JP2004361263A - Method for detecting position and attitude of magnetic field generation means, and device therefor - Google Patents

Method for detecting position and attitude of magnetic field generation means, and device therefor Download PDF

Info

Publication number
JP2004361263A
JP2004361263A JP2003160456A JP2003160456A JP2004361263A JP 2004361263 A JP2004361263 A JP 2004361263A JP 2003160456 A JP2003160456 A JP 2003160456A JP 2003160456 A JP2003160456 A JP 2003160456A JP 2004361263 A JP2004361263 A JP 2004361263A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
generating means
detecting means
sinus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003160456A
Other languages
Japanese (ja)
Inventor
Kazumi Toyoda
一実 豊田
Yuki Okazaki
友樹 岡崎
Takeshi Ikeuchi
健 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2003160456A priority Critical patent/JP2004361263A/en
Publication of JP2004361263A publication Critical patent/JP2004361263A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and surely detect a position and an attitude of an insert in a shielding cavity invisible from the outside such as an underground buried pipe and a pipe arranged inside a wall face. <P>SOLUTION: A permanent magnet or a ferromagnetic substance 4 is attached to an insertion part 2, a plurality of triaxial MI sensors 5 having triaxial directivity with respect to a magnetic field generated by the permanent magnet or the ferromagnetic substance 4 is arranged in the periphery of a detected range outside a cavity shielding member, and a magnetic field measuring signal processing circuit 6 is connected to the triaxial MI sensors 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主として地中に埋設した埋設配管や床下配管あるいは壁内配管等の配管を外部から視認できない隠蔽洞の内部に挿入される磁界発生手段の位置およびその姿勢を外部から検出する磁界発生手段の位置及び姿勢検出装置及びその検出方法に関するものである。
【0002】
【従来の技術】
従来、埋設配管の位置を検出するものとして、配管内に移動台車を走行可能に配置し、この走行台車に送信コイルからなる磁気発生手段を搭載し、地上の磁気観測地点に磁気検出装置を配置したものが知られている。(特許文献1)
【0003】
【特許文献1】
特開平9−325003号
【0004】
【発明が解決しようとする課題】
しかし、上記した配管位置検出装置では、配管内を走行する移動台車に送信コイルからなる磁気発生手段を配置し、送信コイルを信号線を介して信号供給装置に接続した構成となっていることから、移動台車は移動台車の駆動用動力線を引き摺りながら移動しなければならないうえ、移動台車の移動にともなって信号線を出し入れしなければならず、ケーブル類の取り扱いが面倒になるという問題が有った。
【0005】
本発明は上記実情に鑑みてなされたもので、地中埋設配管や壁面内に配設されている配管類等の外部から視認できない隠蔽洞内の挿入物の位置およびその姿勢を簡単かつ確実に検出することのできる検出技術を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に記載されている装置の発明は、磁界発生手段と磁界検出手段とを用いて隠蔽洞内に位置する磁界発生手段の位置及び姿勢を検出する装置であって、
洞内に位置する該磁界発生手段が導体への通電なしで磁界を発生可能な永久磁石もしくは強磁性体からなる磁気双極子で構成されているとともに、磁界検出手段は洞隠蔽部材の外側に設置され、該磁界検出手段が検出磁界に対して3軸指向性を持つ複数個の磁気センサから構成されていることを特徴とするものである。
【0007】
請求項2に記載の発明は、請求項1に示した発明での磁界検出手段を被検出範囲の周囲に配置された少なくとも3個以上の3軸指向性を持つ磁気センサで構成したことを特徴としており、請求項3に記載の発明は、請求項1または2に示した発明での磁界検出手段の磁気センサを磁気インピーダンス効果素子で構成したことを特徴とするものである。また、請求項4に記載の発明は、請求項1または2に示した発明での磁界検出手段の磁気センサを、複数個の1軸指向性を有する磁気インピーダンス効果素子を組み合わせて3軸指向性を持たせるように構成したことを特徴とするものである。
【0008】
また、請求項5に記載されている方法の発明は、磁界発生手段と磁界検出手段とを用いて隠蔽洞内に位置する磁界発生手段の位置及び姿勢検出方法であって、洞内に位置させた永久磁石もしくは強磁性体からなる磁気双極子で構成した磁界発生手段により導体への通電なしで磁界を発生させ、この発生磁界を、洞隠蔽部材の外側に設置した検出磁界に対して3軸指向性を持つ複数個の磁気センサにより計測することにより、磁界発生手段の三次元位置及び姿勢を検出することを特徴としている。
【0009】
また、請求項6に記載の発明は、請求項5に記載した方法において、磁界検出手段として、被検出範囲の周囲に配置された少なくとも3個以上の3軸指向性を持つ磁気センサを使用するようにしたことを特徴とし、請求項7に記載の発明は、請求項5または6に示した発明での磁界検出手段の磁気センサを磁気インピーダンス効果素子で構成したことを特徴としている。また、請求項8に記載の発明は、請求項5または6に示した発明での磁界検出手段の磁気センサとして、複数個の1軸指向性を有する磁気インピーダンス効果素子を組み合わせて3軸指向性を持たせたものを使用することを特徴としている。
【0010】
上記のような構成要件を有する本発明によれば、洞内に挿入された永久磁石もしくは強磁性体により発生されて洞外に分布される磁界を、洞外に設置した磁気センサにより計測して磁界発生手段の三次元位置及び姿勢を検出するものであるから、磁界発生手段(磁気発生手段)の通信線や動力線を挿入部に沿わせて配置する必要が全くなく、ケーブル類での運動性の制限をなくすことができる。
【0011】
また、洞内に挿入される磁界発生手段に通電する必要がないため、磁気センサの計測誤差原因となる磁界ノイズを最小限にしてS/N比を大きくとれる。加えて、永久磁石もしくは強磁性体と磁気センサの距離が長い場合や、永久磁石もしくは強磁性体の姿勢によっては検出磁界が減少し相対的に磁界ノイズが大きくなり、計測誤差が増大することになるが、本発明のように、検出磁界に対して3軸指向性を持つ複数個の磁気センサを配置し、それら複数個の磁気センサのうちで永久磁石もしくは強磁性体との距離が小さく、かつ、姿勢の影響が少なくて検出磁界が大きい位置にある磁気センサによる計測磁界信号を選択的に使用すること、またはその計測信号を主として使用することにより、距離及び姿勢の影響を最小限にして計測誤差の低減が図れ、その結果、磁界発生手段の三次元位置及び姿勢を高精度に検出することができる。
【0012】
特に、本発明における磁界検出手段となる磁気センサを、被検出範囲の周囲に少なくとも3個以上に配置させて使用することにより、検出環境や磁気センサの設置制約条件にかかわらず距離及び姿勢の影響による検出磁界の減少が少ないところに位置する少なくとも二つの磁気センサの計測磁界信号のみを選択して用いること、あるいは、その計測信号を主として用いることが可能であり、これによって、発生磁界強度が小さい非常に小形の永久磁石もしくは強磁性体を使用して洞内への挿入をより容易なものとしながらも、センサによる計測誤差を最小限にして磁界発生手段の位置及び姿勢検出精度の一層の向上を図ることができる。
【0013】
また、本発明における磁界検出手段の磁気センサとしては、ホール素子や磁気インダクタンス効果素子等を用いてもよいが、磁気インピーダンス効果素子を使用することが好ましい。この磁気インピーダンス効果素子は小型化しやすい上に、アモルファスワイヤ等の高透磁率磁性体の表皮効果を活かして磁性体のインピーダンスが外部磁界によって敏感に変化する磁気インピーダンス効果を利用して高感度の計測精度が得られる。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図面にもとづいて説明する。
図1は本発明に係る遮蔽洞内への挿入部の位置及び姿勢検出装置の概略構成図で、遮蔽洞として埋設配管を一例とし、洞内への挿入具としてワイヤ(1)を使用した実施例である。このワイヤ(1)は、図2に示すように、壁面内や地中に配設した配管等で構成されている遮蔽洞に挿入可能な径の細長い線状の挿入部(2)と該挿入部(2)の中間部に付設された操作部(3)とからなる。
【0015】
このようなワイヤ(1)における挿入部(2)の先端には、磁界発生手段として、導体を介して通電しないでも磁界を発生することが可能な永久磁石(4)が固定状態に付設されている。この永久磁石等(4)としては、例えば直径2mm×長さ5mmで、表面磁束密度330mT程度の円柱型NeFeB磁石等が用いられ、この永久磁石(4)は挿入部(2)に一定の姿勢で固定されている。なお、永久磁石(4)に代えて半硬質強磁性体を用いてもよい。
【0016】
一方、配管内に挿入された永久磁石(4)から発生される磁界を検出する磁界検出手段としての磁気センサ(5)がワイヤ(1)とは別個に設けられている。この磁気センサ(5)は、1軸指向性を持つ磁気インピーダンス効果素子を複数個組み合わせることで3軸指向性を持たせたMIセンサであり、この3軸MIセンサ(5)の複数個が洞外に設置されている。
【0017】
これら3軸MIセンサ(5)には、専用の磁界計測信号処理回路(6)が接続されている。この磁界計測信号処理回路(6)は、図3にその1軸分が示されているように、発振器(7)及び整流回路(8)を経てMIセンサ(5)に高周波励磁電流を加え、永久磁石(4)から発生される外部磁界の印加によって高周波励磁電流が振幅変調された被変調波を演算検波回路(9)で整流することにより復調して変調波、すなわち、外部磁界を検波するとともに、アンプ(10)を通して外部磁界に同期した負帰還信号を作成し、この負帰還信号をコイル(11)を介してバイアス磁界発生用コイル(12)に流す電流へフィードバックさせバイアスをかけることにより、線形性に優れ、かつ、位相の判別されたセンサ出力が得られるように構成されている。
【0018】
次に、上記構成のワイヤ(1)を使用しての挿入部(2)先端の位置及び姿勢を実際に検出する方法について説明する。この場合は、図4に示すように、遮蔽洞による被検出範囲Lの前後左右に所定の間隔を隔てた4箇所に3軸MIセンサ(5a〜5d)を設置する。この状態でワイヤ(1)の挿入部(2)を隠蔽洞内に挿入すると、挿入部(2)の先端に付設されている永久磁石(4)から発生された磁界が洞外に分布れることになり、この洞外に分布された磁界を3軸MIセンサ(5a〜5d)により計測し、かつ、その計測信号を上記した専用の信号処理回路(6)で処理することにより、センサ出力が得られる。
【0019】
ここで、ワイヤ(1)の挿入部(2)先端の位置及び姿勢検出において最終的に必要なセンサ出力は、永久磁石(4)の空間座標(3自由度)と姿勢角(3自由度)の6個であるので、例えば図4の場合、計4個の3軸MIセンサ(5a〜5d)のうち、永久磁石(4)との距離が近い2個の3軸MIセンサ(5a,5b)の磁界計測信号のみを使用すること、又はその磁界計測信号を主として用いることにより、発生磁界強度が小さい非常に小型の永久磁石(4)を使用しながらも、最終的にS/N比の十分に大きい6個のセンサ出力が得られる。
【0020】
このようにして得られた複数個の3軸MIセンサの出力は増幅回路(13)で増幅された後、A/Dコンバータ(14)を介してコンピユータ(PC)に取り込まれ、予め位置と角度の情報をデータ収集して作成されているマップ上のデータと3軸MIセンサによる実際の検出データとを周知のマッピング手法により比較することにより、永久磁石(4)、すなわち、ワイヤ(1)における挿入部(2)先端の三次元位置及び姿勢を高精度に検出することができる。
【0021】
なお、上記実施例は、挿入具としてワイヤに適用したものについて説明したが、ワイヤ以外に自動走行台車に適用してもよく、さらに、埋設配管や壁内配管だけでなく、表面からは不可視状態に形成されている配管内での挿入部位置及び姿勢の検出にも適用可能である。この場合、配管等の洞形成部材として磁気シールド性のないものが使用されていることはいうまでもない。また、この洞内は空間である場合は勿論、液体で満たされている場合にも適用することができる。
【0022】
また、磁界発生手段としての永久磁石(4)を、ワイヤ(1)等の挿入部(2)の先端のみでなく、その長さ方向の複数箇所に付設してもよい。さらに、磁界計測信号処理回路(6)中に周辺機器による交流磁界ノイズを低減するためのローパスフィルタ(LPF)を介在させることにより、計測誤差をより低減して検出精度を一層高めることが可能である。
【0023】
【発明の効果】
以上のように、本発明によれば、磁界を利用して洞内に挿入される挿入部の位置及び姿勢を検出するにあたって、磁界発生手段である永久磁石もしくは強磁性体を挿入部に付設するものであるから、磁力発生手段である電磁石を挿入部に付設する先行技術に比べて、磁力発生手段の駆動電力供給用ケーブルを挿入部に添わせて設置する必要が全くなく、挿入部の小径化及び軽量化を図れる。
しかも、洞内に挿入される磁界発生手段への通電の必要がないため、磁気センサの計測誤差原因となる磁界ノイズを最小限にしてS/N比の向上が図れるうえに、検出磁界に対して3軸指向性を持つ複数個の磁気センサを配置して永久磁石もしくは強磁性体との距離が小さく、かつ、姿勢の影響が少なく検出磁界が大きい位置にある磁気センサによる計測磁界信号を選択的に使用すること、あるいはその計測磁界信号を主として使用することにより、距離及び姿勢の影響による計測誤差の低減も図れ、したがって、挿入部の三次元位置及び姿勢を非常に高精度に検出することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る遮蔽洞内への挿入部の位置及び姿勢検出装置の概略構成図である。
【図2】同上挿入部の拡大概略構成図である。
【図3】同上挿入部に付随する3軸MIセンサに接続された磁界計測信号処理回路のブロック構成図である。
【図4】同上挿入部先端の位置及び姿勢を検出する時の概念図である。
【符号の説明】
1…挿入具(ワイヤ)、2…挿入部、3…挿入具の操作部、4…磁界発生手段(永久磁石)、5…磁界検出手段(磁気センサ)、6…磁界計測信号処理回路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic field generator for detecting externally the position and posture of a magnetic field generating means inserted into a concealed cave in which piping such as buried piping, underfloor piping or in-wall piping buried underground is invisible from the outside. The present invention relates to an apparatus and a method for detecting the position and orientation of means.
[0002]
[Prior art]
Conventionally, as a means to detect the position of buried piping, a movable trolley is arranged inside the pipe so that it can travel, a magnet generating means consisting of a transmission coil is mounted on this traveling trolley, and a magnetic detection device is placed at a magnetic observation point on the ground Is known. (Patent Document 1)
[0003]
[Patent Document 1]
JP-A-9-325003
[Problems to be solved by the invention]
However, the above-described pipe position detecting device has a configuration in which magnetic generating means including a transmission coil is arranged on a movable carriage traveling in the pipe, and the transmission coil is connected to a signal supply device via a signal line. In addition, the mobile trolley must move while dragging the power line for driving the mobile trolley, and signal lines must be moved in and out as the mobile trolley moves. Was.
[0005]
The present invention has been made in view of the above circumstances, and simply and reliably determines the position and posture of an insert in a concealed cave that is not visible from the outside, such as underground pipes and pipes arranged in a wall. The purpose is to provide a detection technique that can be detected.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention of an apparatus described in claim 1 of the present invention uses a magnetic field generating means and a magnetic field detecting means to detect a position and a posture of a magnetic field generating means located in a concealed sinus. Device for performing
The magnetic field generating means located in the sinus is constituted by a magnetic dipole made of a permanent magnet or a ferromagnetic material capable of generating a magnetic field without energizing the conductor, and the magnetic field detecting means is provided outside the sinus concealing member. The magnetic field detecting means is constituted by a plurality of magnetic sensors having three-axis directivity to the detected magnetic field.
[0007]
According to a second aspect of the present invention, the magnetic field detecting means according to the first aspect of the present invention is constituted by at least three or more magnetic sensors having a three-axis directivity disposed around a detection range. According to a third aspect of the present invention, the magnetic sensor of the magnetic field detecting means according to the first or second aspect of the present invention is constituted by a magnetic impedance effect element. According to a fourth aspect of the present invention, the magnetic sensor of the magnetic field detecting means according to the first or second aspect of the present invention is combined with a plurality of uniaxial directivity magneto-impedance effect elements to provide a three-axis directivity. Is provided.
[0008]
An invention of a method according to claim 5 is a method for detecting the position and orientation of a magnetic field generating means located in a concealed sinus using a magnetic field generating means and a magnetic field detecting means. A magnetic field is generated by a magnetic field generating means composed of a permanent magnet or a magnetic dipole made of a ferromagnetic material without energizing the conductor, and the generated magnetic field is three-axis with respect to a detection magnetic field installed outside the sinus concealing member. It is characterized in that the three-dimensional position and orientation of the magnetic field generating means are detected by measuring with a plurality of magnetic sensors having directivity.
[0009]
According to a sixth aspect of the present invention, in the method according to the fifth aspect, at least three or more magnetic sensors having triaxial directivity disposed around the detection range are used as the magnetic field detecting means. A seventh aspect of the present invention is characterized in that the magnetic sensor of the magnetic field detecting means according to the fifth or sixth aspect of the present invention comprises a magneto-impedance effect element. According to an eighth aspect of the present invention, as the magnetic sensor of the magnetic field detecting means according to the fifth or sixth aspect, a plurality of uniaxial directivity magnetoimpedance effect elements are combined to form a three-axis directivity. It is characterized by using the one with.
[0010]
According to the present invention having the above constitutional requirements, a magnetic field generated by a permanent magnet or a ferromagnetic material inserted into the sinus and distributed outside the sinus is measured by a magnetic sensor installed outside the sinus. Since it detects the three-dimensional position and orientation of the magnetic field generating means, there is no need to arrange the communication lines or power lines of the magnetic field generating means (magnetic generating means) along the insertion portion, and the movement of cables Sex restrictions can be eliminated.
[0011]
Further, since it is not necessary to energize the magnetic field generating means inserted into the sinus, the magnetic field noise which causes a measurement error of the magnetic sensor can be minimized and the S / N ratio can be increased. In addition, when the distance between the permanent magnet or ferromagnetic material and the magnetic sensor is long, or depending on the posture of the permanent magnet or ferromagnetic material, the detected magnetic field decreases and the magnetic field noise becomes relatively large, resulting in an increase in measurement error. However, as in the present invention, a plurality of magnetic sensors having triaxial directivity with respect to a detection magnetic field are arranged, and a distance between the plurality of magnetic sensors and a permanent magnet or a ferromagnetic material is small, In addition, by selectively using the magnetic field signal measured by the magnetic sensor at a position where the influence of the attitude is small and the detection magnetic field is large, or by mainly using the measured signal, the influence of the distance and the attitude is minimized. Measurement errors can be reduced, and as a result, the three-dimensional position and orientation of the magnetic field generating means can be detected with high accuracy.
[0012]
In particular, by arranging at least three magnetic sensors as magnetic field detecting means in the present invention around the detection range and using them, the influence of distance and attitude can be obtained regardless of the detection environment and the installation restrictions of the magnetic sensors. It is possible to select and use only the measurement magnetic field signals of at least two magnetic sensors located at a place where the decrease in the detection magnetic field is small, or it is possible to mainly use the measurement signals, and thereby, the generated magnetic field intensity is small Using a very small permanent magnet or ferromagnetic material to make insertion into the sinus easier, while minimizing measurement errors by the sensor and further improving the position and orientation detection accuracy of the magnetic field generating means Can be achieved.
[0013]
Further, as the magnetic sensor of the magnetic field detecting means in the present invention, a Hall element or a magnetic inductance effect element may be used, but it is preferable to use a magnetic impedance effect element. This magneto-impedance effect element is easy to miniaturize, and high-sensitivity measurement using the magnetic impedance effect, in which the impedance of the magnetic material changes sensitively due to an external magnetic field, utilizing the skin effect of a high-permeability magnetic material such as an amorphous wire. Accuracy is obtained.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an apparatus for detecting the position and orientation of an insertion portion into a shielded sinus according to the present invention, in which an embedded pipe is used as an example of a shielded sinus and a wire (1) is used as an insertion tool into the sinus. It is an example. As shown in FIG. 2, the wire (1) has an elongated linear insertion portion (2) having a diameter that can be inserted into a shielding cave formed of a pipe or the like disposed in a wall surface or underground. An operation unit (3) attached to an intermediate part of the unit (2).
[0015]
A permanent magnet (4) capable of generating a magnetic field without conducting electricity through a conductor is fixedly provided at the tip of the insertion portion (2) of the wire (1) as a magnetic field generating means. I have. As the permanent magnet (4), for example, a cylindrical NeFeB magnet having a diameter of 2 mm × length 5 mm and a surface magnetic flux density of about 330 mT is used, and the permanent magnet (4) has a fixed posture in the insertion portion (2). It is fixed at. Note that a semi-hard ferromagnetic material may be used instead of the permanent magnet (4).
[0016]
On the other hand, a magnetic sensor (5) as magnetic field detecting means for detecting a magnetic field generated from a permanent magnet (4) inserted in the pipe is provided separately from the wire (1). The magnetic sensor (5) is an MI sensor having three-axis directivity by combining a plurality of magneto-impedance effect elements having one-axis directivity. Installed outside.
[0017]
A dedicated magnetic field measurement signal processing circuit (6) is connected to these three-axis MI sensors (5). This magnetic field measurement signal processing circuit (6) applies a high-frequency excitation current to the MI sensor (5) via an oscillator (7) and a rectifier circuit (8), as shown for one axis in FIG. The modulation wave, that is, the external magnetic field is detected by demodulating the modulated wave whose amplitude has been modulated by the high-frequency excitation current by applying an external magnetic field generated from the permanent magnet (4) by rectifying the modulated wave by the arithmetic detection circuit (9). At the same time, a negative feedback signal synchronized with the external magnetic field is created through the amplifier (10), and this negative feedback signal is fed back to the current flowing through the bias magnetic field generating coil (12) via the coil (11) to apply a bias. The sensor is configured to obtain a sensor output having excellent linearity and having a determined phase.
[0018]
Next, a method of actually detecting the position and orientation of the distal end of the insertion section (2) using the wire (1) having the above configuration will be described. In this case, as shown in FIG. 4, three-axis MI sensors (5a to 5d) are installed at four places at predetermined intervals on the front, rear, left, and right sides of the detection range L by the shielding cave. When the insertion part (2) of the wire (1) is inserted into the concealed sinus in this state, the magnetic field generated from the permanent magnet (4) attached to the tip of the insertion part (2) is distributed outside the sinus. The magnetic field distributed outside the sinus is measured by the three-axis MI sensors (5a to 5d), and the measurement signal is processed by the above-described dedicated signal processing circuit (6), so that the sensor output becomes can get.
[0019]
Here, the sensor output finally required in detecting the position and posture of the tip of the insertion portion (2) of the wire (1) is the spatial coordinates (3 degrees of freedom) and the posture angle (3 degrees of freedom) of the permanent magnet (4). For example, in the case of FIG. 4, two three-axis MI sensors (5a, 5b) having a short distance from the permanent magnet (4) out of a total of three three-axis MI sensors (5a to 5d) in FIG. ) By using only the magnetic field measurement signal or mainly using the magnetic field measurement signal, while using a very small permanent magnet (4) having a small generated magnetic field strength, and finally achieving an S / N ratio Six sufficiently large sensor outputs are obtained.
[0020]
The outputs of the plurality of three-axis MI sensors obtained in this manner are amplified by an amplifier circuit (13), and then taken into a computer (PC) via an A / D converter (14), where the position and angle are previously determined. By comparing the data on the map, which is created by collecting the above information, with the actual detection data from the three-axis MI sensor using a well-known mapping method, the permanent magnet (4), ie, the wire (1) The three-dimensional position and orientation of the tip of the insertion section (2) can be detected with high accuracy.
[0021]
In addition, although the said Example demonstrated what was applied to the wire as an insertion tool, it may be applied to an automatic traveling vehicle other than a wire, furthermore, it is invisible from the surface as well as a buried pipe or a pipe in a wall. The present invention is also applicable to the detection of the position and the posture of the insertion portion in the pipe formed in the above. In this case, it goes without saying that a member having no magnetic shielding properties is used as a sinus forming member such as a pipe. Further, the present invention can be applied not only to a case where the inside of the cave is a space but also to a case where the inside is filled with a liquid.
[0022]
Further, the permanent magnet (4) as the magnetic field generating means may be provided not only at the tip of the insertion portion (2) such as the wire (1) but also at a plurality of positions in the length direction. Further, by interposing a low-pass filter (LPF) for reducing AC magnetic field noise caused by peripheral devices in the magnetic field measurement signal processing circuit (6), it is possible to further reduce measurement errors and further improve detection accuracy. is there.
[0023]
【The invention's effect】
As described above, according to the present invention, when detecting the position and orientation of the insertion portion inserted into the sinus using a magnetic field, a permanent magnet or a ferromagnetic material as magnetic field generating means is attached to the insertion portion. As compared with the prior art in which an electromagnet serving as a magnetic force generating means is attached to an insertion portion, there is no need to install a drive power supply cable for the magnetic force generating means along the insertion portion, and the insertion portion has a small diameter. Weight and weight reduction.
In addition, since there is no need to energize the magnetic field generating means inserted into the sinus, the magnetic field noise which causes measurement errors of the magnetic sensor can be minimized to improve the S / N ratio, and the detection magnetic field can be reduced. A plurality of magnetic sensors with three-axis directivity are arranged to select the magnetic field signal measured by the magnetic sensor located at a position where the distance to the permanent magnet or ferromagnetic material is small, the influence of the attitude is small, and the detected magnetic field is large. Measurement or the main use of the measurement magnetic field signal can reduce the measurement error due to the influence of the distance and posture, and therefore, can detect the three-dimensional position and posture of the insertion portion with extremely high accuracy. This has the effect of being able to
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an apparatus for detecting a position and a posture of an insertion section into a shielding sinus according to the present invention.
FIG. 2 is an enlarged schematic configuration diagram of an insertion section of the same.
FIG. 3 is a block diagram of a magnetic field measurement signal processing circuit connected to a three-axis MI sensor attached to the insertion unit.
FIG. 4 is a conceptual diagram when detecting the position and orientation of the distal end of the insertion unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... insertion tool (wire), 2 ... insertion part, 3 ... operation part of insertion tool, 4 ... magnetic field generation means (permanent magnet), 5 ... magnetic field detection means (magnetic sensor), 6 ... magnetic field measurement signal processing circuit.

Claims (8)

磁界発生手段(4)と磁界検出手段(5)とを用いて隠蔽洞内に位置する磁界発生手段の位置及び姿勢を検出する装置であって、
洞内に位置する磁界発生手段(4)が導体への通電なしで磁界を発生可能な永久磁石もしくは強磁性体からなる磁気双極子で構成されているとともに、磁界検出手段(5)は洞隠蔽部材の外側に設置され、該磁界検出手段(5)が検出磁界に対して3軸指向性を持つ複数個の磁気センサから構成されていることを特徴とする磁界発生手段の位置および姿勢検出装置。
An apparatus for detecting the position and orientation of a magnetic field generating means located in a concealed sinus using a magnetic field generating means (4) and a magnetic field detecting means (5),
The magnetic field generating means (4) located in the sinus is constituted by a magnetic dipole made of a permanent magnet or a ferromagnetic material capable of generating a magnetic field without energizing the conductor, and the magnetic field detecting means (5) is concealed by the sinus A position and orientation detection device for the magnetic field generating means, wherein the magnetic field detecting means (5) is provided outside the member, and the magnetic field detecting means (5) comprises a plurality of magnetic sensors having three-axis directivity to the detected magnetic field. .
前記磁界検出手段(5)は、被検出範囲の周囲に配置された少なくとも3個以上の3軸指向性を持つ磁気センサから構成されている請求項1に記載の磁界発生手段の位置および姿勢検出装置。The position and orientation detection of the magnetic field generating means according to claim 1, wherein the magnetic field detecting means (5) comprises at least three or more magnetic sensors having triaxial directivity arranged around a detection range. apparatus. 前記磁界検出手段(5)の磁気センサは、磁気インピーダンス効果素子である請求項1または2に記載の磁界発生手段の位置および姿勢検出装置。3. The apparatus according to claim 1, wherein the magnetic sensor of the magnetic field detecting means is a magnetic impedance effect element. 前記磁界検出手段(5)の磁気センサーは、複数個の1軸指向性を有する磁気インピーダンス効果素子を組み合わせて3軸指向性を持たせたものである請求項1または2に記載の磁界発生手段の位置及び姿勢検出装置。3. The magnetic field generating means according to claim 1, wherein the magnetic sensor of the magnetic field detecting means has a three-axis directivity by combining a plurality of magneto-impedance effect elements having one-axis directivity. Position and attitude detection device. 磁界発生手段(4)と磁界検出手段(5)とを用いて隠蔽洞内に位置する磁界発生手段の位置及び姿勢検出方法であって、
洞内に位置させた永久磁石もしくは強磁性体からなる磁気双極子で構成した磁界発生手段(4)により導体への通電なしで磁界を発生させ、この発生磁界を、洞隠蔽部材の外側に設置した検出磁界に対して3軸指向性を持つ複数個の磁気センサ(5)により計測することにより、磁界発生手段(4)の三次元位置及び姿勢を検出することを特徴とする磁界発生手段の位置及び姿勢検出方法。
A method for detecting the position and orientation of a magnetic field generating means located in a concealed sinus using a magnetic field generating means (4) and a magnetic field detecting means (5),
A magnetic field is generated by a magnetic field generating means (4) composed of a permanent magnet or a magnetic dipole made of a ferromagnetic material located in the sinus without energizing the conductor, and the generated magnetic field is installed outside the sinus concealing member. The three-dimensional position and orientation of the magnetic field generating means (4) are detected by measuring the detected magnetic field with a plurality of magnetic sensors (5) having three-axis directivity. Position and orientation detection method.
前記磁界検出手段(5)として、被検出範囲の周囲に配置された少なくとも3個以上の3軸指向性を持つ磁気センサを使用する請求項5に記載の磁界発生手段の位置及び姿勢検出方法。6. The method according to claim 5, wherein at least three or more magnetic sensors having three-axis directivity disposed around the detection range are used as the magnetic field detecting means. 前記磁界検出手段(5)の磁気センサとして、磁気インピーダンス効果素子を使用する請求項5または6に記載の磁界発生手段の位置及び姿勢検出方法。7. The method according to claim 5, wherein a magnetic impedance effect element is used as the magnetic sensor of the magnetic field detecting means. 前記磁界検出手段(5)の磁気センサーとして、複数個の1軸指向性を有する磁気インピーダンス効果素子を組み合わせて3軸指向性を持たせたものを使用する請求項5または6に記載の磁界発生手段の位置及び姿勢検出方法。7. The magnetic field generation device according to claim 5, wherein the magnetic sensor of the magnetic field detecting means has a three-axis directivity by combining a plurality of magneto-impedance effect elements having one-axis directivity. A method for detecting the position and orientation of the means.
JP2003160456A 2003-06-05 2003-06-05 Method for detecting position and attitude of magnetic field generation means, and device therefor Withdrawn JP2004361263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003160456A JP2004361263A (en) 2003-06-05 2003-06-05 Method for detecting position and attitude of magnetic field generation means, and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003160456A JP2004361263A (en) 2003-06-05 2003-06-05 Method for detecting position and attitude of magnetic field generation means, and device therefor

Publications (1)

Publication Number Publication Date
JP2004361263A true JP2004361263A (en) 2004-12-24

Family

ID=34053233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160456A Withdrawn JP2004361263A (en) 2003-06-05 2003-06-05 Method for detecting position and attitude of magnetic field generation means, and device therefor

Country Status (1)

Country Link
JP (1) JP2004361263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101846314B1 (en) 2017-09-13 2018-04-09 (주)이우티이씨 A system for measuring 3-dimension installed shape of underground pipelines by using three axis rotation sensors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101846314B1 (en) 2017-09-13 2018-04-09 (주)이우티이씨 A system for measuring 3-dimension installed shape of underground pipelines by using three axis rotation sensors

Similar Documents

Publication Publication Date Title
US11204436B1 (en) Dual sensed locating systems and methods
US6789043B1 (en) Magnetic sensor system for fast-response, high resolution, high accuracy, three-dimensional position measurements
CN101542317B (en) Localization system for an earthmoving machine
CN101652679B (en) Localization system for an earth moving machine
US20130300401A1 (en) Sensor Apparatus, in Particular Metal Sensor, with a Field-Compensated Magnetic Field Sensor
WO2010017318A3 (en) Differential gradiometric magnetometer, system and method of use
FI83266C (en) FOERFARANDE OCH ANORDNING FOER LOKALISERING AV ELEKTRODER FAESTADE VID KROPPEN AV EN MAENNISKA, I SYNNERHET HUVUDET.
US9983073B2 (en) Solid borne sound wave phase delay comparison
Qi et al. Tracing and localization system for pipeline robot
EP2594967B1 (en) Smart electromagnetic sensor array
KR20070063611A (en) A buried objects management system by using polar of magnetic markers
US8970219B2 (en) Search coil assembly and system for metal detection
CN103955001A (en) Invisible earphone detection device and method
CN108363106A (en) A kind of detecting metal pipeline system and method based on time domain electromagnetic method
US8674684B2 (en) Scanner system for garage equipment for motor vehicle garages
JP2001116850A (en) Method and device for detecting underground pipe
JP2004361263A (en) Method for detecting position and attitude of magnetic field generation means, and device therefor
CN113093290B (en) Method for detecting weak secondary field signal under same-frequency strong magnetic interference background
JPH0249676B2 (en)
CN203811817U (en) Concealed earphone detection apparatus
JPH0820524B2 (en) Burial depth measuring device from detector of buried conductor
JP2004271303A (en) Magnetic measurement system and position detection device for underground excavator using it
JP2000088571A (en) Detecting method for position of moving body at inside of pipe
EP1131597A1 (en) Magnetic sensor system for fast-response, high resolution, high accuracy, three-dimensional position measurements
JP6862322B2 (en) Positioning systems and equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080916