JP2004361272A - 基準ターゲット - Google Patents
基準ターゲット Download PDFInfo
- Publication number
- JP2004361272A JP2004361272A JP2003160747A JP2003160747A JP2004361272A JP 2004361272 A JP2004361272 A JP 2004361272A JP 2003160747 A JP2003160747 A JP 2003160747A JP 2003160747 A JP2003160747 A JP 2003160747A JP 2004361272 A JP2004361272 A JP 2004361272A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- displacement
- light
- reflection
- reflection light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
【解決手段】変位測定装置10は、投光部12と、正反射受光部13と、乱反射受光部14と、信号処理部15を有している。信号処理部15では、正反射光量信号Bをそのしきい値Eと比較し、乱反射光量信号Dをそのしきい値Fと比較し、その結果に基づいて正反射変位信号Aと乱反射変位信号Cのいずれか一方を選択して出力する。被測定物体5の反射率に対応して正反射と乱反射を使い分けて信号を選択するので、被測定物5の正確な変位測定 (高さ測定)を非接触で行なえる。基準ターゲット40は、基板の表面に鏡面仕上げで正反射機能を有する乱反射膜を有する。正反射受光部と乱反射受光部の校正にあたり基準ターゲットは共通に使用でき、専用のものに交換する必要がないので、校正精度が向上する。
【選択図】図1
Description
【発明の属する技術分野】
本発明は、被測定物体の変位量を非接触で測定できる変位測定装置の校正に使用される基準ターゲットに係り、特に反射率が領域によって大きく異なるような被測定物上の変位量を正確に測定でき、また被測定物の凸部分の陰にあたる測定不能領域を減らせるために、被測定物の面積や体積がより正確に測定できる変位測定装置の校正に用いて有用な基準ターゲットに関するものである。
【0002】
【従来の技術】
下記の特許文献1には、図8に示すような構造の変位測定装置が開示されている。
この変位測定装置は、光を用いて測定対象面の高さ変位(凹凸)を測定する装置である。図8に示すように、投光部において、光源121から出力されたレーザビームを回転ミラー型または振動ミラー型等の偏向装置122によって偏向し、この偏向した光をレンズ123によって同一平面上の所定範囲内を光軸が平行に移動するビームとする。このビームは、基準面200上の測定対象物100の表面100aに出射され、測定対象物100の表面100a上に定められたビームの照射点Sは、直線的(実際には被測定対象表面の凹凸により蛇行する)に片道あるいは往復走査される。
【0003】
この照射点Sからの反射光を受ける受光部は、レンズアレイ125、結像レンズ126および受光素子127によって構成されている。
【0004】
レンズアレイ125は、等しい焦点距離を有する複数(図8では5個)の集光レンズ部125a〜125eが一列に並ぶように合成樹脂あるいはガラスで一体成形されている。
【0005】
結像レンズ126は、投光部から出射されるビームの走査幅寸法より大きい径を有し、光軸と直交する一方の面が球面状に形成されており、レンズアレイ125からのビームを集束して、受光素子127の受光面127aに照射点Sの像を結像させる。
【0006】
受光素子127は矩形状の受光面127aを有し、受光面127aに照射された光の位置のうち、受光面127aの縦方向に沿った位置に対応する信号を出力するように構成されている。
【0007】
なお、この従来例では、投光部からのビームの光軸と受光部のレンズアレイ125の光軸とは、受光量を確保するために、基準面2の法線をはさんで等しい角度、即ち正反射の向きとなるように予め設定されている。
【0008】
この変位測定装置によれば、測定対象物100に向かって出射されるビームの照射点Sは、測定対象物100の表面100a上を一定方向に走査される。この照射点からの光は、レンズアレイ125の球面集束型の各集光レンズ部125a〜125eによってほぼ平行なビームに集束されて球面集束型の結像レンズ126に入射し、結像レンズ126によって偏向集束されて受光素子127の受光面127aに照射点Sの像を点状に結像させる。この発明によれば、被測定面が粗く照射点からの光が広がっている場合でも、精度の高い測定が高速に行なえる。
【0009】
上述したような正反射光を用いた従来の変位測定装置において、測定対象物の変位と受光素子の出力は、光学系に起因する誤差のために正比例の関係とはならず、直線性が得られない。この受光素子の出力における非直線性の程度は製品ごとに異なるため、これを一定に校正しなければならない。この校正のために、共通の測定対象物としてばらつきの少ない一定の基準で製作された基準ターゲットが使用される。
【0010】
図9(a)は、図8に示した正反射光を用いた変位測定装置に用いる基準ターゲット200とその校正時における光路を示す図である。この正反射用の基準ターゲット200は表面がアルミニウム蒸着による鏡面とされている。
【0011】
なお、図8に示した変位測定装置は正反射タイプであり、前述したように測定光が斜めに測定対象物に入射するので、測定対象物が変位すると入射点が変化するため、測定範囲を広く取ることができないが、鏡面に対しては強い反射光が得られ測定の分解能は高い。
【0012】
これに対し、変位測定装置には乱反射を用いるタイプもある。乱反射タイプでは、図9(b)に示すような乱反射用の基準ターゲット201を用いる。この乱反射用の基準ターゲット201は、基板の表面にマグネシウムを燃焼させて発生させた煙を付着させて酸化マグネシウムの白い膜を形成して乱反射面としたものである。図9(b)中に光路を示すように、乱反射タイプの変位測定装置では、測定対象物に測定光 (投光)が垂直に入射し、測定対象物の表面に対して斜めの方向から散乱光を受光して測定が行なわれる。
【0013】
乱反射タイプの変位測定装置では、前述したように測定光が垂直に測定対象物に入射するので、測定対象物が変位しても入射点は変化しないため、測定範囲は正反射タイプに比べて相対的に広く取ることができるが、測定の分解能は正反射タイプに比べて相対的に低くなる。
【0014】
【特許文献1】
特開平11−83426号公報
【0015】
【発明が解決しようとする課題】
図10(a)は、前記変位測定装置の被測定物であるプリント基板1を示す。このプリント基板1の上にはパッド2が設けられており、該パッド2の上にはんだ3が設けられている。このはんだ3の周囲にはパッド2の一部を覆ってレジスト4が設けられている。
【0016】
はんだ3はプリント基板1及びパッド2の表面からある程度の高さを有する凸形状に形成されており、光学的には反射率が相対的に低い低反射率領域となっている。はんだ3の周囲を取り巻くパッド2及びレジスト4は、反射率がはんだ3に比べて相対的に高く、ほぼ鏡面に近い反射率を有する高反射率領域となっている。
【0017】
従って、正反射光のみを用いる前記変位測定装置でこのプリント基板1を測定すると、図10(b)に示すように、はんだ3の部分では十分な反射光量が得られず、受光素子の受光量は低くなるが、その周囲のパッド2及びレジスト4の領域は高い反射率で測定光を正反射するので、受光素子の受光量は非常に高くなる。
【0018】
図8に示した従来の変位測定装置によれば、図11に示すように、光源からの測定光が被測定物のはんだ3で正反射して受光素子127に入射した場合、はんだ3の反射率は前述したように小さいので受光素子127での受光量は小さい。ところが、光源から来るレーザービームは図示のように中央が高く裾野にかけて広がり (フレア)を有する強度分布を有しているので、測定光がはんだ3を走査している時、そのフレアの部分ははんだ3の周囲の反射率の高いレジスト4等で正反射し、はんだ3からの正反射光とともに受光素子127に到達する。従って、はんだ3で正反射した光によって受光素子127で得られる信号は、その周囲からの正反射光による信号に比べて十分な強度を有するとはいえない。つまり、はんだ3からの正反射光とその周囲のレジスト4等によるフレア光の正反射光との相対的な強度差が小さいので、はんだ3からの正反射光を用いてはんだ3の変位を正確に測定することは困難であるという問題があった。
【0019】
また、図12に示すように、プリント基板1上のはんだ3は基板及びパッドの表面からある程度の高さを有する凸形状に形成されているため、法線に対して等しい入射角と反射角で測定光が入反射する場合、凸形状であるはんだ3の周囲にはんだ3の陰となる領域Wができて被測定物(はんだ3)の正確な測定ができないという問題があった。
【0020】
すなわち、図12において、はんだ3の右側の領域Wで正反射した測定光ははんだ3の陰となって受光素子には到達しない。また、はんだ3の左側の領域Wには測定光が到達しないので受光素子に反射光が到達することはない。
【0021】
そこで、本願発明者等は、前記プリント基板における測定光の反射率を再度検討したところ、図10(c)に示すように乱反射については正反射の場合と異なる結果が得られることに気づき、被測定物の反射率に応じて正反射と乱反射を使い分けるという発想を得るに至った。
【0022】
すなわち、図10(c)に示すように、乱反射の場合には、はんだ3の周囲のパッド2及びレジスト4での乱反射による受光素子の受光量は相対的に大きいが、はんだ3の部分でも、乱反射によって受光素子ではある程度の受光量を得ることができる。つまり、受光素子に入射する光量は、前述したように正反射の場合には、はんだ3とパッド2とで差が大きいが、乱反射の場合にはその差が小さくなる。
【0023】
そこで本発明者は、上記の課題を解決すべく、被測定物体が、反射率が相対的に低い低反射率領域と、前記低反射率領域の周囲にある反射率が相対的に高い高反射率領域とを有している場合にも、正反射と乱反射を最適に使い分けて正確な変位測定 (高さ測定)ができる変位測定装置の研究開発を行なった。その結果、発明の実施の形態の項で詳細に説明するように、従来にはない新規かつ進歩性のある正反射光・乱反射光併用タイプの変位測定装置を完成するに至った。
【0024】
しかし、正反射光・乱反射光併用タイプの変位測定装置においても、従来の技術の項で説明したように、測定対象物の変位と受光素子の出力は正比例の関係とはならず、直線性が得られないので、校正が必要になる。特に、図13に示すように、正反射光の場合と乱反射光の場合とでは、測定対象物の移動量 (変位)と受光素子の出力(変位出力)との関係が異なるので、図14に示すような補正装置を用いて正比例の関係となるようにそれぞれ校正を行なう必要がある。
【0025】
すなわち、図14に示すように、変位測定装置300に対して相対移動自在のステージ301に基準ターゲット200を設置して測定を行なう。変位測定装置300に対するステージ301の移動量 (すなわち基準ターゲット200の変位)と変位測定装置300からの変位出力が補正手段302に入力される。補正手段302では、基準ターゲット200の移動量と受光素子の変位出力の関係が正比例するように演算を行い、その結果得られた補正値を変位測定装置300に設けられたROM303に格納する。
【0026】
ところが、従来の基準ターゲットは、図9(a)(b)に示したように、正反射用と乱反射用とで別々になっているので、上述した校正作業は正反射用と乱反射用の各基準ターゲット200,201を用いてそれぞれ別々に行なう必要があった。しかし、このように基準ターゲットを交換して校正作業を行なうと、交換時の位置ずれによる校正精度の悪化を防止することができない。すなわち、ステージ301に対する各基準ターゲット200,201の取り付け状態が必ずしも同一にならないため、基準ターゲット200,201に対する測定光の入射点と、ここから反射した光の受光素子への入射点とに対応する測定上の原点が、2種類の基準ターゲット200,201でずれてしまうという問題があった。
【0027】
そこで、本発明は、正反射と乱反射を最適に使い分けて正確な変位測定 (高さ測定)ができる従来にはない正反射光・乱反射光併用タイプの変位測定装置において、正反射光・乱反射光のいずれに関する校正にも共通して用いることができる基準ターゲットを提供することにより、正反射光・乱反射光併用タイプの変位測定装置の校正精度を向上させて同変位測定装置の利便性を最大限に発揮させることを目的としている。
【0028】
【課題を解決するための手段】
請求項1に記載された基準ターゲットは、被測定物体5に測定光を照射する投光部と、前記被測定物体5からの反射光を受光する受光部と、前記受光部からの信号を用いて前記被測定物体5の変位信号を出力する信号処理部を有する変位測定装置の校正に使用されるものであり、基板の表面に鏡面仕上げされた乱反射膜を有することを特徴としている。
【0029】
投光部からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射用の変位測定装置の校正にも、乱反射用の変位測定装置の校正にも用いることができる。
【0030】
請求項2に記載された基準ターゲットは、被測定物体5に測定光を照射する投光部12と、前記被測定物体5からの正反射光を受光する正反射受光部13と、前記被測定物体5からの乱反射光を受光する乱反射受光部14と、前記正反射受光部13からの信号と前記乱反射受光部14からの信号とを用いて前記被測定物体5の変位信号Hを出力する信号処理部15を有する変位測定装置10の校正に使用されるものであり、基板の表面に鏡面仕上げされた乱反射膜を有することを特徴としている。
【0031】
投光部12からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射受光部13の校正にも、乱反射受光部14の校正にも共通して用いることができ、基準ターゲットの交換により校正精度が低下することはない。
【0032】
請求項3に記載された基準ターゲットは、被測定物体5に測定光を照射する投光部12と、前記被測定物体からの正反射光を受光して正反射変位信号Aと正反射光量信号Bを出力する正反射受光部13と、前記被測定物体からの乱反射光を受光して乱反射変位信号Cと乱反射光量信号Dを出力する乱反射受光部14と、前記正反射受光部13からの正反射変位信号A及び正反射光量信号Bと前記乱反射受光部14からの乱反射変位信号C及び乱反射光量信号Dとを用いて前記被測定物体5の変位信号Hを出力する信号処理部15を有する変位測定装置10の校正に使用されるものであり、基板の表面に鏡面仕上げされた乱反射膜を有することを特徴としている。
【0033】
前記信号処理部15が、前記正反射受光部13からの正反射変位信号A及び正反射光量信号Bと、前記乱反射受光部14からの乱反射変位信号C及び乱反射光量信号Dを用いることにより、前記被測定物体5の反射率に対応して正反射と乱反射を使い分けて信号を選択することにより、当該被測定物5の正確な変位測定 (高さ測定)を非接触で行なうことができる変位測定装置10の校正作業において、投光部12からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射受光部13の校正にも、乱反射受光部14の校正にも共通して用いることができ、基準ターゲットを交換しなくてよいので校正精度が低下することがなく、正反射と乱反射を用いた上記所期の性能が十分に発揮されるような校正を行なうことができる。
【0034】
請求項4に記載された基準ターゲットは、請求項3に記載の基準ターゲットにおいて、前記変位測定装置10の前記信号処理部15が、
前記正反射光量信号Bのしきい値Eと、前記乱反射光量信号Dの第1のしきい値Fと、前記正反射光量信号Bと、前記乱反射光量信号Dとを入力され、前記正反射変位信号Aと前記乱反射変位信号Cのいずれか一方を選択するための選択信号Sを生成するデータ判定部25と、
前記正反射変位信号Aと前記乱反射変位信号Cと前記データ判定部25からの前記選択信号Sが入力され、前記正反射変位信号Aと前記乱反射変位信号Cのいずれか一方を選択して出力する変位選択部26と、
を有することを特徴としている。
【0035】
前記正反射光量信号Bをそのしきい値Eと比較し、前記乱反射光量信号Dをその第1のしきい値Fと比較し、その結果に基づいて前記正反射変位信号Aと前記乱反射変位信号Cのいずれか一方を選択して出力することができ、前記被測定物体5の反射率に対応して正反射と乱反射を使い分けて信号を選択することにより、当該被測定物5の正確な変位測定 (高さ測定)を非接触で行なうことができる変位測定装置10の校正作業において、投光部12からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射受光部13の校正にも、乱反射受光部14の校正にも共通して用いることができ、基準ターゲットを交換しなくてよいので校正精度が低下することがなく、正反射と乱反射によって得られる上記各信号を用いた上記所期の性能が十分に発揮されるような校正を行なうことができる。
【0036】
請求項5に記載された基準ターゲットは、請求項4に記載の基準ターゲットにおいて、前記データ判定部25が、
前記正反射光量信号Bが前記正反射光量信号のしきい値Eより大きいと判定した場合には、前記正反射光量信号Bがその上限値より大きい場合に前記乱反射変位信号Cを選択する選択信号Sを出力するとともに、前記正反射光量信号Bがその上限値よりも小さい場合に前記正反射変位信号Aを選択する選択信号Sを出力し、
前記正反射光量信号Bが前記正反射光量信号のしきい値Eより小さいと判定した場合には、前記乱反射光量信号Dが前記乱反射光量信号の第1のしきい値Fより大きい場合に前記乱反射変位信号Cを選択する選択信号Sを出力するとともに、前記乱反射光量信号Dが前記乱反射光量信号の第1のしきい値Fより小さい場合には測定不能信号を出力することを特徴としている。
【0037】
この変位測定装置10によれば、前記正反射光量信号Bが前記正反射光量信号Bのしきい値Eより大きいと判定した場合において、前記正反射光量信号Bがその上限値より大きい場合には前記乱反射変位信号Cを選択するとともに、前記正反射光量信号Bがその上限値よりも小さい場合には前記正反射変位信号Aを選択し、選択信号Sを出力し、前記正反射光量信号Bが前記正反射光量信号Bのしきい値Eより小さいと判定した場合において、前記乱反射光量信号Dがその第1の第1のしきい値Fより大きい場合には前記乱反射変位信号Cを選択するとともに、前記乱反射光量信号Dがその第1のしきい値Fより小さい場合には測定不能とするので、前記被測定物体5の反射率に対応して正反射と乱反射を使い分けて信号を選択することにより、当該被測定物5の正確な変位測定 (高さ測定)を非接触で行なうことができる。そして、この変位測定装置10の校正作業において、投光部12からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射受光部13の校正にも、乱反射受光部14の校正にも共通して用いることができ、基準ターゲットを交換しなくてよいので校正精度が低下することがなく、正反射と乱反射によって得られる上記各信号としきい値を用いた上記所期の性能が十分に発揮されるような校正を行なうことができる。
【0038】
請求項6に記載された基準ターゲットは、請求項1〜5に記載の基準ターゲットにおいて、前記基板が光非浸透性材料からなり、前記乱反射膜が前記基板の表面に形成された所定厚さの塗膜を研磨してなることを特徴としている。
【0039】
投光部12からの光は、基準ターゲットの研磨された乱反射膜で正反射されるとともに乱反射されるので、正反射受光部13の校正にも、乱反射受光部14の校正にも共通して用いることができ、基準ターゲットの交換により校正精度が低下することはない。このため、正反射光と乱反射光を用いた上記変位測定装置の所期の性能を十分に発揮させることができる。
【0040】
請求項7に記載された基準ターゲットは、請求項1〜5に記載の基準ターゲットにおいて、前記基板が金属板であり、前記乱反射膜が前記金属板の表面に形成された厚さ10〜20μmの白色の粉体塗膜を研磨してなることを特徴としている。
【0041】
投光部12からの光は、基準ターゲットの研磨された白色の粉体塗膜からなる乱反射膜で正反射されるとともに乱反射されるので、正反射受光部13の校正にも、乱反射受光部14の校正にも共通して用いることができ、基準ターゲットの交換により校正精度が低下することはない。このため、正反射光と乱反射光を用いた上記変位測定装置の所期の性能を十分に発揮させることができる。
【0042】
【発明の実施の形態】
本発明の実施の形態を図1〜図7を参照して説明する。
図1は、本実施の形態に係る変位測定装置の概略構成図であり、図2は同変位測定装置の信号処理における信号の入出力状態を示すブロック図であり、図3は同変位測定装置の信号処理部のブロック図であり、図4は同信号処理部における処理手順を示す流れ図であり、図5は同変位測定装置における2系統の受光部の各結像レンズが連結された状態を示す図であり、図6は同変位測定装置における2系統の受光部の各結像レンズの位置調整を示す模式図であり、図7は同変位測定装置において2系統の受光部の校正に共通して使用される本発明に係る基準ターゲットとその入反射光路を示す断面図である。
【0043】
図1に示すように、本例の変位測定装置10は、簡略化して図示した筐体11を本体としている。この筐体11の内部には、被測定物体5に測定光を照射する投光部12と、被測定物体5からの正反射光を受光して正反射変位信号と正反射光量信号を出力する正反射受光部13と、被測定物体5からの乱反射光を受光して乱反射変位信号と乱反射光量信号を出力する乱反射受光部14と、これら2つの受光部13,14からの信号が入力されて後述する所定の処理を行なう信号処理部15を有している。
【0044】
本変位測定装置10は、上記の構成において被測定物体5に測定用のレーザー光を照射して該被測定物体5上の測定箇所の変位量を三角測量の原理を利用して非接触で測定するものである。本変位測定装置10は、図10(a)を参照して説明したように、反射率が相対的に低い低反射率領域(例えば前記はんだ3)と、その周囲にある反射率が相対的に高い高反射率領域(例えば前記パッド2及びレジスト4)とを有する被測定物体5(例えば前記プリント基板1等)の測定に適している。
【0045】
投光部12は、レーザービームを出射するレーザー光源16と、駆動されて回転することによりレーザー光源16からのビームを所定方向に走査する走査手段としてのポリゴンミラー17と、ポリゴンミラー17からの走査ビームを被測定物体5の基準面上の所定範囲内で光軸が平行に移動するように偏向させるレンズ18とを有している。
【0046】
正反射受光部13は、被測定物体5の基準面に対し、前記投光部12のレンズ18から入射するビームの入射角と同一の反射角で反射する正反射光を受光する第1の受光系である。この正反射受光部13は、被測定物体5に近い側から光軸に沿って、集光レンズ19(アレイ)と、減衰フィルターとしてのND(neutral density) フィルター20と、結像レンズ21と、位置検出素子22とが順に配置されて固定された構造とされている。
【0047】
乱反射受光部14は、被測定物体5の基準面に対して垂直な光路を有しており、投光部12からのビームが被測定物体5で乱反射した乱反射光を受光する第2の受光系であり、本例の光路配置によれば垂直受光部とも指称しうる。この乱反射受光部14は、前記正反射受光部13と同様、被測定物体5に近い側から光軸に沿って、集光レンズ19(アレイ)と、結像レンズ21と、位置検出素子22とを有しているが、NDフィルター20は設けられていない。
【0048】
NDフィルター20が正反射受光部13のみに設けられ、乱反射受光部14に設けられていないのは、反射光の強度は散乱光よりも正反射光の方が大きいので、異なる反射光を利用する2系統の受光部を備えた本変位測定装置10において各受光部13,14が受ける反射光の強度のバランスを取るためである。
【0049】
従って、本変位測定装置10によれば、被測定物体5における散乱光と正反射光の強度比に応じて、最適の減衰率を有する減衰フィルターを採用することができ、被測定物体5の光学的性質に対応した本変位測定装置10による最適な変位測定を実現することができる。
【0050】
2つの受光系13,14の各結像レンズ21,21は、投光部12におけるビームの走査幅寸法より大きい径を有し、光軸と直交する一方の面が球面状に形成されており、集光レンズ(アレイ)19,19からのビームを集束して、各受光素子22,22の受光面に被測定物体5における照射点の像を結像させる。
【0051】
2つの受光系13,14の各受光素子22,22は矩形状の受光面を有し、受光面に照射された光の位置のうち、受光面の縦方向に沿った位置に対応する信号 (変位信号)と、受光面に照射された光の強度に対応する信号(光量信号)を出力するように構成されている。ここで、正反射受光部13が出力する変位信号を正反射変位信号、正反射受光部13が出力する光量信号を正反射光量信号、乱反射受光部14が出力する変位信号を乱反射変位信号、乱反射受光部14が出力する光量信号を乱反射光量信号と呼ぶ。
【0052】
図1に示すように、2つの受光系13,14の各受光素子22,22は共通の信号処理部15に接続されている。信号処理部15は、前記正反射受光部13からの正反射変位信号及び正反射光量信号と前記乱反射受光部14からの乱反射変位信号及び乱反射光量信号とを用いて前記被測定物体5の変位信号を出力する。この信号処理部15は図示しない画像処理部に接続され、前記変位信号等を処理することによって被測定物体5の画像を合成することができる。
【0053】
さらに具体的には、信号等の入出力状態を表す図2のブロック図に示すように、本例の信号処理部15においては、前述したように、前記正反射受光部13からの正反射変位信号A及び正反射光量信号Bと前記乱反射受光部14からの乱反射変位信号C及び乱反射光量信号Dが入力される他、前記正反射光量信号のしきい値Eと、前記乱反射光量信号の第1のしきい値Fと、前記乱反射光量信号の第2の第2のしきい値Gも入力され、後述する所定のアルゴリズムに従った信号処理によって、これらの信号としきい値から変位信号Hと光量信号Iとパッド認識信号Jを得ている。
【0054】
ここで、前記正反射光量信号のしきい値Eは、反射率の低いはんだ3を認識するために設定される正反射はんだ輝度を表すものであり、可変パラメータである。また、前記乱反射光量信号の第1のしきい値Fは、反射率の低いはんだ3を認識するために設定される乱反射はんだ輝度を表すものであり、また乱反射光での測定不能レベルであるダークレベルを認識するための値であり、可変パラメータである。また、前記乱反射光量信号の第2のしきい値Gは、乱反射光でパッド2を認識するための値であり、可変パラメータである。
【0055】
上記各しきい値E,F,Gは上述したようにいずれも可変パラメータであり、被測定物体5の測定面の反射率に応じて最適に設定することができるので、本変位測定装置10は測定対象の光学的性質に対応した最適の設定で正反射と乱反射を使い分けて正確な変位測定を行なうことができる。
【0056】
図2に示した信号等の入出力状態を示すブロック図において、各信号と各しきい値を用いて行う信号処理のアルゴリズムは、図3に示すブロック構成の信号処理部15によって実行される。
【0057】
図3に示すように、信号処理部15はデータ判定部25を有している。データ判定部25は、前記正反射光量信号のしきい値Eと、前記乱反射光量信号の第1の第1のしきい値Fと、前記乱反射光量信号の第2のしきい値Gと、前記正反射光量信号Bと、前記乱反射光量信号Dとを入力され、前記正反射変位信号Aと前記乱反射変位信号Cのいずれか一方を選択するための選択信号Sを生成する。
【0058】
また、データ判定部25は、前記乱反射光量信号Dが第2のしきい値G以上であれば、パッド認識信号Jを1とし、第2のしきい値G以下ならばJを0とする。
【0059】
また、図3に示すように、信号処理部15は変位選択部26を有している。変位選択部26は、前記正反射変位信号Aと前記乱反射変位信号Cと前記データ判定部25からの前記選択信号Sが入力され、前記正反射変位信号Aと前記乱反射変位信号Cのいずれか一方を選択して変位信号Hとして出力する。
【0060】
また、図3に示すように、信号処理部15は光量選択部27を有している。この光量選択部27は、予め行なう設定により前記正反射光量信号Bを光量信号Iとして出力する。なお、設定を変更することにより、乱反射光量信号Dを光量信号Iとして出力できる。さらに、正反射光量信号Bと乱反射光量信号Dとデータ判定部25からの選択信号Sとが入力されることで、正反射光量信号Bと乱反射光量信号Dのいずれか一方を選択して、光量信号Iとして出力することができるように設定することができる。
【0061】
図3に示す構成の信号処理部15における処理手順を図4の流れ図を参照して説明する。まず、前記データ判定部25は、正反射光量信号Bが正反射光量信号のしきい値Eより大きいか否かを判定する(ST1)。大きいと判定した場合(ST1でYES)には、前記正反射光量信号Bがその上限値より大きいか否か(「ブライト」か否か)を判定する(ST2)。ブライトである場合(ST2でYES、すなわち正反射が限度を越えて明るい場合)は、乱反射による変位信号Cを採用する(K1)。ブライトでない場合(ST2でNO、すなわち正反射が明るさの限度を越えていない場合)は、正反射による変位信号Aを採用する(K2)。
【0062】
正反射光量信号Bが正反射光量信号のしきい値Eより大きいと判定しなかった場合(ST1でNO)には、乱反射光量信号Dが乱反射光量の第1のしきい値Fより大きいか否かを判定する(ST3)。大きいと判定した場合(ST3でYES)は、乱反射による変位信号Cを採用する(K1)。大きいと判定しなかった場合(ST3でNO、正反射も乱反射もしきい値より光量が小さい場合、すなわち「ダーク」の場合)は、正反射、乱反射のいずれの変位信号も採用できず、測定不能となる(K3)。
【0063】
また、本例の信号処理部15では、上記の信号処理手順において、乱反射光量信号Dが第2のしきい値G以上であれば、高反射率領域であるパッド2を認識したことを示す信号として、パッド認識信号Jを1として出力する。第2のしきい値G以下ならば、高反射率領域であるパッド2を認識していないことを示す信号として、Jを0として出力する。
【0064】
このように、本変位測定装置10によれば、特に検出したい高反射率領域について適当なしきい値を設定しておけば、乱反射光量信号Dが当該しきい値以上であるか否かによって、当該高反射率領域を正確に検出して直ちに信号として出力し、種々の用途で有効に利用することができる。例えば、前記パッド認識信号Jは、基準面としてレジスト面でなくパッド面を使用する場合に有効に使用することができる。
【0065】
次に、本変位測定装置10では、正反射受光部13の結像レンズ21と乱反射受光部14の結像レンズ21は、図1中に模式的に示す固定手段30によって互いに連結されている。
図5に構造の詳細を示すように、いずれの受光部の結像レンズ21も、それぞれ略L字形の取り付け具31を介してそれぞれ独立に、ねじ32等の締結手段で位置調整自在に筐体11に取り付けられている。すなわち、取り付け具31のフランジ31aには長孔31bが設けられ、この長孔31bを相通したねじ32が筐体11にねじ込まれ、取り付け具31を筐体11に固定している。
【0066】
従って、ねじ32を緩めれば筐体11に対して取り付け具31を動かすことができ、図6及び図5(b)中に矢印で示すように、各受光部13,14ともに光軸方向についての結像レンズ21の位置を調整することができ、位置検出素子22の受光面に垂直な方向についての結像位置を適宜調整することができる。
【0067】
なお、位置検出素子22の受光面に平行な方向についての結像位置の調整は、位置検出素子22が出力する反射光の受光信号を検出しながら、当該位置検出素子22を同方向に移動させて行なうことができる。
【0068】
このようにして2つの結像レンズ21,21の位置を調整し、ねじ32を締め付けて筐体11に対して固定したあとで、図5に示すように2つの取り付け具31,31同士をを共通の固定手段30で連結する。本例の固定手段30は剛性を有する連結板であり、各取り付け具31,31にねじ32等の締結手段で固定する。
【0069】
本変位測定装置10は、正反射受光部13と乱反射受光部14の2つの受光部を有しており、被測定物体5からの反射光の光量に応じてこれら2つの受光系13,14から最適な受光系を選択し、正反射又は乱反射の受光信号を選択して利用するという原理を採用しているので、これら2つの受光系13,14において各結像レンズ21,21の位置がずれると各受光素子22,22での受光位置がずれて検出される変位に受光系間で誤差が生じることとなる。このような結像レンズ21の位置ずれの原因としては、例えば温度の変化による部品の膨張や収縮によって部品に加わる応力が挙げられ、その結果、位置がすれてしまうことがある。しかしながら、本変位測定装置10によれば、調整後の2受光系の各結像レンズ21,21は固定手段30で強固に結合されて相互の位置関係が所期の状態に安定して保持されるので、位置検出素子22上の反射光の受光位置が調整後の所期の位置からずれるおそれがない。
【0070】
従って、2つの受光系13,14を選択的に用いることにより正反射光と乱反射光を使い分けて変位測定 (高さ測定)を行なう本変位測定装置10の特長を損なうことがなく、低反射率領域と高反射率領域を有する被測定物体5についての変位測定の正確性が十分に担保されるという効果がある。
【0071】
しかしながら、上述し図5(a)及び図6中に矢印で示したように結像レンズ21,21の光軸方向の位置を調整し、ねじ32を締め付けて両結像レンズ21,21の相対的位置を固定手段30で固定しても、実際には必ずしも正しい変位測定を行なえるとは限らず、一般には位置検出素子22が出力する変位信号の校正を行なわなければならない。すなわち、図13に示したように、被測定物体5の移動量 (変位)と位置検出素子22の変位出力(変位信号)との関係は正比例ではなく、被測定物体5の遠い側と近い側とで感度が異なる。また、正反射光の場合と乱反射光の場合とでは、被測定物体5の移動量 (変位)と位置検出素子22の変位出力(変位信号)との関係が異なっている。従って、各位置検出素子22,22の感度が同じになるように、被測定物体5の移動量 (変位)と各位置検出素子22,22からの変位出力が正比例の関係となるようにソフトウエア的に補正する作業 (校正)を行なわなければならない。
【0072】
上記校正は、基準ターゲットの取り替えによって誤差が生じることを避けるため、正反射にも乱反射にも使用できる同一の基準ターゲットを用いて製品ごとに行なう。図7に示すように、本変位測定装置の校正に使用する基準ターゲット40は、基板41の表面に乱反射膜42を形成したものであるが、この乱反射膜42はラッピングにより鏡面状態に研磨されて正反射の機能も付与されている。
【0073】
より具体的には、本例の基板41は非多孔性材料又は光非浸透性材料であり、粉体塗装が載りやすい材質としての鉄、アルミニウム、真鍮などの金属からなる板である。従って、光が染み込み易いセラミック等の多孔性材料は基板としては好ましくない。特に、鉄であれば磁石で固定できるので、校正時にステージに対する取り付けが簡易になるという効果が得られる。
【0074】
この基板41の表面に、白色の樹脂からなる粉体を静電気で付着させ、これを焼成することにより、樹脂の粉末を溶解させて均一な乱反射膜42としている。この粉体塗装による塗膜は通常の液体塗料の塗布で得られる塗膜に比べて丈夫であり、厚さも所望の値に精密に設定できるので、ラッピングのような強い機械加工によっても破損することがなく鏡面に仕上げることができる。
【0075】
この粉体塗膜の厚さは、ラッピングに耐えうる強度を得るために最小限必要な厚さと、あまり厚くした場合に入射光が内部に浸透しすぎて散乱光の強度が不要に弱くなってしまう不都合等とを勘案して決定すればよく、本例では一例として10〜20μmとした。
【0076】
また、本例の粉体塗膜は白色であり、散乱光の強度が高いが、必要な強度の散乱光が得られるのであれば、白色以外の色彩の塗膜でもかまわない。
【0077】
この基準ターゲット40を、図14に示すようなステージ301に取り付け、本例の変位測定装置10(図14中では変位測定装置300が表示されている)によって該基準ターゲット40(図14中では基準ターゲット200が表示されている)を被測定物体5として正反射系と乱反射系の各受光部13,14で測定を行い、基準ターゲット40の移動量 (変位)と各位置検出素子22,22の変位出力(変位信号)との関係が正比例となるような補正データを求め、本変位測定装置10の記憶手段 (図14のROMに相当する)に記憶させる。これによって原点を挟んだ被測定物体5の遠い側と近い側とで同じ感度を得ることができ、前述したような本変位測定装置10における正反射と乱反射を使い分けることで得られる前記効果を確実に達成することができる。
【0078】
なお、本変位測定装置10によれば、被測定物体5において測定用のレーザー光のビームを所定方向 (X方向)に沿って走査し、これに同期して同走査方向と直交する方向 (Y方向)について本変位測定装置10と被測定物体5を相対移動させることにより、被測定物体5の測定面の全面を走査することができる。そして、その走査において上述のように適当に選択した変位信号と光量信号を出力し、これを図示しない画像処理部において本変位測定装置10の図示しない制御装置からの信号とともに適当に処理すれば、被測定物体5の測定面の面積や被測定物体5の体積等が正確に再現でき、被測定物体5の精密な距離画像を生成することもできる。
【0079】
以上説明した実施の形態では、乱反射受光部14が被測定物体5の測定面に対して垂直な光軸を有する垂直受光部であったが、乱反射受光部14は被測定物体5の測定面に対して必ずしも垂直に配置する必要はない。
【0080】
また、以上説明した実施の形態では、乱反射受光部14は1つであったが、2以上設けて相対的に光量の大きい方の乱反射光の変位信号及び光量信号を用いるようにする等、適宜使い分けても良いし、2つの乱反射受光部14からの乱反射光による信号を合成する等、何らかの演算を加えて使用しても良い。例えば、はんだの部分の測定精度を向上させるために、2つの乱反射受光部の変位信号を平均して使用してもよい。また、はんだの投光側壁面については、垂直受光部は迷光の影響を受ける可能性があるため、この垂直受光部以外の他の乱反射受光部の変位を使用してもよい。なお、ここで迷光とは測定物体に当たった光が散乱することにより、別の物体に当たって受光部に到達してしまった光を言う。
【0081】
また、以上説明した実施の形態の変位測定装置10は、低反射率領域と高反射率領域とを有していたり、測定面に測定光の陰になる領域が生じるような被測定物の変位測定に特に有用であったが、本発明の基準ターゲット40が適用できる変位測定装置の測定対象がこれらのものに限定されないことはもちろんである。
【0082】
また、以上説明した実施の形態では、基準ターゲット40を正反射系と乱反射系の2つの受光部13,14を有する変位測定装置10の校正に使用したが、本例の前記基準ターゲット40は正反射にも乱反射にも使用できるのであるから、正反射系と乱反射系の2つの受光部を有する変位測定装置のみに適用するものではなく、正反射系と乱反射系のいずれか一方の受光部を有する変位測定装置 (例えば図8に示した正反射光を用いる従来の変位測定装置)にも適用することができる。
【0083】
【発明の効果】
以上説明したように、請求項1に記載された基準ターゲットによれば、被測定物体に測定光を照射する投光部と、前記被測定物体からの反射光を受光する受光部と、前記受光部からの信号を用いて前記被測定物体の変位信号を出力する信号処理部を有する変位測定装置の校正において、投光部からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射用の変位測定装置の校正にも、乱反射用の変位測定装置の校正にも用いることができる。
【0084】
請求項2に記載された基準ターゲットによれば、被測定物体に測定光を照射する投光部と、前記被測定物体からの正反射光を受光する正反射受光部と、前記被測定物体からの乱反射光を受光する乱反射受光部と、前記正反射受光部からの信号と前記乱反射受光部からの信号とを用いて前記被測定物体の変位信号を出力する信号処理部を有する変位測定装置の校正において、投光部からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射受光部の校正にも、乱反射受光部の校正にも共通して用いることができ、基準ターゲットの交換により校正精度が低下することがない。
【0085】
請求項3に記載された基準ターゲットによれば、被測定物体に測定光を照射する投光部と、前記被測定物体からの正反射光を受光して正反射変位信号と正反射光量信号を出力する正反射受光部と、前記被測定物体からの乱反射光を受光して乱反射変位信号と乱反射光量信号を出力する乱反射受光部と、前記正反射受光部からの正反射変位信号及び正反射光量信号と前記乱反射受光部からの乱反射変位信号及び乱反射光量信号とを用いて前記被測定物体の変位信号を出力する信号処理部を有する変位測定装置の校正において、正反射受光部の校正にも、乱反射受光部の校正にも共通して用いることができ、基準ターゲットを交換しなくてよいので校正精度が低下することがなく、正反射と乱反射を用いた上記所期の性能が十分に発揮されるような校正を行なうことができる。
【0086】
請求項4に記載された基準ターゲットによれば、前記信号処理部が、
前記正反射光量信号のしきい値と、前記乱反射光量信号のしきい値と、前記正反射光量信号と、前記乱反射光量信号とを入力され、前記正反射変位信号と前記乱反射変位信号のいずれか一方を選択するための選択信号を生成するデータ判定部と、
前記正反射変位信号と前記乱反射変位信号と前記データ判定部からの前記選択信号が入力され、前記正反射変位信号と前記乱反射変位信号のいずれか一方を選択して出力する変位選択部と、
を有している請求項3に記載の変位測定装置の校正において、
正反射受光部の校正にも、乱反射受光部の校正にも共通して用いることができ、基準ターゲットを交換しなくてよいので校正精度が低下することがなく、正反射と乱反射によって得られる上記各信号を用いた上記所期の性能が十分に発揮されるような校正を行なうことができる。
【0087】
請求項5に記載された基準ターゲットは、前記データ判定部が、
前記正反射光量信号が前記正反射光量信号のしきい値より大きいと判定した場合には、前記正反射光量信号がその上限値より大きい場合に前記乱反射変位信号を選択する選択信号を出力するとともに、前記正反射光量信号がその上限値よりも小さい場合に前記正反射変位信号を選択する選択信号を出力し、
前記正反射光量信号が前記正反射光量信号のしきい値より小さいと判定した場合には、前記乱反射光量信号が前記乱反射光量信号のしきい値より大きい場合に前記乱反射変位信号を選択する選択信号を出力するとともに、前記乱反射光量信号が前記乱反射光量信号のしきい値より小さい場合には測定不能信号を出力する請求項4に記載の変位測定装置の校正において、
投光部からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射受光部の校正にも、乱反射受光部の校正にも共通して用いることができ、基準ターゲットを交換しなくてよいので校正精度が低下することがなく、正反射と乱反射によって得られる上記各信号としきい値を用いた上記所期の性能が十分に発揮されるような校正を行なうことができる。
【0088】
請求項6に記載された基準ターゲットは、請求項1〜5に記載の基準ターゲットにおいて、前記基板が光非浸透性材料からなり、前記乱反射膜が前記基板の表面に形成された所定厚さの塗膜を研磨してなるので、正反射と乱反射の機能を確実に兼備することができ、投光部からの光は、基準ターゲットの研磨された乱反射膜で正反射されるとともに乱反射される。これによって、正反射受光部の校正にも、乱反射受光部の校正にも共通して用いることができ、基準ターゲットの交換により校正精度が低下することがなく、正反射光と乱反射光を用いた上記変位測定装置の所期の性能を十分に発揮させることができる。
【0089】
請求項7に記載された基準ターゲットは、請求項1〜5に記載の基準ターゲットにおいて、前記基板が金属板であり、前記乱反射膜が前記金属板の表面に形成された厚さ10〜20μmの白色の粉体塗膜を研磨してなるので、投光部からの光は、基準ターゲットの研磨された白色の粉体塗膜からなる乱反射膜で正反射されるとともに乱反射される。このため、正反射受光部の校正にも、乱反射受光部の校正にも共通して用いることができ、基準ターゲットの交換により校正精度が低下することがなく、正反射光と乱反射光を用いた上記変位測定装置の所期の性能を十分に発揮させることができる。
【図面の簡単な説明】
【図1】図1は、本実施の形態における変位測定装置の概略構成図である。
【図2】図2は同変位測定装置の信号処理における信号の入出力状態を示すブロック図である。
【図3】図3は同変位測定装置の信号処理部のブロック図である。
【図4】図4は同信号処理部における処理手順を示す流れ図である。
【図5】図5は同変位測定装置における2系統の受光部の各結像レンズが連結された状態を示す図である。
【図6】図6は同変位測定装置における2系統の受光部の各結像レンズの位置調整を示す模式図である。
【図7】図7は本実施の形態における基準ターゲットとその入反射光の光路を示す断面図である。
【図8】図8は従来の正反射光を利用した変位測定装置の光学系の構造を示す概略斜視図である。
【図9】(a)は図8に示した変位測定装置に用いる基準ターゲットとその校正時における光路を示す図であり、(b)は乱反射光を利用した従来の変位測定装置に用いる基準ターゲットとその校正時における光路を示す図である。
【図10】はんだ等が設けられたプリント基板と、該プリント基板の各部における正反射光の強度と、乱反射光の強度を対比して示す図である。
【図11】従来の変位測定装置において光源からの測定光が被測定物のはんだで正反射して受光素子に入射した場合の問題点を示す図であって、入射光及び反射光の波形図を重ねて示す光路図である。
【図12】従来の変位測定装置において光源からの測定光が被測定物のはんだで正反射して受光素子に入射する場合に測定できない陰が生じることを示す図である。
【図13】変位測定装置における測定対象物の移動量と受光素子の変位出力との関係を正反射光と乱反射光とについて示す図である。
【図14】変位測定装置の校正に用いられる校正装置(ステージ及び補正手段)と基準ターゲットを示す略図である。
【符号の説明】
2…高反射率領域を構成するパッド、3…低反射率領域を構成するはんだ、
4…高反射率領域を構成するレジスト、5…被測定物体、
10…変位測定装置、12…投光部、13…正反射受光部、
14…乱反射受光部、15…信号処理部、
20…減衰フィルターとしてのNDフィルター、21…結像レンズ、
22…位置検出素子、25…データ判定部、26…変位選択部、
30…固定手段、
40…基準ターゲット、41…基板、42…乱反射膜、
A…正反射変位信号、B…正反射光量信号、C…乱反射変位信号、
D…乱反射光量信号、E…正反射光量信号のしきい値、
F…乱反射光量信号の第1のしきい値、
G…乱反射光量信号の第2のしきい値、
H…変位信号、I…光量信号、
J…高反射率領域認識信号としてのパッド認識信号、S…選択信号。
Claims (7)
- 被測定物体(5)に測定光を照射する投光部(12)と、前記被測定物体からの反射光を受光する受光部(13,14)と、前記受光部からの信号を用いて前記被測定物体の変位信号(H)を出力する信号処理部(15)を有する変位測定装置(10)の校正に使用され、基板の表面に鏡面仕上げされた乱反射膜を有することを特徴とする基準ターゲット。
- 被測定物体(5)に測定光を照射する投光部(12)と、前記被測定物体からの正反射光を受光する正反射受光部(13)と、前記被測定物体からの乱反射光を受光する乱反射受光部(14)と、前記正反射受光部からの信号と前記乱反射受光部からの信号とを用いて前記被測定物体の変位信号(H)を出力する信号処理部(15)を有する変位測定装置(10)の校正に使用され、基板の表面に鏡面仕上げされた乱反射膜を有することを特徴とする基準ターゲット。
- 被測定物体(5)に測定光を照射する投光部(12)と、前記被測定物体からの正反射光を受光して正反射変位信号(A)と正反射光量信号(B)を出力する正反射受光部(13)と、前記被測定物体からの乱反射光を受光して乱反射変位信号(C)と乱反射光量信号(D)を出力する乱反射受光部(14)と、前記正反射受光部からの正反射変位信号及び正反射光量信号と前記乱反射受光部からの乱反射変位信号及び乱反射光量信号とを用いて前記被測定物体の変位信号(H)を出力する信号処理部(15)を有する変位測定装置(10)の校正に使用され、基板の表面に鏡面仕上げされた乱反射膜を有することを特徴とする基準ターゲット。
- 前記変位測定装置(10)の前記信号処理部(15)が、
前記正反射光量信号(B)のしきい値(E)と、前記乱反射光量信号(D)の第1のしきい値(F)と、前記正反射光量信号と、前記乱反射光量信号とを入力され、前記正反射変位信号(A)と前記乱反射変位信号(C)のいずれか一方を選択するための選択信号(S)を生成するデータ判定部(25)と、
前記正反射変位信号と前記乱反射変位信号と前記データ判定部からの前記選択信号が入力され、前記正反射変位信号と前記乱反射変位信号のいずれか一方を選択して出力する変位選択部(26)と、
を有することを特徴とする請求項3に記載の基準ターゲット。 - 前記データ判定部(25)は、
前記正反射光量信号(B)が前記正反射光量信号のしきい値(E)より大きいと判定した場合には、前記正反射光量信号がその上限値より大きい場合に前記乱反射変位信号(C)を選択する選択信号(S)を出力するとともに、前記正反射光量信号がその上限値よりも小さい場合に前記正反射変位信号(A)を選択する選択信号を出力し、
前記正反射光量信号が前記正反射光量信号のしきい値より小さいと判定した場合には、前記乱反射光量信号(D)が前記乱反射光量信号の第1のしきい値(F)より大きい場合に前記乱反射変位信号を選択する選択信号を出力するとともに、前記乱反射光量信号が前記乱反射光量信号のしきい値より小さい場合には測定不能信号を出力することを特徴とする請求項4に記載の基準ターゲット。 - 前記基板は、光非浸透性材料からなり、前記乱反射膜は、前記基板の表面に形成された所定厚さの塗膜を研磨してなることを特徴とする請求項1〜5に記載の基準ターゲット。
- 前記基板は、金属板であり、前記乱反射膜は、前記金属板の表面に形成された厚さ10〜20μmの白色の粉体塗膜を研磨してなることを特徴とする請求項1〜5に記載の基準ターゲット。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003160747A JP3751605B2 (ja) | 2003-06-05 | 2003-06-05 | 基準ターゲット |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003160747A JP3751605B2 (ja) | 2003-06-05 | 2003-06-05 | 基準ターゲット |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004361272A true JP2004361272A (ja) | 2004-12-24 |
JP3751605B2 JP3751605B2 (ja) | 2006-03-01 |
Family
ID=34053441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003160747A Expired - Fee Related JP3751605B2 (ja) | 2003-06-05 | 2003-06-05 | 基準ターゲット |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3751605B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113916775A (zh) * | 2021-08-26 | 2022-01-11 | 中国工程物理研究院激光聚变研究中心 | 一种高辨识度漫反射靶 |
-
2003
- 2003-06-05 JP JP2003160747A patent/JP3751605B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113916775A (zh) * | 2021-08-26 | 2022-01-11 | 中国工程物理研究院激光聚变研究中心 | 一种高辨识度漫反射靶 |
CN113916775B (zh) * | 2021-08-26 | 2024-05-03 | 中国工程物理研究院激光聚变研究中心 | 一种高辨识度漫反射靶 |
Also Published As
Publication number | Publication date |
---|---|
JP3751605B2 (ja) | 2006-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7812969B2 (en) | Three-dimensional shape measuring apparatus | |
JP5341351B2 (ja) | 共焦点顕微鏡システムの基本原理に基づく測定装置及び方法 | |
JP6087993B2 (ja) | イメージ走査のための方法及び装置 | |
US8244023B2 (en) | Shape measuring device and shape measuring method | |
US6825454B2 (en) | Automatic focusing device for an optical appliance | |
CA1287486C (en) | Method and system for high-speed, high-resolution, 3-d imaging of an object at a vision station | |
CN102818528B (zh) | 用于在增强景深的情形下检查物体的装置和方法 | |
US20050212951A1 (en) | Focus adjusting method and focus adjusting apparatus | |
JP2006524831A (ja) | 試料を結像する際の焦点位置を決定するための方法およびセット・アップ | |
JP3610569B2 (ja) | 能動共焦点撮像装置とそれを用いた三次元計測方法 | |
JP7323443B2 (ja) | 平面状傾斜パターン表面を有する較正物体を用いて可変焦点距離レンズシステムを較正するためのシステム及び方法 | |
CN111580123B (zh) | 用于检测对象的光电传感器和方法 | |
US5329358A (en) | Device for optically measuring the height of a surface | |
CN113299575B (zh) | 聚焦方法及装置、聚焦设备和存储介质 | |
US20060044545A1 (en) | Distance measuring device | |
US6396589B1 (en) | Apparatus and method for measuring three-dimensional shape of object | |
US20080316317A1 (en) | Optical alignment of cameras with extended depth of field | |
US7525648B2 (en) | Apparatus for the examination of the properties of optical surfaces | |
JP3751605B2 (ja) | 基準ターゲット | |
JP4911113B2 (ja) | 高さ測定装置および高さ測定方法 | |
US20210311368A1 (en) | Optical scanning apparatus, image pickup apparatus, adjustment apparatus for optical scanning apparatus, and method for adjusting optical scanning apparatus | |
JP3817232B2 (ja) | 変位測定装置 | |
KR20180134180A (ko) | 레이저 가공 장치 및 레이저 가공 장치의 캘리브레이션 방법 | |
CA2294185A1 (en) | Ablation profiler | |
US11774239B1 (en) | Optical measurement device and calibration method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051207 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081216 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121216 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121216 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131216 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |