JP2004361197A - Method for measuring heat value of electronic component - Google Patents

Method for measuring heat value of electronic component Download PDF

Info

Publication number
JP2004361197A
JP2004361197A JP2003158891A JP2003158891A JP2004361197A JP 2004361197 A JP2004361197 A JP 2004361197A JP 2003158891 A JP2003158891 A JP 2003158891A JP 2003158891 A JP2003158891 A JP 2003158891A JP 2004361197 A JP2004361197 A JP 2004361197A
Authority
JP
Japan
Prior art keywords
temperature
rjb
measured
heat
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003158891A
Other languages
Japanese (ja)
Inventor
Tetsuya Iwaki
哲也 岩木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2003158891A priority Critical patent/JP2004361197A/en
Publication of JP2004361197A publication Critical patent/JP2004361197A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simultaneously measure a heat value and a heat characteristic of a semiconductor element on a printed circuit board in such a state that the semiconductor element is mounted on the printed circuit board in its actual product level. <P>SOLUTION: In the measuring method, the temperature Tc on the surface side of the element is lowered by using a temperature regulator 24, and a passing heat quantity Pc is read by using a passing heat quantity sensor 23 when a condition where Tj=Tb (temperature on the printed circuit board side of the element) is made, thereby obtaining the heat value P. Then, in order to obtain a thermal resistance Rjb, the temperature Tc is heightened until a condition where Tc=Tj is made, and the thermal resistance Rjb is obtained by using a following equation: Rjb=(Tc-Tb)/P. After obtaining the value Rjb, the temperature regulator 24 is removed to measure the values Tc and Tb, and a value P1 is obtained by using a following equation: P1=((Tb-Tc)+Rjb×P)/(Rjc+Rjb)P1. After obtaining the value P1, a junction temperature Tj is obtained by using a following equation: Tj=Rjc×P1+Tc, thereby enabling the heat value and the heat characteristic of the semiconductor element to be measured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、実際に製品レベルとして実装しているプリント基板上の個別素子(例えば半導体素子)の発熱量と熱的な特性を測定する電子部品発熱量測定方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化、ブロック化や高密度化が進み、より小型化、低価格化が求められている。また、騒音対策として半導体素子などを冷却するファンレス化の要求もますます高まり、厳密な熱設計と評価が、必要になってきている。
【0003】
このため、CPUを初めとする高発熱の素子を適切な温度になるように設計するためには、過去の実験データや各種熱解析を用いているが、その基礎となる各種の素子の発熱量や熱特性を正確に把握することが不可欠となっている。
【0004】
従来、電子機器内に配設されているプリント基板上に実装されている素子は、各素子の動作状態を想定して発熱量を予測していたが、実際に動作している状態での発熱量の把握は、非常に困難であった。
【0005】
次に従来例の発熱量測定方法を図4により述べる。図5において、プリント基板11上に載置されている測定対象素子12の主要回路の電流値、電圧値を、それぞれ電流計A、電圧計Vを用いて直接測定して消費電力を求めるか、また、測定プローブ13を有する測定器14で間接的に電流値を測定して消費電力を求めるかで、測定対象半導体素子の発熱量を測定する方法が行なわれている。
【0006】
しかし、上記直接測定して消費電力を求める場合でも、高速に動作している回路の消費電力を測定することは技術的に難度が高い上に、測定専用のプリント基板を治具として個別に必要としていたためコスト高になる問題がある。
【0007】
また、上記間接測定では、小電流の場合には、精度良く測定することが非常に困難である。
【0008】
さらに、BGA(Ball Grid Array)のような素子の場合には、素子にリードがないため、形状的に回路の電流値を直接測定することがより困難であり、素子の発熱量を測定することは現実的に不可能に近かった。
【0009】
また、治具を使用して電圧値や電流値を測定しても実際の使用状態ではないため放熱特性などの熱的な特性を同時に測定することが困難であった。さらに、高速に動作する素子の場合には、治具に取り付けても所定の動作をしないという問題さえもあった。
【0010】
【特許文献1】
特開2002−014065号公報
【0011】
【発明が解決しようとする課題】
従来より、LSIなどの半導体素子は、ジャンクション温度Tjを許容温度以下にすることが必要である。しかし、実際に使用している素子では、ジャンクション温度Tjを直接測定することができないため、素子の周囲温度Ta又は素子の表面側温度Tcを測定し、以下のようにしてジャンクション温度Tjの判定を行なっていた。
【0012】
これは、各温度間の熱抵抗が予めLSIメーカーで測定されているため、別途設定した素子の発熱量Pから、以下の基本式を用いて算出するようにしている。
【0013】
素子周囲許容温度上昇:Ta(max)=Tj(max)・α1−P×Rja
ここで、Rjaは熱抵抗、α1はディレーティング率である。
【0014】
素子表面許容温度上昇:Tc(max)=Tj(max)・α2−P×Rjc
ここで、Rjcは熱抵抗、α2はディレーティング率である。
【0015】
上記のことを図示したものが図5である。上記のように、発熱量Pは推定値であるため、ジャンクション温度Tjの厳密な判定ができなかった。
【0016】
現在では、プリント基板上の素子の熱的モデルは、一般的に図6(a),(b)に示すように考えられている。しかし、個別の熱抵抗を測定することはLSIメーカーの研究所レベルを除いて一般的には極めて困難である。
【0017】
次に、発熱測定上の技術的な課題について述べる。上記図6(a),(b)に示した熱的モデルの場合、温度と発熱の関係は、図7に示す温度分布特性のグラフ(イ)で表される。
【0018】
図7のグラフ(イ)において、ジャンクション温度Tjは高く、素子上面側温度(以下素子表面側温度と称する)Tc1は、フィンなどで冷却されるので、低い値になっている。また、素子素子プリント基板側温度Tbは、ジャンクション温度Tjより多少低い値になる。
【0019】
しかし、プリント基板上には複数の素子が実装され発熱しており放熱の経路が複雑で、特定素子の発熱量測定は困難である。例えば、図8に示すように通過熱量測定センサ15を測定対象半導体素子12に取り付けても、測定対象半導体素子12の発熱の何%が通過しているのか解からない。また、温度分布や発熱分布によって、他の素子17の発熱分が入っていてもそれを識別することができない。
【0020】
上記のように、現状の技術では、通常のプリント基板上のIC,LSIなどの半導体素子の実際の発熱量や熱特性を測定することが困難であった。
【0021】
この発明は、上記の事情に鑑みてなされたもので、プリント基板上の半導体素子の発熱量及び熱特性を同時に実際の製品レベルのプリント基板に実装された状態で測定することができる電子部品発熱量測定方法を提供することを課題とする。
【0022】
【課題を解決するための手段】
この発明は、上記の課題を達成するために、第1発明は、測定対象素子がジャンクション温度Tjの実測機能を有するものであって、その測定対象素子をプリント基板に実装し、前記素子の上面に通過熱量センサを有する温度調整器を設けた後、この温度調整器により素子上面側温度Tcを降下させてTjの温度を下げ、そのTjが素子プリント基板側Tbと等しくなったときを、測定対象素子の発熱量Pとした後、
素子上面側温度Tcを上昇させ、TcとTjが等しくなったなら、Tj=Rjb×P+Tbから熱抵抗Rjbを求めた後、前記温度調整器を素子から取り外してからTcとTbを測定し、素子表面側に流れている発熱量をP1とすると、
P1=((Tb−Tc)+Rjb×P)/(Rjc+Rjb)となり、この式にTb,Tc,Rjb,Rjc,Pを代入してP1を求めた後、TjをTj=Rjc×P1+Tcから求めることを特徴とするものである。
【0023】
第2発明は、測定対象素子がジャンクション温度Tjの実測機能を有しないときには、予め知られている熱抵抗Rjcから発熱量Pを求めたことを特徴とするものである。
【0024】
【発明の実施の形態】
以下この発明の実施の形態を図面に基づいて説明する。まず、図7に示した通常の半導体素子の温度分布特性では、一般的に素子表面側温度Tcと素子プリント基板側温度Tbの両方に分かれる。その割合は個々の半導体素子の熱抵抗Rjc,Rjbやその周囲によって決定される。つまり、この割合は、プリント基板の温度分布の変動によって複雑に変化する。
【0025】
そこで、図8に示す測定対象半導体素子12の発熱が、通過熱量測定センサ15を100%過不足なく通過するように、プリント基板11の温度分布を調整するようにする。以下、その原理について図1により述べる。
【0026】
図1はこの発明の実施の形態を説明するための測定対象半導体素子の温度と発熱量の関係を示す温度分布特性図で、この特性図では、プリント基板上の他の素子やプリント基板の影響を受けないで測定対象半導体素子12の発熱量Pを測定するために、その素子12の温度分布を強制的に図示温度分布特性のグラフ(ロ)のように変化させる。
【0027】
このような温度分布となるようにするには、素子表面側温度Tcを下げ、ジャンクション温度Tjが素子プリント基板側温度Tbに等しく(Tj=Tb)なるようにする。
【0028】
上記のような温度分布特性のグラフ(ロ)にした場合には、測定対象半導体素子12の発熱が100%素子の表面側(Tc側)に流れ、また、他の素子の発熱もプリント基板上の素子取付部(Tb側)から侵入してくることはない。これは、同じ温度であれば熱の移動は発生しないためである。
【0029】
次に上記原理を用いた発熱量Pの測定方法を示す実施の形態を図2により述べるに、図2において、製品レベルのプリント基板21上に測定対象半導体素子22を実装し、その半導体素子22の上面(実装面と異なる面)に通過熱量測定センサ23を有する温度調整器24を設ける。
【0030】
温度調整器24はペルチェ素子などから構成され、また、通過熱量測定センサ23は半導体などから構成される。25は温度測定装置で、この温度測定装置25により半導体素子22の素子表面側温度Tcと素子素子プリント基板側温度Tbを測定する。26はプリント基板21に取り付けられるその他の発熱素子群である。
【0031】
まず、手順1aにて、上述した測定対象半導体素子22がジャンクション温度Tjの実測機能を有するものである場合における発熱量Pを測定する方法について述べる。
【0032】
現在、CPUなどを構成する半導体素子においては、内部のジャンクション温度Tjを実測できる機能を有するものがある。このような測定対象半導体素子22の場合には、素子のTjの測定結果と素子プリント基板側温度Tbが、一致するように温度を調整する。
【0033】
上記温度の調整方法としては、図2に示すように、まず、半導体素子22の表面に取り付けたヒートシンクやペルチェ素子による温度調整器24を用いて素子表面側温度Tcの温度を降下させる。
【0034】
上記Tcの温度を降下させると、Tjの温度も降下を始める。このTjの温度が、図1に示す温度分布特性のグラフ(ロ)になる、すなわち、Tj=Tb(素子プリント基板側温度)となるまでTcの温度を降下させる。
【0035】
その後、Tj=Tbとなった時に、通過熱量測定センサ23で通過熱量Pcの値を読み取る。このときの値が、測定対象半導体素子22の発熱量Pとなる。
【0036】
上記温度調節器24は、半導体素子22の発熱量に合せた温度調節能力を有するものを用いれば良い。また、温度測定装置25にTjの測定値を入力することで自動的に、Tj=Tbの調節をし、発熱量Pの測定も可能である。
【0037】
次に手順1bとして上述した測定対象半導体素子22がジャンクション温度Tjの実測機能を有しない場合の発熱量Pは以下のようにして求める。
【0038】
半導体素子の一部には、素子表面と素子ジャンクション間の熱抵抗Rjcが公開されている。この素子を用いて測定している通過熱量をPcとすれば、
Pc×Rjc=ΔTcjの関係であるから、Tj=Tc+ΔTcjとなる。
【0039】
従って、Tcの温度を調節して、Tj=Tc+Pc×Rjc=Tbとし、その際のPcが測定対象半導体素子の発熱量Pとなる。
【0040】
次に手順2として測定対象半導体素子の熱抵抗Rjbを求める方法について述べる。図2の構成において、まず半導体素子22の表面側温度Tcを上昇させて行く。Tcの温度を上昇させて行くと、半導体素子22の温度分布特性は、図3に示すグラフ(ハ)のような状態になり、発熱分は、半導体素子のプリント基板実装側(Tb側)へ流れる割合が増加する。
【0041】
さらに温度を上昇させて行くと、図3に示すグラフ(ニ)の状態となり、半導体素子22の表面側に流れる熱量が「0」となる。この状態では、Tc=Tjとなっており、100%の発熱分が、半導体素子22のプリント基板実装側に流れている。
【0042】
この場合、Tj=Rjb×P+Tbの関係となっている。なお、Tj=Tcである。これらの式から熱抵抗Rjbは次式のようになる。
【0043】
Rjb=(Tc−Tb)/P
上記式において、発熱量Pは、上記手順1a、1bのようにして求められて既知であるから素子表面側温度Tcと素子プリント基板側温度Tbの実測値から熱抵抗Rjbが求められる。
【0044】
上記のように、半導体素子の熱抵抗Rjbは、素子表面側温度Tcを上昇させながら、通過熱量Pcを測定し、そのPcの値が「0」となった時点でのTc、Tbの温度から簡単に求めることが出来るようになる。
【0045】
上記手順1a、1bと手順2によりそれぞれ発熱量P及び熱抵抗Rjbが明らかになった後、手順3により半導体素子の発熱量と温度特性の測定を行なう。
【0046】
手順3では、まず、温度調整器24を取り外し、通常動作状態とする。このときの素子表面側温度Tcと素子プリント基板側温度Tbを測定する。このとき、温度は、次式の関係となっている。なお、素子表面側に流れている発熱量をP1とする。
【0047】
Tc+(Rjc×P1)−Rjb×(P−P1)=Tb
上記式の温度の関係は、図7に示す通りである。ここで、この式を変形すると、P1は次式のようになる。
【0048】
P1=((Tb−Tc)+Rjb×P)/(Rjc+Rjb)
上述のように実測したTb、Tc及び手順2までの測定結果で得られた、熱抵抗Rjb、RjcとPにより、P1及びP−P1=P2を求めることが出来る。これらの値から次式によりジャンクション温度Tjを求める。
【0049】
Tj=Rjc×P1+Tc
上記一連の手順1a(1b),2,3によって、個々の素子の熱的な特性を他の素子などの影響を受けることなく素子の発熱量と素子の温度特性の測定と判定ができるようになる。
【0050】
なお、上記一連の手順は、自動化することができ、自動化することによって容易に上記測定ができるようになる。
【0051】
【発明の効果】
以上述べたように、この発明によれば、従来略測定が困難であったプリント基板上の半導体素子の発熱量及び熱特性を同時に実際の製品レベルのプリント基板に実装された状態で測定が可能となる利点が得られる。
【図面の簡単な説明】
【図1】この発明の原理を述べるための測定対象半導体素子の温度と発熱量の関係を示す温度分布特性図。
【図2】この発明の実施の形態を示す発熱量測定方法を述べる説明図。
【図3】実施の形態を作用を述べるための測定対象半導体素子の温度と発熱量の関係を示す温度分布特性図。
【図4】従来例の発熱量測定方法を示す概略構成説明図。
【図5】(a),(b)は測定対象半導体素子の熱抵抗説明図。
【図6】(a),(b)は測定対象半導体素子の熱抵抗モデル説明図。
【図7】測定対象半導体素子の温度と発熱量の関係を示す温度分布特性図。
【図8】発熱量測定装置の構成説明図。
【符号の説明】
21…プリント基板
22…測定対象半導体素子
23…通過熱量センサ
24…温度調節器
25…温度測定装置
26…その他の発熱素子群
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the amount of heat generated by electronic components (e.g., semiconductor elements) on a printed circuit board which is actually mounted as a product level, and a method of measuring the amount of heat generated by electronic components.
[0002]
[Prior art]
2. Description of the Related Art In recent years, electronic devices have been reduced in size, blocked, and densified, and there has been a demand for smaller sizes and lower prices. Further, as a measure against noise, there is an increasing demand for fanless cooling of semiconductor elements and the like, and strict thermal design and evaluation are required.
[0003]
For this reason, past experimental data and various thermal analyzes are used to design the CPU and other high-heat-generating elements to have an appropriate temperature. It is indispensable to grasp the thermal characteristics accurately.
[0004]
Conventionally, the amount of heat generated by elements mounted on a printed circuit board installed in an electronic device was estimated based on the operating state of each element. Knowing the quantity was very difficult.
[0005]
Next, a conventional calorific value measurement method will be described with reference to FIG. In FIG. 5, whether the power consumption is obtained by directly measuring the current value and the voltage value of the main circuit of the measurement target element 12 mounted on the printed circuit board 11 using the ammeter A and the voltmeter V, respectively, In addition, a method of measuring a calorific value of a semiconductor element to be measured is performed by measuring a current value indirectly by a measuring device 14 having a measuring probe 13 to obtain power consumption.
[0006]
However, even when the power consumption is determined by direct measurement, it is technically difficult to measure the power consumption of a circuit operating at high speed, and a dedicated printed circuit board as a jig must be individually used as a jig. Therefore, there is a problem that the cost increases.
[0007]
In the indirect measurement, it is very difficult to measure with high accuracy when the current is small.
[0008]
Further, in the case of an element such as a BGA (Ball Grid Array), it is more difficult to directly measure the current value of the circuit in terms of shape because the element has no lead, and it is necessary to measure the heat generation of the element. Was virtually impossible.
[0009]
Further, even if the voltage value or the current value is measured using a jig, it is not an actual use state, so that it has been difficult to simultaneously measure thermal characteristics such as heat radiation characteristics. Further, in the case of an element that operates at a high speed, there is even a problem that a predetermined operation is not performed even when the element is attached to a jig.
[0010]
[Patent Document 1]
JP 2002-014065 A
[Problems to be solved by the invention]
2. Description of the Related Art Conventionally, in a semiconductor device such as an LSI, it is necessary to keep a junction temperature Tj below an allowable temperature. However, since the junction temperature Tj cannot be directly measured in the element actually used, the ambient temperature Ta of the element or the surface side temperature Tc of the element is measured, and the junction temperature Tj is determined as follows. I was doing.
[0012]
Since the thermal resistance between the temperatures is measured in advance by the LSI maker, it is calculated from the heat value P of the element set separately using the following basic formula.
[0013]
Allowable temperature rise around the element: Ta (max) = Tj (max) · α1-P × Rja
Here, Rja is a thermal resistance, and α1 is a derating rate.
[0014]
Element surface allowable temperature rise: Tc (max) = Tj (max) · α2-P × Rjc
Here, Rjc is a thermal resistance, and α2 is a derating rate.
[0015]
FIG. 5 illustrates the above. As described above, since the heat value P is an estimated value, the junction temperature Tj cannot be accurately determined.
[0016]
At present, thermal models of elements on a printed circuit board are generally considered as shown in FIGS. 6 (a) and 6 (b). However, it is generally very difficult to measure individual thermal resistance except at the laboratory level of LSI manufacturers.
[0017]
Next, technical issues in measuring heat generation will be described. In the case of the thermal model shown in FIGS. 6A and 6B, the relationship between temperature and heat generation is represented by a temperature distribution characteristic graph (A) shown in FIG.
[0018]
In the graph (a) of FIG. 7, the junction temperature Tj is high, and the element upper surface temperature (hereinafter referred to as element surface temperature) Tc1 is low because it is cooled by fins or the like. The element element printed board side temperature Tb has a value slightly lower than the junction temperature Tj.
[0019]
However, a plurality of elements are mounted on the printed circuit board to generate heat, and the heat dissipation path is complicated, so that it is difficult to measure the amount of heat generated by a specific element. For example, as shown in FIG. 8, even if the calorific value measuring sensor 15 is attached to the semiconductor element 12 to be measured, it is not clear what percentage of the heat generated by the semiconductor element 12 to be measured passes. In addition, even if heat generated by another element 17 is present, it cannot be identified due to the temperature distribution or the heat distribution.
[0020]
As described above, with the current technology, it has been difficult to measure the actual heat generation and thermal characteristics of a semiconductor element such as an IC or LSI on a normal printed circuit board.
[0021]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made in consideration of the above circumstances, and is capable of simultaneously measuring the heat generation amount and heat characteristics of a semiconductor element on a printed circuit board while being mounted on an actual product-level printed circuit board. It is an object to provide a method for measuring a quantity.
[0022]
[Means for Solving the Problems]
According to a first aspect of the present invention, a target element has an actual measurement function of a junction temperature Tj, and the target element is mounted on a printed circuit board. After a temperature controller having a passing calorie sensor is provided, the temperature controller lowers the element upper surface temperature Tc to lower the temperature of Tj, and measures when the Tj becomes equal to the element printed board side Tb. After setting the heat value P of the target element,
The element upper surface side temperature Tc is raised, and when Tc becomes equal to Tj, a thermal resistance Rjb is obtained from Tj = Rjb × P + Tb. Then, the temperature controller is removed from the element, and then Tc and Tb are measured. Assuming that the calorific value flowing to the surface side is P1,
P1 = ((Tb−Tc) + Rjb × P) / (Rjc + Rjb). After substituting Tb, Tc, Rjb, Rjc, and P for P1 to obtain P1, Tj is obtained from Tj = Rjc × P1 + Tc. It is characterized by the following.
[0023]
The second invention is characterized in that when the element to be measured does not have the function of actually measuring the junction temperature Tj, the calorific value P is obtained from a known thermal resistance Rjc.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the temperature distribution characteristics of a normal semiconductor element shown in FIG. 7 are generally divided into both an element surface side temperature Tc and an element printed board side temperature Tb. The ratio is determined by the thermal resistances Rjc and Rjb of the individual semiconductor elements and their surroundings. That is, this ratio changes in a complicated manner due to a change in the temperature distribution of the printed circuit board.
[0025]
Therefore, the temperature distribution of the printed circuit board 11 is adjusted so that the heat generated by the semiconductor element 12 to be measured shown in FIG. Hereinafter, the principle will be described with reference to FIG.
[0026]
FIG. 1 is a temperature distribution characteristic diagram showing the relationship between the temperature of a semiconductor element to be measured and the amount of heat generation for explaining the embodiment of the present invention. In this characteristic diagram, the influence of other elements on the printed circuit board or the printed circuit board is shown. In order to measure the heating value P of the semiconductor element 12 to be measured without receiving the temperature distribution, the temperature distribution of the element 12 is forcibly changed as shown in the graph (b) of the temperature distribution characteristic shown.
[0027]
In order to obtain such a temperature distribution, the element surface side temperature Tc is lowered so that the junction temperature Tj becomes equal to the element printed board side temperature Tb (Tj = Tb).
[0028]
In the case of the above temperature distribution characteristic graph (b), 100% of the heat generated by the semiconductor element 12 to be measured flows to the front side (Tc side) of the element, and heat generated by other elements is also generated on the printed circuit board. From the element mounting portion (Tb side). This is because heat transfer does not occur at the same temperature.
[0029]
Next, an embodiment showing a method of measuring the calorific value P using the above principle will be described with reference to FIG. 2. In FIG. 2, a semiconductor element 22 to be measured is mounted on a printed circuit board 21 at a product level. A temperature controller 24 having a passing calorie measurement sensor 23 is provided on the upper surface (a surface different from the mounting surface).
[0030]
The temperature controller 24 is composed of a Peltier element or the like, and the passing calorimetric sensor 23 is composed of a semiconductor or the like. Reference numeral 25 denotes a temperature measuring device, which measures the element surface side temperature Tc and the element element printed board side temperature Tb of the semiconductor element 22. Reference numeral 26 denotes another heating element group attached to the printed circuit board 21.
[0031]
First, in step 1a, a method of measuring the calorific value P when the above-described semiconductor element 22 to be measured has a function of actually measuring the junction temperature Tj will be described.
[0032]
At present, some semiconductor elements constituting a CPU or the like have a function of measuring an internal junction temperature Tj. In the case of such a semiconductor element 22 to be measured, the temperature is adjusted so that the measurement result of the element Tj and the element printed board side temperature Tb coincide.
[0033]
As a method of adjusting the temperature, as shown in FIG. 2, first, the temperature of the element surface side temperature Tc is lowered using a temperature adjuster 24 including a heat sink or a Peltier element attached to the surface of the semiconductor element 22.
[0034]
When the temperature of Tc is decreased, the temperature of Tj also starts decreasing. The temperature of Tc is reduced until the temperature of Tj becomes a graph (b) of the temperature distribution characteristic shown in FIG. 1, that is, Tj = Tb (element printed board side temperature).
[0035]
Thereafter, when Tj = Tb, the value of the passing heat amount Pc is read by the passing heat amount measuring sensor 23. The value at this time is the heat value P of the semiconductor element 22 to be measured.
[0036]
As the temperature controller 24, a device having a temperature control capability in accordance with the amount of heat generated by the semiconductor element 22 may be used. Further, by inputting the measured value of Tj to the temperature measuring device 25, it is possible to automatically adjust Tj = Tb and measure the calorific value P.
[0037]
Next, as procedure 1b, the heat generation amount P when the above-described semiconductor element 22 to be measured does not have the function of actually measuring the junction temperature Tj is determined as follows.
[0038]
For some semiconductor devices, the thermal resistance Rjc between the device surface and the device junction is disclosed. If the amount of passing heat measured using this element is Pc,
Since the relationship is Pc × Rjc = ΔTcj, Tj = Tc + ΔTcj.
[0039]
Therefore, the temperature of Tc is adjusted so that Tj = Tc + Pc × Rjc = Tb, and Pc at that time becomes the heat value P of the semiconductor element to be measured.
[0040]
Next, as procedure 2, a method for obtaining the thermal resistance Rjb of the semiconductor device to be measured will be described. In the configuration of FIG. 2, first, the surface side temperature Tc of the semiconductor element 22 is increased. As the temperature of Tc is increased, the temperature distribution characteristic of the semiconductor element 22 becomes a state as shown in a graph (c) shown in FIG. 3, and the amount of heat generated is transferred to the printed circuit board mounting side (Tb side) of the semiconductor element. The flow rate increases.
[0041]
When the temperature is further increased, the state of the graph (d) shown in FIG. 3 is reached, and the amount of heat flowing to the surface side of the semiconductor element 22 becomes “0”. In this state, Tc = Tj, and 100% of the heat is flowing to the printed circuit board mounting side of the semiconductor element 22.
[0042]
In this case, Tj = Rjb × P + Tb. Note that Tj = Tc. From these equations, the thermal resistance Rjb is as follows.
[0043]
Rjb = (Tc−Tb) / P
In the above equation, the calorific value P is obtained and known as in the above procedures 1a and 1b, so that the thermal resistance Rjb is obtained from the measured values of the element surface side temperature Tc and the element printed board side temperature Tb.
[0044]
As described above, the thermal resistance Rjb of the semiconductor element is obtained by measuring the passing heat amount Pc while increasing the element surface side temperature Tc, and calculating the temperature of Tc and Tb when the value of Pc becomes “0”. You can easily find it.
[0045]
After the calorific value P and the thermal resistance Rjb are clarified by the procedures 1a, 1b and 2 respectively, the calorific value and the temperature characteristics of the semiconductor element are measured by the procedure 3.
[0046]
In the procedure 3, first, the temperature controller 24 is detached and brought into a normal operation state. At this time, the element surface side temperature Tc and the element printed board side temperature Tb are measured. At this time, the temperature has the following relationship. The amount of heat flowing to the element surface side is defined as P1.
[0047]
Tc + (Rjc × P1) −Rjb × (P−P1) = Tb
The relationship between the temperatures in the above equation is as shown in FIG. Here, when this equation is modified, P1 becomes as follows.
[0048]
P1 = ((Tb−Tc) + Rjb × P) / (Rjc + Rjb)
P1 and P-P1 = P2 can be obtained from the thermal resistances Rjb, Rjc and P obtained from the measured Tb and Tc and the measurement results up to the procedure 2 as described above. From these values, the junction temperature Tj is obtained by the following equation.
[0049]
Tj = Rjc × P1 + Tc
Through the above-described series of procedures 1a (1b), 2, and 3, it is possible to measure and determine the heat generation amount of the element and the temperature characteristic of the element without affecting the thermal characteristic of each element by other elements. Become.
[0050]
In addition, the above series of procedures can be automated, and the above measurement can be easily performed by automating the procedure.
[0051]
【The invention's effect】
As described above, according to the present invention, the calorific value and the thermal characteristics of a semiconductor element on a printed circuit board, which have conventionally been difficult to measure, can be simultaneously measured while mounted on an actual product-level printed circuit board. The following advantages are obtained.
[Brief description of the drawings]
FIG. 1 is a temperature distribution characteristic diagram showing a relationship between a temperature of a semiconductor device to be measured and a calorific value for describing the principle of the present invention.
FIG. 2 is an explanatory diagram illustrating a calorific value measuring method according to the embodiment of the present invention.
FIG. 3 is a temperature distribution characteristic diagram showing a relationship between a temperature of a semiconductor element to be measured and a calorific value for describing an operation of the embodiment.
FIG. 4 is a schematic configuration explanatory view showing a calorific value measuring method of a conventional example.
FIGS. 5A and 5B are explanatory diagrams of the thermal resistance of a semiconductor element to be measured.
6A and 6B are explanatory diagrams of a thermal resistance model of a semiconductor element to be measured.
FIG. 7 is a temperature distribution characteristic diagram showing a relationship between a temperature of a semiconductor element to be measured and a heat generation amount.
FIG. 8 is a configuration explanatory view of a calorific value measuring device.
[Explanation of symbols]
Reference Signs List 21 printed circuit board 22 semiconductor element 23 to be measured 23 heat passing sensor 24 temperature controller 25 temperature measuring device 26 other heat generating element group

Claims (2)

測定対象素子がジャンクション温度Tjの実測機能を有するものであって、その測定対象素子をプリント基板に実装し、前記素子の上面に通過熱量センサを有する温度調整器を設けた後、この温度調整器により素子上面側温度Tcを降下させてTjの温度を下げ、そのTjが素子プリント基板側Tbと等しくなったときを、測定対象素子の発熱量Pとした後、
素子上面側温度Tcを上昇させ、TcとTjが等しくなったなら、Tj=Rjb×P+Tbから熱抵抗Rjbを求めた後、前記温度調整器を素子から取り外してからTcとTbを測定し、素子表面側に流れている発熱量をP1とすると、
P1=((Tb−Tc)+Rjb×P)/(Rjc+Rjb)となり、この式にTb,Tc,Rjb,Rjc,Pを代入してP1を求めた後、TjをTj=Rjc×P1+Tcから求めることを特徴とする電子部品発熱量測定方法。
The device to be measured has a function of actually measuring the junction temperature Tj, the device to be measured is mounted on a printed circuit board, and a temperature controller having a passing calorie sensor is provided on the upper surface of the device. The temperature Tc of the element to be measured is lowered by lowering the temperature Tc of the element upper surface side, and when the temperature Tj becomes equal to the element printed board side Tb, the calorific value P of the element to be measured is determined.
The element upper surface side temperature Tc is raised, and when Tc becomes equal to Tj, a thermal resistance Rjb is obtained from Tj = Rjb × P + Tb. Then, the temperature controller is removed from the element, and then Tc and Tb are measured. Assuming that the calorific value flowing to the surface side is P1,
P1 = ((Tb−Tc) + Rjb × P) / (Rjc + Rjb). After substituting Tb, Tc, Rjb, Rjc, and P for P1 to obtain P1, Tj is obtained from Tj = Rjc × P1 + Tc. An electronic component calorific value measuring method characterized by the above-mentioned.
測定対象素子がジャンクション温度Tjの実測機能を有しないときには、予め知られている熱抵抗Rjcから発熱量Pを求めたことを特徴とする請求項1記載の電子部品発熱量測定方法。2. The method according to claim 1, wherein when the element to be measured does not have a function of measuring the junction temperature Tj, the calorific value P is obtained from a known thermal resistance Rjc.
JP2003158891A 2003-06-04 2003-06-04 Method for measuring heat value of electronic component Pending JP2004361197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158891A JP2004361197A (en) 2003-06-04 2003-06-04 Method for measuring heat value of electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158891A JP2004361197A (en) 2003-06-04 2003-06-04 Method for measuring heat value of electronic component

Publications (1)

Publication Number Publication Date
JP2004361197A true JP2004361197A (en) 2004-12-24

Family

ID=34052111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158891A Pending JP2004361197A (en) 2003-06-04 2003-06-04 Method for measuring heat value of electronic component

Country Status (1)

Country Link
JP (1) JP2004361197A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012052A (en) * 2005-06-30 2007-01-18 Hewlett-Packard Development Co Lp Wireless temperature monitoring for electronic system
US7737847B2 (en) 2005-06-30 2010-06-15 Hewlett-Packard Development Company, L.P. Wireless monitoring for an electronics system
CN101017510B (en) * 2006-03-13 2010-09-08 信息产业部电子第五研究所 Method for calculating junction temperature of microelectronics using heat resistance network model
CN103364431A (en) * 2012-04-10 2013-10-23 中兴通讯股份有限公司 Thermal resistance testing method and thermal resistance testing device
WO2019198504A1 (en) * 2018-04-10 2019-10-17 パナソニックIpマネジメント株式会社 Generated-heat-quantity measuring method and generated-heat-quantity measuring apparatus
JP2020024147A (en) * 2018-08-08 2020-02-13 パナソニックIpマネジメント株式会社 Heating value measuring method and heating value measuring apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012052A (en) * 2005-06-30 2007-01-18 Hewlett-Packard Development Co Lp Wireless temperature monitoring for electronic system
US7737847B2 (en) 2005-06-30 2010-06-15 Hewlett-Packard Development Company, L.P. Wireless monitoring for an electronics system
CN101017510B (en) * 2006-03-13 2010-09-08 信息产业部电子第五研究所 Method for calculating junction temperature of microelectronics using heat resistance network model
CN103364431A (en) * 2012-04-10 2013-10-23 中兴通讯股份有限公司 Thermal resistance testing method and thermal resistance testing device
WO2019198504A1 (en) * 2018-04-10 2019-10-17 パナソニックIpマネジメント株式会社 Generated-heat-quantity measuring method and generated-heat-quantity measuring apparatus
JPWO2019198504A1 (en) * 2018-04-10 2021-02-12 パナソニックIpマネジメント株式会社 Calorific value measuring method and calorific value measuring device
JP7065308B2 (en) 2018-04-10 2022-05-12 パナソニックIpマネジメント株式会社 Calorific value measuring method and calorific value measuring device
JP2020024147A (en) * 2018-08-08 2020-02-13 パナソニックIpマネジメント株式会社 Heating value measuring method and heating value measuring apparatus
JP7217401B2 (en) 2018-08-08 2023-02-03 パナソニックIpマネジメント株式会社 Calorific value measuring method and calorific value measuring device

Similar Documents

Publication Publication Date Title
US7394271B2 (en) Temperature sensing and prediction in IC sockets
US6476627B1 (en) Method and apparatus for temperature control of a device during testing
JP4122009B2 (en) Electromechanical subassembly and method for thermally coupling an electronic device to a heat exchange member
CN1926439B (en) System and method for reducing temperature variation during burn in
US7356426B2 (en) Calibration of thermal sensors for semiconductor dies
US20080234953A1 (en) Power estimation for a semiconductor device
US20090285261A1 (en) Integrated Circuit System Monitor
KR20070114310A (en) Temperature sensing and prediction in ic sockets
CN104458039B (en) The real-time estimating method of IGBT module shell temperature
CN109815596B (en) Semiconductor device environment temperature simulation system and method based on temperature control radiator
JP2015010866A (en) Thermal resistance measurement method and thermal resistance measurement device
CN103823170B (en) Novel method for measuring thermal resistance of power-type LED integration module
JP5232289B2 (en) Method and apparatus for measuring thermal resistance in semiconductor device
JP2004361197A (en) Method for measuring heat value of electronic component
Sauveplane et al. 3D electro-thermal investigations for reliability of ultra low ON state resistance power MOSFET
JP2002014065A (en) Method and apparatus for measuring heating amount of electronic component
US9341669B2 (en) Testing apparatus
Gorecki et al. Influence of the Measurement Method and the Cooling System on the Obtained Values of the Junction Temperature of Power MOSFETs
Tian et al. Investigation on Reading Discrepancy of Type T and Type J Thermocouples
Górecki et al. Set-Up for Measuring Thermal Parameters of Power Semiconductor Devices
Posobkiewicz et al. Influence of Selected Factors on Thermal Parameters of the Components of Forced Cooling Systems of Electronic Devices. Electronics 2021, 10, 340
Torzewicz et al. Advanced Stand for Transient Thermal Measurements
JP2001004718A (en) Cooling apparatus for semiconductor device testing device
Zhao et al. Application of thermal network approach to electrical-thermal co-simulation and chip-package-board extraction
Jha et al. Microprocessor Temperature Sensing and Thermal Management