JP2004360923A - Method of application of reduction gear made of resin - Google Patents

Method of application of reduction gear made of resin Download PDF

Info

Publication number
JP2004360923A
JP2004360923A JP2004279273A JP2004279273A JP2004360923A JP 2004360923 A JP2004360923 A JP 2004360923A JP 2004279273 A JP2004279273 A JP 2004279273A JP 2004279273 A JP2004279273 A JP 2004279273A JP 2004360923 A JP2004360923 A JP 2004360923A
Authority
JP
Japan
Prior art keywords
shaft support
resin
rib
web
helical gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004279273A
Other languages
Japanese (ja)
Other versions
JP4257794B2 (en
Inventor
Koji Noguchi
幸二 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2004279273A priority Critical patent/JP4257794B2/en
Publication of JP2004360923A publication Critical patent/JP2004360923A/en
Application granted granted Critical
Publication of JP4257794B2 publication Critical patent/JP4257794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of application of a reduction gear made of resin with high transmitting precision of rotation. <P>SOLUTION: In this resin gear 1, the first and the second circumferential ribs 10 and 12 are constituted concentrically with a web 5 in a inner circumferential side of teeth 8. This web 5 is increased in its rigidity by a diametrical ribs 14, 12 and 15. the diametrical rib 14 is constituted to extend diagonally to a reverse direction of a rotational direction. This resin gear 1 is used to cause such a resistance as to stop a displacement in the diametric rib 11 to tend to cause slipping displacement to the rotational direction from a shaft support 4 by a torque fluctuation which works in case of transmitting the rotation. So this construction can effectively control the slipping displacement of the second circumferential rib 11 to the rotational direction from the shaft support 4 and control a deviation of rotational angular speed between the second circumferential rib 11 and the shaft support, and a deviation of rotational angular speed of the teeth 8 and the shaft support 4 as a result. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複写機,プリンター,ファクシミリ,自動車用部品等の動力伝達機構に広く使用される樹脂製ギヤの使用方法に関するものである。   The present invention relates to a method of using a resin gear widely used for a power transmission mechanism of a copier, a printer, a facsimile, an automobile part, and the like.

従来から複写機や自動車用部品等の動力伝達機構には、部品費用の低廉化,軽量化及び作動音の静粛化等を目的として樹脂製ギヤが使用されている。この樹脂製ギヤは、射出成形により所定の形状に形成されるが、使用目的に合致するような歯形精度及び強度になるように、その形状が工夫されている。   2. Description of the Related Art Conventionally, resin gears have been used in power transmission mechanisms of copying machines, automobile parts, and the like for the purpose of reducing the cost of parts, reducing the weight, and reducing operating noise. This resin gear is formed into a predetermined shape by injection molding, and the shape is devised so that the tooth profile accuracy and strength match the intended use.

例えば、カラー複写機等の画像形成装置においては、鮮明な高品質のカラー画像を作成するため、感光体の駆動用の樹脂製ギヤとして噛み合い率の高い樹脂製はすば歯車が使用されると共に、この樹脂製はすば歯車の形状が様々に工夫されている。そして、その樹脂製はすば歯車が感光体駆動用モータ(駆動手段)に連繋されており、感光体駆動用モータの回転力が樹脂製はすば歯車を介して感光体に円滑に伝達され、感光体が円滑に且つ高精度に回動されることにより、色ずれという印刷不良が効果的に防止されるのである(非特許文献1参照)。   For example, in an image forming apparatus such as a color copying machine, a resin helical gear having a high meshing ratio is used as a resin gear for driving the photoconductor in order to create a clear high-quality color image. The shape of the resin helical gear is variously devised. The resin helical gear is connected to a photoconductor driving motor (driving means), and the rotational force of the photoconductor driving motor is smoothly transmitted to the photoconductor via the resin helical gear. By rotating the photoconductor smoothly and with high precision, printing defects such as color misregistration are effectively prevented (see Non-Patent Document 1).

図16〜図17は、このような画像形成装置に使用される樹脂製はすば歯車100を示すものである。これらの図に示す樹脂製はすば歯車100は、感光体駆動軸101に一体回動できるように嵌合される軸穴102を備えた軸支持部103と、この軸支持部103の半径方向外方に位置する歯104を備えたリム105と、これら軸支持部103とリム105とを接続する肉厚の薄いウェブ106とを有している。そして、この樹脂製はすば歯車100は、スラスト荷重によるウェブ106の変形を防止するため、リム105の内側で且つウェブ106の両側面に環状の第1〜第2の周方向リブ107,108が形成され、軸支持部103と第2の周方向リブ108の間のウェブ106の両側面に軸支持部103と第2の周方向リブ108に接続する径方向リブ110が放射状に形成され、第1の周方向リブ107と第2の周方向リブ108の間のウェブ106の両側面に第1の周方向リブ107と第2の周方向リブ108に接続する径方向リブ111が放射状に形成されている。   FIGS. 16 and 17 show a resin helical gear 100 used in such an image forming apparatus. The resin helical gear 100 shown in these figures has a shaft support portion 103 having a shaft hole 102 fitted so as to be able to rotate integrally with a photoconductor drive shaft 101, and a radial direction of the shaft support portion 103. It has a rim 105 with teeth 104 located on the outside and a thin web 106 connecting the shaft support 103 and the rim 105. The resin helical gear 100 has annular first and second circumferential ribs 107, 108 inside the rim 105 and on both side surfaces of the web 106 in order to prevent deformation of the web 106 due to a thrust load. Are formed, radial ribs 110 connected to the shaft support 103 and the second circumferential rib 108 are formed radially on both side surfaces of the web 106 between the shaft support 103 and the second circumferential rib 108, Radial ribs 111 connected to the first circumferential rib 107 and the second circumferential rib 108 are formed radially on both side surfaces of the web 106 between the first circumferential rib 107 and the second circumferential rib 108. Have been.

このような構成の樹脂製はすば歯車100は、径方向リブ110,111がリム105に接続されていないため、歯104を備えたリム105の真円度を損なうことなく、ウェブ106の剛性を高めることができる。尚、樹脂製はすば歯車100は、射出成形により図16〜図17に示す形状に形成されるようになっているため、樹脂の肉厚が厚いほどキャビティ内での冷却に時間がかかり、収縮変形量が大きくなる。従って、このような形状の樹脂製はすば歯車100は、ウェブ106の肉厚が厚いと、ウェブ106とリム105の接続部の肉厚が厚くなり、ウェブ106とリム105の接続部の半径方向内方への収縮変形量がリム105の他部よりも大きくなるため、歯形精度が悪化する。又、図18に示すように、径方向リブ112がリム113に接続されていると、径方向リブ112とリム113の接続部の肉厚が厚くなり、径方向リブ112とリム113との接続部の半径方向内方への収縮変形量がリム113の他部よりも大きくなり(図中点線部参照)、真円度が低下する。そこで、図16〜図17に示す従来の樹脂製はすば歯車100は、ウェブ106の肉厚を可能な限り薄くして、歯104の精度が所望の精度となるようにし、ウェブ106の剛性の不足する分を第1〜第2の周方向リブ107,108及び径方向リブ110,111により補うようになっている。   In the resin helical gear 100 having such a configuration, since the radial ribs 110 and 111 are not connected to the rim 105, the rigidity of the web 106 is maintained without impairing the roundness of the rim 105 having the teeth 104. Can be increased. Since the resin helical gear 100 is formed into the shape shown in FIGS. 16 and 17 by injection molding, the thicker the resin, the longer the cooling in the cavity takes. The amount of shrinkage deformation increases. Therefore, in the resin helical gear 100 having such a shape, when the thickness of the web 106 is large, the thickness of the connecting portion between the web 106 and the rim 105 is large, and the radius of the connecting portion between the web 106 and the rim 105 is large. Since the amount of contraction deformation inward in the direction becomes larger than that of the other portion of the rim 105, the tooth profile accuracy is deteriorated. Also, as shown in FIG. 18, when the radial rib 112 is connected to the rim 113, the thickness of the connecting portion between the radial rib 112 and the rim 113 is increased, and the connection between the radial rib 112 and the rim 113 is increased. The amount of contraction deformation of the portion inward in the radial direction is larger than that of the other portion of the rim 113 (see the dotted line portion in the figure), and the roundness is reduced. Therefore, in the conventional resin helical gear 100 shown in FIGS. 16 and 17, the thickness of the web 106 is made as thin as possible so that the accuracy of the teeth 104 becomes a desired accuracy, and the rigidity of the web 106 is increased. Are compensated by the first and second circumferential ribs 107 and 108 and the radial ribs 110 and 111.

精密工学会成形プラスチック歯車研究専門委員会編,「成形プラスチック歯車ハンドブック」,シグマ出版,1995年4月20日,477頁乃至478頁Japan Society of Precision Engineering, Plastic Plastic Gear Research Special Edition, “Molded Plastic Gear Handbook”, Sigma Publishing, April 20, 1995, pp. 477-478.

近年、カラープリンタやカラー複写機等の画像形成装置は、画像処理技術の発展に伴って、従来例よりも一層鮮明なカラー印刷を可能にすることが求められている。このような要望に応えるためには、感光体を従来よりも一層円滑且つ高精度で回動させ、感光体上への作像精度を向上させる必要がある。ここで、感光体の回転精度に大きな影響を与えるのが、前記したように樹脂製はすば歯車の精度である。   2. Description of the Related Art In recent years, image forming apparatuses such as color printers and color copiers have been required to be able to perform more vivid color printing than conventional examples with the development of image processing technology. In order to meet such a demand, it is necessary to rotate the photoconductor more smoothly and with higher precision than before, and to improve the accuracy of image formation on the photoconductor. Here, it is the accuracy of the resin helical gear that greatly affects the rotation accuracy of the photoconductor, as described above.

しかし、従来の樹脂製はすば歯車100は、図19に示すように、動力伝達時に作用するトルクにより、歯104を備えたリム105が軸支持部103に対して回転方向へずれるように変形するが、特に軸支持部103と第2の周方向リブ108の間の変形が他部よりも大きく、軸支持部103に外周側に形成された径方向リブ110が点線で示すように変形するため、図外の感光体駆動用モータから樹脂製はすば歯車100に伝達される回転と樹脂製はすば歯車100から感光体駆動軸101に伝達される回転とにずれを生じ、この回転のずれに起因して色ずれ等の画像品質の低下を招来することが判明した。   However, as shown in FIG. 19, the conventional resin helical gear 100 is deformed such that the rim 105 having the teeth 104 is displaced in the rotational direction with respect to the shaft support 103 by a torque acting upon power transmission. However, in particular, the deformation between the shaft support portion 103 and the second circumferential rib 108 is larger than that of the other portions, and the radial rib 110 formed on the outer peripheral side of the shaft support portion 103 is deformed as indicated by a dotted line. Therefore, there is a difference between the rotation transmitted from the photoconductor driving motor (not shown) to the resin helical gear 100 and the rotation transmitted from the resin helical gear 100 to the photoconductor driving shaft 101, and this rotation is generated. It has been found that such a shift causes a reduction in image quality such as a color shift.

そこで、本発明は、樹脂製ギヤの形状を工夫すると共にその使用方法を工夫し、樹脂製ギヤの動的精度(回転伝達精度)を高めることを目的とする。   Therefore, an object of the present invention is to improve the dynamic accuracy (rotation transmission accuracy) of the resin gear by devising the shape of the resin gear and the method of using the same.

請求項1の発明は、半径方向外方に形成された略円筒状の歯部と、この歯部の回転中心を中心とするように半径方向内方に形成された軸支持部と、この軸支持部と前記歯部とを接続する薄板状のウェブと、を備えた樹脂製ギヤの使用方法に関するものである。この発明において、前記樹脂製ギヤは、前記歯部の内側で且つ前記歯部と同心位置の前記ウェブに周方向リブを形成し、前記軸支持部の外周から斜め外方へ向けて複数形成された径方向リブによって前記周方向リブと前記軸支持部とを前記ウェブの側面に沿って接続するようになっており、前記径方向リブと前記周方向リブとの接続部が、前記径方向リブと前記軸支持部の接続部と前記回転中心とを結ぶ線を基準とし、回転方向側と逆の側に位置するように配置されて、前記径方向リブが動力伝達時に圧縮力を受けるように使用される、ことを特徴としている。   According to the first aspect of the present invention, a substantially cylindrical tooth portion formed radially outward, a shaft support portion formed radially inward so as to center on the rotation center of the tooth portion, and the shaft The present invention relates to a method of using a resin gear provided with a thin plate-shaped web for connecting a supporting portion and the tooth portion. In the present invention, the resin gear forms a circumferential rib on the web inside the tooth portion and at a position concentric with the tooth portion, and a plurality of the gears are formed obliquely outward from the outer periphery of the shaft support portion. The circumferential ribs and the shaft supporting portion are connected along the side surface of the web by the radial ribs, and the connecting portion between the radial ribs and the circumferential rib is the radial rib. With respect to a line connecting the connection portion of the shaft support portion and the rotation center, it is arranged so as to be located on the side opposite to the rotation direction side so that the radial rib receives a compressive force at the time of power transmission. Used.

請求項2の発明は、半径方向外方に形成された略円筒状の歯部と、この歯部の回転中心を中心とするように半径方向内方に形成された軸支持部と、この軸支持部と前記歯部とを接続する薄板状のウェブと、を備えた樹脂製ギヤの使用方法に関するものである。この発明において、前記樹脂製ギヤは、前記軸支持部の外周から斜め外方へ向けて複数形成された径方向リブによって、前記軸支持部と前記歯部とを前記ウェブの側面に沿って接続するようになっており、前記径方向リブが動力伝達時に圧縮力を受けるように使用される、ことを特徴としている。   A second aspect of the present invention provides a substantially cylindrical tooth portion formed radially outward, a shaft support portion formed radially inward so as to center on the rotation center of the tooth portion, The present invention relates to a method of using a resin gear provided with a thin plate-shaped web for connecting a supporting portion and the tooth portion. In the present invention, the resin gear connects the shaft support portion and the tooth portion along a side surface of the web by a plurality of radial ribs formed obliquely outward from the outer periphery of the shaft support portion. And the radial ribs are used to receive a compressive force during power transmission.

以上のように本発明の樹脂製ギヤの使用方法によれば、径方向リブが動力伝達開始時に圧縮力を受けるように使用されるため、回転伝達時に作用するトルク変動によって歯部が軸支持部に対して回転方向へずれるように変位しようとしても、その変位を阻止するような抵抗力が径方向リブに生じ、歯部が軸支持部に対して回転方向にずれるように変位するのを効果的に抑えることができ、歯部と軸支持部の回転角速度のばらつきを抑えることができる。従って、本発明の樹脂製ギヤの使用方法によれば、円滑且つ高精度の回転伝達が可能になる。   As described above, according to the method of using the resin gear of the present invention, since the radial rib is used so as to receive a compressive force at the start of power transmission, the tooth portion is rotated by the torque fluctuation at the time of transmitting the rotation so that the shaft supporting portion is used. When the radial rib is displaced in the rotational direction, a resistive force is generated in the radial rib to prevent the displacement, and the tooth portion is displaced in the rotational direction with respect to the shaft support. And a variation in the rotational angular velocity between the tooth portion and the shaft support portion can be suppressed. Therefore, according to the method of using the resin gear of the present invention, smooth and highly accurate rotation transmission is possible.

以下、本発明の最良の実施形態を図面に基づき詳述する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

(樹脂製はすば歯車)
[第1の実施の形態]
図1〜図3は、本発明の第1の実施の形態に係る樹脂製ギヤとしての樹脂製はすば歯車1を示すものである。尚、図1は、樹脂製はすば歯車1の正面図(図2の左側面図)である。又、図2は、図1のA−A線に沿って切断して示す樹脂製はすば歯車1の断面図である。又、図3は、樹脂製はすば歯車1の背面図(図2の右側面図)である。
(Resin helical gear)
[First Embodiment]
1 to 3 show a resin helical gear 1 as a resin gear according to a first embodiment of the present invention. FIG. 1 is a front view (left side view of FIG. 2) of the resin helical gear 1. FIG. 2 is a cross-sectional view of the resin helical gear 1 cut along the line AA in FIG. FIG. 3 is a rear view (a right side view of FIG. 2) of the resin helical gear 1.

これらの図に示すように、樹脂製はすば歯車1は、例えばポリアセタールやフッ素添加ポリカーボネート等の樹脂材料を使用して射出成形したものであり、感光体駆動軸2に係合される軸穴3が形成された軸支持部4と、この軸支持部4の軸方向略中央部で且つ軸支持部4の外表面に形成されたウェブ5と、このウェブ5で前記軸支持部4に接続される略円環状のリム6とを備えている。そして、軸支持部4と同心に形成されたリム6の外周側には歯7が形成されている。尚、このリム6及び歯7で略円筒状の歯部8が構成されている。   As shown in these figures, the resin helical gear 1 is injection-molded using a resin material such as polyacetal or fluorine-added polycarbonate, and has a shaft hole engaged with the photoconductor drive shaft 2. A shaft support 4 on which a shaft 3 is formed, a web 5 formed substantially at the center in the axial direction of the shaft support 4 and on the outer surface of the shaft support 4, and connected to the shaft support 4 by the web 5 And a substantially annular rim 6 to be formed. Further, teeth 7 are formed on the outer peripheral side of the rim 6 formed concentrically with the shaft support 4. The rim 6 and the teeth 7 form a substantially cylindrical tooth portion 8.

リム6の内側で且つウェブ5の両側面には、リム6と同心の円環状の第1の周方向リブ10がそれぞれ形成されている。又、この第1の周方向リブ10と軸支持部4との間で且つウェブ5の両側面には、第1の周方向リブ10と同心の円環状の第2の周方向リブ11がそれぞれ形成されている。又、第1の周方向リブ10と第2の周方向リブ11は、この第1の周方向リブ10と第2の周方向リブ11との間のウェブ5の両側面にそれぞれ放射状に複数形成された径方向リブ12で接続されている。   Inside the rim 6 and on both side surfaces of the web 5, annular first circumferential ribs 10 concentric with the rim 6 are formed, respectively. Further, between the first circumferential rib 10 and the shaft supporting portion 4 and on both side surfaces of the web 5, annular second circumferential ribs 11 concentric with the first circumferential rib 10 are respectively provided. Is formed. A plurality of first circumferential ribs 10 and a plurality of second circumferential ribs 11 are formed radially on both side surfaces of the web 5 between the first circumferential rib 10 and the second circumferential rib 11. Are connected by the radial ribs 12 provided.

そして、第2の周方向リブ11と軸支持部4の円筒状の外筒部分13は、この第2の周方向リブ11と軸支持部4の外筒部分13との間のウェブ5の両側面にそれぞれ形成された複数の径方向リブ14で接続されている。この第2の周方向リブ11と軸支持部4の外筒部分13とを接続する径方向リブ14は、樹脂製はすば歯車1の回転方向と逆方向へ傾くように形成されており、図1中右回り方向の力が歯に作用した際(動力伝達開始時)に圧縮力を受け、第2の周方向リブ11と軸支持部4との相対回動を阻止するような反力を生じさせるようになっている。   The cylindrical outer cylindrical portion 13 of the second circumferential rib 11 and the shaft support 4 is formed on both sides of the web 5 between the second circumferential rib 11 and the outer cylindrical portion 13 of the shaft support 4. They are connected by a plurality of radial ribs 14 respectively formed on the surfaces. The radial rib 14 connecting the second circumferential rib 11 and the outer cylindrical portion 13 of the shaft support 4 is formed so as to be inclined in a direction opposite to the rotation direction of the resin helical gear 1. When a force in the clockwise direction in FIG. 1 acts on the teeth (at the start of power transmission), it receives a compressive force to prevent the relative rotation between the second circumferential rib 11 and the shaft support 4. Is caused.

第1の周方向リブ10とリム6との間のウェブ5の両側面には、歯形精度に悪影響を与えない程度の幅寸法と高さ寸法の径方向リブ15が第1の周方向リブ10とリム6とを接続するように放射状に複数形成されている。その結果、第1の周方向リブ10とリム6との間のウェブ5の剛性は、複数の径方向リブ15で高められている。尚、この径方向リブ15は、他の径方向リブ12,14よりも幅寸法Wが小さく且つ高さ寸法Hが低く形成されている。   On both side surfaces of the web 5 between the first circumferential rib 10 and the rim 6, radial ribs 15 having a width and a height that do not adversely affect the tooth profile accuracy are provided. And a plurality of rims 6 are formed radially so as to connect the rim 6 to the rim 6. As a result, the rigidity of the web 5 between the first circumferential rib 10 and the rim 6 is increased by the plurality of radial ribs 15. The radial rib 15 has a smaller width W and a smaller height H than the other radial ribs 12 and 14.

ここで、各径方向リブ12,14,15は、周方向にずれるように形成されている。即ち、第2の周方向リブ11と径方向リブ12,12との接続部間に径方向リブ14の外周端が接続され、第1の周方向リブ10と径方向リブ15,15との接続部間に径方向リブ12の外周端が接続されるようになっている。これは、各径方向リブ14,12,15が同一直線上に位置すると、射出成形後の半径方向内方への収縮量が大きくなり、歯部8の真円度に悪影響を与える虞があるからである。又、各周方向リブ10,11及び各径方向リブ12,14,15は、ウェブ5の両側面の対称位置に形成されており、射出成形後の収縮変形がウェブ5の一方の側面側とウェブ5の他方の側面側とでずれないようにし、高精度の射出成形が可能になるように工夫されている。   Here, the radial ribs 12, 14, 15 are formed so as to be shifted in the circumferential direction. That is, the outer peripheral end of the radial rib 14 is connected between the connecting portions of the second circumferential rib 11 and the radial ribs 12, 12, and the connection between the first circumferential rib 10 and the radial ribs 15, 15. The outer peripheral end of the radial rib 12 is connected between the portions. This is because, when the radial ribs 14, 12, 15 are located on the same straight line, the amount of contraction in the radial direction after the injection molding is increased, which may adversely affect the roundness of the tooth portion 8. Because. The circumferential ribs 10 and 11 and the radial ribs 12, 14 and 15 are formed at symmetrical positions on both side surfaces of the web 5. It is devised so as not to shift on the other side of the web 5 and to enable high-precision injection molding.

軸支持部4は、図外の感光体から延出する感光体駆動軸2に嵌合する軸穴3を備えた内筒部分16と、この内筒部分16と同心に形成された外筒部分13とを備え、この外筒部分13と内筒部分16がウェブ17で接続されている。そして、このウェブ17の一方の側面側(図2中左側)には、感光体駆動軸2の回り止めに係合するキー溝20が略十字形状に形成されている。又、このウェブ5の一方の側面側には、内筒部分16と外筒部分13とを径方向に接続する径方向リブ21が各キー溝20,20間に形成されると共に、この径方向リブ21に交叉する周方向リブ22が各キー溝20,20間に形成されている。一方、軸支持部4のウェブ5の他方の側面側(図2中右側)には、内筒部分16と外筒部分13とを径方向に接続する径方向リブ23が樹脂製はすば歯車1の回転方向と逆方向に傾くように形成されている。又、これら複数の径方向リブ23に交叉する周方向リブ24が軸支持部4のウェブ17の他方の側面に形成されている。ここで、径方向リブ23の外周端は、径方向外方側の径方向リブ14,14の内周端間に位置するように外筒部分13に接続されている。これは、径方向リブ23の外周端位置と径方向リブ14の内周端位置が重なるように形成されると、これら径方向リブ23,14と外筒部分13の接続部が他部よりも厚肉になり、射出成形後の冷却速度に差が生じ、高精度の成形が困難になるからである。尚、軸支持部4のウェブ17は、図2に示すように、キー溝20が形成された一方の側面側に寄った位置に形成されている。これは、感光体駆動軸2の回り止め18が軸支持部4のキー溝20に係合され、軸支持部4の一方の側面側に大きなトルクが作用するようになっているため、軸支持部4の一方の側面側の強度を確保する必要があるからである。   The shaft support portion 4 includes an inner cylindrical portion 16 having a shaft hole 3 fitted to a photoconductor driving shaft 2 extending from a photoconductor (not shown), and an outer cylindrical portion formed concentrically with the inner cylindrical portion 16. The outer cylindrical portion 13 and the inner cylindrical portion 16 are connected by a web 17. On one side (left side in FIG. 2) of the web 17, a key groove 20 that engages with the rotation stop of the photoconductor drive shaft 2 is formed in a substantially cross shape. On one side surface of the web 5, a radial rib 21 for connecting the inner cylindrical portion 16 and the outer cylindrical portion 13 in the radial direction is formed between the respective key grooves 20 and 20. A circumferential rib 22 intersecting with the rib 21 is formed between each keyway 20. On the other hand, on the other side surface (the right side in FIG. 2) of the web 5 of the shaft support portion 4, a radial rib 23 connecting the inner cylindrical portion 16 and the outer cylindrical portion 13 in the radial direction is provided with a resin helical gear. 1 is formed so as to be inclined in a direction opposite to the rotation direction. A circumferential rib 24 intersecting with the plurality of radial ribs 23 is formed on the other side surface of the web 17 of the shaft support 4. Here, the outer peripheral end of the radial rib 23 is connected to the outer cylindrical portion 13 so as to be located between the inner peripheral ends of the radial ribs 14 on the radially outer side. This is because when the outer peripheral end position of the radial rib 23 and the inner peripheral end position of the radial rib 14 are formed so as to overlap with each other, the connection between the radial ribs 23 and 14 and the outer cylindrical portion 13 is larger than other portions. This is because the thickness becomes thick, and a difference occurs in the cooling rate after the injection molding, so that high-precision molding becomes difficult. As shown in FIG. 2, the web 17 of the shaft support 4 is formed at a position closer to one side surface where the key groove 20 is formed. This is because the rotation stopper 18 of the photoconductor drive shaft 2 is engaged with the key groove 20 of the shaft support portion 4 and a large torque acts on one side surface of the shaft support portion 4. This is because it is necessary to ensure the strength of one side surface of the portion 4.

以上のような構造の樹脂製はすば歯車1は、リム6、ウェブ5,17、周方向リブ10,11、外筒部分13及び内筒部分16がほぼ同一の肉厚に形成され、各径方向リブ12,14,21,23の肉厚が周方向リブ10,11の肉厚に対して同一か又は薄く形成されており、射出成形後の冷却速度が各部でほぼ同一になるように構成されているため、射出成形後の収縮変形が均一化し、高精度に成形される。尚、周方向リブ22,24は、径方向リブ15の幅寸法及び高さ寸法とほぼ同一の寸法に形成されており、軸支持部4の成形精度を損なうことなく剛性アップを図ることができるように工夫されている。   In the resin helical gear 1 having the above structure, the rim 6, the webs 5, 17, the circumferential ribs 10, 11, the outer cylindrical portion 13, and the inner cylindrical portion 16 are formed to have substantially the same thickness. The thickness of the radial ribs 12, 14, 21, 23 is formed to be equal to or smaller than the thickness of the circumferential ribs 10, 11 so that the cooling rate after injection molding is substantially the same in each part. Due to the configuration, the shrinkage and deformation after injection molding are made uniform, and molding is performed with high precision. The circumferential ribs 22 and 24 are formed to have substantially the same dimensions as the width and height of the radial rib 15, so that rigidity can be increased without impairing the molding accuracy of the shaft support 4. It is devised as follows.

又、本実施の形態の樹脂製はすば歯車1は、上記のように、十分に肉抜きされているため、軽量化が図られると共に、射出成形後の収縮変形量が少なくなり、歯部8を含めた全体形状を高精度に成形することができる。しかし、本実施の形態の樹脂製はすば歯車1は、上記のように肉抜きされても、周方向リブ10,11や径方向リブ12,14,15をウェブ5の側面に形成することにより、ウェブ5の強度を十分に確保するように構成されているため、歯部8に入力された回動力を軸支持部4に係合された感光体駆動軸2に確実に伝達することができる。   Further, since the resin helical gear 1 of the present embodiment is sufficiently thinned as described above, it is possible to reduce the weight, reduce the amount of shrinkage deformation after injection molding, and reduce the tooth portion. 8 can be formed with high precision. However, in the resin helical gear 1 of the present embodiment, the circumferential ribs 10, 11 and the radial ribs 12, 14, 15 are formed on the side surfaces of the web 5 even if the thickness is reduced as described above. As a result, since the web 5 is configured to ensure a sufficient strength, the rotational power input to the teeth 8 can be reliably transmitted to the photoconductor drive shaft 2 engaged with the shaft support 4. it can.

しかも、本実施の形態の樹脂製はすば歯車1は、回転伝達時における回転方向へのずれ変形が最も大きくなる第2の周方向リブ11と軸支持部4間に(図19参照)、回転方向と逆方向へ傾く径方向リブ14が形成されており、この径方向リブ14が第2の周方向リブ11と軸支持部4の間の回転方向へのずれ変形を阻止するような反力を生じるようになっているため、歯部8と軸支持部4間の回転方向へのずれ変形量(回転の位相差)を小さくすることができる。従って、本実施の形態の樹脂製はすば歯車1によれば、回転伝達精度(動的精度)が向上し、感光体駆動軸2を円滑に且つ高精度で回動させることが可能になる。   In addition, the resin helical gear 1 of the present embodiment is provided between the second circumferential rib 11 and the shaft support 4 where the deformation in the rotational direction during rotation transmission is greatest (see FIG. 19). A radial rib 14 inclined in a direction opposite to the rotation direction is formed, and the radial rib 14 prevents the second circumferential rib 11 and the shaft support 4 from being displaced in the rotational direction. Since a force is generated, the amount of shift deformation (rotation phase difference) between the tooth portion 8 and the shaft support portion 4 in the rotation direction can be reduced. Therefore, according to the resin helical gear 1 of the present embodiment, the rotation transmission accuracy (dynamic accuracy) is improved, and the photoconductor drive shaft 2 can be rotated smoothly and with high accuracy. .

尚、上記の実施の形態において、径方向リブ12,14と周方向リブ11の接続部コーナー形状や径方向リブ14と外筒部分13の接続部コーナーの形状等、各接続部コーナーの形状は、R面形状とし、成形性や離型性を向上させると共に、応力集中を避けるようになっている。   In the above-described embodiment, the shape of each connection portion corner, such as the shape of the connection portion corner between the radial ribs 12 and 14 and the circumferential rib 11 and the shape of the connection portion corner between the radial rib 14 and the outer cylindrical portion 13, is described. , An R-shaped surface to improve moldability and releasability, and to avoid stress concentration.

又、上記の実施の形態に係る樹脂製はすば歯車1において、第1の周方向リブ10と第2の周方向リブ11間の径方向リブ12を、第2の周方向リブ11と軸支持部4間の径方向リブ14と同様に、樹脂製はすば歯車1の回転方向と逆方向に傾けるようにしてもよい。このように構成した樹脂製はすば歯車1は、上記実施の形態よりも回転伝達精度をより一層向上させることができる。   Further, in the resin helical gear 1 according to the above-described embodiment, the radial rib 12 between the first circumferential rib 10 and the second circumferential rib 11 is replaced with the second circumferential rib 11 and the shaft. Similar to the radial ribs 14 between the support portions 4, the resin helical gear 1 may be inclined in a direction opposite to the rotation direction. The resin helical gear 1 configured as described above can further improve the rotation transmission accuracy as compared with the above embodiment.

又、上記の実施の形態に係る樹脂製はすば歯車1において、径方向リブ12,15の全てを第2の周方向リブ11と軸支持部4間の径方向リブ14と同様に、樹脂製はすば歯車1の回転方向と逆の方向に傾けるようにしてもよい。このように構成した樹脂製はすば歯車1は、上記の実施の形態よりも回転伝達精度をより一層向上させることができる。   Further, in the resin helical gear 1 according to the above-described embodiment, all of the radial ribs 12 and 15 are made of resin like the radial rib 14 between the second circumferential rib 11 and the shaft support 4. The helical gear 1 may be inclined in a direction opposite to the direction of rotation. The resin helical gear 1 configured as described above can further improve the rotation transmission accuracy as compared with the above embodiment.

又、上記の実施の形態に係る樹脂製はすば歯車1がアイドルギヤとして使用されるような場合には、径方向リブ12のみを樹脂製はすば歯車1の回転方向と逆の方向に傾けるようにしてもよい。   In the case where the resin helical gear 1 according to the above embodiment is used as an idle gear, only the radial rib 12 is provided in a direction opposite to the rotation direction of the resin helical gear 1. You may make it tilt.

又、上記の実施の形態に係る樹脂製はすば歯車1は、感光体駆動軸2に一体回動できるように係合される態様を例示したが、これに限られず、支持軸(図示せず)に回動できるように係合する態様でも使用することができる。   In addition, the resin helical gear 1 according to the above-described embodiment has been exemplified to be engaged with the photoconductor drive shaft 2 so as to be able to rotate integrally with the photosensitive member drive shaft 2, but the present invention is not limited to this. However, it can also be used in a mode in which it is rotatably engaged.

又、上記実施の形態において、歯部8から入力された動力を軸支持部4から出力する樹脂製はすば歯車1を例示したが、軸支持部4から入力された動力を歯部8から出力する樹脂製はすば歯車1は、径方向リブ14が上記実施の形態の径方向リブ14と逆方向へ傾斜するように形成される。即ち、軸支持部4から入力された動力を歯部8から出力する樹脂製はすば歯車1は、径方向リブ14が軸支持部4の外周から回転方向と同一方向へ斜めに延びるように複数形成される。このように形成した樹脂製はすば歯車1は、径方向リブ14が動力伝達開始時に圧縮力を受け、軸支持部4と歯部8の回転方向へのずれ動きを阻止するような反力を生じさせることができ、上記実施の形態と同様の効果を得ることができる。加えて、このように、軸支持部4から入力された動力を歯部8から出力する樹脂製はすば歯車1は、径方向リブ12,15を径方向リブ14と同一方向へ傾けて形成するようにしてもよい。
[第2の実施の形態]
図4〜図6は、本発明の第2の実施の形態に係る樹脂製はすば歯車31を示すものであり、大小二段のはすば歯車31a,31bが一体形成された樹脂製はすば歯車31を示すものである。尚、図4は、樹脂製はすば歯車31の正面図(左側面図)である。又、図5は、図4のB−B線に沿って切断して示す断面図である。又、図6は、樹脂製はすば歯車31の背面図(図5の右側面図)である。
Further, in the above embodiment, the resin helical gear 1 that outputs the power input from the tooth portion 8 from the shaft support portion 4 has been illustrated, but the power input from the shaft support portion 4 is output from the tooth portion 8. The output resin helical gear 1 is formed such that the radial ribs 14 are inclined in the opposite direction to the radial ribs 14 of the above embodiment. That is, the resin helical gear 1 that outputs the power input from the shaft support 4 from the teeth 8 has the radial ribs 14 extending obliquely from the outer periphery of the shaft support 4 in the same direction as the rotation direction. A plurality is formed. The resin helical gear 1 formed in this manner has a reaction force such that the radial rib 14 receives a compressive force at the start of power transmission and prevents the shaft support 4 and the tooth 8 from moving in the rotational direction. And the same effect as in the above embodiment can be obtained. In addition, as described above, the resin helical gear 1 that outputs the power input from the shaft support portion 4 from the tooth portion 8 is formed by inclining the radial ribs 12 and 15 in the same direction as the radial rib 14. You may make it.
[Second Embodiment]
FIGS. 4 to 6 show a resin helical gear 31 according to a second embodiment of the present invention. The resin helical gear 31a, 31b having two large and small helical gears 31a and 31b is integrally formed. This shows a helical gear 31. FIG. 4 is a front view (left side view) of the resin helical gear 31. FIG. 5 is a sectional view taken along line BB of FIG. FIG. 6 is a rear view (a right side view of FIG. 5) of the resin helical gear 31.

本実施の形態の樹脂製はすば歯車31は、外周に歯32が形成された第1のリム33と、この第1のリム33の内側に第1のリム33と同心に形成された円環状の第1の周方向リブ34と、この第1の周方向リブ34の内側に第1のリム33と同心に形成された第2の周方向リブ35と、この第2の周方向リブ35の内側に形成された円筒状の軸支持部36とを備え、リム33,第1の周方向リブ34及び第2の周方向リブ35が薄板状の第1のウェブ37で接続されており、第2の周方向リブ35と軸支持部36が薄板状の第2のウェブ38で接続されている。尚、第1の周方向リブ34及び第2の周方向リブ35は、歯幅(L1)と同一の寸法(L1=L2=L3)に形成されている。そして、第1のウェブ37は、歯幅方向略中央部に形成されており、第1のリム33,第1の周方向リブ34及び第2の周方向リブ35に直交するように形成されている。又、第2のウェブ38は、第2の周方向リブ35の裏面側端部(図5中右側端部)に外周端が接続され、軸支持部36の外周に内周端が接続されており、第2の周方向リブ35及び軸支持部36に直交するようになっている。そして、第2のウェブ38の裏面側側面には、外周に歯40を備えた第2のリム41が軸支持部36と同心に形成されている。そして、歯32と第1のリム33により第1の歯部42が構成され、歯40と第2のリム41により第2の歯部43が構成されている。   The resin helical gear 31 of the present embodiment has a first rim 33 having teeth 32 formed on the outer periphery, and a circle formed concentrically with the first rim 33 inside the first rim 33. An annular first circumferential rib 34, a second circumferential rib 35 formed concentrically with the first rim 33 inside the first circumferential rib 34, and a second circumferential rib 35 A rim 33, a first circumferential rib 34, and a second circumferential rib 35 are connected by a thin first web 37, The second circumferential rib 35 and the shaft support 36 are connected by a second thin plate-shaped web 38. The first circumferential rib 34 and the second circumferential rib 35 are formed to have the same dimensions (L1 = L2 = L3) as the tooth width (L1). The first web 37 is formed substantially at the center in the face width direction, and is formed so as to be orthogonal to the first rim 33, the first circumferential rib 34, and the second circumferential rib 35. I have. Also, the second web 38 has an outer peripheral end connected to the back side end (the right end in FIG. 5) of the second circumferential rib 35, and an inner peripheral end connected to the outer periphery of the shaft support 36. And is orthogonal to the second circumferential rib 35 and the shaft support portion 36. A second rim 41 having teeth 40 on the outer periphery is formed concentrically with the shaft support 36 on the back side surface of the second web 38. The first teeth 42 are formed by the teeth 32 and the first rim 33, and the second teeth 43 are formed by the teeth 40 and the second rim 41.

第1のリム33と第1の周方向リブ34との間の第1のウェブ37の両側面には、第1のリム33と第1の周方向リブ34とを径方向に接続する径方向リブ44が周方向に複数形成されている。又、第1の周方向リブ34と第2の周方向リブ35との間の第1のウェブ37の両側面には、第1の周方向リブ34と第2の周方向リブ35とを径方向に接続する径方向リブ45が周方向に複数形成されている。又、第2の周方向リブ35と軸支持部36との間の第2のウェブ38の側面には、第2の周方向リブ35と軸支持部36とを径方向に接続する径方向リブ46が形成されている。更に、第2のリム41と軸支持部36との間の第2のウェブ38の側面には、第2のリム41と軸支持部36とを径方向に接続する径方向リブ47が形成されている。尚、軸支持部36の軸穴48には、軸50が一体回動できるように嵌合されるか、又は軸50が相対回動できるように係合される。   On both sides of the first web 37 between the first rim 33 and the first circumferential rib 34, a radial direction connecting the first rim 33 and the first circumferential rib 34 in the radial direction is provided. A plurality of ribs 44 are formed in the circumferential direction. The first circumferential rib 34 and the second circumferential rib 35 are provided on both sides of the first web 37 between the first circumferential rib 34 and the second circumferential rib 35. A plurality of radial ribs 45 connected in the direction are formed in the circumferential direction. A radial rib connecting the second circumferential rib 35 and the shaft support 36 in the radial direction is provided on a side surface of the second web 38 between the second circumferential rib 35 and the shaft support 36. 46 are formed. Further, on a side surface of the second web 38 between the second rim 41 and the shaft support portion 36, a radial rib 47 for connecting the second rim 41 and the shaft support portion 36 in a radial direction is formed. ing. The shaft 50 is fitted into the shaft hole 48 of the shaft support 36 so that the shaft 50 can rotate integrally, or the shaft 50 is engaged so that the shaft 50 can rotate relatively.

そして、本実施の形態の樹脂製はすば歯車31は、図4に示すように、第1及び第2のウェブ37,38の表面側に形成された径方向リブ44,45,46が樹脂製はすば歯車31の回転方向と逆方向へ傾けて形成されている。その結果、このような樹脂製はすば歯車31は、回動力伝達時に作用するトルクによって第1のリム33側が軸支持部36側に対して回転方向へずれ変形しようとすると、径方向リブ44,45,46が軸支持部36側へ圧縮され、その変形を阻止するような反力が径方向リブ44,45,46から第1のリム33,第1の周方向リブ34及び第2の周方向リブ35に作用する。これにより、本実施の形態の樹脂製はすば歯車31は、内周側(軸支持部36側)の回転と外周側(第1のリム33側)の回転に位相差が発生するのを抑えることができ、回転伝達精度(動的精度)を向上することができる。   As shown in FIG. 4, the resin helical gear 31 of the present embodiment has radial ribs 44, 45, 46 formed on the surface side of the first and second webs 37, 38. The helical gear 31 is formed to be inclined in a direction opposite to the rotation direction of the gear 31. As a result, such a resin helical gear 31 causes the radial rib 44 to move when the first rim 33 side is displaced in the rotational direction with respect to the shaft support part 36 side by the torque acting during the transmission of the rotational power. , 45, and 46 are compressed toward the shaft support portion 36, and a reaction force for preventing the deformation is applied from the radial ribs 44, 45, and 46 to the first rim 33, the first circumferential rib 34, and the second It acts on the circumferential rib 35. Thereby, the resin helical gear 31 of the present embodiment prevents a phase difference from occurring between the rotation on the inner peripheral side (the shaft support portion 36 side) and the rotation on the outer peripheral side (the first rim 33 side). The rotation transmission accuracy (dynamic accuracy) can be improved.

又、本実施の形態の樹脂製はすば歯車31は、図6に示すように、第2のリム41と軸支持部36とを接続する径方向リブ47が回転方向へ向かって傾斜するように形成されている。その結果、このような樹脂製はすば歯車は、小径のはすば歯車31bが他の樹脂製はすば歯車(図示せず)に噛み合わされ、小径のはすば歯車31bから他の樹脂製はすば歯車に回転を伝達する場合に、第2のリム41に回転方向と逆の方向にトルクが作用し、第2のリム41が軸支持部36に対して回転方向と逆の方向へ変位(ずれ変形)しようとしても、この第2のリム41の周方向への変形を阻止するような反力が径方向リブ47から第2のリム41に作用する。その結果、本実施の形態の樹脂製はすば歯車31は、第2のリム41の回転と軸支持部36の回転に位相差が生じるのを抑えることができ、回転伝達精度(動的精度)を向上することができる。   As shown in FIG. 6, the resin helical gear 31 of the present embodiment is configured such that the radial rib 47 connecting the second rim 41 and the shaft support 36 is inclined in the rotation direction. Is formed. As a result, in such a resin helical gear, the small-diameter helical gear 31b is meshed with another resin helical gear (not shown), and the small-diameter helical gear 31b is separated from the other resin helical gear. When the rotation is transmitted to the helical gear, torque acts on the second rim 41 in a direction opposite to the rotation direction, and the second rim 41 acts on the shaft support 36 in a direction opposite to the rotation direction. Even if the second rim 41 is to be displaced (displaced), a reaction force acting on the second rim 41 from the radial rib 47 to prevent the circumferential deformation of the second rim 41 is applied. As a result, the resin helical gear 31 of the present embodiment can suppress the occurrence of a phase difference between the rotation of the second rim 41 and the rotation of the shaft support portion 36, and the rotation transmission accuracy (dynamic accuracy) ) Can be improved.

尚、本実施の形態の樹脂製はすば歯車31は、第1のリム33,第1の周方向リブ34,第2の周方向リブ35,軸支持部36,第2のリム41及び第1及び第2のウェブ37,38の肉厚がほぼ同一又は近似した寸法になるように形成されており、径方向リブ44,45,46の肉厚が第1及び第2の周方向リブ34,35や第1及び第2のウェブ37,38の肉厚よりも薄く形成されている。又、径方向リブ47の肉厚は、第2のリム41や軸支持部36の肉厚よりも薄く形成されている。しかも、第1のリム33に接続される径方向リブ44は、その高さ寸法H及び肉厚(幅寸法W)が他の径方向リブ45,46よりも小さく形成され、第1の歯部42の成形精度に悪影響を与えないで、第1のウェブ37の剛性を補強するようになっている。従って、本実施の形態の樹脂製はすば歯車31は、射出成形後の冷却速度が各部でほぼ同一になり、射出成形後の収縮変形が均一化し、高精度に成形される。又、本実施の形態の樹脂製はすば歯車31は、上記のように、十分に肉抜きされているため、軽量化が図られると共に、射出成形後の収縮変形量が少なくなり、第1及び第2の歯部42,43を含めた全体形状を高精度に成形することができる。   In addition, the resin helical gear 31 of the present embodiment includes a first rim 33, a first circumferential rib 34, a second circumferential rib 35, a shaft support 36, a second rim 41, and a second rim 41. The first and second webs 37 and 38 are formed so that the thicknesses thereof are substantially the same or approximately the same, and the thickness of the radial ribs 44, 45 and 46 is equal to the first and second circumferential ribs 34. , 35 and the first and second webs 37, 38 are formed thinner. The thickness of the radial rib 47 is smaller than the thickness of the second rim 41 and the shaft support 36. In addition, the radial ribs 44 connected to the first rim 33 are formed to have a height H and a thickness (width W) smaller than those of the other radial ribs 45 and 46, and the first tooth portion. The stiffness of the first web 37 is reinforced without adversely affecting the molding accuracy of the first web 37. Therefore, in the resin helical gear 31 of the present embodiment, the cooling rate after the injection molding is substantially the same in each part, the shrinkage deformation after the injection molding is uniform, and the molding is performed with high precision. Further, since the resin helical gear 31 of the present embodiment is sufficiently thinned as described above, the weight is reduced, and the amount of shrinkage deformation after injection molding is reduced. The whole shape including the second tooth portions 42 and 43 can be formed with high accuracy.

以上のように、本実施の形態の樹脂製はすば歯車31は、前記第1の実施の形態と同様に、静的精度(歯形精度)が優れ、動的精度(回転伝達精度)にも優れているため、円滑で且つ高精度の回転伝達が可能になる。   As described above, the resin helical gear 31 of the present embodiment has excellent static accuracy (tooth profile accuracy) and dynamic accuracy (rotation transmission accuracy) similarly to the first embodiment. Since it is excellent, smooth and high-precision rotation transmission becomes possible.

尚、本実施の形態の樹脂製はすば歯車31において、第1のウェブ37,第2の周方向リブ35及び第2のウェブ38の肉厚を第1のリム33及び第2のリム41の肉厚よりも薄くし、第1のウェブ37,第2の周方向リブ35及び第2のウェブ38を第1のリム33及び第2のリム41よりも早く冷却されるようにすれば、第1のリム33や第2のリム41の冷却が遅れても、射出成形後の冷却に伴う大径のはすば歯車31aと小径のはすば歯車31bの外形寸法の縮径変形量が少なくなり、より一層高精度に成形することが可能になる。
[第3の実施の形態]
図7〜図8は、本発明の第3の実施の形態に係る樹脂製はすば歯車51を示すものである。尚、図7は樹脂製はすば歯車51の正面図であり、図8は図7のC−C線に沿って切断して示す断面図である。
In the resin helical gear 31 of the present embodiment, the thicknesses of the first web 37, the second circumferential rib 35, and the second web 38 are adjusted by the first rim 33 and the second rim 41. If the first web 37, the second circumferential rib 35 and the second web 38 are cooled faster than the first rim 33 and the second rim 41, Even if the cooling of the first rim 33 and the second rim 41 is delayed, the outer diameter of the large-diameter helical gear 31a and the small-diameter helical gear 31b due to the cooling after injection molding is reduced by the diameter reduction. It is possible to reduce the number, and to mold with higher precision.
[Third Embodiment]
7 and 8 show a resin helical gear 51 according to a third embodiment of the present invention. 7 is a front view of the resin helical gear 51, and FIG. 8 is a cross-sectional view cut along the line CC of FIG.

これらの図に示す樹脂製はすば歯車51は、前記第1及び第2の実施の形態に係る樹脂製はすば歯車1,31に比較して小径のものである。この樹脂製はすば歯車51は、図8に示すように、歯幅方向中央部に対して左右対称形状に形成されており、軸支持部52と歯53が形成されたリム54を薄板状のウェブ55で接続するようになっている。そして、リム54の内側にリム54と同心に円環状の周方向リブ56が形成され、この周方向リブ56と軸支持部52の間のウェブ55の両側面に径方向リブ57が形成されている。この径方向リブ57は、樹脂製はすば歯車51の回転方向と逆方向に傾くように形成されており、その上端部が周方向リブ56に接続され、その下端部が軸支持部57に接続されている。尚、歯53とリム54により歯部58が構成されている。   The resin helical gear 51 shown in these figures has a smaller diameter than the resin helical gears 1 and 31 according to the first and second embodiments. As shown in FIG. 8, the resin helical gear 51 is formed in a symmetrical shape with respect to the central portion in the tooth width direction, and a shaft-supporting portion 52 and a rim 54 having teeth 53 are formed in a thin plate shape. Web 55. An annular circumferential rib 56 is formed inside the rim 54 concentrically with the rim 54, and radial ribs 57 are formed on both side surfaces of the web 55 between the circumferential rib 56 and the shaft support 52. I have. The radial rib 57 is formed so as to be inclined in a direction opposite to the rotational direction of the resin helical gear 51, and has an upper end connected to the circumferential rib 56 and a lower end connected to the shaft support 57. It is connected. The teeth 53 and the rim 54 form a tooth portion 58.

ここで、リム54,周方向リブ56及びウェブ55がほぼ同一の肉厚で形成され、径方向リブ57の肉厚がこれらリム54等の肉厚よりも薄く形成されており、歯部58が高精度で成形されるようになっている。   Here, the rim 54, the circumferential rib 56, and the web 55 are formed with substantially the same thickness, and the thickness of the radial rib 57 is formed smaller than the thickness of the rim 54 and the like. Molded with high precision.

このような構造の樹脂製はすば歯車51は、軸支持部52の軸穴60が軸59に一体回動可能に嵌合され、回転を軸59に伝達する場合、外部から作用するトルクによってリム54が軸支持部52に対して回転方向へずれ動こうとするが、径方向リブ57が突っ張って抵抗するため、リム54側の回転と軸支持部52側の回転の位相差の発生が抑えられる。従って、本実施の形態の樹脂製はすば歯車51は、回転を軸59に円滑且つ高精度に伝達することが可能になる。
[第4の実施の形態]
図9〜図10は、本発明の第4の実施の形態に係る樹脂製はすば歯車61を示すものである。尚、図9は樹脂製はすば歯車61の正面図であり、図10は図9のD−D線に沿って切断して示す断面図である。又、本実施の形態に係る樹脂製はすば歯車61は、前記第3の実施の形態の樹脂製はすば歯車51に比較し、径方向リブ62を除いた他の構成が共通するので、同一の構成には同一符号を付して、重複した説明を省略する。
In the resin helical gear 51 having such a structure, the shaft hole 60 of the shaft supporting portion 52 is fitted to the shaft 59 so as to be integrally rotatable, and when transmitting the rotation to the shaft 59, the torque is applied from the outside. Although the rim 54 tends to move in the rotational direction with respect to the shaft support 52, the radial rib 57 stretches and resists, so that a phase difference occurs between the rotation of the rim 54 and the rotation of the shaft support 52. Can be suppressed. Therefore, the resin helical gear 51 of the present embodiment can transmit the rotation to the shaft 59 smoothly and with high precision.
[Fourth Embodiment]
9 and 10 show a resin helical gear 61 according to a fourth embodiment of the present invention. 9 is a front view of the resin helical gear 61, and FIG. 10 is a cross-sectional view taken along a line DD of FIG. Further, the resin helical gear 61 according to the present embodiment has a common configuration other than the resin helical gear 51 of the third embodiment, except for the radial rib 62, since the helical gear 61 has the same configuration. , The same components are denoted by the same reference numerals, and redundant description will be omitted.

即ち、図9〜図10に示す樹脂製はすば歯車61は、正逆両方向に回転を伝達するために使用されるものであり、略V字形状の径方向リブ62を周方向リブ56と軸支持部52との間のウェブ55の側面に形成し、この略V字形状の径方向リブ62の端部を軸支持部55と周方向リブ56にそれぞれ接続して、ウェブ55の剛性を向上させたものである。即ち、径方向リブ62は、樹脂製はすば歯車61の正回転方向と逆の方向に斜めに延びるように形成された第1の径方向リブ62aと、樹脂製はすば歯車61の逆回転方向と逆の方向に斜めに延びるように形成された第2の径方向リブ62bとからなっている。   That is, the resin helical gear 61 shown in FIGS. 9 and 10 is used for transmitting rotation in both forward and reverse directions, and a substantially V-shaped radial rib 62 is formed as a circumferential rib 56. Formed on the side of the web 55 between the shaft support 52 and the ends of the substantially V-shaped radial ribs 62 are connected to the shaft support 55 and the circumferential rib 56, respectively, to increase the rigidity of the web 55. It has been improved. That is, the radial rib 62 includes a first radial rib 62 a formed so as to extend obliquely in a direction opposite to the normal rotation direction of the resin helical gear 61, and the reverse of the resin helical gear 61. The second radial rib 62b is formed to extend obliquely in the direction opposite to the rotation direction.

このような構成の樹脂製はすば歯車61は、軸支持部52の軸穴60に一体回動可能に嵌合された軸59に対し、正逆両方向の回転を円滑且つに高精度に伝達することが可能になる。   The resin helical gear 61 having such a configuration transmits the rotation in both the forward and reverse directions to the shaft 59 fitted to the shaft hole 60 of the shaft support portion 52 so as to be integrally rotatable smoothly and with high precision. It becomes possible to do.

尚、樹脂製はすば歯車61は、図11〜図12に示すように、略V字形状の径方向リブ62を図9に示す態様よりも密に配置し、より一層ウェブ55の剛性を高めるようにすれば、より一層円滑で高精度の回転伝達が可能になる。   As shown in FIGS. 11 to 12, the resin helical gear 61 has a substantially V-shaped radial rib 62 arranged more densely than in the embodiment shown in FIG. 9 to further increase the rigidity of the web 55. By increasing the rotation, smoother and more accurate rotation transmission can be achieved.

(画像形成装置)
[第5の実施の形態]
図13は、本発明の樹脂製はすば歯車1,31,51,61が使用されるカラー複写機(画像形成装置)70を示すものである。
(Image forming device)
[Fifth Embodiment]
FIG. 13 shows a color copying machine (image forming apparatus) 70 in which the resin helical gears 1, 31, 51, 61 of the present invention are used.

この図に示す画像形成装置70は、給紙部71から送り出されたシート材72をシート搬送部73によって感光体74と転写ローラ75の間に送り込み、感光体74上に形成したカラー画像をシート材72に転写した後、そのシート材72を定着部76の定着ローラ77a,77b間に送り込み、シート材72表面に形成されたカラー画像を定着させ、この定着作業終了後のシート材72を排紙ローラ対で排紙トレイ80上に排出するようになっている。   The image forming apparatus 70 shown in FIG. 1 feeds a sheet material 72 sent from a sheet feeding unit 71 between a photosensitive member 74 and a transfer roller 75 by a sheet conveying unit 73, and converts a color image formed on the photosensitive member 74 into a sheet. After the transfer to the sheet material 72, the sheet material 72 is fed between the fixing rollers 77a and 77b of the fixing unit 76 to fix the color image formed on the surface of the sheet material 72, and the sheet material 72 after the fixing operation is completed is discharged. The paper is discharged onto a paper discharge tray 80 by a pair of paper rollers.

感光体74は、図13中右回り方向(矢印方向)に回動させられるようになっており、周囲にクリーニングユニット81,除電ランプ82,帯電器83,露光ユニット84及びカラー現像ユニット85が配置されている。この感光体74は、例えば、図14に示すように、感光体ドラム86の回転中心部に固定された感光体駆動軸2が前記各実施の形態に係る樹脂製はすば歯車1,31,51,61の軸支持部4,36,52に一体回動できるように係合されており、その樹脂製はすば歯車1(31,51,61)に連繋された駆動手段としてのモータ87により回動させられ、その表面上にカラー現像ユニット85のイエロー(Y),マゼンタ(M),シアン(C),ブラック(BK)の4色のカラー像が重ねて形成されるようになっている。   The photoreceptor 74 is configured to be rotated clockwise (in the direction of the arrow) in FIG. 13, and a cleaning unit 81, a discharging lamp 82, a charger 83, an exposure unit 84, and a color developing unit 85 are arranged around the photoreceptor 74. Have been. As shown in FIG. 14, for example, as shown in FIG. 14, the photoconductor drive shaft 2 fixed to the rotation center of the photoconductor drum 86 has the resin helical gears 1, 31, and A motor 87 as driving means connected to the shaft support portions 4, 36, 52 of the first and the second helical gears 1 (31, 51, 61) so as to be integrally rotatable. So that four color images of yellow (Y), magenta (M), cyan (C), and black (BK) of the color developing unit 85 are formed on the surface thereof in a superimposed manner. I have.

このような構成の画像形成装置70は、モータ87の回転が樹脂製はすば歯車1(31,51,61)を介して円滑に且つ高精度に感光体74に伝達されるため、感光体74の回転角速度の変動が抑えられ、感光体74上に作成される各色のカラー画像のずれが抑えられ、鮮明なカラー画像の印刷が可能になる。   In the image forming apparatus 70 having such a configuration, the rotation of the motor 87 is smoothly and accurately transmitted to the photoconductor 74 via the resin helical gear 1 (31, 51, 61). The fluctuation of the rotational angular velocity of the photoreceptor 74 is suppressed, the displacement of the color image of each color created on the photoreceptor 74 is suppressed, and a clear color image can be printed.

尚、上記実施の形態において、感光体74として感光体ドラム86を例示したが、これに限られず、感光体74として感光体ベルトを使用するようにしてもよい。即ち、図15に示すように、感光体ベルト88の駆動用ローラ90に前記各実施の形態に係る樹脂製はすば歯車1(31,51,61)を一体回動できるように接続し、この樹脂製はすば歯車1(31,51,61)にモータ87のギヤ(樹脂製はすば歯車)91を噛み合わせ、モータ87の回転をギヤ91,樹脂製はすば歯車1(31,51,61)を介して駆動用ローラ90に伝達し、感光体ベルト88を円滑且つ高精度に回動させるようにしてもよい。このような構成によっても上記実施の形態と同様の効果を得ることができる。   In the above-described embodiment, the photosensitive drum 86 is exemplified as the photosensitive member 74. However, the present invention is not limited to this, and a photosensitive belt may be used as the photosensitive member 74. That is, as shown in FIG. 15, the resin helical gear 1 (31, 51, 61) according to each of the above embodiments is connected to the driving roller 90 of the photoreceptor belt 88 so as to be integrally rotatable. The gear (resin helical gear) 91 of the motor 87 meshes with the resin helical gear 1 (31, 51, 61), and the rotation of the motor 87 is controlled by the gear 91 and the resin helical gear 1 (31). , 51, 61) to the driving roller 90 to rotate the photosensitive belt 88 smoothly and with high precision. With such a configuration, the same effect as in the above embodiment can be obtained.

又、上記実施の形態は、感光体74の駆動用に前記各実施の形態に係る樹脂製はすば歯車1(31,51,61)を使用する態様を例示したが、これに限られず、給紙部71の給紙ローラ71a,シート搬送部73のレジストローラ73a,カラー現像ユニット85の現像ローラ85a〜85d,定着ローラ77a,77b等の駆動用ギヤ又は回転伝達用のアイドルギヤ等として前記各実施の形態に係る樹脂製はすば歯車1,31,51,61を適宜使用することができる。更に、上記実施の形態に限られず、中間転写体を使用する構成の画像形成装置(図示せず)の場合には、中間転写体の駆動用に前記各実施の形態に係る樹脂製はすば歯車1,31,51,61を使用することができる。   Moreover, although the said embodiment illustrated the aspect which uses the resin helical gears 1 (31, 51, 61) based on each said embodiment for the drive of the photoreceptor 74, it is not restricted to this, As the driving gear or the idle gear for rotation transmission of the paper feeding roller 71a of the paper feeding unit 71, the registration roller 73a of the sheet conveying unit 73, the developing rollers 85a to 85d of the color developing unit 85, the fixing rollers 77a and 77b, etc. The resin helical gears 1, 31, 51, 61 according to the respective embodiments can be used as appropriate. Further, the present invention is not limited to the above-described embodiment, and in the case of an image forming apparatus (not shown) having a configuration using an intermediate transfer member, the resin-made thin film according to each of the above-described embodiments is used for driving the intermediate transfer member. Gears 1, 31, 51, 61 can be used.

又、前記各実施の形態に係る樹脂製はすば歯車1,31,51,61は、上記のように、複写機,プリンター,ファクシミリ等の画像形成装置70に使用する態様を例示したが、これに限られず、インクジェットプリンターや自動車部品及びその他の精密機械等に広く適用することができ、円滑且つ高精度の回転伝達が可能になる。   In addition, although the resin helical gears 1, 31, 51, and 61 according to the above embodiments are used in the image forming apparatus 70 such as a copying machine, a printer, and a facsimile as described above, The present invention is not limited to this, and can be widely applied to ink jet printers, automobile parts, other precision machines, and the like, and enables smooth and high-precision rotation transmission.

又、上記各実施の形態は、樹脂製ギヤとして樹脂製はすば歯車1,31,51,61を例示したが、これに限られず、平歯車,傘歯車,ウォーム歯車,内歯歯車等のギヤに広く適用することができる。   Further, in each of the above embodiments, the resin helical gears 1, 31, 51, and 61 are exemplified as the resin gears. However, the present invention is not limited to this, and spur gears, bevel gears, worm gears, internal gears, and the like may be used. Can be widely applied to gears.

又、本発明は、ギヤに限られず、タイミングベルトに噛み合う歯を備えた回転伝達手段としての樹脂製プーリに適用することができる。   Further, the present invention is not limited to gears, but can be applied to a resin pulley as a rotation transmission unit having teeth that mesh with the timing belt.

更に、上記各実施の形態に係る樹脂製はすば歯車1,31,51,61は、軸に相対回動できるように係合し、他の樹脂製はすば歯車に回転を伝達するために使用することができる。   Further, the resin helical gears 1, 31, 51, 61 according to the above embodiments are engaged with the shaft so as to be relatively rotatable, and transmit the rotation to other resin helical gears. Can be used for

本発明の第1の実施の形態に係る樹脂製ギヤの正面図である。It is a front view of the resin gear concerning a 1st embodiment of the present invention. 図1の樹脂製ギヤのA−A線に沿って切断して示す断面図である。It is sectional drawing which cut | disconnects and shows along the AA of the resin gear of FIG. 本発明の第1の実施の形態に係る樹脂製ギヤの背面図である。FIG. 2 is a rear view of the resin gear according to the first embodiment of the present invention. 本発明の第2の実施の形態に係る樹脂製ギヤの正面図である。It is a front view of the resin gear concerning a 2nd embodiment of the present invention. 図4の樹脂製ギヤのB−B線に沿って切断して示す断面図である。FIG. 5 is a cross-sectional view of the resin gear of FIG. 4 taken along line BB. 本発明の第2の実施の形態に係る樹脂製ギヤの背面図である。It is a rear view of the resin gear concerning a 2nd embodiment of the present invention. 本発明の第3の実施の形態に係る樹脂製ギヤの正面図である。It is a front view of the resin gear concerning a 3rd embodiment of the present invention. 図7の樹脂製ギヤのC−C線に沿って切断して示す断面図である。FIG. 8 is a cross-sectional view of the resin gear of FIG. 7 cut along line CC. 本発明の第4の実施の形態に係る樹脂製ギヤの正面図である。It is a front view of the resin gear concerning a 4th embodiment of the present invention. 図9の樹脂製ギヤのD−D線に沿って切断して示す断面図である。It is sectional drawing which cut | disconnects and shows along the DD line of the resin gear of FIG. 第4の実施の形態の応用例を示す樹脂製ギヤの図である。図11(a)は同樹脂製ギヤの正面図であり、図11(b)は図11(a)の一部拡大図である。It is a figure of the resin gear which shows the example of application of 4th Embodiment. FIG. 11 (a) is a front view of the resin gear, and FIG. 11 (b) is a partially enlarged view of FIG. 11 (a). 図11(a)の樹脂製ギヤのE−E線に沿って切断して示す断面図である。It is sectional drawing which cut | disconnects and shows along the EE line | wire of the resin gear of FIG. 11 (a). 画像形成装置の概略構成図である。1 is a schematic configuration diagram of an image forming apparatus. 感光体ドラムの駆動機構を示す図である。FIG. 3 is a diagram illustrating a drive mechanism of a photosensitive drum. 感光体ベルトの駆動機構を示す図である。FIG. 3 is a diagram illustrating a drive mechanism of a photoconductor belt. 従来の樹脂製ギヤの正面図である。It is a front view of the conventional resin gear. 図16の樹脂製ギヤのF−F線に沿って切断して示す断面図である。FIG. 17 is a cross-sectional view of the resin gear of FIG. 16 cut along line FF. 他の従来例を示す樹脂製ギヤの正面図である。It is a front view of the resin gear which shows another conventional example. 図17に示す樹脂製ギヤの一部を拡大して示す変形状態図である。It is a deformation | transformation state figure which expands and shows a part of resin gear shown in FIG.

符号の説明Explanation of symbols

1,31,51,61……樹脂製はすば歯車(樹脂製ギヤ)、4,36,52……軸支持部、5,37,38,55……ウェブ、8,42,43,58……歯部、10,34……第1の周方向リブ、11,34……第2の周方向リブ、12,15,45,46,57……径方向リブ、56……周方向リブ、62……径方向リブ、62a……第1の径方向リブ、62b……第2の径方向リブ   1,31,51,61 …… Resin helical gear (resin gear), 4,36,52 …… Shaft support, 5,37,38,55 …… Web, 8,42,43,58 ... tooth part, 10, 34 ... first circumferential rib, 11, 34 ... second circumferential rib, 12, 15, 45, 46, 57 ... radial rib, 56 ... circumferential rib 62 ... radial ribs, 62 a ... first radial ribs, 62 b ... second radial ribs

Claims (2)

半径方向外方に形成された略円筒状の歯部と、この歯部の回転中心を中心とするように半径方向内方に形成された軸支持部と、この軸支持部と前記歯部とを接続する薄板状のウェブと、を備えた樹脂製ギヤの使用方法において、
前記樹脂製ギヤは、
前記歯部の内側で且つ前記歯部と同心位置の前記ウェブに周方向リブを形成し、前記軸支持部の外周から斜め外方へ向けて複数形成された径方向リブによって前記周方向リブと前記軸支持部とを前記ウェブの側面に沿って接続するようになっており、
前記径方向リブと前記周方向リブとの接続部が、前記径方向リブと前記軸支持部の接続部と前記回転中心とを結ぶ線を基準とし、回転方向側と逆の側に位置するように配置されて、前記径方向リブが動力伝達時に圧縮力を受けるように使用される、
ことを特徴とする樹脂製ギヤの使用方法。
A substantially cylindrical tooth portion formed radially outward, a shaft support portion formed radially inward so as to center on the rotation center of the tooth portion, and the shaft support portion and the tooth portion. In the method of using a resin gear comprising:
The resin gear,
A circumferential rib is formed on the web inside the tooth portion and concentric with the tooth portion, and the circumferential rib is formed by a plurality of radial ribs extending obliquely outward from the outer periphery of the shaft support portion. The shaft support is connected along the side of the web,
The connecting portion between the radial rib and the circumferential rib is located on a side opposite to the rotating direction side with respect to a line connecting the connecting portion between the radial rib and the shaft supporting portion and the rotation center. And the radial ribs are used to receive a compressive force during power transmission,
A method of using a resin gear, comprising:
半径方向外方に形成された略円筒状の歯部と、この歯部の回転中心を中心とするように半径方向内方に形成された軸支持部と、この軸支持部と前記歯部とを接続する薄板状のウェブと、を備えた樹脂製ギヤの使用方法において、
前記樹脂製ギヤは、前記軸支持部の外周から斜め外方へ向けて複数形成された径方向リブによって、前記軸支持部と前記歯部とを前記ウェブの側面に沿って接続するようになっており、前記径方向リブが動力伝達時に圧縮力を受けるように使用される、
ことを特徴とする樹脂製ギヤの使用方法。
A substantially cylindrical tooth portion formed radially outward, a shaft support portion formed radially inward so as to center on the rotation center of the tooth portion, and the shaft support portion and the tooth portion. In the method of using a resin gear comprising:
The resin gear connects the shaft support portion and the tooth portion along a side surface of the web by a plurality of radial ribs formed obliquely outward from the outer periphery of the shaft support portion. Wherein the radial ribs are used to receive a compressive force during power transmission.
A method of using a resin gear, comprising:
JP2004279273A 2004-09-27 2004-09-27 How to use plastic gears Expired - Lifetime JP4257794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279273A JP4257794B2 (en) 2004-09-27 2004-09-27 How to use plastic gears

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004279273A JP4257794B2 (en) 2004-09-27 2004-09-27 How to use plastic gears

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000107495A Division JP3678975B2 (en) 2000-04-10 2000-04-10 Resin gear, image forming apparatus equipped with the resin gear, and resin rotation transmission means

Publications (2)

Publication Number Publication Date
JP2004360923A true JP2004360923A (en) 2004-12-24
JP4257794B2 JP4257794B2 (en) 2009-04-22

Family

ID=34056602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279273A Expired - Lifetime JP4257794B2 (en) 2004-09-27 2004-09-27 How to use plastic gears

Country Status (1)

Country Link
JP (1) JP4257794B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7926380B2 (en) 2006-05-17 2011-04-19 Murata Machinery, Ltd. Resin gears, developing unit, photoconductor drum unit, image forming apparatus or image reading apparatus having the same
JP2013130243A (en) * 2011-12-21 2013-07-04 Canon Inc Gear and image forming apparatus
JP2014111983A (en) * 2012-11-02 2014-06-19 Ricoh Co Ltd Gear transmission device and image formation apparatus using the same
JP2014169723A (en) * 2013-03-01 2014-09-18 Ricoh Co Ltd Gear transmission device, process unit having the same, and image forming device
JP2015074513A (en) * 2013-10-08 2015-04-20 村角株式会社 Winding core
JP2017155939A (en) * 2017-05-17 2017-09-07 株式会社リコー Drive transmission device, process unit with drive transmission device and image forming device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7926380B2 (en) 2006-05-17 2011-04-19 Murata Machinery, Ltd. Resin gears, developing unit, photoconductor drum unit, image forming apparatus or image reading apparatus having the same
JP2013130243A (en) * 2011-12-21 2013-07-04 Canon Inc Gear and image forming apparatus
JP2014111983A (en) * 2012-11-02 2014-06-19 Ricoh Co Ltd Gear transmission device and image formation apparatus using the same
JP2014169723A (en) * 2013-03-01 2014-09-18 Ricoh Co Ltd Gear transmission device, process unit having the same, and image forming device
JP2015074513A (en) * 2013-10-08 2015-04-20 村角株式会社 Winding core
JP2017155939A (en) * 2017-05-17 2017-09-07 株式会社リコー Drive transmission device, process unit with drive transmission device and image forming device

Also Published As

Publication number Publication date
JP4257794B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
US7543517B2 (en) Gear made of resin and image forming device having the resin gear
JP5533096B2 (en) Driving device and image forming apparatus
USRE49143E1 (en) Image forming apparatus
US20140356027A1 (en) Drive transmission device and image forming apparatus including same
JP3688555B2 (en) Resin gear, image forming apparatus, and resin rotation transmission means
JP2013213559A (en) Planetary gear mechanism, rotary drive device and image forming device having the same, and method of assembling planetary gear mechanism
JP3678975B2 (en) Resin gear, image forming apparatus equipped with the resin gear, and resin rotation transmission means
JP4557243B2 (en) Injection molded resin gear, injection molded resin rotating body and injection molded body
JP2004360923A (en) Method of application of reduction gear made of resin
CN103939487A (en) Two-stage spline coupler, drive transmission device using the same, and image forming device
JP5773257B2 (en) Drive transmission device and image forming apparatus
JP3688556B2 (en) Resin gear, image forming apparatus, and resin rotation transmission means
JP4694359B2 (en) Drive transmission device and image forming apparatus
JP2015081638A (en) Rotary driving device, and image formation device
JP6398933B2 (en) Drive transmission mechanism and image forming apparatus having the same
JP2005076784A (en) Driving device and image forming device using the same
JP5733602B2 (en) Planetary gear device and image forming apparatus
JP2003066769A (en) Rotation transmitting mechanism of photoreceptor, image forming device and rotation transmitting mechanism
US11392071B2 (en) Image forming apparatus
JP5074081B2 (en) Gear reinforcement structure and image forming apparatus
US11268605B2 (en) Composite gear, cartridge, image forming apparatus, mold, and manufacturing method for composite gear
JP7301281B2 (en) Gears, drive transmission devices and image forming devices
JP2005173321A (en) Resin flange, manufacturing method of resin flange and electrophotographic photoreceptor with resin flange
JP2022135238A (en) Oneway clutch
JP5850305B2 (en) Planetary gear drive transmission device and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090129

R150 Certificate of patent or registration of utility model

Ref document number: 4257794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140213

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term