましくない。添加する水の量は、ホルムアルデヒド水溶液の水分と合わせて全仕込み量の5〜60重量%、より好ましくは、10〜50重量%となるように添加することが好ましい。系中の水分量が5重量%より少ないとプレポリマ−溶液が均一にならない可能性があることから好ましくなく、また、60重量%より多いと、多孔基材に充填後の硬化時に、発泡する可能性があることから好ましくない。
【0029】
本発明において、スルホン酸基またはその塩を有するフェノ−ル樹脂の多孔基材への充填は、公知の方法を用いることができ、例えば、(1)プレポリマ−溶液に、多孔基材を浸漬する、(2)多孔基材上にプレポリマ−溶液を塗布する、(3)多孔基材上にプレポリマ−溶液を塗布し、反対面から減圧するなどの方法により達成することができる。
【0030】
プレポリマ−溶液充填後、60〜200℃、好ましくは65〜190℃、さらに好ましくは、70〜180℃で、1分〜72時間、好ましくは、2分〜48時間、加熱することにより、スルホン酸基またはその塩を有するフェノ−ル樹脂を硬化させることにより、本発明の高分子電解質膜を製造することができる。このとき、ステンレスなどの金属板、ガラス板、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−ト、ポリイミド、ポリアミド、芳香族ポリエ−テル、ポリフッ化エチレンなどのフッ素系樹脂などの樹脂フィルムによって、プレポリマ−溶液の充填された多孔基材の片面を支持してもよく、また、保護の目的で両面に張り合わせても良い。実際の使用時には、これらの支持体または保護体を剥離して用いる。
【0031】
本発明では、上記の方法によるスルホン酸基またはその塩を有するフェノ−ル樹脂の多孔基材への充填後、あるいは硬化後、必要ならば、再度、片面または両面にプレポリマ−溶液を塗布し、硬化させても良い。この時、充填されるプレポリマ−溶液と後から塗布されるプレポリマ−溶液は、同一でもよく、異なっていても良い。
また、必要ならば、高分子電解質膜にパ−フルオロスルホン酸ポリマ−、スルホン化ポリイミド、アルコキシスルホン化ポリイミド、スルホン化芳香族ポリエ−テル、アルキルスルホン化芳香族ポリエ−テル、スルホン化ポリベンゾイミダゾ−ル、スルホン化ポリベンゾオキサゾ−ル、スルホン化ポリフェニレンオキシド、スルホン化ポリフェニレンスルフィド、スルホン化ポリスチレンなどのスルホン酸基を有するポリマ−溶液を塗布(あるいは含浸)、乾燥して用いてもよい。
【0032】
本発明では、上記により得られた高分子電解質膜のスルホン酸基が、塩の状態の場合、高分子電解質膜を塩酸、硫酸、硝酸水溶液などの酸性水溶液に浸漬することにより、容易にスルホン酸基に変換することができる。
【0033】
【実施例】
以下、実施例および比較例により本発明を、より具体的に説明する。なお、実施例および実施例における各測定は以下のように行った。
<ガラス転位温度>
−150℃〜450℃の範囲について、歪み0.1%、周波数5Hzで、レオメトリックス社製RSA−IIにより測定。
により測定した。
<イオン伝導度>
恒温恒湿機中で、2mmの間隔で白金線が取り付けられ、その間にスリットを設けてあるポリフッ化エチレンン板と、通常のポリフッ化エチレンン板の間に5mm幅の高分子電解質膜を挟み、50℃、90%RHで、日置電機(株)製3532 LCRハイテスタを用いて、複素インピ−ダンス測定によりイオン伝導度を求めた。
【0034】
<イオン交換容量>
試料を0.05Nの水酸化ナトリウム水溶液に、60℃で3時間浸漬後、その水酸化ナトリウム水溶液を、0.05Nの塩酸で滴定し、試料浸漬により消費された水酸化ナトリウム量を求めることにより、イオン交換容量を求めた。
<粘度>
プレポリマ−溶液1.1ml(比較例1では、0.4ml)を用いて、東京計器製E型粘度計で、所定温度で測定した。なお、加熱は、カップ部に所定温度の水を流すことにより行った。
<充填率および空孔率>
実施例および比較例で用いたポリイミド多孔基材の空孔率S1はポリイミドの密度ρ1(1.34g/cm)を用いて、次式により求めた。
【0035】
【式1】
Figure 2004363028
[ここで、Vはポリイミド多孔基材の面積と厚みから求めた体積であり、W1は質量である。]
【0036】
充填率S2は充填前の多孔基材の質量W1と、充填、硬化後の質量W2とから、次式により求めた。
【式2】
Figure 2004363028
【0037】
[ここで、ρ2はフェノ−ル樹脂の密度である。なお、以下の計算では、実施例1のフェノ−ルプレポリマ−溶液を微多孔膜に充填せずに、ガラス板に挟んで、実施例1の条件で硬化したものの密度(1.27g/cm)を用いた。]
【0038】
合成例1(ポリイミド多孔基材の合成)
攪拌器、窒素導入管、排気管を備えた四つ口セパラブルフラスコ中に溶媒としてN,N−ジメチルアセトアミド、ジアミン成分として4,4’−ジアミノジフェニルエ−テルを、窒素雰囲気下、40℃にて攪拌、溶解させた。次いで、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物をジアミン成分に対して等モルまで順次数段階に分けて添加し、40℃で約12hr攪拌反応させることで、固形成分の重量比が9.1重量%の粘稠なポリアミック酸溶液を得た。この溶液を、鏡面研磨したSUS板上に流延し、その後、溶媒の置換速度を調整するために、ポリオレフィン製微多孔質膜(宇部興産社製;UP−3025)で表面を覆い、該積層物をメタノ−ル中に、続けて水中に浸漬することでポリアミック酸微多孔質膜を得た。この膜の周囲をピンテンタ−で固定した後、大気中にて320℃で熱処理を行うことで、次の特性を持つポリイミド微多孔質膜PI−1を得た。
【0039】
Tg 275℃
平均孔径 0.18μm
空孔率 40%
ガ−レイ値 110sec/100cc
膜厚 29μm
【0040】
実施例1
フェノ−ル5g(0.05モル)、パラホルムアルデヒド4.85g(0.16モル)、亜硫酸ナトリウム1g(0.01モル)、亜硫酸水素ナトリウム0.75g(0.01モル)、水5gを、窒素気流下、85℃で5分間、加熱、撹拌した。得られた淡黄色の均一溶液を、室温まで冷却した。冷却後も、プレポリマ−溶液は、均一溶液の状態であった。また、その粘度は、室温で、45センチポイズであった。
【0041】
合成例1で得たポリイミド多孔基材を、室温でプレポリマ−溶液に10秒間浸漬し、プレポリマ−溶液を充填した。プレポリマ−溶液を充填したポリイミド多孔基材を、ガラス板で挟み、90℃、15時間加熱した。冷却後、ガラス板間から試料を取り出したところ、ポリイミド多孔基材を充填してフェノ−ル樹脂は硬化していた。40℃、16時間真空乾燥後、この膜の厚みは30μmであり、また、充填率は85容積%であった。なお、プレポリマ−溶液には、水分(仕込み時、30質量%)が存在することを考慮すると、プレポリマ−溶液はポリイミド基材の空孔をほぼ完全に充填していると考えられる。
得られた膜を、1Nの硫酸水溶液に、室温で5時間浸漬後、洗浄液が中性になるまで水洗した。この膜のイオン交換容量は、1.2ミリ等量/gであった。また、イオン伝導度は、1ミリS/cmであった。
【0042】
実施例2
実施例1を繰り返して再現性をみたところ、ほぼ同一の結果を得ることができた。
【0043】
実施例3
実施例1で調整したプレポリマ−溶液を、室温でポリイミド多孔基材上に塗布し、プレポリマ−溶液を充填した。プレポリマ−溶液を充填したポリイミド多孔基材を、ガラス板で挟み、90℃、15時間加熱した。冷却後、ガラス板間から試料を取り出したところ、ポリイミド多孔基材を充填してフェノ−ル樹脂は硬化していた。この充填率は84容積%であった。プレポリマ−溶液はポリイミド基材の空孔をほぼ完全に充填していると考えられる。
また、イオン伝導度は、実施例1とほぼ同等である。
【0044】
実施例4
プレポリマ−の調整時間を10分間とした以外は、実施例1と同様にしてプレポリマ−溶液を調整した。得られた液は、黄色均一溶液で、その粘度は、室温で50センチポイズであった。
ポリイミド多孔基材をステンレス網上に置き、室温でプレポリマ−溶液を塗布後、下部から減圧した。プレポリマ−溶液がポリイミド多孔基材を透過することが観察された。このようにしてプレポリマ−溶液を充填したポリイミド多孔基材を、ガラス板で挟み、90℃、15時間加熱した。得られた高分子電解質膜は、ポリイミド多孔基材を充填してフェノ−ル樹脂が硬化したものであった。この充填率は87容積%であった。プレポリマ−溶液はポリイミド基材の空孔をほぼ完全に充填していると考えられる。
また、イオン伝導度は、実施例1とほぼ同等である。
【0045】
実施例5
添加した水を3.15g、反応温度を76℃、反応時間を15分とした以外は、実施例1と同様にしてプレポリマ−溶液を調整した。得られた液は、70℃で黄色均一溶液で、その粘度は、70℃で2ポイズであった。
ポリイミド多孔基材を、70℃でプレポリマ−溶液に浸漬し、プレポリマ−溶液を充填した。プレポリマ−溶液を充填したポリイミド多孔基材を、ガラス板で挟み、90℃、15時間加熱した。冷却後、ガラス板間から試料を取り出したところ、ポリイミド多孔基材を充填してフェノ−ル樹脂は硬化していた。この充填率は85容積%であった。
また、イオン伝導度は、実施例1とほぼ同等である。
【0046】
実施例6
フェノ−ル5g(0.05モル)、パラホルムアルデヒド9.7g(0.33モル)、亜硫酸ナトリウム2g(0.02モル)、亜硫酸水素ナトリウム1.5g(0.01モル)、水6.3gを、窒素気流下、85℃で5分間、加熱、撹拌した。得られた黄色の均一溶液を、室温まで冷却した。冷却後も、プレポリマ−溶液は、均一溶液の状態であった。また、その粘度は、室温で、47センチポイズであった。
ポリイミド多孔基材を、室温でプレポリマ−溶液に浸漬し、プレポリマ−溶液を充填した。プレポリマ−溶液を充填したポリイミド多孔基材を、ガラス板で挟み、100℃、5時間加熱した。冷却後、ガラス板間から試料を取り出したところ、ポリイミド多孔基材を充填してフェノ−ル樹脂は硬化していた。この充填率は83容積%であった。
また、イオン伝導度は、実施例1とほぼ同等である。
【0047】
比較例1〜3
加熱時間を90分とした以外は、実施例5と同様にしてプレポリマ−溶液を調整した。得られた溶液は、茶色であり、また、70℃での粘度は、300ポイズであった。
ポリイミド多孔基材を、70℃でプレポリマ−溶液に浸漬したが、ポリイミド多孔基材に、プレポリマ−溶液は充填することはできなかった。
また、実施例3と同様な方法で充填を試みた(プレポリマ−溶液の温度:70℃)が、プレポリマ−溶液は、ポリイミド多孔基材を透過することなく、充填することはできなかった。
【0048】
実施例7
実施例1と同様にして得られた高分子電解質膜を、ナフィオン溶液(アルドリッチ社製、5質量%、アルコ−ル類/水溶液)に浸漬後、取出し、乾燥した。乾燥後の厚みは31μmであった。イオン伝導度は実施例1と同等であった。
【0049】
【発明の効果】
この発明によれば、高分子電解質が耐熱性のある芳香族高分子からなる多孔基材に簡単な操作で高い充填率で充填したイオン伝導度を有する高分子電解質膜を得ることができる。
また、この発明の方法によれば、耐熱性のある芳香族高分子からなる多孔基材に高分子電解質が充填された均一な性能の高分子電解質膜を再現性良く製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte membrane in which a phenolic resin having sulfonic acid and / or an alkali metal salt thereof is filled in a porous substrate, and more particularly, to a fuel cell, a secondary battery, and a capacitor. And a polymer electrolyte membrane suitable for applications such as ion exchange membranes and separation membranes.
[0002]
[Prior art]
Perfluorosulfonic acid membranes and hydrocarbon polymer electrolyte membranes have been widely studied as ion exchange membranes for polymer electrolyte fuel cells. However, there are still many problems in terms of heat resistance, fuel barrier properties, mechanical strength, price, environment and the like.
As a method for increasing the heat resistance and strength of the polymer electrolyte membrane and adjusting the fuel permeability, a method of filling the porous substrate with the polymer electrolyte is useful.
[0003]
For example, an olefin porous substrate filled with a polymer electrolyte (Patent Document 1) and a fluorine-based porous substrate filled with a polymer electrolyte are known (Patent Documents 2 and 3). . However, these porous substrates are insufficient in heat resistance and fuel permeability, and there is a problem that a fluorine-based porous substrate has a large environmental load at the time of production or disposal. As a polymer electrolyte membrane using a porous substrate made of a heat-resistant hydrocarbon-based polymer, for example, an aromatic polyamide-based porous substrate filled with a perfluorosulfonic acid-based electrolyte is known (Patent Document 1) 4) However, the use of the fluorine-based electrolyte has problems in price, environment, and the like as described above.
[0004]
Further, an aromatic polyimide-based porous base material which is mainly filled with a vinyl-based polymer electrolyte is known (Patent Document 5). However, the vinyl-based polymer electrolyte has low heat resistance and low oxidation deterioration resistance. There's a problem. Also, various porous membranes filled with a sulfonated polymer are known (Patent Documents 6 and 7). However, the polymer electrolyte solution to be infiltrated easily fills the polymer electrolyte into the heat-resistant polymer porous substrate due to the high viscosity of the solution and poor affinity with the heat-resistant polymer porous substrate. There was a problem that it was not possible. Further, in the patent describing a polymer electrolyte membrane in which a polymer electrolyte is filled in a porous base material composed of these heat-resistant hydrocarbon-based polymers, there is no description about a sulfonated phenol resin as the polymer electrolyte to be filled. Not mentioned.
[0005]
[Patent Document 1]
JP-A-1-22932 [Patent Document 2]
JP-A-6-29032 [Patent Document 3]
JP-A-9-194609 [Patent Document 4]
Japanese Patent Application Laid-Open No. 2002-358979 [Patent Document 5]
Japanese Patent Application Laid-Open No. 2002-083612 [Patent Document 6]
JP 2001-514431 A [Patent Document 7]
US Pat. No. 6,248,469.
[Problems to be solved by the present invention]
An object of the present invention is to provide a polymer electrolyte membrane in which a polymer electrolyte is filled in a porous substrate made of a heat-resistant aromatic polymer which can be easily produced, and a method for producing the same. .
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, it has been found that a phenol resin having a sulfonic acid group or a salt thereof is very familiar with a hydrocarbon-based aromatic polymer and can be easily filled.
Accordingly, the present invention relates to a polymer electrolyte membrane characterized in that a phenolic resin having a sulfonic acid group or a salt thereof is filled in a porous substrate having a glass transition temperature not lower than 100 ° C.
[0008]
Further, the present invention relates to (1) phenols and / or derivatives thereof, (2) sulfites and / or bisulfites, (3) aqueous formaldehyde and / or formaldehyde compounds such as formal and paraformaldehyde. Then, the present invention relates to (4) a method for producing a polymer electrolyte membrane, which comprises mixing water, filling a solution obtained by the reaction into a porous substrate, and heating and curing the polymer electrolyte.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention are listed below.
1) A phenol resin having a sulfonic acid group or a salt thereof is represented by the following chemical formula (1)
[0010]
Embedded image
Figure 2004363028
[0011]
[Here, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R 2 represents none or CH 2 , and X represents a hydrogen atom or an alkali metal. ]
The polymer electrolyte membrane described above, which is a phenolic resin having a sulfonic acid group or a salt thereof having a structure consisting of
[0012]
2) The above-mentioned polymer electrolyte membrane, wherein the porous substrate having a glass transition temperature not lower than 100 ° C. is a hydrocarbon polymer having an aromatic ring.
3) The polymer electrolyte membrane as described above, wherein the porous substrate having no glass transition temperature below 100 ° C. is an aromatic polyimide.
4) The polymer electrolyte membrane as described above, wherein the porous substrate having no glass transition temperature below 100 ° C. is an aromatic polyether.
5) The method for producing a polymer electrolyte membrane as described above, wherein the viscosity of the prepolymer solution of a phenolic resin having a sulfonic acid group or a salt thereof is 200 poise or less.
[0013]
In the present invention, a microporous polymer film made of a heat-resistant polymer having no glass transition temperature below 100 ° C., preferably not below 110 ° C., is used as the porous substrate. Even if the melting point of the polymer constituting the polymer microporous membrane is high, if the glass transition temperature is low, the mechanical strength at the time of high temperature use may be inferior. In the present invention, a polymer microporous membrane composed of the above-mentioned heat-resistant polymer is selected from the viewpoint of heat resistance at the time of high temperature use and a porous structure retention property due to a small linear expansion coefficient.
[0014]
Examples of such a polymer microporous membrane include polyimide, polyetherimide, polysulfone, polyethersulfone, polysulfone, polyarylethersulfone, polyphenylene oxide, polyphenylenesulfide, polyetherketone, polyetheretheretherketone, and polybenz. Preferable examples include aromatic polymer microporous membranes such as imidazole, polyquinoxaline, and polyphenylquinoxaline.
In particular, polyimide, polyetherimide, polysulfone, polyethersulfone, polyetherketone, polyetheretheroketone, and polyarylethersulfone are preferable from the viewpoint of ease of filling, heat resistance, and availability.
[0015]
The thickness of the porous substrate is 0.1 to 500 μm, preferably 1 to 400 μm, and more preferably 3 to 300 μm. If the thickness is less than 0.1 μm, the strength of the film is lowered, which is not preferable. If the thickness is more than 500 μm, the ion conduction resistance is increased, which is not preferable.
[0016]
The porosity of the porous substrate, which is a percentage obtained by dividing the volume occupied by the polymer from the volume of the entire porous substrate by the volume of the entire porous substrate, is 10 to 95%, preferably 15 to 90%. , More preferably 20 to 85%. If the porosity is less than 10%, the ionic conductivity of the polymer electrolyte membrane becomes low, which is not preferable. On the other hand, if the porosity is higher than 95%, the strength of the polymer electrolyte membrane becomes low, which is not preferable.
[0017]
The average pore size of the porous substrate used in the present invention is preferably 0.01 to 50 μm, and more preferably 0.05 to 10 μm. If the average pore size is too small, it is difficult to fill a phenolic resin having a sulfonic acid group or a salt thereof. It is not preferable because the resin cannot be stably held. Further, a film having a Gurley value of 10 to 1000 sec / 100 cc can be suitably used.
[0018]
The polymer microporous membrane used in the present invention can be produced by a known method such as a solvent casting method, an extrusion method, a melting method, and a stretching method, and a commercially available one may be used.
For example, an aromatic polyethersulfone microporous membrane is produced by a general solvent casting method. Aromatic polyethersulfone is dissolved in a solvent that is miscible with water to a predetermined concentration, cast on a glass plate, immersed in water to precipitate a polymer, and dried to form a microporous aromatic polyethersulfone. A membrane can be obtained. Alternatively, a commercially available product can be obtained and used. The aromatic polyethersulfone can be synthesized by a known method, and a commercially available product can be obtained and used.
[0019]
In addition, polyimide microporous membranes having pores penetrating on both surfaces are disclosed in, for example, JP-A-11-310658 and JP-A-2000-306568. That is, a solution comprising 0.3 to 60% by weight of a polyimide precursor and 99.7 to 40% by weight of a solvent is prepared, and the solution is cast into a film. The surface of the polyimide precursor is covered with a microporous film such as that described above, and the polyimide precursor is precipitated and brought into microporosity by contact with a coagulation solvent. Thereafter, the polyimide precursor microporous film can be imidized by heat treatment or chemical treatment to obtain the polyimide microporous film.
[0020]
The phenolic resin having a sulfonic acid group or a salt thereof used in the present invention has a chemical formula (2)
[0021]
Embedded image
Figure 2004363028
[0022]
[Here, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and X represents a hydrogen atom or an alkali metal. ]
Or chemical formula (1)
[0023]
Embedded image
Figure 2004363028
[Here, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and X represents a hydrogen atom or an alkali metal. ]
It has a structure represented by Such a phenolic resin having a sulfonic acid group or a salt thereof is already known. For example, the specific structure is described in, for example, Shinichi Murayama, “Plastic Materials Course 15 Phenol Resin”, Nikkan Kogyo Shimbun Company, Tokyo, page 78 (1970).
[0024]
The synthesis method is described in, for example, Japanese Patent Publication No. 33-9490, if it has the structure of chemical formula (1), and if it has the structure of chemical formula (2), it is described in US Pat. 2204539. In the present invention, those having the structure represented by the above chemical formula (1) are preferable from the viewpoint of easiness of the polymer electrolyte membrane and stability of the sulfonic acid group or a salt thereof.
[0025]
In the present invention, the phenol resin having a sulfonic acid group having the structure of the chemical formula (1) or a salt thereof includes, for example, (1) phenol, cresol, anisole, ethoxybenzene, butoxybenzene. Phenolic compounds and / or derivatives thereof, (2) sulfites and / or bisulfites, (3) aqueous formaldehyde and / or formaldehyde compounds such as formal and paraformaldehyde, if necessary. It can be synthesized by adding water and reacting.
[0026]
In the present invention, the solution is a slurry having a solid component only by mixing the raw material of the phenol resin having a sulfonic acid group or a salt thereof. Therefore, in order to fill the porous substrate, it is necessary to prepare a prepolymer solution that has undergone a somewhat reaction at a temperature at which it is filled, and to fill the prepolymer solution. For this reason, the polymer electrolyte membrane is prepared by (1) preparing a prepolymer solution of a phenolic resin having a sulfonic acid group or a salt thereof, (2) filling the solution into a porous substrate, and (3) It can be produced by curing a phenol resin prepolymer having an acid group or a salt thereof.
[0027]
A prepolymer solution of a phenolic resin having a sulfonic acid group or a salt thereof is prepared by mixing and heating the above raw materials at a predetermined ratio. At this time, the aqueous solution of formaldehyde and / or formaldehyde compound such as formal and paraformaldehyde is 1.5 to 10 moles, more preferably 1.5 to 10 moles per mole of the phenol compound and / or its derivative. It is preferable to use 7 mol. If the amount is less than 1.5 mol, the curing reaction becomes insufficient. On the other hand, if it exceeds 10 mol, side reactions and unreacted formaldehyde increase, which is not preferable. The sulfite and / or bisulfite is preferably used in an amount of 0.2 to 2 mol, more preferably 0.3 to 1.5 mol, per 1 mol of the phenol compound or its derivative. If the amount is less than 0.2 mol or more than 2 mol, the curing reaction becomes insufficient, which is not preferable.
[0028]
In the present invention, the phenol resin prepolymer solution is prepared by adding water, if necessary, and heating at 50 to 100 ° C. for 1 minute to 24 hours. At this time, the viscosity of the phenol resin prepolymer solution is preferably 200 poise or less at the temperature at which the porous substrate is filled. If the viscosity of the prepolymer solution is higher than 200 poise, it is difficult to fill the porous substrate, which is not preferable. The amount of water to be added is preferably 5 to 60% by weight, more preferably 10 to 50% by weight, based on the total charged amount, together with the water content of the aqueous formaldehyde solution. If the water content in the system is less than 5% by weight, the prepolymer solution may not be uniform because it may not be uniform, and if it is more than 60% by weight, foaming may occur during curing after filling the porous substrate. It is not preferable because of its properties.
[0029]
In the present invention, the phenolic resin having a sulfonic acid group or a salt thereof can be filled into a porous substrate by a known method. For example, (1) dipping the porous substrate in a prepolymer solution (2) coating the prepolymer solution on the porous substrate, (3) applying the prepolymer solution on the porous substrate, and reducing the pressure from the opposite surface.
[0030]
After filling the prepolymer solution, the mixture is heated at 60 to 200 ° C., preferably 65 to 190 ° C., more preferably 70 to 180 ° C. for 1 minute to 72 hours, preferably 2 minutes to 48 hours to obtain sulfonic acid. The polymer electrolyte membrane of the present invention can be produced by curing a phenol resin having a group or a salt thereof. At this time, a resin such as a metal plate such as stainless steel, a glass plate, a fluorine-based resin such as polypropylene, polyethylene, polyethylene terephthalate, polybutylene terephthalate, polyimide, polyamide, aromatic polyether, and polyfluoroethylene. The film may support one side of the porous substrate filled with the prepolymer solution, or may be laminated on both sides for protection. At the time of actual use, these supports or protective bodies are peeled off and used.
[0031]
In the present invention, after filling the porous substrate with a phenolic resin having a sulfonic acid group or a salt thereof according to the above method, or after curing, if necessary, a prepolymer solution is applied to one or both surfaces again, It may be cured. At this time, the prepolymer solution to be filled and the prepolymer solution to be applied later may be the same or different.
If necessary, the polymer electrolyte membrane may be coated with perfluorosulfonic acid polymer, sulfonated polyimide, alkoxysulfonated polyimide, sulfonated aromatic polyether, alkylsulfonated aromatic polyether, sulfonated polybenzimidazo. Alternatively, a polymer solution having a sulfonic acid group such as toluene, sulfonated polybenzoxazole, sulfonated polyphenylene oxide, sulfonated polyphenylene sulfide, or sulfonated polystyrene may be applied (or impregnated) and dried.
[0032]
In the present invention, when the sulfonic acid group of the polymer electrolyte membrane obtained as described above is in a salt state, the polymer electrolyte membrane is easily sulfonic acid by immersing the polymer electrolyte membrane in an acidic aqueous solution such as an aqueous solution of hydrochloric acid, sulfuric acid or nitric acid. Can be converted to a group.
[0033]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. In addition, each measurement in an Example and an Example was performed as follows.
<Glass transition temperature>
Measured by Rheometrics RSA-II at a strain of 0.1% and a frequency of 5 Hz in the range of -150 ° C to 450 ° C.
Was measured by
<Ionic conductivity>
In a thermo-hygrostat, platinum wires are attached at intervals of 2 mm, and a polyfluoroethylene plate having a slit therebetween, and a polymer electrolyte membrane having a width of 5 mm are sandwiched between ordinary polyfluoroethylene plates at 50 ° C. At 90% RH, ion conductivity was determined by complex impedance measurement using a 3532 LCR HiTester manufactured by Hioki Electric Co., Ltd.
[0034]
<Ion exchange capacity>
After immersing the sample in a 0.05N aqueous sodium hydroxide solution at 60 ° C. for 3 hours, the aqueous sodium hydroxide solution is titrated with 0.05N hydrochloric acid, and the amount of sodium hydroxide consumed by immersing the sample is determined. And ion exchange capacity.
<Viscosity>
Using 1.1 ml of the prepolymer solution (0.4 ml in Comparative Example 1), measurement was performed at a predetermined temperature with an E-type viscometer manufactured by Tokyo Keiki. Note that the heating was performed by flowing water at a predetermined temperature through the cup portion.
<Filling rate and porosity>
The porosity S1 of the polyimide porous substrate used in the examples and comparative examples was determined by the following formula using the density ρ1 of the polyimide (1.34 g / cm 3 ).
[0035]
(Equation 1)
Figure 2004363028
[Where V is the volume determined from the area and thickness of the porous polyimide substrate, and W1 is the mass. ]
[0036]
The filling rate S2 was determined from the mass W1 of the porous base material before filling and the mass W2 after filling and curing, according to the following equation.
[Equation 2]
Figure 2004363028
[0037]
[Where ρ2 is the density of the phenol resin. In the following calculation, the density (1.27 g / cm 3 ) of the phenol prepolymer solution of Example 1 which was not filled in a microporous membrane but was sandwiched between glass plates and cured under the conditions of Example 1 was used. Was used. ]
[0038]
Synthesis Example 1 (Synthesis of porous polyimide substrate)
N, N-dimethylacetamide as a solvent and 4,4′-diaminodiphenyl ether as a diamine component were placed in a four-neck separable flask equipped with a stirrer, nitrogen introduction pipe, and exhaust pipe at 40 ° C. under a nitrogen atmosphere. To dissolve. Then, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is added in several steps sequentially to an equimolar amount with respect to the diamine component, and the solid component is reacted by stirring at 40 ° C. for about 12 hours. Was obtained in a weight ratio of 9.1% by weight to obtain a viscous polyamic acid solution. This solution was cast on a mirror-polished SUS plate, and then the surface was covered with a polyolefin microporous membrane (Ube Industries, Ltd .; UP-3025) to adjust the solvent replacement rate. The product was immersed in methanol and subsequently in water to obtain a microporous polyamic acid membrane. After fixing the periphery of this film with a pin tenter, a heat treatment was performed at 320 ° C. in the air to obtain a polyimide microporous film PI-1 having the following characteristics.
[0039]
Tg 275 ° C
Average pore size 0.18μm
Porosity 40%
Gurley value 110sec / 100cc
Film thickness 29μm
[0040]
Example 1
5 g (0.05 mol) of phenol, 4.85 g (0.16 mol) of paraformaldehyde, 1 g (0.01 mol) of sodium sulfite, 0.75 g (0.01 mol) of sodium bisulfite, and 5 g of water, The mixture was heated and stirred at 85 ° C. for 5 minutes under a nitrogen stream. The resulting pale yellow homogeneous solution was cooled to room temperature. After cooling, the prepolymer solution was still a homogeneous solution. The viscosity was 45 centipoise at room temperature.
[0041]
The porous polyimide substrate obtained in Synthesis Example 1 was immersed in a prepolymer solution at room temperature for 10 seconds, and filled with the prepolymer solution. The polyimide porous substrate filled with the prepolymer solution was sandwiched between glass plates and heated at 90 ° C. for 15 hours. After cooling, the sample was taken out from between the glass plates, and the phenol resin was cured by filling the porous polyimide substrate. After vacuum drying at 40 ° C. for 16 hours, the thickness of this film was 30 μm, and the filling factor was 85% by volume. Considering that the prepolymer solution contains water (30% by mass at the time of preparation), it is considered that the prepolymer solution almost completely fills the pores of the polyimide base material.
The obtained film was immersed in a 1N aqueous sulfuric acid solution at room temperature for 5 hours, and then washed with water until the cleaning solution became neutral. The ion exchange capacity of this membrane was 1.2 meq / g. The ionic conductivity was 1 milliS / cm.
[0042]
Example 2
When the reproducibility was observed by repeating Example 1, almost the same results could be obtained.
[0043]
Example 3
The prepolymer solution prepared in Example 1 was applied on a polyimide porous substrate at room temperature and filled with the prepolymer solution. The polyimide porous substrate filled with the prepolymer solution was sandwiched between glass plates and heated at 90 ° C. for 15 hours. After cooling, the sample was taken out from between the glass plates, and the phenol resin was cured by filling the porous polyimide substrate. The filling factor was 84% by volume. It is believed that the prepolymer solution almost completely filled the pores of the polyimide substrate.
The ionic conductivity is almost the same as that of the first embodiment.
[0044]
Example 4
A prepolymer solution was prepared in the same manner as in Example 1 except that the preparation time of the prepolymer was changed to 10 minutes. The resulting liquid was a yellow homogeneous solution having a viscosity of 50 centipoise at room temperature.
The polyimide porous substrate was placed on a stainless steel net, and after applying the prepolymer solution at room temperature, the pressure was reduced from below. It was observed that the prepolymer solution permeated the porous polyimide substrate. The polyimide porous substrate filled with the prepolymer solution was sandwiched between glass plates and heated at 90 ° C. for 15 hours. The obtained polymer electrolyte membrane was obtained by filling a polyimide porous substrate and curing the phenol resin. This filling rate was 87% by volume. It is believed that the prepolymer solution almost completely filled the pores of the polyimide substrate.
The ionic conductivity is almost the same as that of the first embodiment.
[0045]
Example 5
A prepolymer solution was prepared in the same manner as in Example 1, except that the added water was 3.15 g, the reaction temperature was 76 ° C., and the reaction time was 15 minutes. The obtained liquid was a homogeneous yellow solution at 70 ° C. and had a viscosity of 2 poise at 70 ° C.
The porous polyimide substrate was immersed in the prepolymer solution at 70 ° C. and filled with the prepolymer solution. The polyimide porous substrate filled with the prepolymer solution was sandwiched between glass plates and heated at 90 ° C. for 15 hours. After cooling, the sample was taken out from between the glass plates, and the phenol resin was cured by filling the porous polyimide substrate. This filling rate was 85% by volume.
The ionic conductivity is almost the same as that of the first embodiment.
[0046]
Example 6
Phenol 5 g (0.05 mol), paraformaldehyde 9.7 g (0.33 mol), sodium sulfite 2 g (0.02 mol), sodium bisulfite 1.5 g (0.01 mol), water 6.3 g Was heated and stirred at 85 ° C. for 5 minutes under a nitrogen stream. The resulting yellow homogeneous solution was cooled to room temperature. After cooling, the prepolymer solution was still a homogeneous solution. The viscosity was 47 centipoise at room temperature.
The porous polyimide substrate was immersed in the prepolymer solution at room temperature and filled with the prepolymer solution. The polyimide porous substrate filled with the prepolymer solution was sandwiched between glass plates and heated at 100 ° C. for 5 hours. After cooling, the sample was taken out from between the glass plates, and the phenol resin was cured by filling the porous polyimide substrate. This filling rate was 83% by volume.
Further, the ionic conductivity is almost equal to that of the first embodiment.
[0047]
Comparative Examples 1-3
A prepolymer solution was prepared in the same manner as in Example 5, except that the heating time was 90 minutes. The resulting solution was brown and had a viscosity at 70 ° C. of 300 poise.
The polyimide porous substrate was immersed in the prepolymer solution at 70 ° C., but the polyimide porous substrate could not be filled with the prepolymer solution.
Further, filling was attempted in the same manner as in Example 3 (prepolymer solution temperature: 70 ° C.), but the prepolymer solution could not be filled without passing through the polyimide porous substrate.
[0048]
Example 7
The polymer electrolyte membrane obtained in the same manner as in Example 1 was immersed in a Nafion solution (manufactured by Aldrich, 5% by mass, alcohols / aqueous solution), taken out and dried. The thickness after drying was 31 μm. The ionic conductivity was equivalent to that of Example 1.
[0049]
【The invention's effect】
According to the present invention, it is possible to obtain a polymer electrolyte membrane having ionic conductivity in which a polymer electrolyte is filled at a high filling rate into a porous substrate made of an aromatic polymer having heat resistance by a simple operation.
Further, according to the method of the present invention, a polymer electrolyte membrane having uniform performance in which a polymer electrolyte is filled in a porous substrate made of a heat-resistant aromatic polymer can be produced with good reproducibility.

Claims (7)

ガラス転位温度を100℃より低い温度に持たない多孔基材に、スルホン酸基またはその塩を有するフェノ−ル樹脂が充填されたことを特徴とする高分子電解質膜。A polymer electrolyte membrane characterized in that a phenolic resin having a sulfonic acid group or a salt thereof is filled in a porous substrate having a glass transition temperature not lower than 100 ° C. スルホン酸基またはその塩を有するフェノ−ル樹脂が、下記の化学式(1)
Figure 2004363028
[ここで、Rは、水素原子または炭素数1〜6のアルキル基を示し、Xは、水素原子またはアルカリ金属を示す。]
からなる構造を含有するスルホン酸基またはその塩を有するフェノ−ル樹脂である請求項1に記載の高分子電解質膜。
A phenol resin having a sulfonic acid group or a salt thereof is represented by the following chemical formula (1)
Figure 2004363028
[Here, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and X represents a hydrogen atom or an alkali metal. ]
The polymer electrolyte membrane according to claim 1, which is a phenol resin having a sulfonic acid group or a salt thereof having a structure consisting of:
ガラス転位温度を100℃より低い温度に持たない多孔基材が、芳香環を有する炭化水素系高分子である請求項1あるいは2に記載の高分子電解質膜。3. The polymer electrolyte membrane according to claim 1, wherein the porous substrate having a glass transition temperature not lower than 100 ° C. is a hydrocarbon polymer having an aromatic ring. ガラス転位温度を100℃より低い温度に持たない多孔基材が、芳香族ポリイミドである請求項1〜3のいずれかに記載の高分子電解質膜。The polymer electrolyte membrane according to any one of claims 1 to 3, wherein the porous substrate having no glass transition temperature lower than 100 ° C is an aromatic polyimide. ガラス転位温度を100℃より低い温度に持たない多孔基材が、芳香族ポリエ−テルである請求項1〜4のいずれかに記載の高分子電解質膜。The polymer electrolyte membrane according to any one of claims 1 to 4, wherein the porous substrate having a glass transition temperature not lower than 100 ° C is an aromatic polyether. (1)フェノ−ル類および/またはその誘導体、(2)亜硫酸塩および/または亜硫酸水素塩、(3)ホルムアルデヒド水溶液および/またはホルマ−ル、パラホルムアルデヒドなどのホルムアルデヒド化合物必要ならば(4)水を混合後、反応して得られる溶液を多孔基材に充填後、高分子電解質を加熱し、硬化することを特徴とする高分子電解質膜の製造法。(1) phenols and / or derivatives thereof, (2) sulfites and / or bisulfites, (3) aqueous formaldehyde and / or formaldehyde compounds such as formal and paraformaldehyde (4) water Mixing a solution, filling the solution obtained by the reaction into a porous substrate, heating the polymer electrolyte, and curing the polymer electrolyte. スルホン酸基またはその塩を有するフェノ−ル樹脂のプレポリマ−溶液の粘度が200ポイズ以下である請求項6に記載の高分子電解質膜の製造法。The method for producing a polymer electrolyte membrane according to claim 6, wherein the viscosity of the prepolymer solution of the phenol resin having a sulfonic acid group or a salt thereof is 200 poise or less.
JP2003162092A 2003-06-06 2003-06-06 POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME Expired - Fee Related JP4496718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162092A JP4496718B2 (en) 2003-06-06 2003-06-06 POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162092A JP4496718B2 (en) 2003-06-06 2003-06-06 POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2004363028A true JP2004363028A (en) 2004-12-24
JP4496718B2 JP4496718B2 (en) 2010-07-07

Family

ID=34054333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162092A Expired - Fee Related JP4496718B2 (en) 2003-06-06 2003-06-06 POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP4496718B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001301A (en) * 2005-05-27 2007-01-11 Fujifilm Holdings Corp Honeycomb composite membrane and its manufacturing method
JP2008146899A (en) * 2006-12-07 2008-06-26 Asahi Kasei Chemicals Corp Polymer electrolyte laminated film

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422932A (en) * 1987-07-20 1989-01-25 Toa Nenryo Kogyo Kk Electrolytic thin film
JPH06242474A (en) * 1993-02-17 1994-09-02 Tonen Corp Production of electrochromic element and high polymer electrolyte thin film
JP2001145826A (en) * 1999-11-19 2001-05-29 Ube Ind Ltd Porous membrane and method for preparing porous membrane
JP2001514431A (en) * 1997-08-29 2001-09-11 フオスター・ミラー・インコーポレイテツド Composite solid polymer electrolyte membrane
JP2003022708A (en) * 2001-07-09 2003-01-24 Toyobo Co Ltd Blended polymer electrolyte, electrolytic membrane having the electrolyte as main component, and membrane /electrode junction containing the electrolyte
JP2003022824A (en) * 2001-07-09 2003-01-24 Toyobo Co Ltd Acid base blended polymer electrolyte, electrolyte membrane having same as main component, and membrane/ electrode assembly using same
JP2003022709A (en) * 2001-07-09 2003-01-24 Toyobo Co Ltd Blended polymer electrolyte, electrolytic membrane having the electrolyte as main component, and membrane /electrode junction containing the electrolyte
JP2003080538A (en) * 2001-09-10 2003-03-19 Nissan Chem Ind Ltd Polyimide porous film and method for manufacturing the same
WO2003033566A1 (en) * 2001-10-10 2003-04-24 Mitsui Chemicals,Inc. Crosslinkable aromatic resins having protonic acid groups, and ion-conductive polymer membranes, binders, and fuel cells made by using the same
JP2003123792A (en) * 2001-10-09 2003-04-25 Toray Ind Inc Polymer electrolyte film, its manufacturing method, and solid polymer fuel cell using the same
JP2004039557A (en) * 2002-07-05 2004-02-05 Hitachi Ltd Phenolic resin-based polymer electrolyte membrane for solid polymer electrolyte fuel cell, membrane-electrode joint body using the same and fuel cell

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422932A (en) * 1987-07-20 1989-01-25 Toa Nenryo Kogyo Kk Electrolytic thin film
JPH06242474A (en) * 1993-02-17 1994-09-02 Tonen Corp Production of electrochromic element and high polymer electrolyte thin film
JP2001514431A (en) * 1997-08-29 2001-09-11 フオスター・ミラー・インコーポレイテツド Composite solid polymer electrolyte membrane
JP2001145826A (en) * 1999-11-19 2001-05-29 Ube Ind Ltd Porous membrane and method for preparing porous membrane
JP2003022708A (en) * 2001-07-09 2003-01-24 Toyobo Co Ltd Blended polymer electrolyte, electrolytic membrane having the electrolyte as main component, and membrane /electrode junction containing the electrolyte
JP2003022824A (en) * 2001-07-09 2003-01-24 Toyobo Co Ltd Acid base blended polymer electrolyte, electrolyte membrane having same as main component, and membrane/ electrode assembly using same
JP2003022709A (en) * 2001-07-09 2003-01-24 Toyobo Co Ltd Blended polymer electrolyte, electrolytic membrane having the electrolyte as main component, and membrane /electrode junction containing the electrolyte
JP2003080538A (en) * 2001-09-10 2003-03-19 Nissan Chem Ind Ltd Polyimide porous film and method for manufacturing the same
JP2003123792A (en) * 2001-10-09 2003-04-25 Toray Ind Inc Polymer electrolyte film, its manufacturing method, and solid polymer fuel cell using the same
WO2003033566A1 (en) * 2001-10-10 2003-04-24 Mitsui Chemicals,Inc. Crosslinkable aromatic resins having protonic acid groups, and ion-conductive polymer membranes, binders, and fuel cells made by using the same
JP2004039557A (en) * 2002-07-05 2004-02-05 Hitachi Ltd Phenolic resin-based polymer electrolyte membrane for solid polymer electrolyte fuel cell, membrane-electrode joint body using the same and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001301A (en) * 2005-05-27 2007-01-11 Fujifilm Holdings Corp Honeycomb composite membrane and its manufacturing method
JP2008146899A (en) * 2006-12-07 2008-06-26 Asahi Kasei Chemicals Corp Polymer electrolyte laminated film

Also Published As

Publication number Publication date
JP4496718B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP4076951B2 (en) Protonic acid group-containing crosslinkable aromatic resin, and ion conductive polymer membrane, binder and fuel cell using the same
US11127964B2 (en) Method for preparing a porous polyimide film and a composite membrane comprising the same
JP2000281819A (en) Production of cross-linked polymer membrane and fuel cell
JP2003528188A (en) Composite ion exchange material
EP1465277A1 (en) Solid polymer electrolyte and protonconducting membrane
JP2005060625A (en) Polyarylene and its manufacturing method, and polymer solid electrolyte and proton-conductive film
JP2002512285A (en) Acid-base polymer blends and their use in membrane treatment
JP4428181B2 (en) Sulfonated polymers and solid polymer electrolytes with nitrile-type hydrophobic blocks
JP4587383B2 (en) Electrolyte membrane and method for producing the same
US20080038614A1 (en) Proton-conducting electrolyte membrane, production process thereof, and membrane-electrode assembly and fuel cell using the same
JP4283125B2 (en) Polymer electrolyte, proton conducting membrane and membrane-electrode structure
JP4684678B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
US20060275637A1 (en) Electrolyte membrane and preparing method thereof
JP5089061B2 (en) Solid polymer electrolyte, proton conducting membrane, electrode electrolyte, electrode paste, and membrane-electrode assembly
JP2009021232A (en) Membrane-electrode assembly and manufacturing method thereof, and solid polymer fuel cell
JP2004107484A (en) Sulfo-containing polyimide resin composition and sulfo-containing polyimide membrane made therefrom
JP4496718B2 (en) POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP2005044611A (en) Composite ion-exchange membrane and solid polymer fuel cell using the same
JP2010040530A (en) Proton conductive electrolyte membrane, its forming method, and membrane-electrode conjugant, and fuel cell using the same
JP4754496B2 (en) Sulfonated polymers and solid polymer electrolytes with nitrile-type hydrophobic blocks
JP2002105199A (en) Polyimide resin composition having proton conductivity, proton conductive polyimide membrane and solid polymer type fuel cell using the same
JP2009104926A (en) Membrane electrode assembly
EP3020764B1 (en) Carbon dioxide gas separation membrane with resin composition
JP2004311301A (en) Proton conductive material, proton conductive film and its crosslinked product
JP2006253003A (en) Manufacturing method of ion exchange membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4496718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees