JP2004361770A - Infrared microscope - Google Patents

Infrared microscope Download PDF

Info

Publication number
JP2004361770A
JP2004361770A JP2003161648A JP2003161648A JP2004361770A JP 2004361770 A JP2004361770 A JP 2004361770A JP 2003161648 A JP2003161648 A JP 2003161648A JP 2003161648 A JP2003161648 A JP 2003161648A JP 2004361770 A JP2004361770 A JP 2004361770A
Authority
JP
Japan
Prior art keywords
infrared
light
visible light
visible
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003161648A
Other languages
Japanese (ja)
Inventor
Yasushi Nakada
靖史 中田
Toyohiko Tanaka
豊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003161648A priority Critical patent/JP2004361770A/en
Publication of JP2004361770A publication Critical patent/JP2004361770A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared microscope capable of performing both of observation by means of visible light and measurement by means of infrared light without using a movable mirror. <P>SOLUTION: In the infrared microscope, visible light 12 from a visible light source 11 and infrared light 22 from an FTIR 21 take optical paths which are vertical to each other and are made incident to a cold filter 1. At this time, the visible light 12 is transmitted by the cold filter 1 and, therefore, directly advances as it is. On the other hand, the infrared light 22 is totally reflected, therefore, bends the optical path at right angle, passes through the same optical path with the visible light 12, is condensed by a reflective objective mirror 31 and is made incident to a sample 32. In stead of the cold filters 1, 2, a cold mirror which transmits infrared light almost completely and reflects visible light is preferably used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、可視光による観察と同時に赤外線による微小領域の分光分析をも行なうことのできる赤外顕微鏡に関する。
【0002】
【従来の技術】
赤外顕微鏡は、移動可能なステージに載せた試料を可視光で観察して測定領域の位置と大きさを決め、その領域にフーリエ変換赤外分光光度計(FTIR)で干渉させた赤外光を照射し、得られる反射または透過光を赤外検出器に導入することにより、微小な領域の赤外スペクトルを測定する装置である(特許文献1参照)。
したがって、赤外顕微鏡は、使用する光の種類により、(1)可視光により観察を行なう可視光モードと、(2)赤外線により分光分析を行なう赤外線モード、の2種のモードがあり、これらの各モードについて更に、(イ)試料を透過してきた光又は赤外線を観察・測定する透過モードと、(ロ)試料表面で反射してきた光又は赤外線を観察・測定する反射モードの2種のモードを切り替えて使用する。従って、全体として赤外顕微鏡は、(A)可視光による透過光観察(B)可視光による反射光観察(C)赤外線による透過光測定(D)赤外線による反射光測定の4種のモードで動作することができるようになっている。
これらのモードを切り替えるために、従来の赤外顕微鏡では、可動ミラーを光路内に設置し、赤外光と可視光を場合に応じて切り換えていた。
【0003】
【特許文献1】
特開平5−80256号公報
【0004】
【発明が解決しようとする課題】
しかし、従来の赤外顕微鏡は、複数の可動ミラーを独立に手動で切り替えていたため、モードを切り替えるための操作が複雑であり、1つでも可動ミラーの操作を誤ると、いずれのモードにも当てはまらない中途半端な状態となって正しい観測、測定ができないばかりか、場合によっては、赤外線が接眼レンズの方に導かれてしまうという状態が生じ得る。通常、干渉器を含む赤外線光源から送られてくる赤外線には、干渉状態を制御するためのレーザ光が含まれているため、これが観察者の目に入ることは避けなければならない。
【0005】
また、それぞれの光源から発せられる赤外光・可視光は、ミラーによって、試料−検出器間の光路に導かれるため、可視光による観察と赤外光による測定は同時に実行することはできない。したがって、ステージを移動させて可視光像を観察しながら測定を実行して、連続的なスペクトル吸収を探すようなことは難しい。
そこで、本発明は、可動ミラーを使用せず、かつ、可視光による観察と赤外光による測定は同時に実行することが可能な赤外顕微鏡を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するため、赤外光はほぼ全反射するが、可視光は逆に透過するコールドフィルター、あるいは逆の分光特性を有するコールドミラーを光路内に挿入し、赤外および可視光の両方が、同時にそれぞれの検出器に入射するようにする。
すなわち、本発明は、可視及び赤外光源と、該光源及び/又は試料照射後の可視光及び赤外光を集光する対物反射鏡と、試料照射後の可視光及び赤外光を検出する可視及び赤外検出器を備えた赤外顕微鏡において、可視及び赤外光源の光軸上にコールドフィルター又はコールドミラーを配置したことを特徴とする赤外顕微鏡である。
これにより、本願発明では、赤外光は反射し、可視光は透過する(あるいは逆の分光特性である)ので、光軸に対して45度の角度でこのフィルターを挿入すると、互いに直角な関係にあるFTIRからの赤外導入部と可視光源から同時に光を入射させることができ、また同様に直角な位置にある各検出器に光を入射させることができる。
【0007】
ここで、コールドフィルターは、可視光を透過して赤外光を反射する性質を有するもので、防熱ガラスとも呼ばれている。また、コールドミラーは、コールドフィルターと逆の分光特性を示すもので、可視光を反射して赤外線を透過するものである。反射鏡の基板としてガラスを使用し、これの前面に屈折率の小さい物質の厚さλ/4の膜と、屈折率の大きい物質の厚さλ/4の膜とを交互に真空蒸着することによって製作される。膜の層数を変えることによって、また層群との間に間坐を入れることによって、透過光を最大にしたり、反射光を最大にしたりできる。
【0008】
【発明の実施の形態】
本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係る赤外顕微鏡の全体概略図である。図中、32は試料であり、図示しない試料ステージに置かれる。試料ステージは電動XYステージとなっており、試料をXY平面内で移動させるとともに、試料ステージがZステージに取り付けられ、試料は試料ステージとともにZ軸方向にも移動させられて光学系の焦点の合った合焦位置に位置決めされる。
試料32を挟んでその上側には反射対物鏡33として上部カセグレイン鏡が配置され、下部にはコンデンサとして反射対物鏡31が配置されている。反射対物鏡31、32の光軸上には、試料測定部位の画像情報を得る手段として可視光源11、及び撮像素子のCCD13が配置されている。
【0009】
また、反射対物鏡31と可視光源11との間の光路上、反射対物鏡33とCCD13との間の光路上には各々コールドフィルター1、2が挿入されている。このコールドフィルター1、2は、図2の透過率特性を有する。すなわち、可視光は透過、赤外光は反射するというものである。そして、コールドフィルター1、2の反射光路上にFTIR21、赤外検出器23が配置されている。FTIR21は、公知の構成、すなわち、赤外光源、干渉計などを備える。
【0010】
以上の構成により、可視光源11からの可視光12とFTIR21からの赤外光22は、互いに直角な光路をとり、コールドフィルター1に入射する。このとき可視光12はコールドフィルター1を透過するのでそのまま直進する。一方赤外光22は全反射されるので光路は直角に折れ曲がり、可視光12と同じ光路を通って反射対物鏡31で集光されて試料32に入射する。この試料32は図示していないXYステージにより光軸に対して垂直な方向に自由に動かすことができる。透過光は反射対物鏡33で平行光線に戻され、コールドフィルター2に入射する。ここでもコールドフィルター1と同様の働きにより、可視光12はCCD13に、赤外光22は全反射して赤外検出器23に入射する。
【0011】
本発明は、上記構成に限定されず、コールドフィルター1、2の代わりに、赤外光をほぼ完全に透過させ、可視光を反射させるコールドミラーを使用してもよい。この場合、FTIRからの赤外光導入部と赤外検出器を長軸方向に設置し、可視光源とCCDをそれらと直角方向に設置することになる。すなわち、図1の構成において、可視光源11の位置にFTIR21を配置し、CCD13の位置に赤外検出器23を配置した構成となる。
【0012】
また、コールドフィルター1、2が理想的な特性、つまり測定波長領域の赤外光は100%反射し、可視光は100%透過する場合以外、つまり実際は、測定する赤外光に損失が生じる。少しでも高い光量を必要とする低透過率試料の測定時などはこれが問題となることも有り得る。この問題に対応するため、従来の赤外光(IR)/可視切替機構と組み合わせることで、可視/IR・可視同時測定/IRのみ測定の3モード測定が可能となる。
【0013】
【発明の効果】
本発明では、測定と可視画像の観察を同時に行えるため、可視光で特徴が認められるところを次々に赤外測定したり、測定により特徴的な赤外吸収を示す場所を探すことが容易になる。さらに、ミラーの切り替え機構が不要となり、機械的な強度の向上やコストの低減が見込める。
【図面の簡単な説明】
【図1】本発明に係る赤外顕微鏡の全体概略図
【図2】コールドフィルターの透過率特性を示す図
【符号の説明】
1、2:コールドフィルター
11:可視光源
13:CCD
21:FTIR
23:赤外検出器
31、33:反射対物鏡
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an infrared microscope capable of performing spectroscopic analysis of a minute region by infrared light simultaneously with observation by visible light.
[0002]
[Prior art]
An infrared microscope observes a sample placed on a movable stage with visible light, determines the position and size of a measurement area, and makes the area interfere with a Fourier transform infrared spectrophotometer (FTIR). Is applied to the infrared detector, and the resulting reflected or transmitted light is introduced into an infrared detector to measure an infrared spectrum in a minute area (see Patent Document 1).
Therefore, the infrared microscope has two modes, (1) a visible light mode for observing with visible light, and (2) an infrared mode for performing spectroscopic analysis with infrared rays, depending on the type of light used. Each mode is further divided into two modes: (a) a transmission mode for observing and measuring light or infrared light transmitted through the sample, and (b) a reflection mode for observing and measuring light or infrared light reflected on the sample surface. Switch and use. Therefore, as a whole, the infrared microscope operates in four modes of (A) observation of transmitted light by visible light, (B) observation of reflected light by visible light, (C) measurement of transmitted light by infrared light, and (D) measurement of reflected light by infrared light. You can do it.
In order to switch between these modes, in a conventional infrared microscope, a movable mirror is installed in an optical path, and infrared light and visible light are switched according to circumstances.
[0003]
[Patent Document 1]
JP-A-5-80256
[Problems to be solved by the invention]
However, in the conventional infrared microscope, since a plurality of movable mirrors are manually switched independently, the operation for switching the mode is complicated, and if one of the movable mirrors is operated incorrectly, it does not apply to any of the modes. In addition to the incomplete state, correct observation and measurement cannot be performed, and in some cases, a state where infrared rays are guided toward the eyepiece may occur. Normally, since infrared light sent from an infrared light source including an interferometer includes laser light for controlling an interference state, it is necessary to prevent the infrared light from entering an observer's eyes.
[0005]
Further, since the infrared light and the visible light emitted from each light source are guided to the optical path between the sample and the detector by the mirror, the observation using the visible light and the measurement using the infrared light cannot be performed at the same time. Therefore, it is difficult to execute the measurement while observing the visible light image while moving the stage to search for continuous spectral absorption.
Therefore, an object of the present invention is to provide an infrared microscope that does not use a movable mirror and can simultaneously perform observation with visible light and measurement with infrared light.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention inserts a cold filter, which reflects infrared light almost completely, but transmits visible light in the reverse direction, or a cold mirror having reverse spectral characteristics into the optical path, and transmits infrared light and infrared light. Both visible lights are simultaneously incident on the respective detectors.
That is, the present invention provides a visible and infrared light source, an objective reflector for condensing the light source and / or the visible light and the infrared light after irradiation of the sample, and detecting the visible light and the infrared light after irradiation of the sample. An infrared microscope having visible and infrared detectors, wherein a cold filter or a cold mirror is arranged on the optical axis of the visible and infrared light sources.
As a result, in the present invention, infrared light is reflected and visible light is transmitted (or has the opposite spectral characteristic). Therefore, when this filter is inserted at an angle of 45 degrees with respect to the optical axis, a relationship perpendicular to each other is obtained. The light can be simultaneously incident from the infrared introducing section from the FTIR and the visible light source, and similarly, the light can be incident on each detector at a right angle.
[0007]
Here, the cold filter has a property of transmitting visible light and reflecting infrared light, and is also called heat insulating glass. The cold mirror has a spectral characteristic opposite to that of the cold filter, and reflects visible light and transmits infrared light. Using glass as a substrate of a reflector, vacuum-depositing a film of a material having a small refractive index with a thickness of λ / 4 and a film of a material having a large refractive index with a thickness of λ / 4 on the front surface of the glass. Produced by By varying the number of layers in the membrane and by interspersing with the layers, the transmitted or reflected light can be maximized.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an overall schematic diagram of an infrared microscope according to the present invention. In the figure, reference numeral 32 denotes a sample, which is placed on a sample stage (not shown). The sample stage is an electric XY stage, which moves the sample in the XY plane, and the sample stage is mounted on the Z stage. The sample is also moved in the Z-axis direction together with the sample stage to focus the optical system. The in-focus position is set.
An upper Cassegrain mirror as a reflection objective mirror 33 is disposed above the sample 32 and a reflection objective mirror 31 as a condenser is disposed below the sample 32. On the optical axis of the reflection objective mirrors 31 and 32, a visible light source 11 and a CCD 13 of an image sensor are arranged as means for obtaining image information of a sample measurement site.
[0009]
Further, cold filters 1 and 2 are inserted on the optical path between the reflection objective 31 and the visible light source 11 and on the optical path between the reflection objective 33 and the CCD 13, respectively. The cold filters 1 and 2 have the transmittance characteristics shown in FIG. That is, visible light is transmitted and infrared light is reflected. The FTIR 21 and the infrared detector 23 are arranged on the reflection optical paths of the cold filters 1 and 2. The FTIR 21 includes a known configuration, that is, an infrared light source, an interferometer, and the like.
[0010]
With the above configuration, the visible light 12 from the visible light source 11 and the infrared light 22 from the FTIR 21 take an optical path perpendicular to each other and enter the cold filter 1. At this time, since the visible light 12 passes through the cold filter 1, it travels straight. On the other hand, since the infrared light 22 is totally reflected, the optical path is bent at a right angle, passes through the same optical path as the visible light 12, is condensed by the reflection objective mirror 31, and enters the sample 32. The sample 32 can be freely moved in a direction perpendicular to the optical axis by an XY stage (not shown). The transmitted light is returned to parallel light by the reflecting objective mirror 33 and enters the cold filter 2. Also in this case, by the same operation as the cold filter 1, the visible light 12 enters the CCD 13 and the infrared light 22 is totally reflected and enters the infrared detector 23.
[0011]
The present invention is not limited to the above configuration, and a cold mirror that transmits infrared light almost completely and reflects visible light may be used instead of the cold filters 1 and 2. In this case, the infrared light introducing section from the FTIR and the infrared detector are installed in the long axis direction, and the visible light source and the CCD are installed in a direction perpendicular to them. That is, in the configuration of FIG. 1, the FTIR 21 is disposed at the position of the visible light source 11 and the infrared detector 23 is disposed at the position of the CCD 13.
[0012]
In addition, the cold filters 1 and 2 have ideal characteristics, that is, infrared light in a measurement wavelength region is reflected 100%, and visible light is not transmitted 100%. In other words, actually, infrared light to be measured has a loss. This can be a problem when measuring a low transmittance sample that requires even a small amount of light. To cope with this problem, three-mode measurement of visible / IR / visible simultaneous measurement / IR only measurement is possible by combining with a conventional infrared light (IR) / visible switching mechanism.
[0013]
【The invention's effect】
In the present invention, since measurement and observation of a visible image can be performed simultaneously, it is easy to measure infrared locations one after another where features are recognized by visible light, or to find a place showing characteristic infrared absorption by measurement. . Further, a mirror switching mechanism is not required, and improvement in mechanical strength and reduction in cost can be expected.
[Brief description of the drawings]
FIG. 1 is an overall schematic diagram of an infrared microscope according to the present invention. FIG. 2 is a diagram showing transmittance characteristics of a cold filter.
1, 2: cold filter 11: visible light source 13: CCD
21: FTIR
23: infrared detector 31, 33: reflection objective mirror

Claims (1)

可視及び赤外光源と、該光源及び/又は試料照射後の可視光及び赤外光を集光する対物反射鏡と、試料照射後の可視光及び赤外光を検出する可視及び赤外検出器を備えた赤外顕微鏡において、可視及び赤外光源の光軸上にコールドフィルター又はコールドミラーを配置したことを特徴とする赤外顕微鏡。Visible and infrared light sources, objective reflectors for condensing the light sources and / or visible and infrared light after sample irradiation, and visible and infrared detectors for detecting visible and infrared light after sample irradiation An infrared microscope comprising: a cold filter or a cold mirror disposed on optical axes of visible and infrared light sources.
JP2003161648A 2003-06-06 2003-06-06 Infrared microscope Pending JP2004361770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161648A JP2004361770A (en) 2003-06-06 2003-06-06 Infrared microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161648A JP2004361770A (en) 2003-06-06 2003-06-06 Infrared microscope

Publications (1)

Publication Number Publication Date
JP2004361770A true JP2004361770A (en) 2004-12-24

Family

ID=34054001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161648A Pending JP2004361770A (en) 2003-06-06 2003-06-06 Infrared microscope

Country Status (1)

Country Link
JP (1) JP2004361770A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299278A (en) * 1995-04-28 1996-11-19 Nidek Co Ltd Fundus camera
JPH11264935A (en) * 1998-03-18 1999-09-28 Jeol Ltd Microscopic infrared device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299278A (en) * 1995-04-28 1996-11-19 Nidek Co Ltd Fundus camera
JPH11264935A (en) * 1998-03-18 1999-09-28 Jeol Ltd Microscopic infrared device

Similar Documents

Publication Publication Date Title
US4852955A (en) Microscope for use in modular FTIR spectrometer system
US7532414B2 (en) Reflective optical system
CN106990052B (en) Optical characteristic measuring device and optical system
US5712705A (en) Arrangement for analysis of substances at the surface of an optical sensor
EP1896892A2 (en) Reflective optical system
JP2005527780A (en) Optical microscope mid-infrared spectrometer attachment
JP2007530964A (en) Electronic distance measuring device characterized by spectral and spatial selectivity
US7298550B2 (en) Dichroic mirror, fluorescence filter set, and fluoroscopy apparatus
EP3438647B1 (en) Optical instrument for measurement of total reflection absorption spectrum and measurement device
TW202020436A (en) System and method for multiple mode inspection of a sample
JPH11264935A (en) Microscopic infrared device
US7764424B2 (en) Light source apparatus and microscope apparatus
CN112305739A (en) Common-path wide-narrow-view-field combined infrared dual-waveband imaging optical system
US7268940B2 (en) Illuminating device
JP2004361770A (en) Infrared microscope
JP2007285761A (en) Half mirror, and microscopic spectrophotometer using the same
JPH09250966A (en) Apparatus for measuring reflectivity
JP2004054108A (en) Optical path splitting element and microscope using same
JP2002090640A (en) Ultraviolet microscope
Hayashinoi et al. A Performance Characterization System for Suprime-Cam Filters
JP4713391B2 (en) Infrared microscope
JPH08286111A (en) Microscope for infrared spectroscopy capable of executing visual observation and ir measurement of sample simultaneously
JPH01136112A (en) Photometer lens barrel for microscope and microscope for photometry
JPH0618410A (en) Infrared micromeasuring device
JPH05312719A (en) Total reflection measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512