JP2004360965A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2004360965A
JP2004360965A JP2003158108A JP2003158108A JP2004360965A JP 2004360965 A JP2004360965 A JP 2004360965A JP 2003158108 A JP2003158108 A JP 2003158108A JP 2003158108 A JP2003158108 A JP 2003158108A JP 2004360965 A JP2004360965 A JP 2004360965A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
tank
outlet
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003158108A
Other languages
Japanese (ja)
Inventor
Shin Honda
伸 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003158108A priority Critical patent/JP2004360965A/en
Publication of JP2004360965A publication Critical patent/JP2004360965A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device for controlling the degree of superheat of outlet refrigerant in an evaporator to be a preset value by using a tank incorporating a heat exchanger for heat exchange with the outlet refrigerant in the evaporator for adjusting the amount of the refrigerant filled in a cycle to control the degree of superheat of the outlet refrigerant in the evaporator. <P>SOLUTION: The tank 6 is arranged in a pipe 5 on the outlet side of the evaporator 4, and the heat exchanger 7 is arranged in the tank 6 for heat exchange between the outlet refrigerant in the evaporator 4 and refrigerant inside the tank 6. Besides, the inside of the tank 6 is communicated with an inlet portion of the evaporator 4 via a communication pipe 8. The saturation temperature of the refrigerant inside the tank 6 is higher by a temperature equivalent to a pressure difference between the inside of the tank 6 and an outlet portion of the evaporator 4 than the saturation temperature of the outlet refrigerant in the evaporator 4. As a result, the outlet refrigerant in the evaporator 4 has a degree of superheat equivalent to the saturation temperature difference. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、蒸発器出口冷媒と熱交換を行う熱交換器を内蔵するタンクによりサイクル内充填冷媒量を調整して、蒸発器出口冷媒の過熱度を制御する冷凍サイクル装置に関するもので、例えば、車両用空調装置に用いて好適である。
【0002】
【従来の技術および発明が解決しようとする課題】
従来の冷凍サイクル装置においては、凝縮器出口側に凝縮器出口冷媒の気液を分離して液冷媒を溜めるレシーバ(受液器)を配置し、このレシーバ内の液冷媒を膨張弁により減圧膨張するとともに、この膨張弁の開度を蒸発器出口冷媒の過熱度に応じて制御し、これにより、サイクル内の循環冷媒流量を制御して過熱度を所定範囲に制御する方式が代表的である。
【0003】
この方式では、膨張弁を、蒸発器出口冷媒の過熱度に応動して弁開度が自動調整される弁機構とする必要があるので、膨張弁を複雑で精密な構成とする必要が生じ、コスト高となる。
【0004】
そこで、蒸発器出口側に蒸発器出口冷媒の気液を分離して液冷媒を溜めるアキュムレータを配置し、このアキュムレータで分離されたガス冷媒(飽和ガス)を圧縮機に吸入させる方式が知られている。この方式によると、アキュムレータで分離されたガス冷媒を常に圧縮機に吸入させることができる。そのため、減圧手段として、キャピラリチューブやオリフィスのような単純な固定絞りを使用できる。
【0005】
しかし、アキュムレータは、高圧冷媒に比較して比容積が格段と大きい低圧冷媒の気液を分離して液冷媒を溜める必要があるので、タンク容積を大きくする必要がある。そのため、車両エンジンルーム内のような狭隘なスペース内に冷凍サイクル機器を搭載する際に、アキュムレータの搭載性がレシーバより大幅に悪化する。
【0006】
そこで、本発明者らは、蒸発器出口冷媒の過熱度を制御する方式として、図6に示す別方式を検討した。この図6に示す方式のものでは、蒸発器4の出口配管5にタンク6を配置し、タンク6内の下部の液冷媒領域に、蒸発器4の出口冷媒とタンク6内の液冷媒とを熱交換させる熱交換器7を配置している。そして、タンク6の底面部に連通管8’の一端部を接続し、この連通管8’の他端部を蒸発器4の出口配管5に接続している。これにより、タンク6内部が連通管8’を介して蒸発器4の出口部に連通する。
【0007】
この方式では、タンク6内から液冷媒を連通管8’を介して蒸発器4の出口部に供給し、これにより、サイクル内充填冷媒量を調整することで、蒸発器出口冷媒の過熱度をほぼ0に制御する。ここで、サイクル内充填冷媒量とは、圧縮機1→凝縮器2→減圧装置3→蒸発器4→圧縮機1からなる閉回路内に充填され、圧縮機1の作動によってこの閉回路内を循環する冷媒量のことを言うのであって、タンク6内および連通管8’内の冷媒量は含まない。
【0008】
図6の検討例における過熱度制御作用をより具体的に説明すると、蒸発器4の冷房負荷が上昇して、蒸発器出口冷媒の過熱度が上昇すると、蒸発器出口冷媒の熱が熱交換器7にてタンク6内の液冷媒に伝えられ、液冷媒が蒸発する。
【0009】
これにより、タンク6内の圧力が上昇してタンク6内の液冷媒が連通管8’を介して蒸発器4の出口部に供給される。その結果、サイクル内の充填冷媒量が実質上増加した状態となり、これにより、蒸発器出口冷媒の過熱度が低下してほぼ0に戻すことができる。
【0010】
しかし、逆に、冷房負荷が急激に低下した場合、例えば、車両用空調装置において外気導入モードから内気導入モードに切り替わって、蒸発器吸い込み空気温度が急激に低下した場合等には、蒸発器4内で液冷媒が蒸発を完了できないので、液冷媒が蒸発器出口配管5を流れる。従って、蒸発器出口冷媒が過熱度:ほぼ0の状態から気液2相状態に移行する。
【0011】
一方、タンク6内の圧力変化は熱交換器7での冷媒間の熱交換に基づく緩慢な変化であるので、上記の冷媒状態の急変化に追従できない。このため、冷房負荷の急低下の際に、蒸発器出口側からタンク6内への冷媒流入も緩慢となるので、蒸発器出口側の液冷媒の多くが圧縮機1に吸入されることになる。この結果、圧縮機1への液冷媒戻りが多量に発生して圧縮機1の耐久寿命に悪影響を及ぼす。
【0012】
特に、車両用空調装置では、圧縮機1の回転数や、蒸発器吸い込み空気の温度、風量等が車両環境条件の変化により頻繁に急変するので、上記した圧縮機1への液冷媒戻りの問題が顕著となる。
【0013】
本発明は上記点に鑑みて、蒸発器出口冷媒と熱交換を行う熱交換器を内蔵するタンクによりサイクル内充填冷媒量を調整して、蒸発器出口冷媒の過熱度を制御する冷凍サイクル装置において、蒸発器出口冷媒の過熱度を所定の目標値に制御できるようにすることを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、冷媒を圧縮し吐出する圧縮機(1)と、圧縮機(1)から吐出された冷媒を放熱させる高圧側放熱器(2)と、高圧側放熱器(2)の出口冷媒を減圧する減圧装置(3、3a、3b)と、減圧装置(3、3a、3b)で減圧された低圧冷媒を蒸発させる蒸発器(4)とを備え、蒸発器(4)を通過した冷媒を圧縮機(1)に吸入させる冷凍サイクル装置において、蒸発器(4)の出口部よりも圧力の高い部位に連通するタンク(6)を備え、このタンク(6)の内部に、蒸発器(4)の出口冷媒とタンク(6)の内部冷媒との熱交換を行う熱交換器(7)を配置したことを特徴とする。
【0015】
これによると、タンク(6)内部の圧力と蒸発器(4)の出口部との圧力差に相当する温度だけ、タンク(6)の内部の冷媒飽和温度が蒸発器(4)の出口冷媒の飽和温度よりも高くなる。
【0016】
この結果、蒸発器(4)の出口冷媒が上記飽和温度差に相当する過熱度を持つことによりタンク(6)内部の冷媒と熱的にバランスすることになる。換言すると、この熱的バランスが維持されるようにタンク(6)内部とサイクル内の連通部位との間で冷媒が入出することにより、蒸発器(4)の出口冷媒が上記飽和温度差に相当する過熱度を持つことになる。
【0017】
従って、冷房熱負荷が急激に低下する場合においても、蒸発器出口冷媒の過熱度が減少するだけで、圧縮機1への多量の液冷媒戻りを防止できる。そのため、圧縮機1の耐久寿命確保の観点から極めて有利である。
【0018】
請求項2に記載の発明では、請求項1において、タンク(6)の内部を蒸発器(4)の入口部に連通させることを特徴とする。
【0019】
これにより、蒸発器(4)の冷媒流路の圧力損失分だけ、タンク(6)内部の圧力を蒸発器(4)の出口部よりも高くすることができる。そのため、蒸発器(4)の出口冷媒の状態を、蒸発器(4)の冷媒流路の圧力損失分に相当する過熱度を持つように制御できる。
【0020】
請求項3に記載の発明では、請求項1において、タンク(6)の内部を蒸発器(4)の冷媒流路の中間部に連通させることを特徴とする。
【0021】
これにより、蒸発器(4)の冷媒流路の中間部と蒸発器(4)の出口部との間の圧力損失分だけ、タンク(6)内部の圧力を蒸発器(4)の出口部よりも高くすることができる。そのため、蒸発器(4)の出口冷媒の状態を、蒸発器(4)の冷媒流路の中間部以降の圧力損失分に相当する過熱度を持つように制御できる。
【0022】
請求項4に記載の発明のように、請求項1において、タンク(6)の内部を減圧装置(3、3a、3b)の上流側に連通させるようにしてもよい。
【0023】
高低圧力差が小さい状態で運転される冷凍サイクル装置においては、請求項4のように、タンク(6)の内部を減圧装置(3、3a、3b)の上流側(高圧側)に連通させても、蒸発器(4)の出口冷媒を適度な過熱度範囲に制御することができる。
【0024】
請求項5に記載の発明のように、請求項1において、減圧装置を直列接続された2つの減圧装置(3a、3b)により構成し、タンク(6)の内部を2つの減圧装置(3a、3b)の中間部に連通させてもよい。
【0025】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0026】
【発明の実施の形態】
(第1実施形態)
図1は第1実施形態を示すものであり、本発明を車両空調用冷凍サイクル装置に適用した場合を示している。圧縮機1は車両エンジン(図示せず)により回転駆動されて冷媒を圧縮し、吐出する。圧縮機1から吐出された高圧のガス冷媒は凝縮器2に流入し、ここで、外気と熱交換して冷却され、凝縮される。
【0027】
ここで、凝縮器2は、高圧ガス冷媒の放熱を行う高圧側放熱器であり、車両走行による走行風を受けて冷却される部位、具体的には車両エンジンルーム内の最前部等に配置され、走行風および凝縮器用冷却ファン(図示せず)の送風空気により冷却される。
【0028】
減圧装置3は凝縮器2を通過した冷媒を低圧の気液2相状態に減圧するためのものであり、本例ではキャピラリーチューブやオリフィス等の固定絞りで構成してある。
【0029】
蒸発器4は減圧装置3を通過した低圧冷媒を空調用送風機(図示せず)の送風空気から吸熱して蒸発させるものである。蒸発器4は空調室内ユニット(図示せず)のケース内に配置され、蒸発器4で冷却された冷風は周知のごとく図示しないヒータコア部で温度調整された後に車室内へ吹き出す。蒸発器4の出口配管5は圧縮機1の吸入側に接続され、蒸発器4で蒸発したガス冷媒が圧縮機1に吸入される。
【0030】
更に、蒸発器4の出口配管5には蒸発器4の出口冷媒の過熱度制御を行うためのタンク6が配置されている。このタンク6はアルミニュウム等の金属により縦長の円筒形状に成形されている。そして、タンク6内の下部に溜まる液冷媒領域に、蒸発器4の出口冷媒とタンク6内の液冷媒とを熱交換させる熱交換器7を配置している。
【0031】
ここで、熱交換器7は、蒸発器4の出口配管5と一体に構成され蒸発器4の出口冷媒が通過する冷媒管7aと、この冷媒管7aの外周上に形成され伝熱面積を拡大するフィン7bとを備えている。このフィン7bは、図1の例では、冷媒管7aの外周上に円板状に形成された複数枚のプレートフィンにより構成されている。
【0032】
タンク6のうち、下部の液冷媒領域、より具体的には、タンク6の底面部に連通管8の一端部を接続し、この連通管8の他端部を蒸発器4の入口配管9に接続している。これにより、タンク6内部が連通管8を介して蒸発器4の入口部に連通する。
【0033】
なお、蒸発器4の温度は周知のように圧縮機1の能力制御、具体的には、圧縮機1の作動の断続制御、圧縮機1の吐出容量制御等により所定温度以上に制御され、これにより、蒸発器4のフロスト(着霜)を防止するようになっている。
【0034】
次に、上記構成において第1実施形態の作用を説明する。圧縮機1が車両エンジンにより駆動されると、圧縮機1の吐出ガス冷媒はまず、凝縮器2にて冷却空気(外気)中に放熱して凝縮する。この凝縮後の冷媒は次に、減圧装置3にて減圧され、低圧状態となる。次に、この低圧冷媒は蒸発器4にて空調用送風機(図示せず)の送風空気から吸熱して蒸発する。この蒸発後のガス冷媒は蒸発器出口配管5および熱交換器7の冷媒管7aを通過して圧縮機1に吸入され、再度、圧縮される。
【0035】
次に、タンク6、熱交換器7および連通管8の組み合わせ構成に基づく蒸発器出口冷媒の過熱度制御作用を具体的に説明する。この過熱度制御の基本作用は図6の検討例と同様であり、蒸発器出口冷媒の過熱度が過大になると、タンク6内の熱交換器7にて蒸発器出口冷媒からタンク6内の液冷媒が吸熱して液冷媒が蒸発する。これにより、タンク6内の圧力が上昇してタンク6内の液冷媒が連通管8を介して蒸発器4の入口部に押し出されるので、サイクル内の充填冷媒量が実質上増加する。
【0036】
その結果、圧縮機1により凝縮器2側へ吐出される冷媒量が増加して、凝縮器2出口冷媒の過冷却度およびサイクルの高圧圧力が増加し、減圧装置3、具体的には固定絞りが流し得る冷媒流量が増加する。これにより、蒸発器出口冷媒の過大な過熱度を引き下げることができる。
【0037】
逆に、蒸発器出口冷媒の過熱度が低下すると、タンク6内の液冷媒の蒸発量が減少して、タンク6内の圧力が低下する。これにより、蒸発器4の入口部の冷媒が連通管8を介してタンク6内に流入し、タンク6内に蓄えられる。そのため、サイクル内の充填冷媒量が実質上減少して、上記と逆のサイクル挙動が起こって、蒸発器出口冷媒の過熱度低下を抑える。
【0038】
ところで、本実施形態においては、タンク6内部を連通管8により蒸発器4の入口部に連通しているため、蒸発器出口冷媒の過熱度を蒸発器4内の冷媒流路の圧力損失ΔP分に対応した所定値となるように制御できる。このことを具体的に説明すると、タンク6内部を連通管8により蒸発器4の入口部に連通しているため、タンク6内部の圧力は蒸発器4の入口部の圧力と同一となる。このことは、タンク6内部の圧力が蒸発器4内の冷媒流路の圧力損失ΔP分だけ、蒸発器4の出口部の圧力より高い圧力となる。換言すると、本実施形態におけるタンク6内部の圧力は図6の検討例に比較して上記圧力損失ΔP分だけ高い圧力となる。
【0039】
ここで、タンク6内部の冷媒は飽和液と飽和ガスが共存する飽和状態にあるので、タンク6内部の冷媒温度は、蒸発器4の入口部の圧力に対応した飽和温度となる。この飽和温度は、蒸発器出口冷媒の飽和温度に対して上記圧力損失ΔP分に相当する所定値だけ高い温度となる。
【0040】
従って、蒸発器出口冷媒によってタンク6内部の液冷媒を加熱して蒸発させるためには、蒸発器出口冷媒が、その飽和温度よりも上記圧力損失ΔP分に相当する所定値以上高い温度に上昇すること、すなわち、過熱度を持つことが必要となる。このことは、蒸発器出口冷媒が所定の過熱度を持つように、蒸発器出口冷媒とタンク6内部の冷媒との間の熱的バランスが行われることを意味している。
【0041】
ところで、上記圧力損失ΔP分に相当する蒸発器出口冷媒の過熱度はサイクル内封入冷媒の物性により決まる値であり、冷媒としてHFC134aを用いる場合には、図2の実線Aに示すように圧力損失ΔP分に対応して過熱度SHを一義的に決めることができる。
【0042】
このように、蒸発器出口冷媒に蒸発器4の圧力損失ΔP分に相当する過熱度を持つように蒸発器出口冷媒の状態を制御できるため、冷房熱負荷が急激に低下する場合に、サイクル内の充填冷媒量を減少させることが追従できなくも、蒸発器出口冷媒の過熱度が減少するだけであり、圧縮機1への多量の液冷媒戻りを防止できる。従って、圧縮機1の耐久寿命確保の観点から極めて有利である。
【0043】
なお、図2において、実線Bは、図6の検討例における蒸発器出口冷媒の過熱度SHであり、図6の検討例では圧力損失ΔPと関係なく、蒸発器出口冷媒の過熱度SHが常にほぼ0の状態に維持される。そのため、冷房熱負荷の急低下時に前述したようにサイクル内の充填冷媒量低下の追従遅れが発生すると、圧縮機1への多量の液冷媒戻りが発生してしまう。
【0044】
(第2実施形態)
第1実施形態では、タンク6内部を連通管8により蒸発器4の入口部に連通しているが、第2実施形態では図3に示すように、タンク6内部を連通管8により蒸発器4の冷媒流路の中間部に連通させている。
【0045】
従って、第2実施形態によると、蒸発器4全体の冷媒流路の圧力損失よりも小さい圧力損失分だけタンク6内部の圧力が蒸発器出口部の圧力よりも高くなる。この結果、蒸発器4全体の冷媒流路の圧力損失により決まる過熱度よりも小さい過熱度を持つように、蒸発器出口冷媒の状態を制御できる。
【0046】
つまり、蒸発器4全体の冷媒流路の圧力損失により決まる過熱度が必要以上に大きい場合には、第2実施形態を採用すると、適切な過熱度を設定できる。
【0047】
(第3実施形態)
第1、第2実施形態では、タンク6内部を連通管8により蒸発器4の入口部または蒸発器4の冷媒流路の中間部に連通させているが、第3実施形態では図4に示すように、タンク6内部を連通管8により減圧装置3の上流側、すなわち、サイクル高圧側に連通させている。
【0048】
従って、タンク6内部の圧力がサイクル高圧側の圧力となり、蒸発器出口冷媒の過熱度が過大となることが懸念されるが、定常的に冷房負荷(冷凍機負荷)が小さい用途の冷凍サイクル装置、例えば、室内に配置されるコールドショーケース用の冷凍サイクル装置では、高圧側圧力と低圧側圧力との圧力差が小さい状態で運転される。従って、このような用途の冷凍サイクル装置ではタンク6内部を連通管8により減圧装置3の上流側に連通させても蒸発器出口冷媒の過熱度を適正範囲に設定できる。
【0049】
なお、定常的に冷房負荷(冷凍機負荷)が小さい用途の冷凍サイクル装置としては、例えば、建物内部に装備される冷凍ショーケースの冷凍サイクル装置等がある。
【0050】
(第4実施形態)
図5は第4実施形態であり、減圧装置を直列接続された2つの減圧装置3a、3bにより構成される複合絞りとし、タンク6内部を連通管8により2つの減圧装置3a、3bの中間部に連通させている。
【0051】
(他の実施形態)
なお、上記の各実施形態では、連通管8の一端部をタンク6の底部に接続して、タンク6内部の液冷媒を連通管8側へ押し出すようにしているが、タンク6の上部のガス冷媒域に連通管8の一端部を接続してもよい。
【0052】
蒸発器出口冷媒の過熱度の上昇に応じてサイクル内の充填冷媒量を素早く増加させるには、上記の各実施形態のようにタンク6内部の液冷媒を連通管8側へ押し出すようにした方が好ましいが、連通管8の配置レイアウト上、連通管8の一端部をタンク6の底部に接続することが困難な場合もある。この場合はタンク6の上部のガス冷媒域に連通管8の一端部を接続することになる。
【0053】
これにより、蒸発器出口冷媒の過熱度が上昇する際に、タンク6内部のガス冷媒を連通管8から蒸発器4の入口部等のサイクル内冷媒循環流路側へ供給することになる。従って、液冷媒を連通管8側へ押し出す場合に比較して、過熱度の上昇時におけるサイクル内の充填冷媒量増加の応答性が低下するものの、基本的には、各実施形態と同様の作用効果を発揮できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す冷凍サイクル図である。
【図2】第1実施形態の作用効果の説明に供するグラフである。
【図3】第2実施形態を示す冷凍サイクル図である。
【図4】第3実施形態を示す冷凍サイクル図である。
【図5】第4実施形態を示す冷凍サイクル図である。
【図6】本発明者らの検討例を示す冷凍サイクル図である。
【符号の説明】
1…圧縮機、2…凝縮器(高圧側放熱器)、3…減圧装置、4…蒸発器、
5…出口側配管、6…タンク、7…熱交換器、8…連通管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration cycle device that controls the degree of superheat of the evaporator outlet refrigerant by adjusting the amount of refrigerant charged in the cycle by a tank containing a heat exchanger that performs heat exchange with the evaporator outlet refrigerant, for example, It is suitable for use in a vehicle air conditioner.
[0002]
2. Description of the Related Art
In a conventional refrigeration cycle device, a receiver (liquid receiver) that separates gas and liquid of the refrigerant at the condenser outlet and stores the liquid refrigerant is disposed at the condenser outlet side, and the liquid refrigerant within the receiver is decompressed and expanded by an expansion valve. A typical method is to control the degree of opening of the expansion valve according to the degree of superheat of the refrigerant at the evaporator outlet, thereby controlling the flow rate of the circulating refrigerant in the cycle to control the degree of superheat within a predetermined range. .
[0003]
In this method, since the expansion valve needs to have a valve mechanism in which the valve opening is automatically adjusted in response to the degree of superheat of the evaporator outlet refrigerant, the expansion valve needs to have a complicated and precise configuration. The cost is high.
[0004]
Therefore, a method is known in which an accumulator that separates gas-liquid of the evaporator outlet refrigerant and stores the liquid refrigerant is disposed on the evaporator outlet side, and a gas refrigerant (saturated gas) separated by the accumulator is sucked into a compressor. I have. According to this method, the gas refrigerant separated by the accumulator can always be sucked into the compressor. Therefore, a simple fixed throttle such as a capillary tube or an orifice can be used as the decompression means.
[0005]
However, the accumulator needs to increase the tank volume because it is necessary to separate the gas-liquid of the low-pressure refrigerant having a much larger specific volume than the high-pressure refrigerant and store the liquid refrigerant. Therefore, when the refrigeration cycle equipment is mounted in a narrow space such as a vehicle engine room, the mountability of the accumulator is much worse than that of the receiver.
[0006]
Therefore, the present inventors studied another method shown in FIG. 6 as a method for controlling the degree of superheat of the refrigerant at the evaporator outlet. In the system shown in FIG. 6, a tank 6 is disposed in an outlet pipe 5 of an evaporator 4, and an outlet refrigerant of the evaporator 4 and a liquid refrigerant in the tank 6 are supplied to a lower liquid refrigerant area in the tank 6. A heat exchanger 7 for exchanging heat is arranged. One end of a communication pipe 8 ′ is connected to the bottom of the tank 6, and the other end of the communication pipe 8 ′ is connected to the outlet pipe 5 of the evaporator 4. Thus, the inside of the tank 6 communicates with the outlet of the evaporator 4 via the communication pipe 8 '.
[0007]
In this method, the liquid refrigerant is supplied from the tank 6 to the outlet of the evaporator 4 through the communication pipe 8 ′, whereby the amount of refrigerant charged in the cycle is adjusted to reduce the degree of superheat of the evaporator outlet refrigerant. It is controlled to almost zero. Here, the amount of refrigerant charged in the cycle means that the refrigerant is charged into a closed circuit composed of the compressor 1, the condenser 2, the pressure reducing device 3, the evaporator 4, and the compressor 1. It refers to the amount of circulating refrigerant, and does not include the amount of refrigerant in the tank 6 and the communication pipe 8 '.
[0008]
More specifically, the superheat control operation in the study example of FIG. 6 will be described. When the cooling load of the evaporator 4 increases and the superheat of the refrigerant at the evaporator outlet increases, the heat of the refrigerant at the evaporator outlet changes to the heat exchanger. At 7 the liquid refrigerant in the tank 6 is transmitted to evaporate the liquid refrigerant.
[0009]
As a result, the pressure in the tank 6 increases, and the liquid refrigerant in the tank 6 is supplied to the outlet of the evaporator 4 via the communication pipe 8 '. As a result, the amount of the charged refrigerant in the cycle is substantially increased, whereby the degree of superheat of the refrigerant at the evaporator outlet can be reduced to almost zero.
[0010]
However, conversely, when the cooling load suddenly decreases, for example, when the vehicle air conditioner switches from the outside air introduction mode to the inside air introduction mode and the evaporator intake air temperature sharply decreases, the evaporator 4 Since the liquid refrigerant cannot complete evaporation in the inside, the liquid refrigerant flows through the evaporator outlet pipe 5. Therefore, the refrigerant at the evaporator outlet shifts from the state of superheat: almost 0 to the gas-liquid two-phase state.
[0011]
On the other hand, since the pressure change in the tank 6 is a slow change based on heat exchange between the refrigerants in the heat exchanger 7, it cannot follow the rapid change in the refrigerant state described above. For this reason, when the cooling load suddenly decreases, the flow of the refrigerant from the evaporator outlet side into the tank 6 also becomes slow, so that most of the liquid refrigerant on the evaporator outlet side is sucked into the compressor 1. . As a result, a large amount of liquid refrigerant returns to the compressor 1 and adversely affects the durable life of the compressor 1.
[0012]
In particular, in the vehicle air conditioner, the rotational speed of the compressor 1, the temperature of the air sucked by the evaporator, the air volume, and the like frequently change suddenly due to changes in vehicle environmental conditions. Becomes remarkable.
[0013]
In view of the above, the present invention provides a refrigeration cycle apparatus that controls the degree of superheat of the evaporator outlet refrigerant by adjusting the amount of refrigerant charged in the cycle by a tank containing a heat exchanger that performs heat exchange with the evaporator outlet refrigerant. It is another object of the present invention to control the degree of superheat of the evaporator outlet refrigerant to a predetermined target value.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the invention, a compressor (1) for compressing and discharging a refrigerant, and a high-pressure side radiator (2) for radiating the refrigerant discharged from the compressor (1) are provided. A decompression device (3, 3a, 3b) for decompressing the refrigerant at the outlet of the high-pressure side radiator (2), and an evaporator (4) for evaporating the low-pressure refrigerant decompressed by the decompression device (3, 3a, 3b). A refrigerating cycle device for sucking the refrigerant having passed through the evaporator (4) into the compressor (1), including a tank (6) communicating with a portion having a higher pressure than the outlet of the evaporator (4); A heat exchanger (7) for exchanging heat between the refrigerant at the outlet of the evaporator (4) and the refrigerant inside the tank (6) is arranged inside the tank (6).
[0015]
According to this, the refrigerant saturation temperature inside the tank (6) is reduced by the temperature corresponding to the pressure difference between the pressure inside the tank (6) and the outlet of the evaporator (4). Higher than the saturation temperature.
[0016]
As a result, the refrigerant at the outlet of the evaporator (4) has a degree of superheating corresponding to the above-mentioned saturation temperature difference, so that the refrigerant in the tank (6) is thermally balanced. In other words, when the refrigerant enters and exits between the inside of the tank (6) and the communicating portion in the cycle so that this thermal balance is maintained, the refrigerant at the outlet of the evaporator (4) corresponds to the above-mentioned saturation temperature difference. Overheating.
[0017]
Therefore, even when the cooling heat load is rapidly reduced, a large amount of liquid refrigerant can be prevented from returning to the compressor 1 only by reducing the degree of superheat of the evaporator outlet refrigerant. Therefore, it is extremely advantageous from the viewpoint of ensuring the durable life of the compressor 1.
[0018]
According to a second aspect of the present invention, in the first aspect, the inside of the tank (6) is communicated with the inlet of the evaporator (4).
[0019]
Thus, the pressure inside the tank (6) can be made higher than the outlet of the evaporator (4) by the pressure loss in the refrigerant flow path of the evaporator (4). Therefore, the state of the outlet refrigerant of the evaporator (4) can be controlled so as to have a degree of superheat corresponding to the pressure loss of the refrigerant flow path of the evaporator (4).
[0020]
According to a third aspect of the present invention, in the first aspect, the inside of the tank (6) is communicated with an intermediate portion of the refrigerant flow path of the evaporator (4).
[0021]
As a result, the pressure inside the tank (6) is increased from the outlet of the evaporator (4) by the pressure loss between the intermediate portion of the refrigerant flow path of the evaporator (4) and the outlet of the evaporator (4). Can also be higher. Therefore, the state of the refrigerant at the outlet of the evaporator (4) can be controlled so as to have a degree of superheat corresponding to the pressure loss after the intermediate portion of the refrigerant flow path of the evaporator (4).
[0022]
As in the fourth aspect, in the first aspect, the inside of the tank (6) may be communicated with the upstream side of the pressure reducing device (3, 3a, 3b).
[0023]
In a refrigeration cycle device operated with a small height difference, the inside of the tank (6) is communicated with the upstream side (high pressure side) of the pressure reducing device (3, 3a, 3b). Also, it is possible to control the outlet refrigerant of the evaporator (4) to an appropriate superheat degree range.
[0024]
According to a fifth aspect of the present invention, in the first aspect, the pressure reducing device is constituted by two pressure reducing devices (3a, 3b) connected in series, and the inside of the tank (6) is connected to the two pressure reducing devices (3a, 3a, 3a, 3b). It may be communicated with the intermediate part of 3b).
[0025]
In addition, the code | symbol in the parenthesis of each said means shows the correspondence with the concrete means described in embodiment mentioned later.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
FIG. 1 shows a first embodiment, and shows a case where the present invention is applied to a refrigeration cycle device for vehicle air conditioning. The compressor 1 is rotationally driven by a vehicle engine (not shown) to compress and discharge the refrigerant. The high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 2, where it exchanges heat with outside air to be cooled and condensed.
[0027]
Here, the condenser 2 is a high-pressure side radiator that radiates heat of the high-pressure gaseous refrigerant, and is disposed at a location that is cooled by receiving the traveling wind generated by the traveling of the vehicle, specifically, at the forefront in the vehicle engine room. The air is cooled by the traveling wind and the air blown by a condenser cooling fan (not shown).
[0028]
The pressure reducing device 3 serves to reduce the pressure of the refrigerant that has passed through the condenser 2 to a low-pressure gas-liquid two-phase state. In this example, the pressure reducing device 3 includes a fixed restrictor such as a capillary tube or an orifice.
[0029]
The evaporator 4 absorbs the low-pressure refrigerant that has passed through the pressure reducing device 3 from the air blown by an air-conditioning blower (not shown) and evaporates the same. The evaporator 4 is arranged in a case of an air-conditioning indoor unit (not shown), and cool air cooled by the evaporator 4 is blown into the vehicle interior after being temperature-controlled by a heater core (not shown) as is well known. The outlet pipe 5 of the evaporator 4 is connected to the suction side of the compressor 1, and the gas refrigerant evaporated by the evaporator 4 is sucked into the compressor 1.
[0030]
Further, a tank 6 for controlling the degree of superheating of the refrigerant at the outlet of the evaporator 4 is disposed in the outlet pipe 5 of the evaporator 4. The tank 6 is formed of a metal such as aluminum into a vertically long cylindrical shape. Further, a heat exchanger 7 for exchanging heat between the outlet refrigerant of the evaporator 4 and the liquid refrigerant in the tank 6 is disposed in a liquid refrigerant region stored in a lower portion of the tank 6.
[0031]
Here, the heat exchanger 7 is integrally formed with the outlet pipe 5 of the evaporator 4 and has a refrigerant pipe 7a through which the outlet refrigerant of the evaporator 4 passes, and is formed on the outer periphery of the refrigerant pipe 7a to enlarge the heat transfer area. Fins 7b. In the example of FIG. 1, the fins 7b are formed by a plurality of plate fins formed in a disk shape on the outer periphery of the refrigerant pipe 7a.
[0032]
One end of the communication pipe 8 is connected to the lower liquid refrigerant area of the tank 6, more specifically, to the bottom of the tank 6, and the other end of the communication pipe 8 is connected to the inlet pipe 9 of the evaporator 4. Connected. Thus, the inside of the tank 6 communicates with the inlet of the evaporator 4 via the communication pipe 8.
[0033]
As is well known, the temperature of the evaporator 4 is controlled to a predetermined temperature or higher by controlling the capacity of the compressor 1, specifically, controlling the intermittent operation of the compressor 1 and controlling the discharge capacity of the compressor 1. Thereby, frost (frost formation) of the evaporator 4 is prevented.
[0034]
Next, the operation of the first embodiment in the above configuration will be described. When the compressor 1 is driven by the vehicle engine, the gas refrigerant discharged from the compressor 1 first radiates heat into cooling air (outside air) in the condenser 2 and condenses. Next, the condensed refrigerant is reduced in pressure by the pressure reducing device 3 to be in a low pressure state. Next, the low-pressure refrigerant absorbs heat from the air blown by an air-conditioning blower (not shown) in the evaporator 4 and evaporates. The gas refrigerant after the evaporation passes through the evaporator outlet pipe 5 and the refrigerant pipe 7a of the heat exchanger 7, is drawn into the compressor 1, and is compressed again.
[0035]
Next, the operation of controlling the degree of superheat of the refrigerant at the evaporator outlet based on the combination of the tank 6, the heat exchanger 7, and the communication pipe 8 will be specifically described. The basic operation of the superheat degree control is the same as that of the study example of FIG. 6. When the superheat degree of the refrigerant at the evaporator outlet becomes excessive, the liquid in the tank 6 is removed from the refrigerant at the evaporator outlet by the heat exchanger 7 in the tank 6. The refrigerant absorbs heat and the liquid refrigerant evaporates. As a result, the pressure in the tank 6 increases, and the liquid refrigerant in the tank 6 is pushed out to the inlet of the evaporator 4 through the communication pipe 8, so that the amount of refrigerant charged in the cycle substantially increases.
[0036]
As a result, the amount of refrigerant discharged to the condenser 2 side by the compressor 1 increases, the degree of supercooling of the refrigerant at the outlet of the condenser 2 and the high pressure of the cycle increase, and the pressure reducing device 3, specifically, the fixed throttle Increases the flow rate of the refrigerant that can flow. Thereby, the excessive degree of superheat of the refrigerant at the evaporator outlet can be reduced.
[0037]
Conversely, when the degree of superheat of the refrigerant at the evaporator outlet decreases, the amount of evaporation of the liquid refrigerant in the tank 6 decreases, and the pressure in the tank 6 decreases. Thereby, the refrigerant at the inlet of the evaporator 4 flows into the tank 6 through the communication pipe 8 and is stored in the tank 6. Therefore, the amount of refrigerant charged in the cycle is substantially reduced, and the cycle behavior opposite to the above occurs, thereby suppressing a decrease in the degree of superheat of the refrigerant at the evaporator outlet.
[0038]
In the present embodiment, since the inside of the tank 6 communicates with the inlet of the evaporator 4 through the communication pipe 8, the degree of superheat of the refrigerant at the evaporator outlet is reduced by the pressure loss ΔP of the refrigerant flow path in the evaporator 4. Can be controlled to be a predetermined value corresponding to. More specifically, since the inside of the tank 6 communicates with the inlet of the evaporator 4 through the communication pipe 8, the pressure inside the tank 6 becomes the same as the pressure at the inlet of the evaporator 4. This means that the pressure inside the tank 6 is higher than the pressure at the outlet of the evaporator 4 by the pressure loss ΔP in the refrigerant flow path in the evaporator 4. In other words, the pressure inside the tank 6 in the present embodiment is higher by the pressure loss ΔP than in the study example of FIG.
[0039]
Here, since the refrigerant inside the tank 6 is in a saturated state in which the saturated liquid and the saturated gas coexist, the refrigerant temperature inside the tank 6 becomes a saturation temperature corresponding to the pressure at the inlet of the evaporator 4. This saturation temperature is higher than the saturation temperature of the evaporator outlet refrigerant by a predetermined value corresponding to the pressure loss ΔP.
[0040]
Therefore, in order to heat and evaporate the liquid refrigerant inside the tank 6 by the evaporator outlet refrigerant, the evaporator outlet refrigerant rises to a temperature higher than its saturation temperature by a predetermined value corresponding to the pressure loss ΔP or more. That is, it is necessary to have a degree of superheat. This means that thermal balance between the evaporator outlet refrigerant and the refrigerant inside the tank 6 is performed so that the evaporator outlet refrigerant has a predetermined degree of superheat.
[0041]
Incidentally, the superheat degree of the evaporator outlet refrigerant corresponding to the pressure loss ΔP is a value determined by the physical properties of the refrigerant enclosed in the cycle. When HFC134a is used as the refrigerant, the pressure loss as shown by the solid line A in FIG. The degree of superheat SH can be uniquely determined according to ΔP.
[0042]
As described above, the state of the evaporator outlet refrigerant can be controlled so that the evaporator outlet refrigerant has a degree of superheat corresponding to the pressure loss ΔP of the evaporator 4. Even if the reduction of the amount of the filled refrigerant cannot be followed, only the degree of superheat of the refrigerant at the evaporator outlet is reduced, and a large amount of the liquid refrigerant returned to the compressor 1 can be prevented. Therefore, it is extremely advantageous from the viewpoint of ensuring the durability life of the compressor 1.
[0043]
In FIG. 2, the solid line B is the superheat degree SH of the evaporator outlet refrigerant in the study example of FIG. 6, and in the study example of FIG. 6, the superheat degree SH of the evaporator outlet refrigerant is always irrespective of the pressure loss ΔP. It is maintained at almost zero. For this reason, if a delay in following the decrease in the amount of charged refrigerant in the cycle occurs as described above when the cooling heat load is rapidly reduced, a large amount of liquid refrigerant returns to the compressor 1.
[0044]
(2nd Embodiment)
In the first embodiment, the inside of the tank 6 is communicated with the inlet of the evaporator 4 by a communication pipe 8, but in the second embodiment, as shown in FIG. In the middle of the refrigerant flow path.
[0045]
Therefore, according to the second embodiment, the pressure inside the tank 6 is higher than the pressure at the evaporator outlet by a pressure loss smaller than the pressure loss in the refrigerant flow path of the entire evaporator 4. As a result, the state of the refrigerant at the evaporator outlet can be controlled so as to have a superheat degree smaller than the superheat degree determined by the pressure loss of the refrigerant flow path of the entire evaporator 4.
[0046]
In other words, when the degree of superheat determined by the pressure loss of the refrigerant flow path of the entire evaporator 4 is larger than necessary, an appropriate degree of superheat can be set by employing the second embodiment.
[0047]
(Third embodiment)
In the first and second embodiments, the inside of the tank 6 is communicated with the inlet of the evaporator 4 or the intermediate portion of the refrigerant flow path of the evaporator 4 by the communication pipe 8, but in the third embodiment, it is shown in FIG. Thus, the inside of the tank 6 is communicated with the upstream side of the pressure reducing device 3, that is, the high pressure side of the cycle by the communication pipe 8.
[0048]
Therefore, the pressure inside the tank 6 becomes the pressure on the high pressure side of the cycle, and there is a concern that the degree of superheat of the refrigerant at the evaporator outlet becomes excessive. However, the refrigeration cycle apparatus for applications in which the cooling load (refrigerator load) is constantly small. For example, a refrigeration cycle device for a cold showcase placed indoors is operated in a state where the pressure difference between the high pressure side pressure and the low pressure side pressure is small. Therefore, in the refrigeration cycle device for such use, the superheat degree of the evaporator outlet refrigerant can be set to an appropriate range even if the inside of the tank 6 is communicated with the upstream side of the pressure reducing device 3 by the communication pipe 8.
[0049]
In addition, as a refrigeration cycle device for applications where the cooling load (refrigerator load) is constantly small, for example, there is a refrigeration cycle device of a refrigeration showcase installed inside a building.
[0050]
(Fourth embodiment)
FIG. 5 shows a fourth embodiment, in which the decompression device is a composite throttle composed of two decompression devices 3a and 3b connected in series, and the inside of the tank 6 is connected to the middle part of the two decompression devices 3a and 3b by a communication pipe 8. Is communicated with.
[0051]
(Other embodiments)
In each of the above embodiments, one end of the communication pipe 8 is connected to the bottom of the tank 6 so that the liquid refrigerant inside the tank 6 is pushed out to the communication pipe 8 side. One end of the communication pipe 8 may be connected to the refrigerant area.
[0052]
In order to quickly increase the amount of charged refrigerant in the cycle in accordance with an increase in the degree of superheat of the evaporator outlet refrigerant, the liquid refrigerant in the tank 6 should be pushed out to the communication pipe 8 side as in the above embodiments. However, due to the layout of the communication pipes 8, it may be difficult to connect one end of the communication pipe 8 to the bottom of the tank 6. In this case, one end of the communication pipe 8 is connected to the gas refrigerant area above the tank 6.
[0053]
Thus, when the degree of superheat of the refrigerant at the evaporator outlet rises, the gas refrigerant inside the tank 6 is supplied from the communication pipe 8 to the refrigerant circulation flow path in the cycle such as the inlet of the evaporator 4. Therefore, as compared with the case where the liquid refrigerant is pushed out to the communication pipe 8 side, the responsiveness of the increase in the amount of the charged refrigerant in the cycle when the degree of superheat increases is reduced, but basically the same operation as in each embodiment. The effect can be demonstrated.
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle diagram showing a first embodiment of the present invention.
FIG. 2 is a graph for explaining the operation and effect of the first embodiment.
FIG. 3 is a refrigeration cycle diagram showing a second embodiment.
FIG. 4 is a refrigeration cycle diagram showing a third embodiment.
FIG. 5 is a refrigeration cycle diagram showing a fourth embodiment.
FIG. 6 is a refrigeration cycle diagram showing a study example of the present inventors.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Condenser (high-pressure side radiator), 3 ... Decompression device, 4 ... Evaporator,
5 outlet pipe, 6 tank, 7 heat exchanger, 8 communication pipe.

Claims (5)

冷媒を圧縮し吐出する圧縮機(1)と、
前記圧縮機(1)から吐出された冷媒を放熱させる高圧側放熱器(2)と、
前記高圧側放熱器(2)の出口冷媒を減圧する減圧装置(3、3a、3b)と、
前記減圧装置(3、3a、3b)で減圧された低圧冷媒を蒸発させる蒸発器(4)とを備え、
前記蒸発器(4)を通過した冷媒を前記圧縮機(1)に吸入させる冷凍サイクル装置において、
前記蒸発器(4)の出口部よりも圧力の高い部位に連通するタンク(6)を備え、
前記タンク(6)の内部に、前記蒸発器(4)の出口冷媒と前記タンク(6)の内部冷媒との熱交換を行う熱交換器(7)を配置したことを特徴とする冷凍サイクル装置。
A compressor (1) for compressing and discharging the refrigerant;
A high-pressure side radiator (2) for radiating the refrigerant discharged from the compressor (1);
A decompression device (3, 3a, 3b) for decompressing an outlet refrigerant of the high-pressure side radiator (2);
An evaporator (4) for evaporating the low-pressure refrigerant decompressed by the decompression device (3, 3a, 3b);
In the refrigeration cycle apparatus, the refrigerant that has passed through the evaporator (4) is sucked into the compressor (1).
A tank (6) communicating with a portion having a higher pressure than the outlet of the evaporator (4);
A refrigeration cycle apparatus, wherein a heat exchanger (7) for exchanging heat between an outlet refrigerant of the evaporator (4) and an internal refrigerant of the tank (6) is arranged inside the tank (6). .
前記タンク(6)の内部を前記蒸発器(4)の入口部に連通させることを特徴とする請求項1に記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 1, wherein the inside of the tank (6) communicates with an inlet of the evaporator (4). 前記タンク(6)の内部を前記蒸発器(4)の冷媒流路の中間部に連通させることを特徴とする請求項1に記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 1, wherein the inside of the tank (6) communicates with an intermediate portion of a refrigerant flow path of the evaporator (4). 前記タンク(6)の内部を前記減圧装置(3、3a、3b)の上流側に連通させることを特徴とする請求項1に記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 1, wherein the inside of the tank (6) communicates with an upstream side of the pressure reducing device (3, 3a, 3b). 前記減圧装置を直列接続された2つの減圧装置(3a、3b)により構成し、
前記タンク(6)の内部を前記2つの減圧装置(3a、3b)の中間部に連通させることを特徴とする請求項1に記載の冷凍サイクル装置。
The pressure reducing device is constituted by two pressure reducing devices (3a, 3b) connected in series,
The refrigeration cycle apparatus according to claim 1, wherein the inside of the tank (6) communicates with an intermediate portion between the two pressure reducing devices (3a, 3b).
JP2003158108A 2003-06-03 2003-06-03 Refrigerating cycle device Pending JP2004360965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158108A JP2004360965A (en) 2003-06-03 2003-06-03 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158108A JP2004360965A (en) 2003-06-03 2003-06-03 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2004360965A true JP2004360965A (en) 2004-12-24

Family

ID=34051628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158108A Pending JP2004360965A (en) 2003-06-03 2003-06-03 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2004360965A (en)

Similar Documents

Publication Publication Date Title
KR100958399B1 (en) Hvac system with powered subcooler
JP4692295B2 (en) Evaporator unit and ejector refrigeration cycle
WO2007052898A1 (en) Air conditioning system for communication equipment and controlling method thereof
JP3410442B2 (en) Refrigerant distribution device for refrigeration cycle for heat pump
JP2002089988A (en) Air conditioner, and operating method of air conditioner
KR20070007771A (en) Freezing apparatus
EP2057871A1 (en) Air conditioning system for communication equipment and controlling method thereof
CN102037292A (en) Refrigeration cycle
JP2007001485A (en) Refrigerating cycle device for vehicle
JP2007232265A (en) Refrigeration unit
KR100426640B1 (en) Refrigeration cycle
JP2012102992A (en) Parallel flow multi-stage condensation subcooler for outdoor unit
JP2017161159A (en) Outdoor uni of air conditioner
JP4356146B2 (en) Refrigeration equipment
JP2019203646A (en) Refrigeration device for transportation
WO2021065914A1 (en) Freezing apparatus
JP2004360965A (en) Refrigerating cycle device
KR200300268Y1 (en) refrigeration system
KR20050043089A (en) Heat pump
JP2008082674A (en) Supercooling device
KR200300275Y1 (en) refrigeration system
JPH06272978A (en) Air conditioner
JP4798884B2 (en) Refrigeration system
JP2001241789A (en) Two-refrigerant refrigerator
JP2008082676A (en) Supercooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Effective date: 20071001

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513