JP2004361200A - Method for evaluating property distribution of single mode optical fiber, and its apparatus - Google Patents

Method for evaluating property distribution of single mode optical fiber, and its apparatus Download PDF

Info

Publication number
JP2004361200A
JP2004361200A JP2003158938A JP2003158938A JP2004361200A JP 2004361200 A JP2004361200 A JP 2004361200A JP 2003158938 A JP2003158938 A JP 2003158938A JP 2003158938 A JP2003158938 A JP 2003158938A JP 2004361200 A JP2004361200 A JP 2004361200A
Authority
JP
Japan
Prior art keywords
distribution
effective
optical fiber
mode optical
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003158938A
Other languages
Japanese (ja)
Other versions
JP4082592B2 (en
Inventor
Kunihiro Komo
邦弘 戸毛
Kazuhide Nakajima
和秀 中島
Chisato Fukai
千里 深井
Kazuo Hokari
和男 保苅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003158938A priority Critical patent/JP4082592B2/en
Publication of JP2004361200A publication Critical patent/JP2004361200A/en
Application granted granted Critical
Publication of JP4082592B2 publication Critical patent/JP4082592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of evaluating an effectual specific refractive index difference of a single mode optical fiber, and evaluating its property distribution in the direction of propagation of the optical fiber with high precision, and its evaluation apparatus. <P>SOLUTION: An effective Raman gain rate distribution C<SB>reff</SB>(λ, z) at an evaluation wavelength λ and at a position z in the propagation direction of a measured single mode optical fiber, and a normalized light intensity distribution I<SB>n</SB>(λ, z) caused by a structural mismatching are evaluated. By evaluating an effective specific refractive index difference distribution Δ<SB>eff</SB>(λ, z) of the measured single mode optical fiber, from the relation between the gain distribution C<SB>reff</SB>(λ, z) and the intensity distribution I<SB>n</SB>(λ, z), the distribution of a property of the measured single mode optical fiber in the direction of its propagation is evaluated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は単一モード光ファイバの伝搬方向における特性分布の評価方法及び評価装置に関する。
【0002】
【従来の技術】
光増幅装置を用いた光通信システムでは、単一モード光ファイバ中を伝搬する光強度の増大に伴い、単一モード光ファイバ中の光非線形性による伝搬波形の劣化が問題となる(非特許文献1)。
単一モード光ファイバ中の光非線形現象は、非線形屈折率nを実効断面積Aeffで除算した、非線形定数n/Aeffに比例して変化する。
【0003】
従って、光増幅装置を用いた長距離・大容量の光通信システムでは、伝送路に使用する単一モード光ファイバの光非線形性に関するパラメータである、実効断面積、並びに非線形屈折率を把握する必要が生じる。
このため、実効断面積については、単一モード光ファイバの任意の出射端におけるニア・フィールド・パターン、若しくはファー・フィールド・パターンの測定結果から、評価を行う手法が確立されている(非特許文献2)。
【0004】
また、非線形屈折率若しくは非線形定数についても、単一モード光ファイバ中の各種光非線形現象を観測することにより、評価を行う手法が報告されている(例えば、特許文献1−5)。
一方、光ファイバ中の光非線形効果は、波長分散やモードフィールド径等の、光ファイバパラメータとも密接に関係し、その効果は光ファイバの伝搬方向で発生・累積するといった特徴を有する。
【0005】
従って、光増幅装置を用いた長距離・大容量の光通信システムでは、伝送路に使用する単一モード光ファイバにおける、各種ファイバ・パラメータの伝搬方向における分布特性についても把握する必要が生じる。
このため、例えば特許文献6では、単一モード光ファイバの双方向から測定した、後方散乱光波形を解析することにより、単一モード光ファイバ伝搬方向の、モードフィールド径や波長分散等のパラメータを非破壊で評価する手法が提案されている。
【0006】
また近年、光ファイバ中のラマン増幅効果を用いた光通信システムに関する検討も盛んに行われており、このような光通信システムでは、伝送路に使用する単一モード光ファイバのラマン利得率、若しくはラマン利得係数について把握することも必要となる。
このため、例えば特許文献7では、単一モード光ファイバ伝送路のラマン増幅特性の評価法が提案されている。
また、非特許文献3では、単一モード光ファイバのラマン利得率分布を非破壊で評価する方法も提案されている。
【0007】
【特許文献1】
特開平7−325015号
【特許文献2】
特開平8−15091号
【特許文献3】
特開平8−193918号
【特許文献4】
特開2001−33352号
【特許文献5】
特開2002−318171号
【特許文献6】
特開平6−213770号
【特許文献7】
特開2002−296145号
【特許文献8】
特開平10−160636号
【非特許文献1】
A. R. Chraplyvy, ”Limitation on lightwave communications imposed by optical−fiber nonlinearities”, J. Lightwave Technol., vol. 8, No. 10, p. 1548, 1990
【非特許文献2】
波平編、「DWDM光測定技術(第1版)」、オプトロニクス社(平成13年3月10日発行)。(第10章、p217−221)
【非特許文献3】
K. Toge et al., ”Measurement of Raman gain distribution in optical fibers”, Photon. Technol. Lett., vol. 14, No. 7, p. 974 2002
【非特許文献4】
C. Fukai, K. Nakajima and M. Ohashi, ”Dopant dependence of Raman gain coefflcient in fluorine doped fiber”, OECC2002, 10D2−6, pp. 186−187, 2002.
【非特許文献5】
S Gray ”Raman gain measurements in optical fibers” SOFM2000, pp. 151−154, 2000.
【非特許文献6】
K. Nakajima and M. Ohashi, ”Dopant dependence of effective nonlinear refractive index in Ge0− and F−doped core single−mode fibers”, Photon. Technol. Lett. vol. 14, No. 4 pp 492−494, 2002.
【0008】
【発明が解決しようとする課題】
しかしながら、特許文献1から5、並びに特許文献7の評価技術では、単一モード光ファイバの全長での平均値、若しくは任意の短長での局所値としての、非線形屈折率、非線形定数、或いはラマン増幅特性が評価可能であり、単一モード光ファイバの伝搬方向における分布特性を評価することは困難であるといった問題があった。
【0009】
また、特許文献6に記載のファイバ・パラメータの分布特性評価技術では、単一モード光ファイバの長手方向における屈折率分布の均一性を仮定しており、複数の単一モード光ファイバ、特に屈折率分布の異なる複数の単一モード光ファイバが接続されている場合には、その評価精度が劣化するといった問題があった。更に、かかる問題を解決するため、特許文献8に記載の評価技術では、屈折率分布の変化に対応する補正係数を考慮に入れることにより、評価精度を向上させる手法が提案されている。
【0010】
しかしながら、特許文献8の評価技術では補正係数を導出するために、被測定単一モード光ファイバの任意の波長λ、任意の位置zにおけるモードフィールド径が既知であることが必要であり、モードフィールド径が完全に未知である単一モード光ファイバの測定には応用できないといった問題点があった。
また同様に、非特許文献3に記載のラマン利得率分布の評価技術においても、複数の単一モード光ファイバが接続されている場合には、接続された単一モード光ファイバ間の屈折率分布の変化により、ラマン利得係数と実効断面積の分布特性を分離して把握することは困難であるといった問題があった。
【0011】
本発明はこのような問題に鑑み、単一モード光ファイバの伝搬方向における実効的な比屈折率差の変化を評価し、被測定単一モード光ファイバの実効ラマン利得係数、実効非線形屈折率、実効断面積、及びモードフィールド径等の各種パラメータの分布特性を高精度に評価する方法、並びに評価装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
斯かる目的を達成する本発明の請求項1に係る単一モード光ファイバの特性分布評価法は、被測定単一モード光ファイバの、評価波長λ、伝搬方向zの位置における、実効ラマン利得率分布Creff(λ、z)と、構造不整合に起因する規格化光強度分布I(λ、z)とを評価し、両分布特性の評価結果を用い、式(1)及び式(2)の関係を満たす実効比屈折率差Δeff(λ、z)、実効断面積Aeff(λ、z)、並びに実効的なラマン利得係数greff(λ、z)の分布特性を評価することを特徴とする。
【0013】
上記目的を達成する本発明の請求項2に係る単一モード光ファイバの特性分布評価法は、請求項1に記載の方法により、被測定単一モード光ファイバの実効的な比屈折率差分布Δeff(λ、z)、並びに実効断面積分布Aeff(λ、z)を評価し、式(3)及び式(4−1)及び(4−2)の関係を満足する、等価比屈折率差分布Δeq(core)(z)及びΔeq(clad)(z)と、等価コア半径分布aeq(z)とを求め、該被測定単一モード光ファイバの伝搬方向における、モードフィールド径2W(λ、z)、実効的な非線形屈折率n2eff(λ、z)、並びに実効的な非線形定数n2eff/Aeff(λ、z)の分布特性を評価することを特徴とする。
【0014】
上記目的を達成する本発明の請求項3に係る単一モード光ファイバの特性分布評価装置は、所望の励起波長λにおける励起パルス光と、所望の評価波長λにおける測定パルス光と、所望の評価波長λにおけるプローブ光と、を被測定単一モード光ファイバに入射し、該単一モード光ファイバ伝搬方向の光強度分布を測定する手段と、該光強度分布から、前記被測定単一モード光ファイバの伝搬方向zにおける、実効ラマン利得率Creff(λ、z)、規格化光強度I(λ、z)、実効比屈折率差Δeff(λ、z)、実効ラマン利得係数greff(λ、z)、実効断面積Aeff(λ、z)、等価比屈折率差Δeq(core)(z)及びΔeq(clad)(z)、等価コア半径aeq(z)、モードフィールド径2W(λ、z)、実効非線形屈折率n2eff(λ、z)、並びに実効非線形定数n2eff(λ、z)/Aeff(λ、z)の分布特性を演算する手段とを備えたことを特徴とする。
【0015】
【発明の実施の形態】
本発明の評価方法、並びに評価装置では、被測定単一モード光ファイバの一端、若しくは両端に、評価波長λにおける、任意の位置z0での実効断面積Aeff(λ、z0)が既知である、参照単一モード光ファイバを接続し、評価波長λにおける被測定単一モード光ファイバの伝搬方向の位置zでの実効的なラマン利得率分布Creff(λ、z)と、構造不整合に起因する規格化光強度分布I(λ、z)とを評価する機能を有し、両分布特性の評価結果から、式(1)及び式(2)の関係を満足する、被測定単一モード光ファイバの実効的な比屈折率差分布Δeff(λ、z)、実効断面積分布Aeff(λ、z)、並びに実効的なラマン利得係数分布greff(λ、z)を算出することにより、上記問題を解決する手段としている。
【0016】
以下では図面に基づき、本発明の実施の形態について説明する。
図1は本発明による単一モード光ファイバの分布特性評価方法の評価手順を表すフローチャートである。
始めに、被測定単一モード光ファイバの一端、若しくは両端に、評価波長λにおける、任意の位置z0での実効断面積Aeff(λ、z0)が既知である、参照単一モード光ファイバを接続し、測定対象とする(S11)。
【0017】
次に、波長λの測定光パルスと、評価波長λのプローブ光を用い、例えば、非特許文献3に記載の既存技術により、被測定対象の実効的なラマン利得率分布Creff(λ、z)を評価する(S12)。
更に、評価波長λの測定パルス光を用い、被測定対象の双方向から後方散乱光強度分布I1(λ、z)、及びI2(λ、z)を測定することにより、例えば、特許文献6に記載の既存技術により、被測定対象の構造不整合に起因する規格化光強度分布I(λ、z)を評価する(S13)。
【0018】
引き続き、S12及びS13で得られた、実効的なラマン利得率Creff(λ、z)と規格化光強度分布I(λ、z)を用い、式(1)及び式(2)の関係を満たす、実効的な比屈折率差Δeff(λ、z)、実効断面積Aeff(λ、z)、並びに実効的なラマン利得係数greff(λ、z)の分布特性を評価する(S14)。
【0019】
【数3】

Figure 2004361200
【0020】
そして、S12、及びS14で得られた、実効ラマン利得率分布Creff(λ、z)、並びに実効比屈折率差Δeff(λ、z)を用い、式(3)及び式(4−1)及び(4−2)の関係を満たす、等価比屈折率差Δeq(core)(z)及びΔeq(clad)(z)、並びに等価コア半径aeq(z)の分布特性を解析する(S15)。
【0021】
【数4】
Figure 2004361200
【0022】
更に、S15で得られた等価比屈折率差分布Δeq(core)(z)及びΔeq(clad)(z)と、等価コア半径分布aeq(z)とを用い、両パラメータにより決定される等価ステップ型屈折率分布に対するマクスウェル方程式を解析することにより、被測定対象のモードフィールド径2W(λ、z)、実効非線形屈折率n2eff(λ、z)、並びに実効非線形定数n2eff(λ、z)/Aeff(λ、z)の分布特性を解析する(S16)。
【0023】
図2は本発明の単一モード光ファイバの分布特性評価装置の一構成例を示す概略図である。
この分布特性評価装置は、光強度分布測定装置21、プローブ光源22、制御・演算装置23からなる。
光強度分布測定装置21は、被測定対象の伝搬方向における、光強度分布を測定するための装置であって、波長λ、並びにλの測定パルス光を具備する。
【0024】
プローブ光源22は、被測定対象30に入射するプローブ光源であって、波長λのプローブ光を具備する。
ここで、被測定対象30は、被測定単一モード光ファイバ31の両端に、評価波長λにおける、任意の位置z0での実効断面積Aeff(λ、z0)が既知である、参照単一モード光ファイバ32,33をそれぞれ接続したものである。
制御・演算装置23は、光強度分布測定装置21の制御部、並びに分布特性評価・解析のための装置である。
【0025】
以下では本発明の実施例として、3本の単一モード光ファイバにより構成される被測定対象の分布特性評価を行った例について説明する。
即ち、被測定対象は、参照ファイバである1.3μm帯零分散ファイバ(SMF)と、それぞれ被測定単一モード光ファイバである分散シフトファイバ(DSF)とノン零分散ファイバ(NZ−DSF)が順に接続されたものである。
尚、参照ファイバの入射端z0における、評価波長1550nmでの実効断面積Aeff(1550nm,z0)は、非特許文献2に記載の既存技術、FFP (ファー・フィールド・パターン)法により予め評価を行い、その値は82.8μmであった。
【0026】
図3は非特許文献3に記載の既存技術を用い、測定パルス光λの波長を1.45μm、プローブ光の波長λを1.55μmとして、被測定対象の伝搬方向おける実効的なラマン利得率Creff(λ、z)の評価結果を表すグラフである。
また、図4は評価波長λが1.55μmのパルス光を用い、特許文献6に記載の既存技術に基づき、被測定対象の伝搬方向における構造不整合に起因する規格化光強度分布I(λ、z)の評価を行った結果を表すグラフである。
【0027】
図5は、図3並びに図4に示した、実効的なラマン利得率分布Creff(λ、z)、並びに規格化光強度分布I(λ、z)を用い、前記式(1)、並びに式(2)の関係を満たす、実効比屈折率差分布Δeff(λ、z)と、実効断面積分布Aeff(λ、z)とを、最小2乗法解析により評価した結果を表すグラフである。
尚、非特許文献4に記載されているように、コアに特定のガラス材料が添加された、単一モード光ファイバにおける、式(1)の係数g0及びg1は、従来技術により予め求めることができる。
【0028】
そこで、本実施例では、コアにゲルマニウムが添加された単一モード光ファイバにおける、測定パルス波長λ=1.45μm、プローブ光波長λ=1.55μmにおける式(1)を、以下の式(5)に書き換えて評価を行った。
【0029】
【数5】
Figure 2004361200
【0030】
図5中の3本の一点鎖線は、DSF,NZ−DSF、並びにSMFの一端において、従来のFFP法により評価された実効断面積の値を表す。
この結果から、本発明による実効断面積分布の評価結果は、従来の技術による評価結果と良く一致していることが分かる。
【0031】
図6は前記実効的な比屈折率差分布Δeff(λ、z)を、前記式(5)に代入して求めた、被測定対象の実効的なラマン利得係数分布greff(λ、z)の評価結果を表すグラフである。
図6中の3本の一点鎖線は、非特許文献5に記載の従来技術を用いて評価した、DSF,NZ−DSF、並びにSMFの全長における、実効的なラマン利得係数の平均値であり、本発明による評価結果と良く一致していることが分かる。
【0032】
図7は前記実効的な比屈折率差分布Δeff(λ、z)と、実効断面積分布Aeff(λ、z)の評価結果を用い、前記式(3)及び式(4−1)及び(4−2)の関係を満たす、等価比屈折率差分布Δeq(core)(z)及びΔeq(clad)(z)、並びに等価コア半径aeq(z)を最小2乗法解析により評価した結果を表すグラフである。
尚、前記式(5)から、本実施例では、測定パルス波長λ=1.45μm、プローブ光波長λ=1.55μmにおける式(4−1)及び(4−2)を、以下の式(6−1)及び(6−2)に書き換えて評価を行った。
【0033】
【数6】
Figure 2004361200
【0034】
また、式(6−1)及び(6−2)中のΔeq(core)(z)及びΔeq(clad)(z)は、純石英の屈折率nSiO2と、等価ステップ型屈折率分布のコアの屈折率ncore、若しくはクラッド屈折率ncladを用いて、式(7−1)及び(7−2)により定義されるものとした。
【0035】
【数7】
Figure 2004361200
【0036】
図8は、前記等価比屈折率差分布Δeq(core)(z)、並びに等価コア半径aeq(z)の評価結果を用い、両パラメータにより決定される等価ステップ型屈折率分布を有する単一モード光ファイバの特性を解析し得られた、被測定対象のモードフィールド径分布2W(λ、z)の評価結果を表すグラフである。
図8中の3本の一点鎖線は、非特許文献2に記載の従来技術である、FFP法による各測定対象の入射端におけるモードフィールド径の評価結果を表し、本発明による評価結果が従来技術による評価結果と良い一致を示すことが分かる。
【0037】
図9は、被測定対象の実効的な非線形屈折率分布n2eff(λ、z)、並びに実効的な非線形定数分布n2eff(λ、z)/Aeff(λ、z)の評価結果を表すグラフである。
尚、実効的な非線形層折率n2eff(λ、z)は、被測定対象の伝搬方向における等価比屈折率差Δeq(core)(z)及びΔeq(clad)(z)、並びに等価コア半径aeq(z)を用い、非特許文献6により式(8)及び式(9−1)及び(9−2)の関係式を用いて評価した。
【0038】
また、本実施例では、クラッドの屈折率が純石英であり、コアがゲルマニウム添加により形成される単一モード光ファイバの評価を行ったため、非特許文献6より、式(9−1)及び(9−2)の係数n20及びn21は、それぞれ2.507、並びに0.505として評価を行った。
【0039】
【数8】
Figure 2004361200
【0040】
図9中の3本の一点鎖線は、非特許文献7に記載の従来技術である、cw−SPM法による各測定対象の全長における実効的な非線形定数n2eff/Aeffの評価結果を表し、本発明による評価結果が従来技術による評価結果と良い一致を示すことが分かる。
【0041】
このように説明したように、本発明は、単一モード光ファイバの伝播方向における特性分布の評価において、実効ラマン利得率分布と構造不整合に起因する規格化光強度分布とを評価し、これら実効ラマン利得率分布と規格化光強度分布の関係から、被測定単一光ファイバの実効比屈折率差分布を評価することにより、特性分布を評価することを特徴とするものである。
【0042】
従って、本発明によれば、従来技術の課題であった▲1▼全長での平均値又は局所的な値のみでの把握を、伝播方向における分布特性で評価できること、▲2▼異なる複数の光ファイバが接続された場合も評価できること等、高精度な評価が可能となる。
【0043】
【発明の効果】
以上、説明したように、本発明の単一モード光ファイバの分布特性評価法によれば、単一モード光ファイバの伝搬方向における実効的な比屈折率差の変化を評価し、被測定単一モード光ファイバの実効ラマン利得係数、実効非線形屈折率、実効断面積、並びにモードフィールド径等の各種パラメータの分布特性を高精度に評価する方法、並びに評価装置を提供することができる。
【0044】
即ち、実効的なラマン利得率分布の評価結果と、構造不整合に起因した規格化光強度分布の評価結果とを用い、被測定対象の伝搬方向における実効的な比屈折率差分布を評価することとしたため、被測定対象中における屈折率分布の変化に伴う、評価精度の劣化を低減し、被測定対象の伝搬方向における分布特性を高精度に評価可能とするといった効果を奏する。
【0045】
また、本発明の単一モード光ファイバの分布特性評価法によれば、被測定対象の等価比屈折率差、並びに等価コア半径を評価することしたため、従来の電磁界分布の解析技術を適用することにより、被測定対象のモードフィールド径や、実効的な非線形屈折率の分布特性も評価可能となるといった効果も奏する。
【図面の簡単な説明】
【図1】本発明による単一モード光ファイバ伝搬方向の分布特性評価方法の評価手順について説明するフローチャートである。
【図2】本発明による単一モード光ファイバの分布特性評価装置の一構成例を示す概略図である。
【図3】本発明の実施例における、被測定対象の実効的なラマン利得率分布Creff(λ、z)の評価結果を表すグラフである。
【図4】本発明の実施例における、被測定対象の構造不整合に起因する規格化光強度分布I(λ、z)の評価結果を表すグラフである。
【図5】本発明の実施例における、被測定対象の実効比屈折率差分布Δeff(λ、z)並びに実効断面積分布Aeff(λ、z)の評価結果を表すグラフである。
【図6】本発明の実施例における、被測定対象の実効的なラマン利得係数分布greff(λ、z)の評価結果を表すグラフである。
【図7】本発明の実施例における、被測定対象の等価比屈折率差分布Δeq(core)(z)並びに等価コア半径分布aeq(z)の評価結果を表すグラフである。
【図8】本発明の実施例における、被測定対象のモードフィールド径分布2W(λ、z)の評価結果を表すグラフである。
【図9】本発明の実施例における、被測定対象の実効的な非線形屈折率分布n2eff(λ、z)、並びに実効的な非線形定数分布n2eff(λ、z)/Aeff(λ、z)の評価結果を表すグラフである。
【符号の説明】
21 光強度分布測定装置
22 プローブ光源
23 制御・演算装置
30 被測定対象
31 被測定ファイバ
32,33 参照ファイバ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and apparatus for evaluating a characteristic distribution in a propagation direction of a single mode optical fiber.
[0002]
[Prior art]
In an optical communication system using an optical amplifying device, as the intensity of light propagating in a single-mode optical fiber increases, deterioration of a propagation waveform due to optical nonlinearity in the single-mode optical fiber becomes a problem (Non-Patent Document) 1).
The optical nonlinear phenomenon in a single mode optical fiber changes in proportion to a nonlinear constant n 2 / A eff obtained by dividing the nonlinear refractive index n 2 by the effective area A eff .
[0003]
Therefore, in a long-distance, large-capacity optical communication system using an optical amplifying device, it is necessary to grasp the effective cross-sectional area and the nonlinear refractive index, which are parameters related to the optical nonlinearity of a single-mode optical fiber used for a transmission line. Occurs.
For this reason, a method has been established for evaluating the effective area from the measurement result of the near-field pattern or the far-field pattern at an arbitrary exit end of the single-mode optical fiber (Non-Patent Document) 2).
[0004]
Also, a method of evaluating the nonlinear refractive index or the nonlinear constant by observing various optical nonlinear phenomena in a single-mode optical fiber has been reported (for example, Patent Documents 1-5).
On the other hand, the optical nonlinear effect in an optical fiber is closely related to optical fiber parameters such as chromatic dispersion and mode field diameter, and the effect has a characteristic that it occurs and accumulates in the propagation direction of the optical fiber.
[0005]
Therefore, in a long-distance, large-capacity optical communication system using an optical amplifier, it is necessary to understand distribution characteristics of various fiber parameters in a propagation direction in a single-mode optical fiber used for a transmission line.
For this reason, for example, in Patent Document 6, by analyzing the backscattered light waveform measured from both directions of the single mode optical fiber, parameters such as mode field diameter and chromatic dispersion in the propagation direction of the single mode optical fiber are analyzed. Non-destructive evaluation methods have been proposed.
[0006]
In recent years, studies on an optical communication system using the Raman amplification effect in an optical fiber have been actively conducted. In such an optical communication system, a Raman gain factor of a single mode optical fiber used for a transmission line, or It is also necessary to understand the Raman gain coefficient.
For this reason, for example, Patent Document 7 proposes a method for evaluating the Raman amplification characteristic of a single-mode optical fiber transmission line.
Non-Patent Document 3 also proposes a method for non-destructively evaluating the Raman gain factor distribution of a single mode optical fiber.
[0007]
[Patent Document 1]
JP-A-7-325015 [Patent Document 2]
JP-A-8-15091 [Patent Document 3]
JP-A-8-193918 [Patent Document 4]
JP 2001-33352 A [Patent Document 5]
JP-A-2002-318171 [Patent Document 6]
JP-A-6-213770 [Patent Document 7]
JP-A-2002-296145 [Patent Document 8]
JP-A-10-160636 [Non-Patent Document 1]
A. R. Craplyy, "Limitations on lightwave communications imposed by optical-fiber nonlinearities", J. Am. Lightwave Technology. , Vol. 8, No. 10, p. 1548, 1990
[Non-patent document 2]
Namihira, "DWDM Optical Measurement Technology (1st Edition)", Optronics (published March 10, 2001). (Chapter 10, p217-221)
[Non-Patent Document 3]
K. Toge et al. , "Measurement of Raman gain distribution in optical fibers", Photon. Technol. Lett. , Vol. 14, No. 7, p. 974 2002
[Non-patent document 4]
C. Fukai, K .; Nakajima and M.K. Ohashi, "Doant Dependence of Raman gain coeffluent in fluorine doped fiber", OECC 2002, 10D2-6, pp. 186-187, 2002.
[Non-Patent Document 5]
S Gray "Raman gain measurements in optical fibers" SOFM2000, pp. 151-154, 2000.
[Non-Patent Document 6]
K. Nakajima and M.K. Ohashi, "Dopant dependence of effective nonlinear refractive index in Ge0 2 - and F-doped core single-mode fibers", Photon. Technol. Lett. vol. 14, No. 4 pp 492-494, 2002.
[0008]
[Problems to be solved by the invention]
However, the evaluation techniques of Patent Documents 1 to 5 and Patent Document 7 disclose a nonlinear refractive index, a nonlinear constant, or a Raman as an average value over the entire length of a single mode optical fiber or a local value at an arbitrary short length. There is a problem that the amplification characteristics can be evaluated, and it is difficult to evaluate the distribution characteristics of the single mode optical fiber in the propagation direction.
[0009]
Further, in the technique for evaluating the distribution characteristics of fiber parameters described in Patent Document 6, it is assumed that the uniformity of the refractive index distribution in the longitudinal direction of the single-mode optical fiber is assumed. When a plurality of single mode optical fibers having different distributions are connected, there is a problem that the evaluation accuracy is deteriorated. Furthermore, in order to solve such a problem, in the evaluation technique described in Patent Document 8, a method of improving the evaluation accuracy by considering a correction coefficient corresponding to a change in the refractive index distribution has been proposed.
[0010]
However, in the evaluation technique of Patent Document 8, in order to derive a correction coefficient, it is necessary that the mode field diameter at an arbitrary wavelength λ and an arbitrary position z of the measured single mode optical fiber be known. There is a problem that it cannot be applied to measurement of a single mode optical fiber whose diameter is completely unknown.
Similarly, in the Raman gain factor distribution evaluation technique described in Non-Patent Document 3, when a plurality of single mode optical fibers are connected, the refractive index distribution between the connected single mode optical fibers is also determined. , It is difficult to separate and grasp the distribution characteristics of the Raman gain coefficient and the effective area.
[0011]
In view of such a problem, the present invention evaluates the change in the effective relative refractive index difference in the propagation direction of a single mode optical fiber, and measures the effective Raman gain coefficient, the effective nonlinear refractive index, It is an object of the present invention to provide a method and a device for evaluating the distribution characteristics of various parameters such as the effective area and the mode field diameter with high accuracy.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a method for evaluating the characteristic distribution of a single mode optical fiber according to claim 1 of the present invention, comprises: measuring an effective Raman gain factor of the measured single mode optical fiber at a position of an evaluation wavelength λ and a propagation direction z. The distribution C ref (λ, z) and the normalized light intensity distribution I n (λ, z) caused by the structural mismatch are evaluated, and the evaluation results of both distribution characteristics are used to calculate the expressions (1) and (2). Evaluation of the distribution characteristics of the effective relative refractive index difference Δ eff (λ, z), the effective area A eff (λ, z), and the effective Raman gain coefficient g ref (λ, z) satisfying the relationship It is characterized by.
[0013]
According to a second aspect of the present invention, there is provided a method for evaluating the characteristic distribution of a single-mode optical fiber, comprising the steps of: Eff (λ, z) and the effective area distribution A eff (λ, z) are evaluated, and the equivalent relative refraction that satisfies the relations of Expression (3) and Expressions (4-1) and (4-2) is obtained. The rate difference distributions Δ eq (core) (z) and Δ eq (clad) (z) and the equivalent core radius distribution a eq (z) are obtained, and the mode field in the propagation direction of the measured single-mode optical fiber is determined. It is characterized by evaluating distribution characteristics of a diameter 2W (λ, z), an effective nonlinear refractive index n 2eff (λ, z), and an effective nonlinear constant n 2eff / A eff (λ, z).
[0014]
The characteristic distribution evaluation apparatus of a single-mode optical fiber according to claim 3 of the present invention to achieve the above object, the excitation pulsed light at the desired excitation wavelength lambda p, the measurement pulse light in the desired evaluation wavelength lambda, the desired Means for projecting the probe light at the evaluation wavelength λ into the single-mode optical fiber to be measured, and measuring the light intensity distribution in the propagation direction of the single-mode optical fiber; Effective Raman gain C ref (λ, z), normalized light intensity I n (λ, z), effective relative refractive index difference Δ eff (λ, z), effective Raman gain coefficient g in the propagation direction z of the optical fiber ref (λ, z), effective area A eff (λ, z), equivalent relative refractive index difference Δ eq (core) (z) and Δ eq (clad) (z), equivalent core radius a eq (z), Mode field diameter 2W (λ, ), Effective nonlinear refractive index n 2eff (lambda, z), and the effective nonlinear constant n 2eff (λ, z) / A eff (λ, characterized in that a means for calculating a distribution characteristic of z).
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
In the evaluation method and the evaluation apparatus of the present invention, the effective area A eff (λ, z0) at an arbitrary position z0 at the evaluation wavelength λ is known at one or both ends of the single-mode optical fiber to be measured. , A reference single-mode optical fiber is connected, and an effective Raman gain factor distribution C ref (λ, z) at a position z in the propagation direction of the measured single-mode optical fiber at the evaluation wavelength λ and a structural mismatch. Has the function of evaluating the resulting normalized light intensity distribution I n (λ, z), and based on the evaluation results of both distribution characteristics, the single measured object that satisfies the relationship of Expressions (1) and (2). An effective relative refractive index difference distribution Δ eff (λ, z), an effective cross-sectional area distribution A eff (λ, z), and an effective Raman gain coefficient distribution g ref (λ, z) of the mode optical fiber are calculated. As a means to solve the above problems, .
[0016]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing an evaluation procedure of a method for evaluating distribution characteristics of a single mode optical fiber according to the present invention.
First, a reference single-mode optical fiber whose effective area A eff (λ, z0) at an arbitrary position z0 at an evaluation wavelength λ is known is placed at one or both ends of the single-mode optical fiber to be measured. Connect and set as a measurement target (S11).
[0017]
Next, using the measurement light pulse of the wavelength λ p and the probe light of the evaluation wavelength λ, for example, by the existing technology described in Non-Patent Document 3, the effective Raman gain factor distribution C ref (λ, z) is evaluated (S12).
Further, by measuring the backscattered light intensity distributions I1 (λ, z) and I2 (λ, z) from both directions of the measured object by using the measurement pulse light having the evaluation wavelength λ, for example, Japanese Patent Application Laid-Open No. H10-163,873 is disclosed. The standardized light intensity distribution I n (λ, z) resulting from the structural mismatch of the measured object is evaluated by the described existing technology (S13).
[0018]
Subsequently, obtained in S12 and S13, the effective Raman gain constant C reff (lambda, z) and using the normalized light intensity distribution I n (lambda, z), Formula (1) and the relationship of formula (2) The distribution characteristics of the effective relative refractive index difference Δ eff (λ, z), the effective cross-sectional area A eff (λ, z), and the effective Raman gain coefficient g ref (λ, z) satisfying the following conditions are evaluated ( S14).
[0019]
[Equation 3]
Figure 2004361200
[0020]
Then, using the effective Raman gain factor distribution C ref (λ, z) and the effective relative refractive index difference Δ eff (λ, z) obtained in S12 and S14, the equations (3) and (4-1) are used. ) And (4-2), the distribution characteristics of the equivalent relative refractive index differences Δ eq (core) (z) and Δ eq (clad) (z) and the equivalent core radius a eq (z) are analyzed. (S15).
[0021]
(Equation 4)
Figure 2004361200
[0022]
Further, using the equivalent relative refractive index difference distributions Δ eq (core) (z) and Δ eq (clad) (z) obtained in S15 and the equivalent core radius distribution a eq (z), it is determined by both parameters. By analyzing Maxwell's equation for the equivalent step type refractive index distribution, the mode field diameter 2W (λ, z), the effective nonlinear refractive index n 2eff (λ, z), and the effective nonlinear constant n 2eff (λ , Z) / A eff (λ, z) are analyzed (S16).
[0023]
FIG. 2 is a schematic diagram showing one configuration example of the single mode optical fiber distribution characteristic evaluation device of the present invention.
This distribution characteristic evaluation device includes a light intensity distribution measurement device 21, a probe light source 22, and a control / calculation device 23.
The light intensity distribution measuring device 21 is a device for measuring the light intensity distribution in the propagation direction of the object to be measured, and includes a measurement pulse light having wavelengths λ p and λ.
[0024]
The probe light source 22 is a probe light source that enters the measurement target 30 and includes probe light having a wavelength λ.
Here, the measured object 30 is provided at both ends of the measured single-mode optical fiber 31 at the both ends of the single-mode optical fiber 31 at which the effective sectional area A eff (λ, z0) at an arbitrary position z0 is known. Mode optical fibers 32 and 33 are connected respectively.
The control / arithmetic device 23 is a control unit of the light intensity distribution measuring device 21 and a device for evaluating and analyzing distribution characteristics.
[0025]
Hereinafter, as an embodiment of the present invention, an example will be described in which distribution characteristics of a measured object constituted by three single-mode optical fibers are evaluated.
That is, the object to be measured is a 1.3 μm band zero dispersion fiber (SMF) as a reference fiber, and a dispersion shift fiber (DSF) and a non-zero dispersion fiber (NZ-DSF) as single mode optical fibers to be measured, respectively. They are connected in order.
The effective sectional area A eff (1550 nm, z0) at the evaluation wavelength 1550 nm at the incident end z0 of the reference fiber is evaluated in advance by the existing technology described in Non-Patent Document 2, the FFP (far field pattern) method. The result was 82.8 μm 2 .
[0026]
3 using conventional technique described in Non-Patent Document 3, 1.45 .mu.m and the wavelength of the measurement pulse light lambda p, the 1.55μm wavelength lambda of the probe light, propagating direction definitive effective Raman gain to be measured It is a graph showing the evaluation result of rate C ref (λ, z).
Further, FIG. 4 using the pulsed light of the evaluation wavelength λ is 1.55 .mu.m, based on the existing technology described in Patent Document 6, the normalized light intensity distribution I n due to structural mismatch in the propagation direction of the object to be measured ( 6 is a graph showing the results of evaluation of λ, z).
[0027]
Figure 5 is shown in FIG. 3 and FIG. 4, the effective Raman gain index C reff (lambda, z), and using the normalized light intensity distribution I n (lambda, z), the formula (1), And a graph showing the result of evaluating the effective relative refractive index difference distribution Δ eff (λ, z) and the effective cross-sectional area distribution A eff (λ, z) satisfying the relationship of the expression (2) by the least squares analysis. It is.
As described in Non-Patent Document 4, the coefficients g0 and g1 of Equation (1) in a single mode optical fiber in which a specific glass material is added to a core can be obtained in advance by a conventional technique. it can.
[0028]
Therefore, in the present embodiment, the equation (1) at a measurement pulse wavelength λ p = 1.45 μm and a probe light wavelength λ = 1.55 μm in a single mode optical fiber in which germanium is added to the core is expressed by the following equation ( 5) was rewritten and evaluated.
[0029]
(Equation 5)
Figure 2004361200
[0030]
The three dashed lines in FIG. 5 represent the values of the effective cross-sectional area at one end of DSF, NZ-DSF, and SMF evaluated by the conventional FFP method.
From this result, it can be seen that the evaluation result of the effective cross-sectional area distribution according to the present invention is in good agreement with the evaluation result according to the conventional technique.
[0031]
FIG. 6 shows an effective Raman gain coefficient distribution g ref (λ, z) of the measured object obtained by substituting the effective relative refractive index difference distribution Δ eff (λ, z) into the equation (5). 4 is a graph showing evaluation results.
The three dashed lines in FIG. 6 are the average values of the effective Raman gain coefficients over the entire length of DSF, NZ-DSF, and SMF, evaluated using the conventional technique described in Non-Patent Document 5, It can be seen that the results agree well with the evaluation results according to the present invention.
[0032]
FIG. 7 shows the results of the evaluation of the effective relative refractive index difference distribution Δ eff (λ, z) and the effective cross-sectional area distribution A eff (λ, z) using the expressions (3) and (4-1). And the equivalent relative refractive index difference distributions Δ eq (core) (z) and Δ eq (clad) (z) satisfying the relationship of (4-2) and the equivalent core radius a eq (z) by the least squares analysis. It is a graph showing the result of evaluation.
Note that, in the present embodiment, Expressions (4-1) and (4-2) at the measurement pulse wavelength λ p = 1.45 μm and the probe light wavelength λ = 1.55 μm are obtained from Expression (5). (6-1) and (6-2) were rewritten and evaluated.
[0033]
(Equation 6)
Figure 2004361200
[0034]
Δeq (core) (z) and Δeq (clad) (z) in the expressions (6-1) and (6-2) are the refractive index n SiO2 of pure quartz and the equivalent step type refractive index distribution. Using the core refractive index n core or the cladding refractive index n clad , it was defined by the equations (7-1) and (7-2).
[0035]
(Equation 7)
Figure 2004361200
[0036]
FIG. 8 is a graph showing a simple refractive index difference distribution Δeq (core) (z) and an equivalent core radius a eq (z) having an equivalent step-type refractive index distribution determined by both parameters. 11 is a graph showing an evaluation result of a mode field diameter distribution 2W (λ, z) of a measured object obtained by analyzing characteristics of a one-mode optical fiber.
8 represent the evaluation result of the mode field diameter at the entrance end of each measurement object by the FFP method, which is the conventional technology described in Non-Patent Document 2, and the evaluation result according to the present invention is the conventional technology. It can be seen that the results show good agreement with the evaluation results.
[0037]
FIG. 9 shows the evaluation results of the effective nonlinear refractive index distribution n 2eff (λ, z) and the effective nonlinear constant distribution n 2eff (λ, z) / A eff (λ, z) of the measured object. It is a graph.
Note that the effective non-linear layer folding factor n 2eff (λ, z) is calculated by calculating the equivalent relative refractive index differences Δ eq (core) (z) and Δ eq (clad) (z) in the propagation direction of the measured object, and the equivalent. The evaluation was performed using the core radius a eq (z) and the relational expressions of Expression (8) and Expressions (9-1) and (9-2) according to Non-Patent Document 6.
[0038]
In addition, in this embodiment, since the refractive index of the cladding is pure quartz and the single-mode optical fiber whose core is formed by adding germanium was evaluated, the equations (9-1) and (9-1) are obtained from Non-Patent Document 6. coefficient n 20 and n 21 of 9-2), respectively 2.507, and was evaluated as 0.505.
[0039]
(Equation 8)
Figure 2004361200
[0040]
The three dashed lines in FIG. 9 represent the evaluation results of the effective nonlinear constant n 2eff / A eff over the entire length of each measurement object by the cw-SPM method, which is a conventional technique described in Non-Patent Document 7, It can be seen that the evaluation results according to the present invention are in good agreement with the evaluation results according to the prior art.
[0041]
As described above, the present invention evaluates the effective Raman gain factor distribution and the normalized light intensity distribution caused by the structural mismatch in the evaluation of the characteristic distribution in the propagation direction of the single mode optical fiber. The characteristic distribution is characterized by evaluating the effective relative refractive index difference distribution of a single optical fiber to be measured from the relationship between the effective Raman gain factor distribution and the normalized light intensity distribution.
[0042]
Therefore, according to the present invention, (1) grasping only by an average value or a local value over the entire length can be evaluated by a distribution characteristic in a propagation direction, and (2) a plurality of different light High-precision evaluation is possible, such as being able to evaluate even when a fiber is connected.
[0043]
【The invention's effect】
As described above, according to the distribution characteristic evaluation method of the single mode optical fiber of the present invention, the change of the effective relative refractive index difference in the propagation direction of the single mode optical fiber is evaluated, and the measured single mode optical fiber is measured. A method and apparatus for evaluating the distribution characteristics of various parameters such as the effective Raman gain coefficient, the effective nonlinear refractive index, the effective cross-sectional area, and the mode field diameter of the mode optical fiber with high accuracy can be provided.
[0044]
That is, the effective relative refractive index difference distribution in the propagation direction of the measured object is evaluated using the evaluation result of the effective Raman gain index distribution and the evaluation result of the normalized light intensity distribution caused by the structural mismatch. Therefore, it is possible to reduce the deterioration of the evaluation accuracy due to the change in the refractive index distribution in the object to be measured, and to provide an effect of enabling the distribution characteristic of the object to be measured in the propagation direction to be evaluated with high accuracy.
[0045]
In addition, according to the method for evaluating the distribution characteristics of the single mode optical fiber of the present invention, since the equivalent relative refractive index difference of the object to be measured and the equivalent core radius are evaluated, a conventional electromagnetic field distribution analysis technique is applied. As a result, the mode field diameter of the object to be measured and the distribution characteristics of the effective nonlinear refractive index can be evaluated.
[Brief description of the drawings]
FIG. 1 is a flowchart illustrating an evaluation procedure of a distribution characteristic evaluation method in a single-mode optical fiber propagation direction according to the present invention.
FIG. 2 is a schematic diagram showing one configuration example of a single mode optical fiber distribution characteristic evaluation apparatus according to the present invention.
FIG. 3 is a graph showing an evaluation result of an effective Raman gain factor distribution C ref (λ, z) of an object to be measured in an example of the present invention.
FIG. 4 is a graph showing an evaluation result of a normalized light intensity distribution I n (λ, z) caused by a structural mismatch of a measured object in the example of the present invention.
FIG. 5 is a graph showing evaluation results of an effective relative refractive index difference distribution Δ eff (λ, z) and an effective cross-sectional area distribution A eff (λ, z) of an object to be measured in an example of the present invention.
FIG. 6 is a graph showing an evaluation result of an effective Raman gain coefficient distribution g ref (λ, z) of the measured object in the example of the present invention.
FIG. 7 is a graph showing evaluation results of an equivalent relative refractive index difference distribution Δ eq (core) (z) and an equivalent core radius distribution a eq (z) of an object to be measured in an example of the present invention.
FIG. 8 is a graph showing an evaluation result of a mode field diameter distribution 2W (λ, z) of an object to be measured in the example of the present invention.
FIG. 9 shows an effective nonlinear refractive index distribution n 2eff (λ, z) and an effective nonlinear constant distribution n 2eff (λ, z) / A eff (λ, It is a graph showing the evaluation result of z).
[Explanation of symbols]
21 light intensity distribution measuring device 22 probe light source 23 control / arithmetic device 30 measured object 31 measured fibers 32, 33 reference fiber

Claims (3)

被測定単一モード光ファイバの、評価波長λ、伝搬方向zの位置における、実効ラマン利得率分布Creff(λ、z)と、構造不整合に起因する規格化光強度分布I(λ、z)とを評価し、両分布特性の評価結果を用い、式(1)及び式(2)の関係を満たす実効比屈折率差Δeff(λ、z)、実効断面積Aeff(λ、z)、並びに実効的なラマン利得係数greff(λ、z)の分布特性を評価することを特徴とする単一モード光ファイバの特性分布評価法。
Figure 2004361200
The effective Raman gain factor distribution C ref (λ, z) at the position of the evaluation wavelength λ and the propagation direction z of the measured single mode optical fiber, and the normalized light intensity distribution I n (λ, z), and using the evaluation results of the two distribution characteristics, the effective relative refractive index difference Δ eff (λ, z) and the effective cross-sectional area A eff (λ, which satisfy the relationship of Expressions (1) and (2)). z) and a characteristic distribution evaluation method for a single-mode optical fiber, characterized by evaluating distribution characteristics of an effective Raman gain coefficient g ref (λ, z).
Figure 2004361200
請求項1に記載の方法により、被測定単一モード光ファイバの実効的な比屈折率差分布Δeff(λ、z)、並びに実効断面積分布Aeff(λ、z)を評価し、式(3)及び式(4−1)及び(4−2)の関係を満足する、等価比屈折率差分布Δeq(core)(z)及びΔeq(clad)(z)と、等価コア半径分布aeq(z)とを求め、該被測定単一モード光ファイバの伝搬方向における、モードフィールド径2W(λ、z)、実効的な非線形屈折率n2eff(λ、z)、並びに実効的な非線形定数n2eff/Aeff(λ、z)の分布特性を評価することを特徴とする単一モード光ファイバの特性分布評価法。
Figure 2004361200
An effective relative refractive index difference distribution Δ eff (λ, z) and an effective cross-sectional area distribution A eff (λ, z) of the single-mode optical fiber to be measured are evaluated by the method according to claim 1, and the following expression is obtained. (3) and the equivalent relative refractive index difference distributions Δ eq (core) (z) and Δ eq (clad) (z) satisfying the relationships of the expressions (4-1) and (4-2), and the equivalent core radius. And a distribution a eq (z), a mode field diameter 2W (λ, z), an effective nonlinear refractive index n 2eff (λ, z), and an effective non-linear refractive index n 2eff (λ, z) in the propagation direction of the measured single mode optical fiber. A characteristic distribution evaluation method for a single-mode optical fiber, comprising: evaluating a distribution characteristic of a nonlinear constant n 2eff / A eff (λ, z).
Figure 2004361200
所望の励起波長λにおける励起パルス光と、所望の評価波長λにおける測定パルス光と、所望の評価波長λにおけるプローブ光と、を被測定単一モード光ファイバに入射し、該単一モード光ファイバ伝搬方向の光強度分布を測定する手段と、該光強度分布から、前記被測定単一モード光ファイバの伝搬方向zにおける、実効ラマン利得率Creff(λ、z)、規格化光強度I(λ、z)、実効比屈折率差Δeff(λ、z)、実効ラマン利得係数greff(λ、z)、実効断面積Aeff(λ、z)、等価比屈折率差Δeq(core)(z)及びΔeq(clad)(z)、等価コア半径aeq(z)、モードフィールド径2W(λ、z)、実効非線形屈折率n2eff(λ、z)、並びに実効非線形定数n2eff(λ、z)/Aeff(λ、z)の分布特性を演算する手段とを備えたことを特徴とする単一モード光ファイバの特性分布評価装置。Excitation pulse light at the desired excitation wavelength lambda p, the measurement pulse light in the desired evaluation wavelength lambda, incident probe beam at a desired evaluation wavelength lambda, the single-mode optical fiber to be measured, said single mode optical Means for measuring the light intensity distribution in the fiber propagation direction, and from the light intensity distribution, the effective Raman gain factor C ref (λ, z) and the normalized light intensity I in the propagation direction z of the measured single mode optical fiber. n (λ, z), effective relative refractive index difference Δ eff (λ, z), effective Raman gain coefficient g ref (λ, z), effective area A eff (λ, z), equivalent relative refractive index difference Δ eq ( Core ) (z) and Δ eq (clad) (z), equivalent core radius a eq (z), mode field diameter 2W (λ, z), effective nonlinear refractive index n 2eff (λ, z), and effective nonlinear Constant n 2eff (λ, z A) calculating means for calculating distribution characteristics of / A eff (λ, z).
JP2003158938A 2003-06-04 2003-06-04 Method and apparatus for evaluating characteristic distribution of single mode optical fiber Expired - Fee Related JP4082592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158938A JP4082592B2 (en) 2003-06-04 2003-06-04 Method and apparatus for evaluating characteristic distribution of single mode optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158938A JP4082592B2 (en) 2003-06-04 2003-06-04 Method and apparatus for evaluating characteristic distribution of single mode optical fiber

Publications (2)

Publication Number Publication Date
JP2004361200A true JP2004361200A (en) 2004-12-24
JP4082592B2 JP4082592B2 (en) 2008-04-30

Family

ID=34052145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158938A Expired - Fee Related JP4082592B2 (en) 2003-06-04 2003-06-04 Method and apparatus for evaluating characteristic distribution of single mode optical fiber

Country Status (1)

Country Link
JP (1) JP4082592B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111769A (en) * 2006-10-31 2008-05-15 Mitsubishi Heavy Ind Ltd Device for measuring optical fiber characteristic
US20160216442A1 (en) * 2013-04-15 2016-07-28 Corning Incorporated Low diameter optical fiber
US20170176674A1 (en) * 2014-11-12 2017-06-22 Yangtze Optical Fibre And Cable Joint Stock Limited Company Single-mode fiber with ultralow attenuation and large effective area

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111769A (en) * 2006-10-31 2008-05-15 Mitsubishi Heavy Ind Ltd Device for measuring optical fiber characteristic
JP4652309B2 (en) * 2006-10-31 2011-03-16 三菱重工業株式会社 Optical fiber characteristic measuring device
US20160216442A1 (en) * 2013-04-15 2016-07-28 Corning Incorporated Low diameter optical fiber
US9995874B2 (en) * 2013-04-15 2018-06-12 Corning Incorporated Low diameter optical fiber
US11009656B2 (en) 2013-04-15 2021-05-18 Corning Incorporated Low diameter optical fiber
US11009655B2 (en) 2013-04-15 2021-05-18 Corning Incorporated Low diameter optical fiber
US11150403B2 (en) 2013-04-15 2021-10-19 Corning Incorporated Low diameter optical fiber
US20170176674A1 (en) * 2014-11-12 2017-06-22 Yangtze Optical Fibre And Cable Joint Stock Limited Company Single-mode fiber with ultralow attenuation and large effective area
US9874687B2 (en) * 2014-11-12 2018-01-23 Yangtze Optical Fibre And Cable Joint Stock Limited Company Single-mode fiber with ultralow attenuation and large effective area

Also Published As

Publication number Publication date
JP4082592B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
Hayes et al. Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications
US7221439B2 (en) Method of estimating and measuring longitudinal dispersion in optical fibers
Hlubina et al. Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry
JP7270913B2 (en) Method and apparatus for evaluating mode group delay characteristics of optical fiber
JP5085156B2 (en) Optical fiber characteristic evaluation method, apparatus and program
Choochalerm et al. Transmission properties of tapered optical fibres: Simulations and experimental measurements
Ivanov Fibre-optic interferometer formed by a section of small-core fibre spliced between standard fibres
Song et al. Adiabatically bent waveguides on silicon nitride photonics for compact and dense footprints
Ambran et al. Fabrication of a multimode interference device in a low-loss flat-fiber platform using physical micromachining technique
JP4082592B2 (en) Method and apparatus for evaluating characteristic distribution of single mode optical fiber
JP2012150002A (en) Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods
Takahashi et al. Index profile design for high-bandwidth W-shaped plastic optical fiber
Rogers et al. Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings
Zhu et al. Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap
JP5273696B2 (en) Method, apparatus and program for evaluating characteristics of single mode optical fiber
Wang et al. Temperature dependence of macrobending loss in all-fiber bend loss edge filter
US20240027870A1 (en) Measuring Method for Optical Nonlinearity of Two-Dimensional Material
JP4109574B2 (en) Loss characteristics evaluation method for optical fiber transmission line
Pradhan et al. Computation of dimensionless propagation parameters of LP11 mode of double clad fibers
JP3388496B2 (en) Characteristic evaluation method of single mode optical fiber
Sehgal et al. A review on optical fiber long period grating, its applications in optical communication system
JP4083620B2 (en) Method for evaluating Raman gain characteristic of optical fiber, method for estimating Raman gain characteristic spectrum, and apparatus for evaluating Raman gain characteristic
Steblina et al. Cladding mode degeneracy in bent W-fibres beyond cutoff
JP3932030B2 (en) Nonlinear constant measuring method and apparatus for single mode optical fiber
Zhong et al. Connecting hollow-core and standard single-mode fibers with perfect mode-field size adaptation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees