JP2004361138A - Fib device for tem sample processing equipped with function for automatically recognizing bending - Google Patents

Fib device for tem sample processing equipped with function for automatically recognizing bending Download PDF

Info

Publication number
JP2004361138A
JP2004361138A JP2003157119A JP2003157119A JP2004361138A JP 2004361138 A JP2004361138 A JP 2004361138A JP 2003157119 A JP2003157119 A JP 2003157119A JP 2003157119 A JP2003157119 A JP 2003157119A JP 2004361138 A JP2004361138 A JP 2004361138A
Authority
JP
Japan
Prior art keywords
sample
processing
secondary charged
fib
tem sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003157119A
Other languages
Japanese (ja)
Other versions
JP4230823B2 (en
Inventor
Koji Iwasaki
浩二 岩崎
Yutaka Ichinomiya
豊 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2003157119A priority Critical patent/JP4230823B2/en
Publication of JP2004361138A publication Critical patent/JP2004361138A/en
Application granted granted Critical
Publication of JP4230823B2 publication Critical patent/JP4230823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of TEM sample automatic finishing by being equipped with a function for recognizing automatically a bending phenomenon generated in TEM sample processing by an FIB device. <P>SOLUTION: In a bending automatic recognition method in the TEM sample processing, secondary electron detection is performed by a secondary charged particle detector at a thinning time of the TEM sample, and the sample is determined to be bent when detecting a sudden change in a detection signal. In a TEM sample processing method, the secondary electron detection is performed by the secondary charged particle detector at the thinning time of the TEM sample, and the sample is determined to be bent when detecting the sudden change in the detection signal, and thinning is discontinued. Cutting by the FIB is performed to straighten the bending, and thinning is proceeded in this state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、集束イオンビーム(FIB)を用いて透過電子顕微鏡(TEM)等の試料を薄片化加工する過程で発生する湾曲歪を自動認識する技術に関する。
【0002】
【従来の技術】
TEM観察用の断面試料は、大きな試料の観察所望箇所を特定し、電子ビームの透過が可能な薄さとなるまで薄片化加工を施す必要がある。このような試料を、FIB装置を用いた薄片化加工によって作成することは周知であり、ウエハ状の試料から機械的に小片を切り出し、それを加工する方法と、ウエハのままエッチング加工して薄片化された試料を取り出す方法とが知られている。前者の加工法は図6−Aに示したように試料とするウエハからまず500μm〜2mm幅、長さ3mm程の小ブロックを切り取り、更に上部を50μm以下に削るという機械加工を要し、この小ブロックに図6−Bに示したようにガス銃によりW(CO)等の原料ガスを加工部分に吹き付け、デポジションによって保護膜を形成させる。その後図6−Cに示すようにFIBを照射して目標仕上げ幅まで薄片化加工を施して試料として製作し、図4−Dに示すように電子ビームを透過させてTEM観察用の断面試料として用いられる。後者の加工法は機械加工をしないで直接ウエハから集束イオンビーム加工を実行するもので、図5に示すように加工部分にまずFIBを用いたデポジションによりにより保護膜を形成させて、試料の面上方から集束イオンビームを照射し観察断面の両側をエッチング加工により削り取り、集束イオンビーム装置で観察断面薄片部の両側に四角い穴を空ける。両面からFIBを走査させてエッチングを施し、目標仕上げ幅まで薄片化加工を施す。薄片化加工された試料の周辺部に、ボトムカット、サイドカットと切り込みを入れ、最後にマニピュレータにより操作されるガラスプローブによって該薄片試料を保持させ、有機薄膜等の試料固定台に移動し付着させてTEM観察試料を完成させる。
【0003】
TEM観察用の断面試料をいずれの方法で作製するにせよ、加工過程でFIBによる薄片化加工という工程がはいる。その際に試料の薄片化が進むと、セルロイドの下敷きを両側から圧し曲げたように試料の薄壁部が歪み湾曲した形状になることがある。その様な状態になるとイオンビームを直線的に走査しても試料が変形してしまっているため、均一な厚さの平面加工を施すことができなくなる。図4−Aに示すように薄片化加工が進み最後の仕上げ加工の段階に入ると薄片部分はサブミクロンオーダの寸法となり、組成的構造的なストレスを受けると湾曲変形しやすくなる。図4−Bはストレスが小さくて変形がない状態を示し、図4−Cはストレスが大きくて湾曲変形した状態を模式的に示した図である。このように湾曲した状態でFIBによる直線走査の加工を続ければ観察面に切り込みをしてしまいせっかくの試料を駄目にしてしまうことになる。従来その様な場合には試料ブロックを交換し、初めから作業をやり直さなければならなかった。しかし、試料が同種の素子である場合には組成的構造的な条件は同じであるため、変形し易い試料は同様の結果となることが少なくない。だからといって変形を生じる前の厚さの段階で加工を中断すれば、電子の透過率が低かったり、両面の画像に不一致部が残ったりしてTEM試料としては満足がいかないものであった。この問題に対し本出願人は先に特許文献1を提示した。この発明は発生する試料の湾曲歪が試料材質中の応力の集中に起因するものであることに鑑み、図4−Dに加工断面部上方を示す平面図で、図4−Eに斜視図で示すように断面部分で観察に影響がでない非パターン部分に切り込みを入れる加工を施し、ストレスを解放して湾曲を直す処置をとって必要な加工を進行させるものである。ところがこのストレスによる曲がりは、いつ、どのタイミングで発生するかを予想することができない。この曲がりに気が付かないで加工を続行すると、せっかく加工したTEM試料の薄片部を加工してしまい、TEM試料として使用出来なくなることがある。特許文献1の技術は曲がりを直す手法を提示したがそのため、曲がり現象を早期に発見する技術を提示してはいない。TEM試料を駄目にしてしまわないためには曲がり現象を早期に発見することが重要であり、そのためにはFIB装置に付属した走査型電子顕微鏡(SEM)等で頻繁に観察しながら加工を行わなければならなかった。ストレスの大きな試料の場合には特に注意が必要で、レシピを用いたTEM試料自動仕上げ加工ではこの問題に対応することが出来なかった。
【0004】
【特許文献1】
特開2000−35391号公報「薄片化加工時の試料歪除去方法」 平成12年2月2日公開 段落番号[0006] 図1
【0005】
【発明が解決しようとする課題】
本発明の課題は、FIB装置によるTEM試料加工において発生する曲がり現象を自動認識する機能を備えることにより、TEM試料自動仕上げ加工を可能にする技術を提供することにある。
【0006】
【課題を解決するための手段】
本発明のTEM試料加工における曲がり自動認識方法は、TEM試料の薄片化加工時に二次荷電粒子検出器で2次電子検出を行い、検出信号に急激な変化を検知したときは試料が湾曲したと判断するようにした。また、本発明のTEM試料加工方法は、TEM試料の薄片化加工時に二次荷電粒子検出器で2次電子検出を行い、検出信号に急激な変化を検知したときは試料が湾曲したと判断して薄片化加工を中断し、FIBによる切り込み加工を行って曲がりを直し、その状態で薄片化加工を進めるようにした。
【0007】
また、本発明の曲がり自動認識機能を備えたTEM試料加工用のFIB装置は、薄片化の仕上げ加工中に試料から放出される2次電子を二次荷電粒子検出器で検出する手段、この検出信号の変化から試料の湾曲を検知する手段と、該検知手段が試料の湾曲を検知したとき、その出力によりFIB加工を中断させる手段とを具備したものであって、その湾曲を検知する手段は二次荷電粒子検出信号の微分値を閾値と比較して判定するもの、走査線の開始点における二次荷電粒子検出レベルとの差信号を演算すると共に、その演算値が閾値を越えたことで判定するもの、あるいは二次荷電粒子検出レベルを走査位置と対応させてグラフ化し、そのグラフが直線近似できなくなったとき試料が曲がったと判定するもので実現する。
【0008】
【発明の実施の形態】
このTEM試料加工時に発生する曲がり現象を走査型イオン顕微鏡(SIM)像としてモニターしてみると、その薄片部の曲がりを加工した場合、加工部分の走査線画像に急に輝度の強い部分が現れることを発見した。その場合、あっという間に薄片部に切り込み加工をしてしまい、TEM試料として使えなくしてしまう。この現象を考察すれば、図1−Aに実線で示すように薄片試料が平面状であれば図1−Bに示されるようにFIBは浅く接する状態でその面に沿って走査されるため、そのときの観察SIM像は全体に均一な直線像として表示される。これに対し、図1−Aに波線で示すように薄片試料に曲がりを生じると図1−Cに示されるようにFIBは両端の固定部分では浅く、凸状に反った部分では深く当たる状態で直線的に走査されるため、そのときの観察SIM像は中央部分が明るく高輝度で両端部は低輝度の直線として表示される。このように試料片が凸状に湾曲するとFIBの照射を受ける領域が広くなるため、SIM像が高輝度となって観測されるものと解される。ところで、強いストレスがかかった場合の湾曲は、常に加工面に凸状となるとは限らず、凹状となるように湾曲することもある。その場合はFIBが試料面に切り込みを入れてしまうことはないのでさしたる問題とはならない。ただ、その次に行われる反対面を加工する際に、こちらの加工面が先のように凸の状態となるのでその時点で検知することができる。
【0009】
本発明は薄片部が曲がると急に輝度の強い部分が現れるという現象に着目したもので、この輝度変化をモニタすれば、試料作製時の曲がりをリアルタイムに検知できることに想到したものである。そして、その際の輝度変化は二次荷電粒子(2次電子)の検出信号レベルに対応するので、その出力信号を検出信号とすればよい。加工領域を設定して加工を開始すると、当初は深くFIBが試料に当たるので全体に明るく走査線が表示され、加工が進むにつれてFIBの当たり具合が浅くなっていくので全体に輝度が低い走査線が表示されるようになる。したがって、単なる二次荷電粒子の検出信号レベル(輝度)だけで曲がりを検知するのは難しく、曲がりが生じたときは同一走査内において輝度変化が起きることから、同一走査内における輝度変化を判定することで曲がりを検知することができる。この急激な輝度変化を判定するには例えば▲1▼検出信号の変化率(微分値)を閾値と比較して検知する方法、▲2▼輝度レベルを走査位置と対応させてグラフ化し、直線近似ができなくなったとき試料が曲がったと判定する方法、▲3▼走査線各位置の輝度レベルと走査線の開始点における輝度レベルとの差信号を演算し、その値が閾値を越えたことで検知する方法などが採用できる。曲がりが検知されたならFIB加工を即座に中断し、しかる後、TEM試料薄片部の観察に支障が出ない部分にFIBを照射してスリット加工を行い、加工時のストレスを解放して曲がりを直してから薄片化加工を再開すれば試料の破損を無くすことができる。
【0010】
これらの加工を行うFIB装置の概要を図2に基づいて説明する。1はイオン源、2はイオンビーム、3はイオン光学系、4がデフレクタ、9試料で5が試料ステージである。6はガス銃、7が二次荷電粒子検出器、8は必須構成ではないが試料の帯電を中和させるチャージニュートラライザそして10が本装置のコントローラとして機能するコンピュータ、11が走査イオン顕微鏡(SIM)や制御パネルなどの表示用のディスプレイであり、12が入力操作部となっている。この他図示してない装備として試料室を真空状態にする真空装置と、試料ステージ5を所望の位置角度に設定するための駆動機構が具備されている。駆動機構は一般にX.Y.Z,T,R方向変位とイオンビーム軸回転とイオンビーム軸に対する角度調整が出来るものとなっている。また、コンピュータ10からは加速電圧やイオン光学系の設定信号、ステージ駆動信号、デフレクタへの偏向走査信号、ガス銃やチャージニュートラライザの作動信号といった各種の制御信号が出力される。以上の構成は従来のFIB装置の基本的な構成である。本発明の曲がり自動認識機能を備えたTEM試料加工用のFIB装置としては、上記基本構成に加え、薄片化の仕上げ加工中に試料から放出される2次電子を二次荷電粒子検出器7で検出する手段と、この検出信号の変化から試料の湾曲を検知する手段と、該検知手段が試料の湾曲を検知したときの出力によりFIB加工を中断させる機能を備えることが必要となる。二次荷電粒子検出の変化から試料の湾曲状態を判定する手段としては、前述した▲1▼二次荷電粒子検出信号の変化率(微分値)を閾値と比較して検知する方法や▲3▼走査線各位置の輝度レベルと走査線の開始点における輝度レベルとの差信号を演算し、その値が閾値を越えたことで検知する方法を採用した場合、比較器をハード的に設置することでも実現できるがコンピュータ10内でソフト的にデータ処理として判定する構成が簡便である。また、▲2▼輝度レベルを走査位置と対応させてグラフ化し、直線近似ができなくなったとき試料が曲がったと判定する方法を採用した場合は、グラフ線を許容幅の線と重ねその幅からはみ出すか否かで判定する手段を備えることで実施できる。勿論これもコンピュータ10内でソフト的にデータ処理として判定する構成が採用される。このような試料の曲がり検知機能をコンピュータ10内に備えることが本発明装置の一つの特徴である。
【0011】
本発明のFIB装置を用いて試料の加工を実施する際の、試料の湾曲を監視すると共に、湾曲を検知したときの作動を図3のフローチャートを用いて説明する。ステップ1の試料作成の過程において、薄片化加工の仕上げ段階に入ったときはステップ2に示すように仕上げ加工を行う条件のFIBを試料面に沿って走査させる。ステップ3で二次荷電粒子検出器からの検出信号を信号処理部に入力する。ステップ4では信号処理部にて試料曲がりの自動認識処理を行ない、異常の有無を監視する。ステップ5で信号処理部において異常を検知したかを判定し、異常を検出しないときはステップ6で加工が終了したかを確認し、加工が終了であればステップ7へ進みFIBの照射を停止し、加工を終了するが、加工途中であればステップ4に戻り加工を続行する。異常の検知方法は前述したような種々の形態で実施する。もし、ステップ5で異常を検出したときはステップ8で直ちにFIB照射を停止し加工を中断させる。そしてステップ9でSEMもしくはSIMによる顕微鏡画像を得て湾曲状態を観察すると共に、切り込み加工をしても問題がない箇所を特定し、ステップ10でFIBによる切り込み加工を実行する。ステップ11で試料の湾曲が直ったかを確認し、まだ直っていないときはステップ10に戻り切り込み加工を進める。直っていることが確認できたときはステップ2に戻りFIB捜査を開始し仕上げ加工を再開する。
【0012】
【発明の効果】本発明のTEM試料加工における曲がり自動認識方法は、TEM試料の薄片化加工時に二次荷電粒子検出器で2次電子検出を行い、検出信号に急激な変化を検知したときは試料が湾曲したと自動的に判断するものであるから、オペレータに負担をかけることも、熟練したスキルを求めることなく、素早く確実に試料の湾曲を検知でき、歩留まり良くTEM試料を作成する支援ができる。
また、本発明のTEM試料加工方法は、TEM試料の薄片化加工時に二次荷電粒子検出器で2次電子検出を行い、検出信号に急激な変化を検知したときは試料が湾曲したと判断して薄片化加工を中断し、FIBによる切り込み加工を行って曲がりを直し、その状態で薄片化加工を進めるものであるから、従来方法のようにせっかくの試料をいつの間にか台無しにしてしまうこともなく、加工途中でしばしば加工を中断し状態を確認しながら加工を進めるといった手間暇のかかる加工でもなく、信頼性の高い自動加工への可能性を高めるものである。したがって、代わりのない貴重な試料を作る際に特に有効である。
【0013】
本発明のTEM試料加工用のFIB装置は、薄片化の仕上げ加工中に試料から放出される2次電子を二次荷電粒子検出器で検出する手段、この検出信号の変化から試料の湾曲を検知する手段と、該検知手段が試料の湾曲を検知したとき、その出力によりFIB加工を中断させる手段とを具備したものであるから、試料の湾曲を自動的に認識し、薄片化加工を中断することができ、従来装置での加工のようにせっかくの試料をいつの間にか台無しにしてしまうこともなく、加工途中でしばしば加工を中断し状態を確認しながら加工を進めるといった手間暇のかかる加工でもなく、信頼性の高い自動加工への可能性を高めるものである。
また試料の湾曲を検知する手段として二次荷電粒子検出信号の微分値を閾値と比較して判定するもの、走査線の開始点における二次荷電粒子検出レベルとの差信号を演算すると共に、その演算値が閾値を越えたことで判定するもの、或いは二次荷電粒子検出レベルを走査位置と対応させてグラフ化し、そのグラフが直線近似できなくなったとき試料が曲がったと判定するものである本発明のTEM試料加工用のFIB装置は、特別なハード部材を必要とせずにコンピュータ内の信号処理として簡単にソフトで実現することができる。
【0014】
TEM試料加工を連続で仕上げ加工まで行う場合、このストレスによる曲がりで試料を台無しにすることがあり、1つしか無い試料の自動加工を行う上での大きな障害になっていた。しかし、この方法を用いると、ストレスの大きな試料の場合でも、オペレータが絶えず加工画面をモニタする必要がなくなり、レシピを用いたTEM試料自動仕上げ加工を行うことが可能になる。
【図面の簡単な説明】
【図1】本発明が着目した現象を説明する図である。
【図2】本発明に用いられるFIB装置の基本構成を示す図である。
【図3】本発明の曲がり自動認識機能を備えたTEM試料加工用FIB装置の作動を説明するフローチャートである。
【図4】本発明の前提となる薄片試料の曲げ現象と、その曲げを直す方法を説明する図である。
【図5】大きな試料からFIB装置で直接加工してTEM試料を作成する方法を説明する図である。
【図6】大きな試料から機械的に小片を切り出しそれをFIB装置で加工する方法を説明する図である。
【符号の説明】
1 イオン源 7 二次荷電粒子検出器
2 イオンビーム 8 チャージニュートラライザ
3 イオン光学系 9 試料
4 デフレクタ 10 コンピュータ
5 試料ステージ 11 ディスプレイ
6 ガス銃 12 入力操作部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for automatically recognizing bending distortion generated in the process of thinning a sample such as a transmission electron microscope (TEM) using a focused ion beam (FIB).
[0002]
[Prior art]
The cross-sectional sample for TEM observation needs to be thinned until it is thin enough to allow transmission of an electron beam by specifying a desired observation position of a large sample. It is well known to make such a sample by thinning using an FIB apparatus. A method of cutting a small piece mechanically from a wafer-like sample and processing it, and etching the wafer as it is to obtain a thin piece There is known a method of taking out a sample that has been converted into a solid. As shown in FIG. 6A, the former processing method requires a machining process in which a small block having a width of 500 μm to 2 mm and a length of 3 mm is first cut from a sample wafer, and the upper portion is further cut to 50 μm or less. As shown in FIG. 6B, a raw material gas such as W (CO) 6 is sprayed onto the processing portion by a gas gun as shown in FIG. 6B, and a protective film is formed by deposition. After that, as shown in FIG. 6-C, FIB is irradiated to produce a sample by slicing to the target finish width, and as shown in FIG. 4-D, the electron beam is transmitted and used as a cross-sectional sample for TEM observation. Used. In the latter processing method, focused ion beam processing is executed directly from the wafer without machining, and a protective film is first formed on the processing portion by deposition using FIB as shown in FIG. A focused ion beam is irradiated from above the surface, and both sides of the observation cross section are cut off by etching, and a square hole is formed on both sides of the observation cross section with a focused ion beam device. Etching is performed by scanning the FIB from both sides, and thinning is performed to the target finish width. The bottom cut, side cut and cut are made in the peripheral part of the thinned sample, and finally the thin sample is held by a glass probe operated by a manipulator, and is moved and adhered to a sample fixing table such as an organic thin film. To complete the TEM observation sample.
[0003]
Regardless of the method for producing a cross-sectional sample for TEM observation, there is a process called thinning processing by FIB in the processing process. In this case, if the sample is made thinner, the thin wall portion of the sample may be distorted and curved as if the celluloid underlay was pressed and bent from both sides. In such a state, even if the ion beam is scanned linearly, the sample is deformed, so that it is impossible to perform planar processing with a uniform thickness. As shown in FIG. 4-A, when the slicing process proceeds and the final finishing process is started, the slab portion has a dimension on the order of submicron, and is easily deformed by bending when subjected to compositional structural stress. FIG. 4-B shows a state where the stress is small and there is no deformation, and FIG. 4-C is a diagram schematically showing a state where the stress is large and the curve is deformed. If processing of linear scanning by FIB is continued in such a curved state, the observation surface will be cut and the precious sample will be destroyed. Conventionally, in such a case, the sample block has to be replaced and the operation has to be performed again from the beginning. However, when the sample is the same type of element, the compositional and structural conditions are the same, and thus a sample that is easily deformed often gives the same result. However, if the processing is interrupted at the stage of thickness before deformation occurs, the electron transmittance is low, or mismatched portions remain on the images on both sides, which is unsatisfactory as a TEM sample. In order to solve this problem, the present applicant previously presented Patent Document 1. In view of the fact that the bending strain of the sample generated is caused by the concentration of stress in the sample material, FIG. 4-D is a plan view showing the upper portion of the processed cross section, and FIG. 4-E is a perspective view. As shown in the drawing, a non-patterned portion that does not affect the observation in the cross-sectional portion is subjected to a cutting process, and the necessary processing is advanced by releasing the stress and correcting the curvature. However, it is impossible to predict when and when this bending due to stress will occur. If the processing is continued without recognizing this bending, the thin piece portion of the processed TEM sample may be processed and cannot be used as the TEM sample. Although the technique of Patent Document 1 presents a technique for correcting the bending, it does not present a technique for early detection of the bending phenomenon. It is important to detect the bending phenomenon at an early stage in order not to destroy the TEM sample. For this purpose, processing must be performed while frequently observing with a scanning electron microscope (SEM) attached to the FIB apparatus. I had to. In the case of a sample with a large stress, special attention is required, and this problem cannot be dealt with by the TEM sample automatic finishing using a recipe.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-35391 “Method for Removing Sample Distortion During Thinning” Published on Feb. 2, 2000, paragraph number [0006] FIG.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a technique that enables automatic finishing of a TEM sample by providing a function of automatically recognizing a bending phenomenon that occurs in TEM sample processing by an FIB apparatus.
[0006]
[Means for Solving the Problems]
In the TEM sample processing automatic bending method of the present invention, the secondary charged particle detector performs secondary electron detection at the time of thinning the TEM sample, and the sample is curved when a sudden change is detected in the detection signal. I decided to judge. In the TEM sample processing method of the present invention, secondary electron detection is performed with a secondary charged particle detector during thinning processing of the TEM sample, and when a sudden change is detected in the detection signal, it is determined that the sample is curved. Then, the thinning process was interrupted, the cutting process using FIB was performed to correct the bending, and the thinning process was advanced in that state.
[0007]
Further, the FIB apparatus for processing a TEM sample having an automatic bending recognition function according to the present invention is a means for detecting secondary electrons emitted from a sample during finishing processing of a thin section with a secondary charged particle detector, and this detection. Means for detecting the curvature of the sample from the change of the signal, and means for interrupting the FIB processing by the output when the detection means detects the curvature of the sample, the means for detecting the curvature When the differential value of the secondary charged particle detection signal is determined by comparing with the threshold value, the difference signal with the secondary charged particle detection level at the starting point of the scanning line is calculated, and the calculated value exceeds the threshold value. This is realized by determining, or by determining the secondary charged particle detection level as a graph corresponding to the scanning position, and determining that the sample is bent when the graph cannot be linearly approximated.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
When the bending phenomenon occurring at the time of processing the TEM sample is monitored as a scanning ion microscope (SIM) image, when the bending of the thin piece portion is processed, a sharply bright portion appears in the scanning line image of the processed portion. I discovered that. In that case, the thin piece portion is cut in a short time, making it unusable as a TEM sample. Considering this phenomenon, if the thin sample is flat as shown by a solid line in FIG. 1-A, the FIB is scanned along its surface in a shallow contact state as shown in FIG. 1-B. The observation SIM image at that time is displayed as a uniform linear image as a whole. On the other hand, when the thin sample is bent as shown by the wavy line in FIG. 1-A, the FIB is shallow at the fixed portion at both ends and deeply hits at the convex warped portion as shown in FIG. 1-C. Since it is scanned linearly, the observation SIM image at that time is displayed as a straight line with a bright central portion and high luminance, and both ends with low luminance. When the sample piece is curved in this way, the area subjected to FIB irradiation is widened, so that it is understood that the SIM image is observed with high brightness. By the way, the curve when a strong stress is applied is not always convex on the processed surface, and may be curved so as to be concave. In that case, since the FIB does not cut into the sample surface, there is no problem. However, when the opposite surface to be performed next is processed, the processed surface becomes convex as described above, and can be detected at that time.
[0009]
The present invention pays attention to a phenomenon in which a bright portion suddenly appears when the thin piece portion is bent, and it is conceived that the bending at the time of sample preparation can be detected in real time by monitoring this change in luminance. Since the luminance change at that time corresponds to the detection signal level of the secondary charged particles (secondary electrons), the output signal may be used as the detection signal. When the processing area is set and the processing is started, the FIB hits the sample deeply at the beginning, so a bright scanning line is displayed on the whole, and as the processing proceeds, the FIB hit becomes shallower. It will be displayed. Therefore, it is difficult to detect a bend only by the detection signal level (brightness) of secondary charged particles, and when a bend occurs, the change in brightness occurs within the same scan, so the change in brightness within the same scan is determined. This makes it possible to detect bending. In order to determine this sudden change in luminance, for example, (1) a method of detecting the change rate (differential value) of the detection signal by comparing it with a threshold, and (2) graphing the luminance level in correspondence with the scanning position, linear approximation (3) A method for determining that the sample is bent when it is no longer possible, and (3) calculating the difference signal between the luminance level at each position of the scanning line and the luminance level at the starting point of the scanning line and detecting that the value exceeds the threshold The method to do can be adopted. If the bending is detected, the FIB processing is immediately interrupted, and then the FIB is irradiated to the portion that does not interfere with the observation of the TEM specimen thin piece portion to perform the slit processing, and the bending stress is released. If the thinning process is resumed after repair, the sample can be prevented from being damaged.
[0010]
An outline of the FIB apparatus that performs these processes will be described with reference to FIG. 1 is an ion source, 2 is an ion beam, 3 is an ion optical system, 4 is a deflector, 9 is a sample, and 5 is a sample stage. 6 is a gas gun, 7 is a secondary charged particle detector, 8 is not essential, but is a charge neutralizer that neutralizes the charge of the sample, 10 is a computer that functions as a controller of the apparatus, 11 is a scanning ion microscope (SIM) ) And a control panel, and 12 is an input operation unit. In addition, a vacuum device that puts the sample chamber in a vacuum state and a drive mechanism for setting the sample stage 5 to a desired position angle are provided as equipment not shown. The drive mechanism is generally X. Y. Z, T, R direction displacement, ion beam axis rotation, and angle adjustment with respect to the ion beam axis can be performed. Further, the computer 10 outputs various control signals such as an acceleration voltage, an ion optical system setting signal, a stage drive signal, a deflector scanning signal to the deflector, and a gas gun or charge neutralizer operation signal. The above configuration is a basic configuration of a conventional FIB apparatus. In addition to the above basic configuration, the FIB apparatus for processing a TEM sample having an automatic bending recognition function according to the present invention uses a secondary charged particle detector 7 to emit secondary electrons emitted from the sample during the finishing process of thinning. It is necessary to have a means for detecting, a means for detecting the curvature of the sample from the change of the detection signal, and a function for interrupting the FIB processing by the output when the detecting means detects the curvature of the sample. As means for judging the bending state of the sample from the change in detection of secondary charged particles, (1) a method of detecting the change rate (differential value) of the secondary charged particle detection signal by comparing it with a threshold value, or (3) When a method of detecting the difference signal between the luminance level at each position of the scanning line and the luminance level at the starting point of the scanning line and detecting that the value exceeds the threshold, a comparator should be installed in hardware. However, although it is realizable, the structure which determines as data processing by software within the computer 10 is simple. Also, (2) graphing the luminance level in correspondence with the scanning position, and adopting a method of determining that the sample is bent when linear approximation cannot be performed, the graph line is overlapped with the line of the allowable width and protrudes from the width. It can be implemented by providing means for determining whether or not. Of course, a configuration in which this is also determined as data processing in software in the computer 10 is adopted. One feature of the apparatus of the present invention is that the computer 10 has such a function of detecting the bending of the sample.
[0011]
The operation of the sample when the sample is processed using the FIB apparatus of the present invention will be described with reference to the flowchart of FIG. 3 while monitoring the curve of the sample. In the sample preparation process in step 1, when entering the finishing stage of the thinning process, as shown in step 2, the FIB under conditions for performing the finishing process is scanned along the sample surface. In step 3, the detection signal from the secondary charged particle detector is input to the signal processing unit. In step 4, the sample processing unit automatically performs a sample bending recognition process and monitors whether there is an abnormality. In step 5, it is determined whether an abnormality has been detected in the signal processing unit. If no abnormality is detected, it is confirmed in step 6 whether the processing has been completed. If the processing has been completed, the process proceeds to step 7 and the FIB irradiation is stopped. However, if the machining is in progress, the process returns to step 4 to continue the machining. The abnormality detection method is implemented in various forms as described above. If an abnormality is detected in step 5, FIB irradiation is immediately stopped in step 8 and the machining is interrupted. In step 9, a microscope image obtained by SEM or SIM is obtained and the curved state is observed, a portion where there is no problem even if the cutting process is performed is specified, and a cutting process using FIB is executed in step 10. In step 11, it is confirmed whether or not the curvature of the sample has been corrected. If it has not been corrected yet, the process returns to step 10 to proceed with the cutting process. When it is confirmed that the problem has been corrected, the process returns to step 2 to start the FIB investigation and resume the finishing process.
[0012]
The automatic bending recognition method in TEM sample processing according to the present invention performs secondary electron detection with a secondary charged particle detector during thinning processing of a TEM sample, and detects a sudden change in the detection signal. Since it automatically determines that the sample is curved, it is possible to detect the curvature of the sample quickly and reliably without burdening the operator, and without requiring skilled skills, and support for creating a TEM sample with a high yield. it can.
In the TEM sample processing method of the present invention, secondary electron detection is performed with a secondary charged particle detector during thinning processing of the TEM sample, and when a sudden change is detected in the detection signal, it is determined that the sample is curved. Therefore, the thinning process is interrupted, the cutting process is performed by FIB, the bend is corrected, and the thinning process is advanced in that state, so that it does not ruin the precious specimen like before. This is not a time-consuming process such as often interrupting the process during the process and proceeding while confirming the state, but increases the possibility of highly reliable automatic processing. Therefore, it is particularly effective when making a valuable sample without replacement.
[0013]
The FIB apparatus for processing a TEM sample according to the present invention is a means for detecting secondary electrons emitted from a sample during the finishing process of thinning with a secondary charged particle detector, and detects the curvature of the sample from the change of the detection signal. And means for interrupting the FIB processing by the output when the detection means detects the curvature of the sample, so that the curvature of the sample is automatically recognized and the thinning process is interrupted. It is possible not to mess up the precious sample like before with the conventional equipment, and it is not time-consuming processing that often interrupts the processing and confirms the state while proceeding. This increases the possibility of highly reliable automatic processing.
In addition, as a means for detecting the curvature of the sample, the differential value of the secondary charged particle detection signal is determined by comparing with a threshold value, and the difference signal from the secondary charged particle detection level at the starting point of the scanning line is calculated, The present invention is to determine when the calculated value exceeds a threshold value, or to determine that the sample is bent when the secondary charged particle detection level is graphed in correspondence with the scanning position and the graph cannot be linearly approximated. The FIB apparatus for processing a TEM sample can be easily realized by software as signal processing in a computer without requiring a special hardware member.
[0014]
When the TEM sample processing is continuously performed until the finishing processing, the bending due to the stress may ruin the sample, which has been a great obstacle to automatic processing of only one sample. However, when this method is used, even in the case of a stressed sample, it is not necessary for the operator to constantly monitor the processing screen, and TEM sample automatic finishing using a recipe can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a phenomenon focused on by the present invention.
FIG. 2 is a diagram showing a basic configuration of an FIB apparatus used in the present invention.
FIG. 3 is a flowchart for explaining the operation of a TEM sample processing FIB apparatus having an automatic bending recognition function according to the present invention.
FIG. 4 is a diagram for explaining a bending phenomenon of a thin piece sample, which is a premise of the present invention, and a method for correcting the bending.
FIG. 5 is a diagram for explaining a method of creating a TEM sample by directly processing a large sample with an FIB apparatus.
FIG. 6 is a diagram for explaining a method of mechanically cutting out a small piece from a large sample and processing it with an FIB apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ion source 7 Secondary charged particle detector 2 Ion beam 8 Charge neutralizer 3 Ion optical system 9 Sample 4 Deflector 10 Computer 5 Sample stage 11 Display 6 Gas gun 12 Input operation part

Claims (7)

TEM試料の薄片化加工時に二次荷電粒子検出器で2次荷電粒子検出を行い、仕上げ加工時の検出信号に急激な変化を検知したときは試料が湾曲したと判断するTEM試料加工における曲がり自動認識方法。Secondary charged particle detection is performed with a secondary charged particle detector at the time of thinning of a TEM sample, and when a sudden change is detected in the detection signal at the time of finishing processing, it is determined that the sample is curved. Automatic bending in TEM sample processing Recognition method. TEM試料の薄片化加工時に二次荷電粒子検出器で2次荷電粒子検出を行い、仕上げ加工時の検出信号に急激な変化を検知したときは試料が湾曲したと判断して薄片化加工を中断し、試料の保護を行うTEM試料加工方法。When the TEM sample is thinned, the secondary charged particle detector detects the secondary charged particles, and when a sudden change is detected in the detection signal during finishing, the sample is judged to be curved and the thinning process is interrupted. And TEM sample processing method for protecting the sample. TEM試料の薄片化加工時に二次荷電粒子検出器で2次荷電粒子検出を行い、仕上げ加工時の検出信号に急激な変化を検知したときは試料が湾曲したと判断して薄片化加工を中断し、予め指定した条件でFIBによる切り込み加工を行って曲がりを直し、その状態で薄片化加工を進めるTEM試料加工方法。When the TEM sample is thinned, the secondary charged particle detector detects the secondary charged particles, and when a sudden change is detected in the detection signal during finishing, the sample is judged to be curved and the thinning process is interrupted. Then, a TEM sample processing method in which cutting is performed by FIB under a predesignated condition to correct the bending, and the thinning process is advanced in that state. 薄片化の仕上げ加工中に試料から放出される2次荷電粒子を二次荷電粒子検出器で検出する手段、この検出信号の変化から試料の湾曲を検知する手段と、該検知手段が試料の湾曲を検知したとき、その出力によりFIB加工を中断させる手段とを具備したものである曲がり自動認識機能を備えたTEM試料加工用のFIB装置。Means for detecting secondary charged particles released from the sample during the thinning process with a secondary charged particle detector, means for detecting the curvature of the sample from a change in the detection signal, and means for detecting the curvature of the sample A FIB apparatus for processing a TEM sample, which has a function of automatically recognizing a bend, and a means for interrupting the FIB processing according to the output of the detected FIB. 試料の湾曲を検知する手段が二次荷電粒子検出信号の微分値を閾値と比較して判定するものである請求項3又は4に記載のTEM試料加工用のFIB装置。5. The FIB apparatus for processing a TEM sample according to claim 3 or 4, wherein the means for detecting the curvature of the sample is determined by comparing a differential value of the secondary charged particle detection signal with a threshold value. 試料の湾曲を検知する手段が走査線の開始点における二次荷電粒子検出レベルとの差信号を演算すると共に、その演算値が閾値を越えたことで判定するものである請求項3又は4に記載のTEM試料加工用のFIB装置。The means for detecting the curvature of the sample calculates a difference signal from the detection level of the secondary charged particles at the starting point of the scanning line, and determines that the calculated value exceeds a threshold value. FIB apparatus for TEM sample processing as described. 試料の湾曲を検知する手段が、二次荷電粒子検出レベルを走査位置と対応させてグラフ化し、そのグラフが直線近似できなくなったとき試料が曲がったと判定するものである請求項3又は4に記載のTEM試料加工用のFIB装置。The means for detecting the curvature of the sample is a graph in which the secondary charged particle detection level is correlated with the scanning position, and when the graph cannot be linearly approximated, it is determined that the sample is bent. FIB equipment for TEM sample processing.
JP2003157119A 2003-06-02 2003-06-02 FIB device for TEM sample processing with automatic bending recognition function Expired - Fee Related JP4230823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003157119A JP4230823B2 (en) 2003-06-02 2003-06-02 FIB device for TEM sample processing with automatic bending recognition function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157119A JP4230823B2 (en) 2003-06-02 2003-06-02 FIB device for TEM sample processing with automatic bending recognition function

Publications (2)

Publication Number Publication Date
JP2004361138A true JP2004361138A (en) 2004-12-24
JP4230823B2 JP4230823B2 (en) 2009-02-25

Family

ID=34050993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157119A Expired - Fee Related JP4230823B2 (en) 2003-06-02 2003-06-02 FIB device for TEM sample processing with automatic bending recognition function

Country Status (1)

Country Link
JP (1) JP4230823B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300759A (en) * 2005-04-21 2006-11-02 Jeol Ltd Sample preparation method and sample preparation device
JP2007163160A (en) * 2005-12-09 2007-06-28 Semiconductor Energy Lab Co Ltd Focused ion beam processing method, and preparation method of transmission electron microscope sample using it
CN103196718A (en) * 2013-03-14 2013-07-10 上海华力微电子有限公司 Preparation method of TEM (transverse electric and magnetic field) sample
DE102013101257A1 (en) 2012-02-10 2013-08-14 Hitachi High-Tech Science Corp. Method of preparing a sample for TEM observation
CN104422605A (en) * 2013-08-27 2015-03-18 中芯国际集成电路制造(上海)有限公司 Preparation method of TEM sample
JP2017096735A (en) * 2015-11-24 2017-06-01 日本電子株式会社 Thin-film sample processing method
CN108760417A (en) * 2018-03-30 2018-11-06 宜特(上海)检测技术有限公司 The preparation method of test piece of penetration type electron microscope

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300759A (en) * 2005-04-21 2006-11-02 Jeol Ltd Sample preparation method and sample preparation device
JP4594156B2 (en) * 2005-04-21 2010-12-08 日本電子株式会社 Sample preparation method and sample preparation apparatus
JP2007163160A (en) * 2005-12-09 2007-06-28 Semiconductor Energy Lab Co Ltd Focused ion beam processing method, and preparation method of transmission electron microscope sample using it
DE102013101257A1 (en) 2012-02-10 2013-08-14 Hitachi High-Tech Science Corp. Method of preparing a sample for TEM observation
JP2013164345A (en) * 2012-02-10 2013-08-22 Hitachi High-Tech Science Corp Method for preparing sample for tem observation
CN103196718A (en) * 2013-03-14 2013-07-10 上海华力微电子有限公司 Preparation method of TEM (transverse electric and magnetic field) sample
CN103196718B (en) * 2013-03-14 2015-06-17 上海华力微电子有限公司 Preparation method of TEM (transverse electric and magnetic field) sample
CN104422605A (en) * 2013-08-27 2015-03-18 中芯国际集成电路制造(上海)有限公司 Preparation method of TEM sample
JP2017096735A (en) * 2015-11-24 2017-06-01 日本電子株式会社 Thin-film sample processing method
CN108760417A (en) * 2018-03-30 2018-11-06 宜特(上海)检测技术有限公司 The preparation method of test piece of penetration type electron microscope

Also Published As

Publication number Publication date
JP4230823B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP5101845B2 (en) Focused ion beam apparatus, sample cross section preparation method and thin piece sample preparation method using the same
US10529538B2 (en) Endpointing for focused ion beam processing
US10283317B2 (en) High throughput TEM preparation processes and hardware for backside thinning of cross-sectional view lamella
KR101249134B1 (en) Charged particle beam apparatus
US20060255295A1 (en) Method and apparatus for preparing specimen
US20150206706A1 (en) Charged particle beam apparatus and sample observation method
JP2000035391A (en) Method for eliminating distortion of sample in thin-piece preparation machining
JP4230823B2 (en) FIB device for TEM sample processing with automatic bending recognition function
JP2000021347A (en) Focusing ion beam working method and working device
JP2005114578A (en) Sample preparation method device and sample observation device
JP4746659B2 (en) Circuit pattern inspection method
US6683305B1 (en) Method to obtain transparent image of resist contact hole or feature by SEM without deforming the feature by ion beam
JP4230899B2 (en) Circuit pattern inspection method
KR20010071425A (en) Black defect correction method and black defect correction device for photomask
CN111065907B (en) Sample manufacturing device and sample sheet manufacturing method
JPH03272554A (en) Scanning electron microscope for section observation and section observing method using it
US11742177B2 (en) Charged particle beam apparatus and control method thereof
JPH09120153A (en) Pattern film correcting device
JP2010009987A (en) Focused ion beam device, and sample processing method and program using the same
JP2777801B2 (en) Pattern film repair method in focused ion beam device
WO2024142280A1 (en) Sample processing method, and charged particle beam device
JP2002270128A (en) Focused ion beam device and method of working using the same
JPH07105321B2 (en) Ion beam processing method and apparatus
JP2000306539A (en) Correction method of isolated black defect of photomask and its device
JP2000100360A (en) Working position correcting device for focused ion beam working device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

R150 Certificate of patent or registration of utility model

Ref document number: 4230823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees