JP2004361619A - Optical fiber array and its manufacturing method - Google Patents

Optical fiber array and its manufacturing method Download PDF

Info

Publication number
JP2004361619A
JP2004361619A JP2003159281A JP2003159281A JP2004361619A JP 2004361619 A JP2004361619 A JP 2004361619A JP 2003159281 A JP2003159281 A JP 2003159281A JP 2003159281 A JP2003159281 A JP 2003159281A JP 2004361619 A JP2004361619 A JP 2004361619A
Authority
JP
Japan
Prior art keywords
optical fiber
reference plane
groove
distance
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003159281A
Other languages
Japanese (ja)
Inventor
Atsushi Yamada
厚 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003159281A priority Critical patent/JP2004361619A/en
Publication of JP2004361619A publication Critical patent/JP2004361619A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber array 100 in which primary coated optical fibers 5 are held between a V-groove member 1 and a planar member 2 and the distance from the location reference plane 3 to the center point of each primary coated optical fiber can be controlled to a desired set distance H, and to provide a method of manufacturing the optical fiber array. <P>SOLUTION: The optical fiber array, in which a controlling layer 7 is interposed between the optical fibers housed in the V-grooves 10 of the V-groove member and the planar member, is characterised in that the controlling layer 7 satisfying the condition of (dmax+r)<H, wherein H is the desired set distance from the location reference plane 3, which is the back face of the planar member, to the center line of the optical fibers, dmax is the maximum thickness of the planar member and r is the radius of the optical fiber, compensates the deviation from the set distance H due to irregular thickness of the planar member and controls the distance from the center point of each optical fiber to the location reference plane to be coincident with the desired set distance H. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、V溝部材と平板部材間に複数の光ファイバ素線が整列して配置されかつ各光ファイバ素線の先端が対向して配置される接続対象(例えば、光回路基板上の光ファイバ列、光導波路列若しくは光学素子等)に光学的に接続される光ファイバアレイに係り、特に、接続対象との光学的、機械的結合を容易にする光ファイバアレイとその製造方法に関するものである。
【0002】
【従来の技術】
【0003】
【特許文献1】
特開平5−307129号公報(請求項1、図1)
【特許文献2】
特開平11−242127号公報(請求項1、図4)
【特許文献3】
特開平11−326704号公報(請求項1、図6)
【特許文献4】
特開2000−275465号公報(請求項1、図5)
【特許文献5】
特開2000−329971号公報(請求項1、図6)
【0004】
この種の光ファイバアレイにおいて光ファイバ素線の整列間隔は高精度に設定され、対応する整列間隔で配列された光回路基板上の光ファイバ列や光導波路列等と容易に位置整合および光学的結合ができるようになっている。
【0005】
そして、従来の光ファイバアレイにおいては、光ファイバ素線の整列間隔を高精度に設定するための光ファイバ素線案内部材が光ファイバアレイの構成部材として組み込まれており、この光ファイバ素線案内部材として、従来、図6(A)に示すV溝部材aが知られている。
【0006】
すなわち、上記V溝部材aは、長尺の断面略V字形状溝(V溝)a1が平坦面上に一定間隔で複数本設けられて成るものである。そして、図6(B)に示すように上記V溝部材aの各V溝a1内に光ファイバ素線cをそれぞれ収容し、かつ、上方から平板部材dを押し付けることにより光ファイバ素線cがV溝a1両側斜面に拘束されて光ファイバ素線cの固定位置が設定されるものである。
【0007】
そして、同一寸法のV溝a1を一定間隔で複数形成しておくことにより、複数の光ファイバ素線cを一定間隔で整列させることが可能となる。
【0008】
尚、上記光ファイバ素線(光ファイバ心線の先端側外被が剥されて露出した部位を光ファイバ素線と称する)cとV溝部材a、平板部材dの間隙に接着剤を充填しかつ固化させることにより図6(C)に示すような構造の光ファイバアレイeが得られる(特許文献1〜5参照)。
【0009】
【発明が解決しようとする課題】
ところで、上記V溝部材aの厚み寸法が光ファイバ素線cの配列方向に亘って一様に均一の場合には問題ないが、図7に示すようにV溝部材aの光ファイバ素線c側とは反対の平坦面をアレイを組み込む際の配置基準面a2とした場合、V溝部材aの厚み寸法が図7に示すように不揃い(f1とf2は異なる)であると、この厚み寸法の不揃いに起因して各光ファイバ素線cの中心点から上記配置基準面a2までの距離が変動するため、配置基準面a2から各光ファイバ素線cの中心点までの距離を所望の設定距離Hに調整できない問題があった。
【0010】
例えば、光ファイバアレイに搭載されるシングルモード光ファイバと光導波路を導波する光束の直径は約10μmであるので、シングルモード光ファイバと光導波路の位置ずれが10μm以上ある場合には相互の導通を確保することが出来ず、従って、導通光の強度が最大となるような相互位置調節動作を開始出来ない問題があった。
【0011】
そして、従来適用されている上記V溝部材aの厚み寸法の変動幅は10μm以上の場合があるため、光導波路の寸法をいかに正確に設定しても導通光を確保することが出来ず、従って、導通光の強度が最大となるような相互位置調節動作を開始することが出来ない問題があった。
【0012】
尚、光ファイバ素線cが搭載されるV溝部材aの厚さ寸法を所定の値に対して高精度に保つことにより、光ファイバ素線の配置位置精度を高精度に保つことは可能であるが、そのためには高精度の部材加工技術が必要となり高コストとなる別の問題を有している。
【0013】
本発明はこのような問題点に着目してなされたもので、その課題とするところは、その厚み寸法が不揃いのV溝部材若しくは板状部材を適用しても、上記配置基準面から各光ファイバ素線の中心点までの距離を所望の設定距離Hに調整することができる光ファイバアレイとその製造方法を提供することにある。
【0014】
【課題を解決するための手段】
すなわち、請求項1に係る発明は、
長尺のV溝が平坦面上に一定間隔で複数本設けられたV溝部材と、このV溝部材のV溝形成面に対向して配置された平坦面を有する平板部材と、上記V溝部材のV溝内に外周面の一部を収容して整列されると共にV溝部材と平板部材間に挟持される複数の光ファイバ素線を備え、各光ファイバ素線の先端が対向して配置される接続対象に光学的に接続される光ファイバアレイを前提とし、
上記V溝内に外周面の一部が収容された各光ファイバ素線と上記平板部材の平坦面との間に接着剤より成る調節層を介在させ、かつ、上記平板部材の調節層側とは反対の平坦面をアレイを組み込む際の配置基準面にすると共に、上記光ファイバ素線における各先端断面の中心点を結んで形成される光ファイバ素線の中心列から上記配置基準面までの所望とする設定距離をH、上記平板部材における厚み寸法の最大値をdmax、各光ファイバ素線における先端断面の半径をrとした場合に、(dmax+r)<Hの条件を満たす上記調節層が、平板部材における厚み寸法の不揃いに伴う上記設定距離Hからのずれ分を補って、各光ファイバ素線の中心点から上記配置基準面までの距離が所望とする上記設定距離Hと同一若しくは略同一に設定されていることを特徴とするものである。
【0015】
また、請求項2に係る発明は、
請求項1記載の発明に係る光ファイバアレイを前提とし、
上記調節層が、樹脂と無機フィラーの混合物により構成されていることを特徴とし、
請求項3に係る発明は、
請求項2記載の発明に係る光ファイバアレイを前提とし、
上記樹脂が、光硬化性樹脂の硬化物であることを特徴とし、
請求項4に係る発明は、
請求項1〜3のいずれかに記載の発明に係る光ファイバアレイを前提とし、
各光ファイバ素線の中心点から上記配置基準面までの距離が、所望とする設定距離Hに対し±5μm以内の精度を有していることを特徴とし、
請求項5に係る発明は、
請求項1〜4のいずれかに記載の発明に係る光ファイバアレイを前提とし、
上記V溝部材または平板部材の一側面と任意の光ファイバ素線における先端断面の中心点との水平距離Wが、所望とする設定値に対し±5μm以内の精度を有していることを特徴とするものである。
【0016】
次に、請求項6〜7は本発明に係る光ファイバアレイの製造方法に関する。
【0017】
すなわち、請求項6に係る発明は、
請求項1記載の光ファイバアレイの製造方法を前提とし、
V溝部材の各V溝内に光ファイバ素線を仮固着させてV溝部材と複数の光ファイバ素線から成る仮固着体を形成する工程と、
V溝内に仮固着された光ファイバ素線の各外周面を所定の基準平面に接触させつつその仮固着体若しくは基準平面の少なくとも一方の姿勢を調節することにより、仮固着体における光ファイバ素線の上記中心列と基準平面の平行を確保すると共に、上記基準平面に接触する光ファイバ素線の各外周面と基準平面間の垂直距離をゼロに設定する工程と、
仮固着体における光ファイバ素線の上記中心列と基準平面の平行を維持したまま仮固着体と基準平面を一定距離引き離した後、基準平面上に上記平板部材を配置する工程と、
仮固着体における光ファイバ素線の上記中心列と基準平面の平行を維持したまま仮固着体と基準平面を一定距離接近させ、かつ、上記基準平面上に配置された平板部材と仮固着体とを接着剤を介在させた状態で結合する工程と、
この接着剤を硬化させ、上記(dmax+r)<Hの条件を満たして各光ファイバ素線の中心点から上記配置基準面までの距離を所望とする設定距離Hと同一若しくは略同一に設定する調節層を形成する工程、
の各工程を具備することを特徴とするものである。
【0018】
また、請求項7に係る発明は、
請求項6記載の発明に係る光ファイバアレイの製造方法を前提とし、
上記V溝部材の一側面からの水平距離がそれぞれ所望の値に設定されたV溝列に光ファイバ素線を収容し、かつ、上記基準平面上に配置された板状部材の一側面とV溝部材の一側面との水平距離も所定の値となるように調節しながらV溝部材と板状部材とを接着剤を介在させた状態で結合し、次いで、この接着剤を硬化させて上記基準平面上に配置された板状部材の一側面と任意の光ファイバ素線における先端断面の中心点との水平距離Wが所望の値に設定された光ファイバアレイを製造することを特徴とするものである。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0020】
この実施の形態に係る光ファイバアレイ100は、図1に示すように長尺のV溝10が平坦面上に一定間隔で複数本設けられたV溝部材1と、このV溝部材1のV溝10形成面に対向して配置された平坦面を有する平板部材2と、上記V溝部材1のV溝10内に外周面の一部を収容して整列されると共にV溝部材1と平板部材2間に配置された複数の光ファイバ素線5と、同じくV溝部材1と平板部材2間に設けられ樹脂と無機フィラーの混合物から成る接着剤6にて形成された調節層7とでその主要部が構成されている。
【0021】
そして、各光ファイバ素線5はその外周面の一部をV溝部材1のV溝10内に収容して配置され、V溝部材1と平板部材2との間には上記調節層7が介在すると共に、平板部材2の調節層7側とは反対の平坦面をアレイを組み込む際の配置基準面3とし、かつ、整列配置された光ファイバ素線5における各先端断面の中心点を結んで形成される光ファイバ素線5の中心列から上記配置基準面3までの所望とする設定距離をH、上記平板部材2における厚み寸法の最大値をdmax、各光ファイバ素線5における先端断面の半径をrとした場合に、(dmax+r)<Hの条件を満たす上記調節層7が、平板部材2における厚み寸法の不揃いに伴う上記設定距離Hからのずれ分を補って、各光ファイバ素線5の中心点から上記配置基準面3までの距離が所望とする設定距離Hと同一若しくは略同一に設定されている。
【0022】
更に、この光ファイバアレイ100においては平板部材2の一側面4と任意の光ファイバ素線5(図1では紙面向かって右端側の光ファイバ素線)における先端断面の中心点との水平距離Wが所望とする設定値に対し高精度に設定されている。
【0023】
そして、この光ファイバアレイ100においては、各光ファイバ素線5の中心点から上記配置基準面3までの距離が所望とする設定距離Hと同一若しくは略同一に設定され、かつ、平板部材2の一側面4と任意の光ファイバ素線5における先端断面の中心点との水平距離Wが所望とする設定値に対し高精度に設定されているため、平板部材2の調節層7側とは反対の平坦面を上記配置基準面3としてこのアレイを組み込んだ場合、このアレイに対向して配置される光導波路等接続対象との光学的、機械的結合が容易となる利点を有している。
【0024】
以下、この光ファイバアレイ100の製造方法について図面を参照して詳細に説明する。
【0025】
まず、図2(A)に示すように平板部材支持具12の垂直位置基準壁面13上に光ファイバ仮配置台8を配置している。また、この光ファイバ仮配置台8には光ファイバ素線5を緩く拘束する小さな溝が形成されており、光ファイバ仮配置台8はその一側面を平板部材支持具12の水平位置基準壁面15に押し付けて配置されている。次いで各溝内に光ファイバ素線5を収容して整列する。
【0026】
次に、図2(B)に示すようにV溝部材1がV溝部材支持具(図示せず)に積載され、かつ、V溝部材1の一側面はV溝部材支持具の一部である水平位置基準壁面14に押し付けられて積載される。尚、上記水平位置基準壁面14と水平位置基準壁面15の水平距離αは、図2(A)に示すように正確に所望とする値に設定されている。また、V溝部材1の光ファイバ仮配置台8と対向する面には薄い仮固着接着剤層17が形成されている。仮固着接着剤層17には、例えば紫外線硬化性の接着剤が用いられる。また、V溝部材1およびV溝部材支持具には、例えばガラス等の紫外線に対し透明な素材が適用される。
【0027】
次に、図3(A)に示すようにV溝部材1を下降させ、その仮固着接着剤層17を光ファイバ仮配置台8上に整列された光ファイバ素線5と接触させる。適当な荷重の下で光ファイバ素線5はその外周面の一部がV溝部材1のV溝10内に収容されて整列する。この状態で紫外線を照射してV溝部材1およびV溝部材支持具を透過させ、仮固着接着剤層17を硬化させれば光ファイバ素線5はV溝部材1に仮固着する。
【0028】
次に、図3(B)に示すように光ファイバ素線5とV溝部材1から成る仮固着体11を上昇させ、かつ、平板部材支持具12から光ファイバ仮配置台8を除去する。
【0029】
次に、図4(A)に示すように光ファイバ素線5とV溝部材1から成る仮固着体11を下降させ、光ファイバ素線5の外周底面を平板部材支持具12の垂直位置基準壁面13上に押し付ける。このとき、図示されない首振り機構によりV溝部材支持具はV溝部材1の側面と水平位置基準壁面14の接触を保ったまま上記仮固着体11の姿勢を自由に変更可能であり、光ファイバ素線5の外周底面は垂直位置基準壁面13に正確に沿い垂直位置基準壁面13と平行(すなわち、光ファイバ素線5の中心列と垂直位置基準壁面13とが平行)になる。この平行を保持した状態でV溝部材支持具および仮固着体11は図示されないチャック機構によりその姿勢が固定される。また、光ファイバ素線5の外周底面が垂直位置基準壁面13に接触した状態における垂直位置測定面16の高さh0が基準値として記録される。また、上記垂直位置測定面16の高さ測定には、例えばレーザー距離計等の高精度変位測定手段が利用できる。
【0030】
次に、図4(B)に示すように光ファイバ素線5の外周底面と垂直位置基準壁面13との平行(すなわち、光ファイバ素線5の中心列と垂直位置基準壁面13との平行)を保持し、水平位置基準壁面14と水平位置基準壁面15の水平距離αを一定に保持すると共に、仮固着体11におけるV溝部材1の側面と水平位置基準壁面14の接触を保持したまま、仮固着体11を一定の高さに上昇させた後、平板部材2を平板部材支持具12の垂直位置基準壁面13上に配置する。尚、平板部材2の一側面は平板部材支持具12の水平位置基準壁面15に押し付けられて配置される。また、平板部材2および平板部材支持具12には、例えばガラス等の紫外線に対し透明な素材が適用される。
【0031】
次に、図5(A)に示すように平板部材支持具12の水平位置基準壁面15に押し付けられて配置された平板部材2の上面に接着剤6が供給される。接着剤6には、例えば紫外線硬化性の接着剤が適用される。
【0032】
その後、光ファイバ素線5とV溝部材1から成る仮固着体11の姿勢並びに水平位置を保持したまま上記垂直位置測定面16の高さがh1となるまでV溝部材支持具を下降させることにより、接着剤6を介して平板部材2、V溝部材1および光ファイバ素線5が結合された図5(B)の状態となる。
【0033】
上記垂直位置測定面16の高さがh1のとき、光ファイバ素線5の外周底面と平板部材2の上面との間には、図5(B)に示すように接着剤6から成る調節層7が介在している。ここで、紫外線を照射して平板部材2および平板部材支持具12を透過させることにより、上記接着剤6が硬化して平板部材2、V溝部材1および光ファイバ素線5が一体化されて図1に示す光ファイバアレイ100が完成する。
【0034】
そして、この光ファイバアレイの製造方法においては、図4(A)に示したように光ファイバ素線5とV溝部材1から成る仮固着体11を下降させ、光ファイバ素線5の外周底面を平板部材支持具12の垂直位置基準壁面13上に押し付けている。この結果、光ファイバ素線5の外周底面は垂直位置基準壁面13に正確に沿って垂直位置基準壁面13と平行になる。光ファイバ素線5の直径は±0.5μm以下の高精度で一定の値に設定されているので、各光ファイバ素線5における先端断面の中心点を結んで形成される各光ファイバ素線5の中心列も垂直位置基準壁面13と平行に設定されている。
【0035】
この平行性を保ったまま図4(B)に示したように平板部材2を平板部材支持具12の垂直位置基準壁面13上に配置して、光ファイバ素線5とV溝部材1から成る仮固着体11と平板部材2との一体化を完成するので、図5(B)に示すように光ファイバ素線5の中心列と平板部材2の配置基準面3とを正確に平行に設定することができる。
【0036】
そして、適用する平板部材2の厚さ寸法が不揃い(最大厚みdmax)になっていても、この厚さ寸法の不揃いに伴う所望の設定距離Hからのずれ分を光ファイバ素線5の中心列と平板部材2との間に介在する調節層7が補って、各光ファイバ素線5の中心点から上記配置基準面3までの距離が所望とする上記設定距離Hと同一若しくは略同一に設定されている。
【0037】
また、この光ファイバアレイの製造方法においては、図5(A)に示した垂直位置測定面16の高さh1を調節することにより、光ファイバ素線5の中心列と平板部材2の配置基準面3までの距離を所望とする設定距離Hに調節することができる。
【0038】
ここで、光ファイバ素線5と平板部材2の平坦面とを接触させて光ファイバアレイを構成させた場合(図5Bとは相違する)、平板部材2の厚さ寸法は、光ファイバ素線5の中心列から平板部材2の配置基準面3までの設定距離Hとするには満たない。また、異なる平板部材2間では厚さ寸法の絶対値も変動する。
【0039】
しかしながら、本発明に係る光ファイバアレイとその製造方法においては、光ファイバ素線5と平板部材2との間に介在した調節層7が流動によりその厚さ寸法を任意に変えられるため、垂直位置測定面16の高さh1を調節することが可能となって、結果的に光ファイバ素線5の中心列と平板部材2の配置基準面3までの距離を所望とする設定距離Hに高精度に揃えることが可能となる。尚、垂直位置測定面16の高さ測定には、例えばレーザー距離計等の高精度変位測定手段を用いることができるので、設定距離Hを1μm単位で調節することが可能となり、各部材における保持機構の機械的位置決め誤差を考慮しても、設定距離Hの設定精度を±5μm以下とすることは十分に容易である。
【0040】
更に、この実施の形態に係る製造方法においては、図2(A)に示したようにV溝部材支持具の一部である水平位置基準壁面14と平板部材支持具12の水平位置基準壁面15相互の水平距離αを所望とする値に正確に設定し、かつ、図2(B)に示したようにV溝部材1における各V溝10の水平位置をV溝部材支持具の一部である水平位置基準壁面14に対して正確に規定することで、上記水平位置基準壁面14に対し図3(A)〜図5(B)における光ファイバ素線5中心列の水平位置が正確に規定されると共に、図4(B)に示したように平板部材2の水平位置を上記水平位置基準壁面15に対して正確に規定しているため、光ファイバ素線5における先端断面の中心点と平板部材2の側面4との水平距離W(図1参照)も高精度に設定されている。
【0041】
【実施例】
以下、本発明の実施例について具体的に説明する。
【0042】
[実施例1]
図2(A)では、平板部材支持具12の垂直位置基準壁面13上に光ファイバ仮配置台8を配置している。光ファイバ仮配置台8の一側面は平板部材支持具12の水平位置基準壁面15に押し付けられて配置される。光ファイバ仮配置台8における図中最右端に位置する溝の中央位置は、水平位置基準壁面15に押し付けられた側の光ファイバ仮配置台8側面から約1000μmである。次いで、光ファイバ仮配置台8の各溝内に光ファイバ素線5を収容してほぼ均等に整列するが、光ファイバ仮配置台8上の各溝は底面が平らであり、光ファイバ素線5は左右に約30μm動くことができる。尚、光ファイバ素線5の直径は125μmである。
【0043】
続く図2(B)では、V溝部材1をV溝部材支持具(図示されず)に積載している。また、V溝部材1の一側面は、V溝部材支持具の一部である水平位置基準壁面14に押し付けられて積載される。尚、V溝部材1は石英ガラス製で、厚さは1000μm、幅は3500μmである。また、V溝部材1の図2(B)中最右端に位置するV溝10の中央位置は、水平位置基準壁面14に押し付けられた側のV溝部材1側面から正確に750μmの位置である。また、水平位置基準壁面14と水平位置基準壁面15の水平距離α(図2A参照)は正確に250μmに設定されている。また、V溝部材1の光ファイバ仮配置台8と対向する面には薄い仮固着接着剤層17が形成されている。仮固着接着剤層17は紫外線硬化性のエポキシ樹脂である。V溝部材支持具は石英ガラス製であり紫外線に対して透明である。
【0044】
図3(A)では、V溝部材1を下降させて、仮固着接着剤層17を光ファイバ仮配置台8上に整列された光ファイバ素線5と接触させる。このとき、光ファイバ仮配置台8の各溝に収容された光ファイバ素線5は、対応するV溝部材1における各V溝10の斜面に押しやられて正確に各V溝10の中央位置に配置されるので、図3(A)中最右端の光ファイバ素線5の中央位置は、水平位置基準壁面14に押し付けられた側のV溝部材1側面から正確に750μmの位置であり、水平位置基準壁面15からは正確に1000μmの位置である。この状態で紫外線を照射し、V溝部材1およびV溝部材支持具を透過させて上記仮固着接着剤層17を硬化させれば光ファイバ素線5はV溝部材1に仮固着する。
【0045】
図3(B)では、光ファイバ素線5とV溝部材1から成る仮固着体11を上昇させ、平板部材支持具12から光ファイバ仮配置台8を除去している。尚、光ファイバ仮配置台8は同一物を反復的に使用する。
【0046】
図4(A)では、上記仮固着体11を下降させ、光ファイバ素線5の外周底面を平板部材支持具12の垂直位置基準壁面13上に押し付けている。このとき、図示されない首振り機構により、V溝部材支持具は仮固着体11におけるV溝部材1の側面と水平位置基準壁面14の接触を保ったまま仮固着体11の姿勢を自由に変更させることが可能であり、光ファイバ素線5の外周底面は垂直位置基準壁面13に正確に沿い垂直位置基準壁面13と平行になる。この平行を保持した状態でV溝部材支持具および仮固着体11は図示されないチャック機構によりその姿勢を固定される。また、光ファイバ素線5の外周底面が垂直位置基準壁面13に接触した状態における垂直位置測定面16の高さ測定値h0をリセットしゼロとする。尚、垂直位置測定面16の高さ測定にはレーザー距離計を用いる。
【0047】
図4(B)では、光ファイバ素線5の外周底面と垂直位置基準壁面13との平行(すなわち、光ファイバ素線5の中心列と垂直位置基準壁面13との平行)を保持し、かつ、水平位置基準壁面14と水平位置基準壁面15の水平距離αを一定に保持すると共に、仮固着体11におけるV溝部材1の側面と水平位置基準壁面14の接触を保持したまま、垂直位置測定面16の高さ測定値が5000μm以上となるまで仮固着体11を上昇させた後、平板部材2を平板部材支持具12の垂直位置基準壁面13上に配置する。尚、平板部材2の一側面は平板部材支持具12の水平位置基準壁面15に押し付けられて配置される。平板部材2は石英ガラス製で、厚さは950μmに対し±2μmの不均一性があり、幅は4000μmである。
【0048】
図5(A)では、平板部材2の上面に接着剤6を供給している。接着剤6は紫外線硬化性のエポキシ樹脂に球状石英フィラーを50重量%混合し、硬化収縮率を5%以下に調整したものを用いる。その後、仮固着体11の姿勢並びに水平位置を保持したまま垂直位置測定面16の高さ測定値h1が1000μmとなるまでV溝部材支持具を下降させることにより、接着剤6を介して平板部材2、V溝部材1および光ファイバ素線5が結合された図5(B)の状態となる。上記垂直位置測定面16の高さh1が1000μmのとき、光ファイバ素線5の外周底面と平板部材2の上面との間には、厚さ50μmの調節層7が介在している。図5(B)中最右端の光ファイバ素線5の中央位置は、水平位置基準壁面14に押し付けられた側のV溝部材1側面から正確に750μmの位置であり、水平位置基準壁面15に押し付けられた側の平板部材2側面からは正確に1000μmの位置である。ここで、紫外線を照射して平板部材2および平板部材支持具12を透過させることにより、上記接着剤6が硬化して平板部材2、V溝部材1および光ファイバ素線5が一体化されて図1に示す光ファイバアレイ100が完成する。尚、調節層7の厚さは硬化収縮により2.5μm減少し、47.5μmとなった。また、光ファイバ素線5の中心列と平板部材2における配置基準面3との設定距離Hは1060μmとなった。
【0049】
そして、平板部材2の厚さ寸法は図示されたように変動しているが、光ファイバ素線5の中心列と平板部材2との間に介在する調節層7の変動により相殺され、光ファイバ素線5の中心列と平板部材2における配置基準面3との設定距離Hは場所によらず1060μmで一定に保たれている。また、光ファイバ素線5の中心列と平板部材2の側面4(図1参照)との水平距離Wは1000μmに設定されている。
【0050】
引き続き、部材を変えてこれらプロセスを繰り返した。今回の平板部材2は、前回の厚さ950μmと相違して厚さ960μmであったが、上述と全く同様の手順に従い図5(A)において垂直位置測定面16の高さ測定値h1が1000μmとなるまで平板部材支持具を下降させたところ、光ファイバ素線5の外周底面と平板部材2の上面との間には厚さ40μmの調節層7が形成され、この調節層7が硬化収縮により厚さ38μmとなった結果、光ファイバ素線5の中心列と平板部材2における配置基準面3との設定距離Hは1060.5μmとなり、前回と高精度で一致する結果となった。
【0051】
【発明の効果】
請求項1〜5記載の発明に係る光ファイバアレイによれば、
V溝内に外周面の一部が収容された各光ファイバ素線と上記平板部材の平坦面との間に接着剤より成る調節層を介在させ、かつ、上記平板部材の調節層側とは反対の平坦面をアレイを組み込む際の配置基準面にすると共に、上記光ファイバ素線における各先端断面の中心点を結んで形成される光ファイバ素線の中心列から上記配置基準面までの所望とする設定距離をH、上記平板部材における厚み寸法の最大値をdmax、各光ファイバ素線における先端断面の半径をrとした場合に、(dmax+r)<Hの条件を満たす上記調節層が、平板部材における厚み寸法の不揃いに伴う上記設定距離Hからのずれ分を補って、各光ファイバ素線の中心点から上記配置基準面までの距離が所望とする上記設定距離Hと同一若しくは略同一に設定されているため、
平板部材の平坦面を配置基準面としてアレイを組み込んだ場合、アレイに対向して配置される接続対象との光学的、機械的結合が容易となる効果を有する。
【0052】
また、請求項6〜7記載の発明に係る光ファイバアレイの製造方法によれば、V溝部材の各V溝内に光ファイバ素線を仮固着させてV溝部材と複数の光ファイバ素線から成る仮固着体を形成する工程と、
V溝内に仮固着された光ファイバ素線の各外周面を所定の基準平面に接触させつつその仮固着体若しくは基準平面の少なくとも一方の姿勢を調節することにより、仮固着体における光ファイバ素線の上記中心列と基準平面の平行を確保すると共に、上記基準平面に接触する光ファイバ素線の各外周面と基準平面間の垂直距離をゼロに設定する工程と、
仮固着体における光ファイバ素線の上記中心列と基準平面の平行を維持したまま仮固着体と基準平面を一定距離引き離した後、基準平面上に上記平板部材を配置する工程と、
仮固着体における光ファイバ素線の上記中心列と基準平面の平行を維持したまま仮固着体と基準平面を一定距離接近させ、かつ、上記基準平面上に配置された平板部材と仮固着体とを接着剤を介在させた状態で結合する工程と、
この接着剤を硬化させ、上記(dmax+r)<Hの条件を満たして各光ファイバ素線の中心点から上記配置基準面までの距離を所望とする設定距離Hと同一若しくは略同一に設定する調節層を形成する工程、
の各工程を具備しているため、
本発明に係る光ファイバアレイを簡便かつ確実に製造することができる効果を有している。
【図面の簡単な説明】
【図1】本発明に係る光ファイバアレイの概略構成を示す断面図。
【図2】図2(A)〜(B)は実施の形態(実施例1)に係る光ファイバアレイの製造工程を示す説明図。
【図3】図3(A)〜(B)は実施の形態(実施例1)に係る光ファイバアレイの製造工程を示す説明図。
【図4】図4(A)〜(B)は実施の形態(実施例1)に係る光ファイバアレイの製造工程を示す説明図。
【図5】図5(A)〜(B)は実施の形態(実施例1)に係る光ファイバアレイの製造工程を示す説明図。
【図6】図6(A)は従来例に係るV溝部材の概略斜視図、図6(B)はV溝部材が構成部材として組込まれた従来の光ファイバアレイの分解斜視図、図6(C)は従来の光ファイバアレイの概略斜視図。
【図7】従来例に係る光ファイバアレイの弊害例を示す説明図。
【符号の説明】
1 V溝部材
2 平板部材
3 配置基準面
4 平板部材側面
5 光ファイバ素線
6 接着剤
7 調節層
100 光ファイバアレイ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a connection object (for example, an optical fiber on an optical circuit board) in which a plurality of optical fiber wires are arranged and arranged between a V-groove member and a flat plate member, and the tips of the optical fiber wires are arranged to face each other. The present invention relates to an optical fiber array optically connected to a fiber array, an optical waveguide array, an optical element, or the like, and more particularly to an optical fiber array for facilitating optical and mechanical coupling with a connection target and a method of manufacturing the same. is there.
[0002]
[Prior art]
[0003]
[Patent Document 1]
JP-A-5-307129 (Claim 1, FIG. 1)
[Patent Document 2]
JP-A-11-242127 (Claim 1, FIG. 4)
[Patent Document 3]
JP-A-11-326704 (Claim 1, FIG. 6)
[Patent Document 4]
Japanese Patent Application Laid-Open No. 2000-275465 (Claim 1, FIG. 5)
[Patent Document 5]
Japanese Patent Application Laid-Open No. 2000-329971 (Claim 1, FIG. 6)
[0004]
In this type of optical fiber array, the alignment intervals of the optical fiber wires are set with high precision, and the alignment and optical alignment can be easily performed with the optical fiber rows and optical waveguide rows on the optical circuit board arranged at the corresponding alignment intervals. It can be combined.
[0005]
In the conventional optical fiber array, an optical fiber guide member for setting the alignment interval of the optical fiber wires with high accuracy is incorporated as a constituent member of the optical fiber array. As a member, a V-groove member a shown in FIG. 6A is conventionally known.
[0006]
That is, the V-groove member a has a plurality of long, substantially V-shaped cross-sectional grooves (V-grooves) a1 provided at regular intervals on a flat surface. Then, as shown in FIG. 6B, the optical fiber strand c is accommodated in each V-groove a1 of the V-groove member a, and the optical fiber strand c is pressed by pressing the flat plate member d from above. The fixed position of the optical fiber c is set by being restrained by the slopes on both sides of the V-groove a1.
[0007]
By forming a plurality of V-grooves a1 having the same dimensions at regular intervals, it becomes possible to align a plurality of optical fiber strands c at regular intervals.
[0008]
An adhesive is filled in the gap between the optical fiber strand (the exposed portion of the sheath of the optical fiber core stripped and exposed is called an optical fiber strand) c, the V-groove member a, and the flat plate member d. By solidifying, an optical fiber array e having a structure as shown in FIG. 6C is obtained (see Patent Documents 1 to 5).
[0009]
[Problems to be solved by the invention]
By the way, there is no problem in the case where the thickness dimension of the V-groove member a is uniformly uniform in the arrangement direction of the optical fiber strands c, but as shown in FIG. When the flat surface opposite to the side is the arrangement reference surface a2 when the array is incorporated, if the thickness of the V-groove member a is irregular (f1 and f2 are different) as shown in FIG. The distance from the center point of each optical fiber strand c to the above-mentioned arrangement reference plane a2 fluctuates due to the irregularity of the above, so that the distance from the arrangement reference plane a2 to the center point of each optical fiber strand c is set as desired. There was a problem that the distance H could not be adjusted.
[0010]
For example, since the diameter of a single-mode optical fiber mounted on an optical fiber array and a light beam guided through the optical waveguide are about 10 μm, mutual conduction occurs when the displacement between the single-mode optical fiber and the optical waveguide is 10 μm or more. Therefore, there is a problem that the mutual position adjustment operation that maximizes the intensity of the conduction light cannot be started.
[0011]
Since the variation width of the thickness dimension of the V-groove member a conventionally applied may be 10 μm or more, it is not possible to secure conduction light even if the dimensions of the optical waveguide are set accurately. In addition, there has been a problem that the mutual position adjustment operation that maximizes the intensity of the conduction light cannot be started.
[0012]
By maintaining the thickness dimension of the V-groove member a on which the optical fiber strand c is mounted with high accuracy for a predetermined value, it is possible to maintain the positioning accuracy of the optical fiber strand with high accuracy. However, for that purpose, there is another problem that a high-precision member processing technique is required and the cost is high.
[0013]
The present invention has been made in view of such problems, and it is an object of the present invention to apply a V-groove member or a plate-like member having irregular thicknesses to each light from the arrangement reference plane. An object of the present invention is to provide an optical fiber array capable of adjusting a distance to a center point of a fiber strand to a desired set distance H and a method of manufacturing the same.
[0014]
[Means for Solving the Problems]
That is, the invention according to claim 1 is
A V-shaped groove member in which a plurality of long V-shaped grooves are provided at regular intervals on a flat surface, a flat plate member having a flat surface disposed opposite to a V-groove forming surface of the V-shaped groove member, A plurality of optical fibers are accommodated in the V-groove of the member so as to accommodate a part of the outer peripheral surface thereof and are sandwiched between the V-groove member and the flat plate member. Assuming an optical fiber array that is optically connected to the connection target to be arranged,
An adjusting layer made of an adhesive is interposed between each optical fiber in which a part of the outer peripheral surface is accommodated in the V-groove and the flat surface of the flat plate member, and the adjusting layer side of the flat plate member. The opposite flat surface is used as an arrangement reference plane when the array is incorporated, and the center line of the optical fiber formed by connecting the center points of the tip cross sections of the optical fiber to the arrangement reference plane. When the desired set distance is H, the maximum value of the thickness dimension of the flat plate member is dmax, and the radius of the tip cross section of each optical fiber is r, the adjustment layer satisfying the condition of (dmax + r) <H is obtained. The distance from the center point of each optical fiber to the arrangement reference plane is equal to or substantially equal to the desired set distance H by compensating for the deviation from the set distance H due to the unevenness of the thickness dimension of the flat plate member. Set the same And it is characterized in that they are.
[0015]
The invention according to claim 2 is
Assuming the optical fiber array according to the invention of claim 1,
The adjustment layer is characterized by being composed of a mixture of a resin and an inorganic filler,
The invention according to claim 3 is:
Assuming the optical fiber array according to the invention of claim 2,
The resin is a cured product of a photocurable resin,
The invention according to claim 4 is
Assuming an optical fiber array according to any one of claims 1 to 3,
The distance from the center point of each optical fiber to the arrangement reference plane has an accuracy within ± 5 μm with respect to a desired set distance H,
The invention according to claim 5 is
Assuming an optical fiber array according to any one of claims 1 to 4,
A horizontal distance W between one side surface of the V-groove member or the flat plate member and a center point of a cross section of a tip of an arbitrary optical fiber has an accuracy within ± 5 μm with respect to a desired set value. It is assumed that.
[0016]
Next, claims 6 and 7 relate to a method for manufacturing an optical fiber array according to the present invention.
[0017]
That is, the invention according to claim 6 is
Assuming the method for manufacturing an optical fiber array according to claim 1,
A step of temporarily fixing the optical fiber in each V-groove of the V-groove member to form a temporary fixing body composed of the V-groove member and the plurality of optical fiber wires;
The outer circumferential surface of the optical fiber wire temporarily fixed in the V-groove is brought into contact with a predetermined reference plane while adjusting the posture of at least one of the temporarily fixed body and the reference plane, thereby providing an optical fiber element in the temporary fixed body. A step of setting the vertical distance between each outer peripheral surface of the optical fiber and the reference plane in contact with the reference plane to zero, while ensuring that the central row of lines and the reference plane are parallel to each other,
After separating the temporary fixed body and the reference plane by a certain distance while maintaining the center row of the optical fiber wires in the temporary fixed body and the reference plane in parallel, a step of disposing the flat plate member on the reference plane,
The temporary fixed body and the reference plane are brought close to each other by a fixed distance while maintaining the center row of the optical fiber strands in the temporary fixed body and the reference plane parallel to each other, and the plate member and the temporary fixed body arranged on the reference plane. Bonding together with an adhesive,
The adhesive is cured to adjust the distance from the center point of each optical fiber to the arrangement reference plane to be the same or substantially the same as the desired set distance H by satisfying the condition of (dmax + r) <H. Forming a layer,
Characterized by comprising the following steps:
[0018]
The invention according to claim 7 is
Assuming a method for manufacturing an optical fiber array according to the invention of claim 6,
The optical fiber is accommodated in a V-groove row whose horizontal distance from one side surface of the V-groove member is set to a desired value, respectively, and one side surface of the plate-like member arranged on the reference plane and V The V-groove member and the plate-like member are joined together with an adhesive interposed therebetween while adjusting the horizontal distance to one side surface of the groove member so as to be a predetermined value. An optical fiber array in which a horizontal distance W between one side surface of a plate member arranged on a reference plane and a center point of a tip section of an arbitrary optical fiber is set to a desired value is manufactured. Things.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0020]
The optical fiber array 100 according to this embodiment has a V-groove member 1 in which a plurality of long V-grooves 10 are provided at regular intervals on a flat surface as shown in FIG. A flat plate member 2 having a flat surface disposed opposite to the groove 10 forming surface, and a part of the outer peripheral surface accommodated and aligned in the V groove 10 of the V groove member 1; A plurality of optical fiber wires 5 arranged between the members 2 and an adjusting layer 7 similarly formed between the V-groove member 1 and the flat plate member 2 and formed of an adhesive 6 made of a mixture of a resin and an inorganic filler. Its main part is configured.
[0021]
Each optical fiber 5 is arranged with a part of the outer peripheral surface thereof housed in the V-groove 10 of the V-groove member 1, and the adjusting layer 7 is provided between the V-groove member 1 and the flat plate member 2. The intervening and flat surface opposite to the adjustment layer 7 side of the flat plate member 2 is used as the arrangement reference plane 3 when incorporating the array, and connects the center points of the cross sections of the distal ends of the aligned optical fiber wires 5. H is the desired set distance from the center row of the optical fiber 5 formed by the above to the arrangement reference plane 3, dmax is the maximum value of the thickness dimension in the flat plate member 2, and the tip section of each optical fiber 5 When the radius of the optical fiber element is r, the adjustment layer 7 satisfying the condition of (dmax + r) <H compensates for the deviation from the set distance H due to the unevenness of the thickness dimension of the flat plate member 2, and From the center point of line 5 to the placement reference plane 3 Distance is set to the same or substantially the same as the preset distance H that desired.
[0022]
Further, in this optical fiber array 100, the horizontal distance W between one side surface 4 of the flat plate member 2 and the center point of the cross section of the tip of an arbitrary optical fiber 5 (the optical fiber at the right end side in FIG. 1). Are set with high accuracy to the desired set values.
[0023]
In the optical fiber array 100, the distance from the center point of each optical fiber 5 to the placement reference plane 3 is set to be substantially the same as or substantially equal to the desired set distance H. Since the horizontal distance W between one side surface 4 and the center point of the cross section of the tip of the arbitrary optical fiber 5 is set with high accuracy with respect to a desired set value, it is opposite to the adjustment layer 7 side of the flat plate member 2. When this array is incorporated with the flat surface as the above-mentioned arrangement reference plane 3, there is an advantage that optical and mechanical coupling with a connection object such as an optical waveguide arranged opposite to this array becomes easy.
[0024]
Hereinafter, a method for manufacturing the optical fiber array 100 will be described in detail with reference to the drawings.
[0025]
First, as shown in FIG. 2A, the optical fiber temporary placement table 8 is arranged on the vertical position reference wall 13 of the flat plate member support 12. A small groove for loosely restraining the optical fiber 5 is formed in the optical fiber temporary placement table 8. One side of the optical fiber temporary placement table 8 is a horizontal position reference wall surface 15 of the flat plate member support 12. It is arranged to be pressed against. Next, the optical fiber 5 is accommodated in each groove and aligned.
[0026]
Next, as shown in FIG. 2B, the V-groove member 1 is loaded on a V-groove member support (not shown), and one side surface of the V-groove member 1 is a part of the V-groove member support. It is pressed against a certain horizontal position reference wall surface 14 and loaded. The horizontal distance α between the horizontal position reference wall surface 14 and the horizontal position reference wall surface 15 is accurately set to a desired value as shown in FIG. Further, a thin temporary fixing adhesive layer 17 is formed on the surface of the V-groove member 1 facing the optical fiber temporary placement table 8. For the temporary fixing adhesive layer 17, for example, an ultraviolet curable adhesive is used. For the V-groove member 1 and the V-groove member support, a material that is transparent to ultraviolet rays, such as glass, is applied.
[0027]
Next, as shown in FIG. 3A, the V-groove member 1 is lowered, and the temporary fixing adhesive layer 17 is brought into contact with the optical fiber strands 5 arranged on the optical fiber temporary placement table 8. Under an appropriate load, the optical fiber 5 is accommodated in the V-groove 10 of the V-groove member 1 with a part of the outer peripheral surface thereof aligned. In this state, the optical fiber 5 is temporarily fixed to the V-groove member 1 by irradiating the V-groove member 1 and the V-groove member support with ultraviolet rays to cure the temporary fixing adhesive layer 17.
[0028]
Next, as shown in FIG. 3 (B), the temporary fixing body 11 composed of the optical fiber 5 and the V-groove member 1 is raised, and the optical fiber temporary placing table 8 is removed from the flat member support 12.
[0029]
Next, as shown in FIG. 4 (A), the temporary fixing body 11 composed of the optical fiber 5 and the V-groove member 1 is lowered, and the outer peripheral bottom surface of the optical fiber 5 is referenced to the vertical position of the flat member support 12. Press on the wall 13. At this time, the V-groove member support can freely change the posture of the temporary fixing body 11 while maintaining the contact between the side surface of the V-groove member 1 and the horizontal position reference wall surface 14 by a swing mechanism (not shown). The outer peripheral bottom surface of the strand 5 is exactly along the vertical position reference wall 13 and is parallel to the vertical position reference wall 13 (that is, the center row of the optical fiber 5 and the vertical position reference wall 13 are parallel). In the state where the parallelism is maintained, the postures of the V-groove member support and the temporary fixing body 11 are fixed by a chuck mechanism (not shown). Also, the height h0 of the vertical position measurement surface 16 in a state where the outer peripheral bottom surface of the optical fiber 5 is in contact with the vertical position reference wall surface 13 is recorded as a reference value. For measuring the height of the vertical position measuring surface 16, a high-precision displacement measuring means such as a laser distance meter can be used.
[0030]
Next, as shown in FIG. 4B, the outer peripheral bottom surface of the optical fiber 5 is parallel to the vertical position reference wall 13 (that is, the center row of the optical fiber 5 is parallel to the vertical position reference wall 13). While keeping the horizontal distance α between the horizontal position reference wall surface 14 and the horizontal position reference wall surface 15 constant, and keeping the contact between the side surface of the V-groove member 1 and the horizontal position reference wall surface 14 in the temporary fixing body 11, After the temporary fixing body 11 is raised to a certain height, the flat plate member 2 is disposed on the vertical position reference wall 13 of the flat plate member support 12. Note that one side surface of the flat plate member 2 is pressed against the horizontal position reference wall surface 15 of the flat plate member support 12 and arranged. For the flat plate member 2 and the flat plate member support 12, a material that is transparent to ultraviolet rays, such as glass, is applied.
[0031]
Next, as shown in FIG. 5 (A), the adhesive 6 is supplied to the upper surface of the flat plate member 2 which is pressed against the horizontal position reference wall surface 15 of the flat plate member support 12. As the adhesive 6, for example, an ultraviolet curable adhesive is applied.
[0032]
Thereafter, the V-groove member support is lowered until the height of the vertical position measuring surface 16 becomes h1 while maintaining the posture and the horizontal position of the temporary fixing body 11 composed of the optical fiber 5 and the V-groove member 1. As a result, the state shown in FIG. 5B is obtained in which the flat plate member 2, the V-groove member 1, and the optical fiber 5 are connected via the adhesive 6.
[0033]
When the height of the vertical position measuring surface 16 is h1, an adjusting layer made of an adhesive 6 is provided between the outer peripheral bottom surface of the optical fiber 5 and the upper surface of the flat plate member 2 as shown in FIG. 7 are interposed. Here, by irradiating the plate member 2 and the plate member support 12 with ultraviolet rays, the adhesive 6 is cured and the plate member 2, the V-groove member 1, and the optical fiber 5 are integrated. The optical fiber array 100 shown in FIG. 1 is completed.
[0034]
In the method of manufacturing the optical fiber array, as shown in FIG. 4A, the temporary fixing body 11 composed of the optical fiber 5 and the V-groove member 1 is lowered, and the outer peripheral bottom surface of the optical fiber 5 is Is pressed against the vertical position reference wall 13 of the flat plate member support 12. As a result, the outer peripheral bottom surface of the optical fiber 5 is exactly along the vertical position reference wall 13 and parallel to the vertical position reference wall 13. Since the diameter of the optical fiber 5 is set to a constant value with high accuracy of ± 0.5 μm or less, each optical fiber formed by connecting the center point of the cross section of the tip of each optical fiber 5 is formed. The center row 5 is also set parallel to the vertical position reference wall surface 13.
[0035]
As shown in FIG. 4B, the flat plate member 2 is arranged on the vertical position reference wall 13 of the flat plate member support 12 while maintaining the parallelism, and is composed of the optical fiber 5 and the V-groove member 1. Since the integration of the temporary fixing body 11 and the flat plate member 2 is completed, the central row of the optical fiber 5 and the arrangement reference plane 3 of the flat plate member 2 are set exactly parallel as shown in FIG. can do.
[0036]
Even if the thickness of the applied plate member 2 is irregular (maximum thickness dmax), the deviation from the desired set distance H due to the irregular thickness is determined by the central row of the optical fiber 5. The adjustment layer 7 interposed between the optical fiber 5 and the flat plate member 2 compensates for the distance from the center point of each optical fiber 5 to the arrangement reference plane 3 is set to be equal to or substantially equal to the desired set distance H. Have been.
[0037]
Further, in the method of manufacturing the optical fiber array, by adjusting the height h1 of the vertical position measuring surface 16 shown in FIG. The distance to the surface 3 can be adjusted to a desired set distance H.
[0038]
Here, when the optical fiber 5 is brought into contact with the flat surface of the flat member 2 to form an optical fiber array (different from FIG. 5B), the thickness of the flat member 2 is The set distance H from the center row 5 to the arrangement reference plane 3 of the flat plate member 2 is not enough. In addition, the absolute value of the thickness dimension varies between different plate members 2.
[0039]
However, in the optical fiber array and the method of manufacturing the same according to the present invention, since the thickness of the adjusting layer 7 interposed between the optical fiber 5 and the flat plate member 2 can be arbitrarily changed by the flow, The height h1 of the measurement surface 16 can be adjusted, and as a result, the distance between the center row of the optical fiber 5 and the arrangement reference surface 3 of the flat plate member 2 can be adjusted to a desired set distance H with high accuracy. Can be aligned. Since the height of the vertical position measuring surface 16 can be measured using a high-precision displacement measuring means such as a laser distance meter, the set distance H can be adjusted in units of 1 μm. Even if the mechanical positioning error of the mechanism is considered, it is sufficiently easy to set the setting accuracy of the set distance H to ± 5 μm or less.
[0040]
Further, in the manufacturing method according to this embodiment, as shown in FIG. 2A, the horizontal position reference wall 14 which is a part of the V-groove member support and the horizontal position reference wall 15 which is a part of the flat member support 12 are provided. The mutual horizontal distance α is accurately set to a desired value, and the horizontal position of each V-groove 10 in the V-groove member 1 is set by a part of the V-groove member support as shown in FIG. By accurately defining a certain horizontal position reference wall surface 14, the horizontal position of the center row of the optical fiber 5 in FIGS. 3A to 5B with respect to the horizontal position reference wall surface 14 is accurately defined. 4B, the horizontal position of the flat plate member 2 is accurately defined with respect to the horizontal position reference wall surface 15 as shown in FIG. The horizontal distance W (see FIG. 1) with the side surface 4 of the flat plate member 2 is also high precision It is constant.
[0041]
【Example】
Hereinafter, examples of the present invention will be specifically described.
[0042]
[Example 1]
In FIG. 2A, the optical fiber temporary placement table 8 is arranged on the vertical position reference wall 13 of the flat plate member support 12. One side surface of the optical fiber temporary placement table 8 is pressed against the horizontal position reference wall surface 15 of the flat plate member support 12 and placed. The center position of the groove on the rightmost end in the drawing of the optical fiber temporary placement table 8 is about 1000 μm from the side of the optical fiber temporary placement table 8 pressed against the horizontal position reference wall 15. Next, the optical fiber strands 5 are accommodated in the respective grooves of the optical fiber temporary placement table 8 and are aligned substantially uniformly. However, each groove on the optical fiber temporary placement table 8 has a flat bottom, and 5 can move about 30 μm left and right. The diameter of the optical fiber 5 is 125 μm.
[0043]
In the following FIG. 2B, the V-groove member 1 is mounted on a V-groove member support (not shown). Further, one side surface of the V-groove member 1 is pressed and stacked on the horizontal position reference wall surface 14 which is a part of the V-groove member support. The V-groove member 1 is made of quartz glass, and has a thickness of 1000 μm and a width of 3500 μm. The center position of the V groove 10 located at the rightmost end in FIG. 2B of the V groove member 1 is exactly 750 μm from the side of the V groove member 1 pressed against the horizontal position reference wall surface 14. . The horizontal distance α between the horizontal position reference wall surface 14 and the horizontal position reference wall surface 15 (see FIG. 2A) is set to exactly 250 μm. Further, a thin temporary fixing adhesive layer 17 is formed on the surface of the V-groove member 1 facing the optical fiber temporary placement table 8. The temporary fixing adhesive layer 17 is an ultraviolet curable epoxy resin. The V-groove member support is made of quartz glass and is transparent to ultraviolet rays.
[0044]
In FIG. 3 (A), the V-groove member 1 is lowered, and the temporary fixing adhesive layer 17 is brought into contact with the optical fiber strands 5 aligned on the optical fiber temporary placement table 8. At this time, the optical fiber 5 accommodated in each groove of the optical fiber temporary placement table 8 is pushed to the slope of each V-groove 10 in the corresponding V-groove member 1 and is accurately positioned at the center of each V-groove 10. 3A, the center position of the rightmost optical fiber 5 in FIG. 3A is exactly 750 μm from the side of the V-groove member 1 on the side pressed against the horizontal position reference wall surface 14. The position is exactly 1000 μm from the position reference wall surface 15. In this state, ultraviolet rays are irradiated, and the optical fiber 5 is temporarily fixed to the V-groove member 1 by allowing the V-groove member 1 and the V-groove member support to pass therethrough to cure the temporary fixing adhesive layer 17.
[0045]
In FIG. 3B, the temporary fixing body 11 including the optical fiber 5 and the V-groove member 1 is raised, and the optical fiber temporary placing table 8 is removed from the flat member support 12. Incidentally, the same optical fiber temporary placement table 8 is used repeatedly.
[0046]
In FIG. 4A, the temporary fixing body 11 is lowered, and the outer peripheral bottom surface of the optical fiber 5 is pressed against the vertical position reference wall 13 of the flat plate member support 12. At this time, the V-groove member support freely changes the posture of the temporary fixing body 11 by a swing mechanism (not shown) while maintaining the contact between the side surface of the V-groove member 1 and the horizontal position reference wall surface 14 in the temporary fixing body 11. The outer bottom surface of the optical fiber 5 is exactly along the vertical position reference wall 13 and is parallel to the vertical position reference wall 13. In the state where the parallelism is maintained, the posture of the V-groove member support and the temporary fixing body 11 is fixed by a chuck mechanism (not shown). Further, the height measurement value h0 of the vertical position measurement surface 16 in a state where the outer peripheral bottom surface of the optical fiber 5 is in contact with the vertical position reference wall surface 13 is reset to zero. Note that a laser distance meter is used for measuring the height of the vertical position measurement surface 16.
[0047]
In FIG. 4B, the parallelism between the outer peripheral bottom surface of the optical fiber 5 and the vertical position reference wall 13 (that is, the parallel between the center row of the optical fiber 5 and the vertical position reference wall 13) is maintained, and The vertical position measurement is performed while keeping the horizontal distance α between the horizontal position reference wall surface 14 and the horizontal position reference wall surface 15 constant, and maintaining the contact between the side surface of the V-groove member 1 in the temporary fixing body 11 and the horizontal position reference wall surface 14. After the temporary fixing body 11 is raised until the measured height of the surface 16 becomes 5000 μm or more, the flat plate member 2 is placed on the vertical position reference wall 13 of the flat plate member support 12. Note that one side surface of the flat plate member 2 is pressed against the horizontal position reference wall surface 15 of the flat plate member support 12 and arranged. The flat plate member 2 is made of quartz glass, has a thickness of 950 μm, has a non-uniformity of ± 2 μm, and has a width of 4000 μm.
[0048]
In FIG. 5A, the adhesive 6 is supplied to the upper surface of the flat plate member 2. The adhesive 6 is prepared by mixing 50% by weight of a spherical quartz filler with an ultraviolet-curable epoxy resin and adjusting the curing shrinkage to 5% or less. Thereafter, the V-groove member support is lowered until the height measurement value h1 of the vertical position measurement surface 16 becomes 1000 μm while maintaining the posture and the horizontal position of the temporary fixing body 11, and the flat plate member is bonded via the adhesive 6. 2. The state shown in FIG. 5B is obtained in which the V-groove member 1 and the optical fiber 5 are combined. When the height h1 of the vertical position measurement surface 16 is 1000 μm, an adjustment layer 7 having a thickness of 50 μm is interposed between the outer peripheral bottom surface of the optical fiber 5 and the upper surface of the flat plate member 2. The center position of the rightmost optical fiber 5 in FIG. 5B is exactly 750 μm from the side surface of the V-groove member 1 pressed against the horizontal position reference wall 14, and The position is exactly 1000 μm from the side of the flat plate member 2 on the pressed side. Here, by irradiating the plate member 2 and the plate member support 12 with ultraviolet rays, the adhesive 6 is cured and the plate member 2, the V-groove member 1, and the optical fiber 5 are integrated. The optical fiber array 100 shown in FIG. 1 is completed. The thickness of the control layer 7 was reduced by 2.5 μm due to curing shrinkage, and became 47.5 μm. Further, the set distance H between the center row of the optical fiber 5 and the arrangement reference plane 3 of the flat plate member 2 was 1060 μm.
[0049]
The thickness dimension of the flat plate member 2 fluctuates as shown in the figure, but is offset by the fluctuation of the adjusting layer 7 interposed between the central row of the optical fiber 5 and the flat plate member 2, and The set distance H between the central row of the strands 5 and the placement reference plane 3 of the flat plate member 2 is kept constant at 1060 μm regardless of the location. The horizontal distance W between the central row of the optical fiber 5 and the side surface 4 (see FIG. 1) of the flat plate member 2 is set to 1000 μm.
[0050]
Subsequently, these processes were repeated with different members. The flat plate member 2 this time had a thickness of 960 μm, which was different from the previous thickness of 950 μm, but the height measurement value h1 of the vertical position measurement surface 16 was 1000 μm in FIG. When the flat member support is lowered until the thickness of the adjusting member 7 is reduced, the adjusting layer 7 having a thickness of 40 μm is formed between the outer peripheral bottom surface of the optical fiber 5 and the upper surface of the flat member 2. As a result, the thickness H became 38 μm, and as a result, the set distance H between the central row of the optical fiber 5 and the arrangement reference plane 3 of the flat plate member 2 became 1060.5 μm, which was a result that matched with the previous time with high accuracy.
[0051]
【The invention's effect】
According to the optical fiber array according to the invention of claims 1 to 5,
An adjusting layer made of an adhesive is interposed between each optical fiber in which a part of the outer peripheral surface is accommodated in the V-groove and the flat surface of the flat plate member, and the adjusting layer side of the flat plate member is The opposite flat surface is used as an arrangement reference plane for assembling the array, and a desired distance from the central row of optical fiber strands formed by connecting the center points of the cross sections of the distal ends of the optical fiber strands to the arrangement reference plane. When the set distance is H, the maximum value of the thickness dimension of the flat plate member is dmax, and the radius of the cross section at the tip of each optical fiber is r, the adjustment layer satisfying the condition of (dmax + r) <H is: The distance from the center point of each optical fiber to the arrangement reference plane is equal to or substantially equal to the desired set distance H by compensating for the deviation from the set distance H due to the unevenness of the thickness dimension of the flat plate member. Set to Because you are,
When the array is incorporated with the flat surface of the flat plate member as the arrangement reference plane, there is an effect that optical and mechanical coupling with a connection object arranged to face the array is facilitated.
[0052]
Further, according to the method of manufacturing an optical fiber array according to the present invention, the optical fiber is temporarily fixed in each V-groove of the V-groove member and the V-groove member and the plurality of optical fiber wires are provided. Forming a temporary fixed body comprising:
The outer circumferential surface of the optical fiber wire temporarily fixed in the V-groove is brought into contact with a predetermined reference plane while adjusting the posture of at least one of the temporarily fixed body and the reference plane, thereby providing an optical fiber element in the temporary fixed body. A step of setting the vertical distance between each outer peripheral surface of the optical fiber and the reference plane in contact with the reference plane to zero, while ensuring that the central row of lines and the reference plane are parallel to each other,
After separating the temporary fixed body and the reference plane by a certain distance while maintaining the center row of the optical fiber wires in the temporary fixed body and the reference plane in parallel, a step of disposing the flat plate member on the reference plane,
The temporary fixed body and the reference plane are brought close to each other by a fixed distance while maintaining the center row of the optical fiber strands in the temporary fixed body and the reference plane parallel to each other, and the plate member and the temporary fixed body arranged on the reference plane. Bonding together with an adhesive,
The adhesive is cured to adjust the distance from the center point of each optical fiber to the arrangement reference plane to be the same or substantially the same as the desired set distance H by satisfying the condition of (dmax + r) <H. Forming a layer,
Since each process has
This has the effect that the optical fiber array according to the present invention can be easily and reliably manufactured.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a schematic configuration of an optical fiber array according to the present invention.
FIGS. 2A and 2B are explanatory views showing a manufacturing process of the optical fiber array according to the embodiment (Example 1).
FIGS. 3A and 3B are explanatory views showing a manufacturing process of the optical fiber array according to the embodiment (Example 1).
FIGS. 4A and 4B are explanatory views showing a manufacturing process of the optical fiber array according to the embodiment (Example 1).
FIGS. 5A and 5B are explanatory views showing a manufacturing process of the optical fiber array according to the embodiment (Example 1).
6 (A) is a schematic perspective view of a V-groove member according to a conventional example, FIG. 6 (B) is an exploded perspective view of a conventional optical fiber array in which the V-groove member is incorporated as a constituent member, and FIG. (C) is a schematic perspective view of a conventional optical fiber array.
FIG. 7 is an explanatory diagram showing an example of a problem of the optical fiber array according to the conventional example.
[Explanation of symbols]
1 V groove member
2 Flat plate members
3 placement reference plane
4 Flat member side
5 Optical fiber strand
6 adhesive
7 Adjustment layer
100 Optical fiber array

Claims (7)

長尺のV溝が平坦面上に一定間隔で複数本設けられたV溝部材と、このV溝部材のV溝形成面に対向して配置された平坦面を有する平板部材と、上記V溝部材のV溝内に外周面の一部を収容して整列されると共にV溝部材と平板部材間に挟持される複数の光ファイバ素線を備え、各光ファイバ素線の先端が対向して配置される接続対象に光学的に接続される光ファイバアレイにおいて、
上記V溝内に外周面の一部が収容された各光ファイバ素線と上記平板部材の平坦面との間に接着剤より成る調節層を介在させ、かつ、上記平板部材の調節層側とは反対の平坦面をアレイを組み込む際の配置基準面にすると共に、上記光ファイバ素線における各先端断面の中心点を結んで形成される光ファイバ素線の中心列から上記配置基準面までの所望とする設定距離をH、上記平板部材における厚み寸法の最大値をdmax、各光ファイバ素線における先端断面の半径をrとした場合に、(dmax+r)<Hの条件を満たす上記調節層が、平板部材における厚み寸法の不揃いに伴う上記設定距離Hからのずれ分を補って、各光ファイバ素線の中心点から上記配置基準面までの距離が所望とする上記設定距離Hと同一若しくは略同一に設定されていることを特徴とする光ファイバアレイ。
A V-shaped groove member in which a plurality of long V-shaped grooves are provided at regular intervals on a flat surface, a flat plate member having a flat surface disposed opposite to a V-groove forming surface of the V-shaped groove member, A plurality of optical fibers are accommodated in the V-groove of the member so as to accommodate a part of the outer peripheral surface thereof and are sandwiched between the V-groove member and the flat plate member. In an optical fiber array optically connected to the connection object to be arranged,
An adjusting layer made of an adhesive is interposed between each optical fiber in which a part of the outer peripheral surface is accommodated in the V-groove and the flat surface of the flat plate member, and the adjusting layer side of the flat plate member. The opposite flat surface is used as an arrangement reference plane when the array is incorporated, and the center line of the optical fiber formed by connecting the center points of the tip cross sections of the optical fiber to the arrangement reference plane. When the desired set distance is H, the maximum value of the thickness dimension of the flat plate member is dmax, and the radius of the tip cross section of each optical fiber is r, the adjustment layer satisfying the condition of (dmax + r) <H is obtained. The distance from the center point of each optical fiber to the arrangement reference plane is equal to or substantially equal to the desired set distance H by compensating for the deviation from the set distance H due to the unevenness of the thickness dimension of the flat plate member. Set the same Optical fiber array, characterized by being.
上記調節層が、樹脂と無機フィラーの混合物により構成されていることを特徴とする請求項1記載の光ファイバアレイ。2. The optical fiber array according to claim 1, wherein the adjustment layer is formed of a mixture of a resin and an inorganic filler. 上記樹脂が、光硬化性樹脂の硬化物であることを特徴とする請求項2記載の光ファイバアレイ。3. The optical fiber array according to claim 2, wherein the resin is a cured product of a photocurable resin. 各光ファイバ素線の中心点から上記配置基準面までの距離が、所望とする設定距離Hに対し±5μm以内の精度を有していることを特徴とする請求項1〜3のいずれかに記載の光ファイバアレイ。The distance from the center point of each optical fiber to the arrangement reference plane has an accuracy within ± 5 μm with respect to a desired set distance H. An optical fiber array according to any of the preceding claims. 上記V溝部材または平板部材の一側面と任意の光ファイバ素線における先端断面の中心点との水平距離Wが、所望とする設定値に対し±5μm以内の精度を有していることを特徴とする請求項1〜4のいずれかに記載の光ファイバアレイ。The horizontal distance W between one side surface of the V-groove member or the flat plate member and the center point of the tip section of an arbitrary optical fiber has an accuracy within ± 5 μm with respect to a desired set value. The optical fiber array according to claim 1. 請求項1記載の光ファイバアレイの製造方法において、
V溝部材の各V溝内に光ファイバ素線を仮固着させてV溝部材と複数の光ファイバ素線から成る仮固着体を形成する工程と、
V溝内に仮固着された光ファイバ素線の各外周面を所定の基準平面に接触させつつその仮固着体若しくは基準平面の少なくとも一方の姿勢を調節することにより、仮固着体における光ファイバ素線の上記中心列と基準平面の平行を確保すると共に、上記基準平面に接触する光ファイバ素線の各外周面と基準平面間の垂直距離をゼロに設定する工程と、
仮固着体における光ファイバ素線の上記中心列と基準平面の平行を維持したまま仮固着体と基準平面を一定距離引き離した後、基準平面上に上記平板部材を配置する工程と、
仮固着体における光ファイバ素線の上記中心列と基準平面の平行を維持したまま仮固着体と基準平面を一定距離接近させ、かつ、上記基準平面上に配置された平板部材と仮固着体とを接着剤を介在させた状態で結合する工程と、
この接着剤を硬化させ、上記(dmax+r)<Hの条件を満たして各光ファイバ素線の中心点から上記配置基準面までの距離を所望とする設定距離Hと同一若しくは略同一に設定する調節層を形成する工程、
の各工程を具備することを特徴とする光ファイバアレイの製造方法。
The method for manufacturing an optical fiber array according to claim 1,
A step of temporarily fixing the optical fiber in each V-groove of the V-groove member to form a temporary fixing body composed of the V-groove member and the plurality of optical fiber wires;
The outer circumferential surface of the optical fiber wire temporarily fixed in the V-groove is brought into contact with a predetermined reference plane while adjusting the posture of at least one of the temporarily fixed body and the reference plane, thereby providing an optical fiber element in the temporary fixed body. A step of setting the vertical distance between each outer peripheral surface of the optical fiber and the reference plane in contact with the reference plane to zero, while ensuring that the central row of lines and the reference plane are parallel to each other,
After separating the temporary fixed body and the reference plane by a certain distance while maintaining the center row of the optical fiber wires in the temporary fixed body and the reference plane in parallel, a step of disposing the flat plate member on the reference plane,
The temporary fixed body and the reference plane are brought close to each other by a fixed distance while maintaining the center row of the optical fiber strands in the temporary fixed body and the reference plane parallel to each other, and the plate member and the temporary fixed body arranged on the reference plane. Bonding together with an adhesive,
The adhesive is cured to adjust the distance from the center point of each optical fiber to the arrangement reference plane to be the same or substantially the same as the desired set distance H by satisfying the condition of (dmax + r) <H. Forming a layer,
A method for manufacturing an optical fiber array, comprising the steps of:
上記V溝部材の一側面からの水平距離がそれぞれ所望の値に設定されたV溝列に光ファイバ素線を収容し、かつ、上記基準平面上に配置された板状部材の一側面とV溝部材の一側面との水平距離も所定の値となるように調節しながらV溝部材と板状部材とを接着剤を介在させた状態で結合し、次いで、この接着剤を硬化させて上記基準平面上に配置された板状部材の一側面と任意の光ファイバ素線における先端断面の中心点との水平距離Wが所望の値に設定された光ファイバアレイを製造することを特徴とする請求項6記載の光ファイバアレイの製造方法。The optical fiber is accommodated in a V-groove row whose horizontal distance from one side of the V-groove member is set to a desired value. The V-groove member and the plate-like member are joined with an adhesive interposed therebetween while adjusting the horizontal distance to one side surface of the groove member to be a predetermined value. An optical fiber array in which a horizontal distance W between one side surface of a plate-shaped member arranged on a reference plane and a center point of a cross section of an end of an arbitrary optical fiber is set to a desired value is manufactured. A method for manufacturing an optical fiber array according to claim 6.
JP2003159281A 2003-06-04 2003-06-04 Optical fiber array and its manufacturing method Withdrawn JP2004361619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159281A JP2004361619A (en) 2003-06-04 2003-06-04 Optical fiber array and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159281A JP2004361619A (en) 2003-06-04 2003-06-04 Optical fiber array and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004361619A true JP2004361619A (en) 2004-12-24

Family

ID=34052388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159281A Withdrawn JP2004361619A (en) 2003-06-04 2003-06-04 Optical fiber array and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004361619A (en)

Similar Documents

Publication Publication Date Title
JP2000193844A (en) Manufacture of optical fiber array
US6728450B2 (en) Alignment of optical fibers with an optical device
JPH09178962A (en) Optical fiber array and its production
JP3243187B2 (en) Manufacturing method of rod array
JP5673223B2 (en) OPTICAL FIBER COMPONENT AND ITS MANUFACTURING METHOD, OPTICAL FIBER / LENS SUBSTRATE ASSEMBLY AND ITS MANUFACTURING METHOD
JPH11281823A (en) Arraying method for optical fiber and optical fiber array device
US20030142920A1 (en) Method and apparatus for optical fiber array assembly
JP2004109778A (en) Optical fiber array and its manufacturing method
US20030142921A1 (en) Method of aligning optical fibers in an array member
US20020097974A1 (en) Optical fiber array and method of fabrication thereof
JP2004361619A (en) Optical fiber array and its manufacturing method
JP2003248142A (en) Two-dimensional optical member array and two- dimensional waveguide unit
JPH11305151A (en) Optical switch connection part and its manufacture
US6827499B2 (en) Method of manufacturing two-dimensional optical connector component
JP3402007B2 (en) Method for manufacturing optical waveguide device
JP2003156657A (en) Method for manufacturing optical fiber array
JP2003215381A (en) Method for manufacturing optical fiber array and optical fiber array
US20030156814A1 (en) Optical fiber block having semicircular grooves and method for same
JP2003185880A (en) Optical fiber array
JP6513583B2 (en) Optical fiber side input / output device and method of manufacturing the same
JP5755783B2 (en) End-face proximity multicore optical fiber manufacturing equipment
JP2003156651A (en) Method for manufacturing optical fiber array
JP3681946B2 (en) Multi-core bundle manufacturing method
KR100237001B1 (en) Tapered fiber array assembly
JP3650564B2 (en) Multi-core bundle manufacturing jig

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060831